

1 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-DFSNM]:
Distributed File System (DFS):
Namespace Management Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

07/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

09/28/2007 0.2 Minor Updated the technical content.

10/23/2007 0.2.1 Editorial Revised and edited the technical content.

11/30/2007 0.2.2 Editorial Revised and edited the technical content.

01/25/2008 1.0 Major Updated and revised the technical content.

03/14/2008 2.0 Major Updated and revised the technical content.

05/16/2008 3.0 Major Updated and revised the technical content.

06/20/2008 4.0 Major Updated and revised the technical content.

07/25/2008 5.0 Major Updated and revised the technical content.

08/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 7.0 Major Updated and revised the technical content.

12/05/2008 8.0 Major Updated and revised the technical content.

01/16/2009 9.0 Major Updated and revised the technical content.

02/27/2009 10.0 Major Updated and revised the technical content.

04/10/2009 10.0.1 Editorial Revised and edited the technical content.

05/22/2009 10.0.2 Editorial Revised and edited the technical content.

07/02/2009 11.0 Major Updated and revised the technical content.

08/14/2009 12.0 Major Updated and revised the technical content.

09/25/2009 13.0 Major Updated and revised the technical content.

11/06/2009 14.0 Major Updated and revised the technical content.

12/18/2009 15.0 Major Updated and revised the technical content.

01/29/2010 16.0 Major Updated and revised the technical content.

03/12/2010 16.0.1 Editorial Revised and edited the technical content.

04/23/2010 17.0 Major Updated and revised the technical content.

06/04/2010 18.0 Major Updated and revised the technical content.

07/16/2010 19.0 Major Significantly changed the technical content.

3 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Date

Revision

History

Revision

Class Comments

08/27/2010 20.0 Major Significantly changed the technical content.

10/08/2010 20.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 21.0 Major Significantly changed the technical content.

01/07/2011 21.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 22.0 Major Significantly changed the technical content.

03/25/2011 22.1 Minor Clarified the meaning of the technical content.

05/06/2011 22.1 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 22.2 Minor Clarified the meaning of the technical content.

09/23/2011 22.2 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 23.0 Major Significantly changed the technical content.

03/30/2012 24.0 Major Significantly changed the technical content.

07/12/2012 25.0 Major Significantly changed the technical content.

10/25/2012 25.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 25.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 26.0 Major Significantly changed the technical content.

11/14/2013 26.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 14
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 15
1.7 Versioning and Capability Negotiation ... 15
1.8 Vendor-Extensible Fields ... 15
1.9 Standards Assignments .. 15

2 Messages.. 16
2.1 Transport .. 16
2.2 Common Data Types .. 16

2.2.1 Common Conventions ... 16
2.2.1.1 Host Name ... 16
2.2.1.2 Share Name ... 16
2.2.1.3 Domain Name .. 17
2.2.1.4 UNC Path ... 17
2.2.1.5 DFS Root ... 17
2.2.1.6 DFS Link .. 17
2.2.1.7 DFS Root Target ... 17
2.2.1.8 DFS Link Target .. 18
2.2.1.9 DFS Target .. 18

2.2.2 Common Data Types .. 18
2.2.2.1 NET_API_STATUS ... 18
2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE ... 18
2.2.2.3 DFS_INFO_STRUCT .. 19
2.2.2.4 DFS_INFO_ENUM_STRUCT... 20
2.2.2.5 DFS_STORAGE_INFO .. 22
2.2.2.6 DFS_STORAGE_INFO_1 ... 22
2.2.2.7 DFS_TARGET_PRIORITY .. 23
2.2.2.8 DFS_TARGET_PRIORITY_CLASS ... 23
2.2.2.9 DFSM_ROOT_LIST .. 24
2.2.2.10 DFSM_ROOT_LIST_ENTRY ... 25
2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN .. 25
2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO ... 26
2.2.2.13 DFS Volume State ... 26

2.2.3 Get Info Data Types ... 27
2.2.3.1 DFS_INFO_1 .. 27
2.2.3.2 DFS_INFO_2 .. 27
2.2.3.3 DFS_INFO_3 .. 28
2.2.3.4 DFS_INFO_4 .. 29
2.2.3.5 DFS_INFO_5 .. 30
2.2.3.6 DFS_INFO_6 .. 31
2.2.3.7 DFS_INFO_7 .. 32
2.2.3.8 DFS_INFO_8 .. 32
2.2.3.9 DFS_INFO_9 .. 33

5 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.3.10 DFS_INFO_50 .. 34
2.2.4 Set Info Data Types .. 34

2.2.4.1 DFS_INFO_101 .. 34
2.2.4.2 DFS_INFO_102 .. 36
2.2.4.3 DFS_INFO_103 .. 36
2.2.4.4 DFS_INFO_104 .. 37
2.2.4.5 DFS_INFO_105 .. 37
2.2.4.6 DFS_INFO_106 .. 38
2.2.4.7 DFS_INFO_107 .. 38

2.2.5 Special Info Data Types .. 39
2.2.5.1 DFS_INFO_100 .. 40
2.2.5.2 DFS_INFO_150 .. 40
2.2.5.3 DFS_INFO_200 .. 40
2.2.5.4 DFS_INFO_300 .. 41

2.2.6 Enum Info Data Types .. 41
2.2.6.1 DFS_INFO_1_CONTAINER ... 41
2.2.6.2 DFS_INFO_2_CONTAINER ... 41
2.2.6.3 DFS_INFO_3_CONTAINER ... 42
2.2.6.4 DFS_INFO_4_CONTAINER ... 42
2.2.6.5 DFS_INFO_5_CONTAINER ... 42
2.2.6.6 DFS_INFO_6_CONTAINER ... 43
2.2.6.7 DFS_INFO_8_CONTAINER ... 43
2.2.6.8 DFS_INFO_9_CONTAINER ... 43
2.2.6.9 DFS_INFO_200_CONTAINER .. 43
2.2.6.10 DFS_INFO_300_CONTAINER .. 44

2.3 Directory Service Schema Elements ... 44
2.3.1 DFS Configuration Container .. 45
2.3.2 LDAP Entries for Domain-Based DFS Namespaces .. 45
2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace 47

2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace) 47
2.3.3.1.1 DFSNamespaceElementBLOB .. 48

2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB 49
2.3.3.1.1.2 DFSRootOrLinkIDBLOB ... 50
2.3.3.1.1.3 DFSTargetListBLOB .. 53

2.3.3.1.1.3.1 TargetEntryBLOB ... 53
2.3.3.1.1.4 SiteInformationBLOB ... 55

2.3.3.1.1.4.1 SiteEntryBLOB ... 56
2.3.3.1.1.4.1.1 SiteNameInfoBLOB ... 56

2.3.4 Schema for Domainv2-Based DFS Namespace ... 57
2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor 57
2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace ... 57
2.3.4.3 LDAP Entry for Domainv2-Based DFS Link ... 58
2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link .. 60

3 Protocol Details .. 62
3.1 Server Details ... 62

3.1.1 Abstract Data Model ... 62
3.1.1.1 Global ... 62
3.1.1.2 Per Namespace .. 62
3.1.1.3 Per NamespaceElement ... 62
3.1.1.4 Per TargetsList ... 63
3.1.1.5 Per Target ... 63

3.1.2 Timers .. 63

6 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.3 Initialization .. 63
3.1.4 Message Processing Events and Sequencing Rules .. 64

3.1.4.1 Basic Methods .. 66
3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14) .. 66
3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0) .. 67
3.1.4.1.3 NetrDfsAdd (Opnum 1) .. 68
3.1.4.1.4 NetrDfsRemove (Opnum 2) .. 71
3.1.4.1.5 NetrDfsSetInfo (Opnum 3) ... 73
3.1.4.1.6 NetrDfsGetInfo (Opnum 4) ... 77
3.1.4.1.7 NetrDfsEnum (Opnum 5) .. 81
3.1.4.1.8 NetrDfsMove (Opnum 6) .. 84
3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23) ... 87
3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24) ... 89
3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25) 91

3.1.4.2 Extended Methods .. 93
3.1.4.2.1 NetrDfsAdd2 (Opnum 19) ... 93
3.1.4.2.2 NetrDfsRemove2 (Opnum 20) ... 95
3.1.4.2.3 NetrDfsEnumEx (Opnum 21) .. 97
3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22) ... 100

3.1.4.3 Root Target Methods .. 103
3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10) .. 103
3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11) .. 104
3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18) ... 107

3.1.4.4 Stand-Alone Namespace Methods .. 107
3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12) .. 107
3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13) .. 109
3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15) ... 109

3.1.4.5 Domain-Based Namespace Methods ... 111
3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16) ... 111
3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17) ... 112

3.1.5 Timer Events .. 113
3.1.6 Other Local Events .. 113

3.2 Client Details .. 113
3.2.1 Abstract Data Model .. 113
3.2.2 Timers ... 113
3.2.3 Initialization ... 113
3.2.4 Message Processing Events and Sequencing Rules ... 113

3.2.4.1 Basic Methods ... 114
3.2.4.1.1 NetrDfsAdd (Opnum 1) ... 114
3.2.4.1.2 NetrDfsRemove (Opnum 2) ... 114
3.2.4.1.3 NetrDfsSetInfo (Opnum 3) .. 114
3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21) 114

3.2.4.2 Extended Methods ... 114
3.2.4.2.1 NetrDfsAdd2 (Opnum 19) .. 114
3.2.4.2.2 NetrDfsRemove2 (Opnum 20) .. 115
3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22) ... 115

3.2.4.3 Root Target Methods .. 115
3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10) .. 115
3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11) .. 115

3.2.5 Timer Events .. 116
3.2.6 Other Local Events .. 116

3.3 Domain Controller Details .. 116
3.3.1 Abstract Data Model .. 116

7 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.2 Timers ... 116
3.3.3 Initialization ... 116
3.3.4 Message Processing Events and Sequencing Rules ... 116

3.3.4.1 Basic Methods ... 117
3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24) .. 117

3.3.4.2 Extended Methods ... 117
3.3.4.2.1 NetrDfsEnumEx (Opnum 21) ... 117

3.3.4.3 Root Target Methods .. 117
3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11) .. 117
3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18) ... 117

3.3.5 Timer Events .. 118
3.3.6 Other Local Events .. 118

4 Protocol Examples .. 119
4.1 Creating a New Domainv1-Based DFS Namespace .. 119
4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace 120
4.3 Adding a New Link to a Domain-Based DFS Namespace ... 122
4.4 Creating a New Domainv2-Based DFS Namespace .. 124
4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace 126
4.6 Adding a New Link to a Domainv2-Based DFS Namespace 128
4.7 Enumerating DFS Links in a Domain-Based DFS Namespace 130
4.8 DFS Metadata of a Domainv1-Based DFS Namespace .. 132

5 Security .. 139
5.1 Security Considerations for Implementers .. 139
5.2 Index of Security Parameters ... 139

6 Appendix A: Full IDL ... 140

7 Appendix B: Product Behavior .. 149

8 Appendix C: XML Schema of XML Document Stored in msDFS-TargetListv2

Attribute .. 164

9 Change Tracking... 167

10 Index ... 168

8 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The Distributed File System (DFS): Namespace Management Protocol provides a remote
procedure call (RPC) interface for administering DFS configurations. The client is an application
that issues method calls on the RPC interface to administer DFS. The server is a DFS service that
implements support for this RPC interface for administering DFS.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are

informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

8.3 name
access control list (ACL)

Active Directory
Active Directory Domain Services (AD DS)
authentication level
binary large object (BLOB)
Coordinated Universal Time (UTC)
directory object

directory service (DS)
Distributed File System (DFS)
Distributed File System (DFS) client
Distributed File System (DFS) client target failback
Distributed File System (DFS) client target failover
Distributed File System (DFS) in-site referral mode
Distributed File System (DFS) interlink

Distributed File System (DFS) link
Distributed File System (DFS) link target
Distributed File System (DFS) metadata
Distributed File System (DFS) namespace
Distributed File System (DFS) path
Distributed File System (DFS) referral
Distributed File System (DFS) referral site costing

Distributed File System (DFS) root
Distributed File System (DFS) root scalability mode
Distributed File System (DFS) root target
DN
domain
domain controller (DC)

dynamic object
endpoint

file system
FILETIME
forest
globally unique identifier (GUID)
GUIDString

Interface Definition Language (IDL)
Lightweight Directory Access Protocol (LDAP)

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

little-endian
member server

Microsoft Interface Definition Language (MIDL)
NetBIOS name

object
opnum
primary domain controller (PDC)
relative distinguished name (RDN)
remote procedure call (RPC)
reparse point
RPC protocol sequence

RPC transport
Server Message Block (SMB)
share
site
system access control list (SACL)
Unicode

Universal Naming Convention (UNC)
universally unique identifier (UUID)
well-known endpoint

The following terms are specific to this document:

Access Based Directory Enumeration (ABDE) mode: A mode where the server filters
directory entries according to the access permissions of the client. In a DFS scenario, ABDE is
enabled on the DFS root target share to prevent a user from seeing another user's home

directory. The DFS namespace administrator can create a DFS link for a user (or user
group), and a user is granted appropriate rights to the DFS link.

clustered DFS namespace: A stand-alone DFS namespace that is hosted on a file server
cluster.

Distributed File System (DFS) namespace name: The second pathname component of a DFS

path. For example, in the DFS path\\MyDomain\MyDfs\MyDir, the DFS namespace

name is MyDfs.

Distributed File System (DFS) server: A server computer running the DFS service that
responds to DFS referral requests, as specified in [MS-DFSC], as well as to the DFS:
Namespace Management Protocol. Also used interchangeably to refer to the DFS service itself.

Distributed File System (DFS) target: Either a DFS root target server or a DFS link target
server.

domain-based DFS namespace: A DFS namespace that has configuration information stored
in domain services. The DFS namespace may span a distributed system that is organized
hierarchically into logical domains. The path to access a domain-based DFS namespace
starts with the host domain name. A domain-based DFS namespace can have multiple DFS
root targets, which offers high availability and load sharing at the DFS root level.

domainv1-based DFS namespace: A type of domain-based DFS namespace that has its
DFS metadata stored in directory services as an ftDfs type object.

domainv2-based DFS namespace: A type of domain-based DFS namespace that has its
DFS metadata stored in the form of individual LDAP entries, with one LDAP entry per DFS
link. Each LDAP entry contains the DFS metadata (such as targets, properties, and other
information) that corresponds to that entity.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

10 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

host name: Name of a computer used for identification and access purposes by humans and
other computers in a network.

object store: A system that provides the ability to create, query, modify, or apply policy to a
local resource. The object store is typically backed by a file system.

share name: The name of a share.

site cost: An Active Directory Domain Services administrator-defined numeric value meant
to indicate the bandwidth or actual monetary cost of transmitting data between two sites.
Only a comparison between two site cost values is meaningful, with a lower site cost
preferred to a higher site cost.

stand-alone DFS namespace: A DFS namespace that has DFS metadata stored locally on
the host server. The path to access the DFS root or a DFS link starts with the DFS root

target host name. A stand-alone DFS namespace has only one DFS root target. Stand-
alone DFS roots are not fault-tolerant; when the DFS root target is unavailable, the entire
DFS namespace is inaccessible. Stand-alone DFS roots can be made fault-tolerant by being

created on clustered file servers.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no

longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,

http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-DTYP%5d.pdf

11 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC
2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[UNICODE] The Unicode Consortium, "Unicode Home Page", 2006, http://www.unicode.org/

[X680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",
Recommendation X.680, July 2002, http://www.itu.int/rec/T-REC-X.680/en

Note There is a charge to download the specification.

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C
Recommendation, August 2006, http://www.w3.org/TR/2006/REC-xml-20060816/

[XMLSCHEMA] World Wide Web Consortium, "XML Schema", September 2005,
http://www.w3.org/2001/XMLSchema

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[NOVELL] Chappell, L.A. and Hakes, D.E., "Novell's Guide to NetWare LAN Analysis, 2nd Edition",
Novell Press, June 1994, ISBN: 0782113621.

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034,
November 1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC2165] Veizades, J., Guttman, E., Perkins, C., and Kaplan, S., "Service Location Protocol", RFC
2165, June 1997, http://www.ietf.org/rfc/rfc2165.txt

[RFC2518] Goland, Y., Whitehead, E., Faizi, A., et al., "HTTP Extensions for Distributed Authoring -

WebDAV", RFC 2518, February 1999, http://www.ietf.org/rfc/rfc2518.txt

[RFC3530] Shepler, S., Callaghan, B., Robinson, D., et al., "Network File System (NFS) version 4
Protocol", RFC 3530, April 2003, http://www.ietf.org/rfc/rfc3530.txt

1.3 Overview

The DFS: Namespace Management Protocol is one of a collection of protocols that group shares

that are located on different servers by combining various storage media into a single logical

%5bMS-ERREF%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SRVS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90550
http://go.microsoft.com/fwlink/?LinkId=90594
http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90603
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89945
http://go.microsoft.com/fwlink/?LinkId=89945
http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90320
http://go.microsoft.com/fwlink/?LinkId=90363
http://go.microsoft.com/fwlink/?LinkId=90430
%5bMS-GLOS%5d.pdf

12 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

namespace. The DFS namespace is a virtual view of the share. When a user views the namespace,
the directories and files in it appear to reside on a single share. Users can navigate the namespace

without needing to know the server names or shares hosting the data. DFS also provides
redundancy of namespace service.

Access to a DFS namespace requires the DFS client. The DFS client uses the DFS Referral
Protocol, as specified in [MS-DFSC], to ascertain the existence of the DFS namespace and to
determine the shares to access on servers that participate in the DFS namespace. The DFS Referral
Protocol navigates through the DFS namespace by appropriately issuing referral requests to a
domain controller (DC) or to a DFS root target server to resolve the original path to a share on
a server that contains the data being accessed. For more information on DFS and the DFS client, see
[MSDFS]. For more information on how the DFS Referral Protocol operates within the context of the

Server Message Block (SMB) Protocol, as specified in [MS-SMB], which is the transport for DFS
referrals, see [MS-DFSC] section 2.

DFS namespace information, such as name, DFS link name, DFS link target, and so on, is stored
in the DFS metadata of the namespace. Depending on where the DFS metadata is stored, the DFS
namespace is "domain-based" or "stand-alone".

Domain-Based DFS Namespace: A well-known container in the domain directory, known as

the DFS configuration container, holds the DFS metadata for a domain-based DFS namespace. An
object exists for each domain-based DFS namespace in the DFS configuration container. DFS
metadata of a domain-based DFS namespace is stored as a binary large object (BLOB) in an
attribute of the DFS namespace object. A domain-based DFS namespace can have multiple DFS
root targets, which offer high availability and load sharing at the DFS root level. The DFS root
name of a domain-based DFS namespace has the domain as its first component. A DFS client

issues a referral request to a DC in order to identify the DFS root targets of the DFS namespace.

Stand-Alone DFS Namespace: DFS metadata is stored in an implementation-specific format on

the DFS root target server itself. A stand-alone DFS namespace supports only one DFS root
target. The DFS root name of a stand-alone DFS namespace has a host name as its first
component. A DFS client issues referral requests to the DFS root target server to access the DFS
namespace. A stand-alone DFS namespace may be clustered to provide high availability of the

DFS namespace.<1> The server hosting a stand-alone DFS namespace can be promoted to a

Domain Controller, but the namespace cannot be converted to a domain-based namespace, and
it will continue as a stand-alone namespace.

A server cannot host both domain-based and stand-alone namespace roots with the same name.

The DFS: Namespace Management Protocol is used to configure DFS services. This protocol is used
primarily by administrative applications that run on client computers to connect and configure
Distributed File System (DFS) servers. It consists of the RPC methods that can be issued from

an administrative client computer to the protocol server on a DC or a Distributed File System (DFS)
root target server. An administrator can use this protocol to perform various Distributed File System
(DFS) namespace administration operations, such as creating or deleting a DFS namespace, adding
or removing DFS root targets, adding or removing DFS links, and adding or removing targets to an
existing link. The DFS: Namespace Management Protocol includes the following:

Eleven basic methods for configuring stand-alone DFS namespaces and domain-based DFS

namespaces, as specified in section 3.1.4.1.

Four methods that support extended access to configurations of a DFS namespace, as specified in

section 3.1.4.2.

Three methods for configuring root targets in a domainv1-based DFS namespace, as specified

in section 3.1.4.3.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89945
%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

13 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Three methods for configuring a stand-alone DFS namespace, as specified in section 3.1.4.4.

Two methods relating to the association between a DFS server and the DC used by a domain-

based DFS namespace, as specified in section 3.1.4.5.

Much of the configuration information that is communicated through this protocol is marshaled
through two unions: DFS_INFO_STRUCT and DFS_INFO_ENUM_STRUCT. The usage model of
these unions is for the client to specify a Level parameter to determine which union case to use.
Each level corresponds to a specific DFS_INFO_n structure, where n is the level number. Arrays of
DFS_INFO_n structures are marshaled using DFS_INFO_n_CONTAINER structures. Levels 1, 2, 3, 4,
5, 6, 8, and 9 are common, and are shared across both the DFS_INFO_STRUCT and
DFS_INFO_ENUM_STRUCT unions. Levels 7, 50, 100, 101, 102, 103, 104, 105, 106, 107, and

150 are unique to the DFS_INFO_STRUCT union, and Levels 200 and 300 are unique to the
DFS_INFO_ENUM_STRUCT union.

While a number of methods use the common configuration information structures, not all methods
support all levels. The following table lists the levels used in the DFS_INFO_STRUCT and
DFS_INFO_ENUM_STRUCT unions, their singleton and array structures, and the methods with

which the level can be used.

Level Structure

Array

structure

NetrDfs

GetInfo

NetrDfs

Enum

NetrDfs

SetInfo

NetrDfs

SetInfo2

NetrDfs

EnumEx

1 DFS_INFO_1 DFS_INFO_1_

CONTAINER

X X X

2 DFS_INFO_2 DFS_INFO_2_

CONTAINER

X X X

3 DFS_INFO_3 DFS_INFO_3_

CONTAINER

X X X

4 DFS_INFO_4 DFS_INFO_4_

CONTAINER

X X X

5 DFS_INFO_5 DFS_INFO_5_

CONTAINER

X X X

6 DFS_INFO_6 DFS_INFO_6_

CONTAINER

X X X

7 DFS_INFO_7 N/A X

8 DFS_INFO_8 DFS_INFO_8_

CONTAINER

X X X

9 DFS_INFO_9 DFS_INFO_9_

CONTAINER

X X X

50 DFS_INFO_50 N/A X

100 DFS_INFO_100 N/A X X X

101 DFS_INFO_101 N/A X X

102 DFS_INFO_102 N/A X X

14 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Level Structure

Array

structure

NetrDfs

GetInfo

NetrDfs

Enum

NetrDfs

SetInfo

NetrDfs

SetInfo2

NetrDfs

EnumEx

103 DFS_INFO_103 N/A X X

104 DFS_INFO_104 N/A X X

105 DFS_INFO_105 N/A X X

106 DFS_INFO_106 N/A X X

107 DFS_INFO_107 N/A X X

150 DFS_INFO_150 N/A X X X

200 DFS_INFO_200 DFS_INFO_200_

CONTAINER

 X

300 DFS_INFO_300 DFS_INFO_300_

CONTAINER

 X X

1.4 Relationship to Other Protocols

The DFS: Namespace Management Protocol is used to configure and administer DFS namespaces. It

depends on RPC for its transport.

The DFS: Namespace Management Protocol is the recommended method of performing DFS
namespace operations. This protocol is used in many operations (for example, creating a new DFS
namespace or adding or removing DFS links or DFS link targets). All of these operations require
updating the DFS metadata of a DFS namespace.

The DFS Referral Protocol, as specified in [MS-DFSC], accesses the DFS metadata of a DFS
namespace for providing DFS referral responses. The DFS clients issue DFS referral requests to

verify the existence of a DFS namespace and to identify the targets of a DFS path, as specified in

[MS-DFSC]. The DFS Referral Protocol permits DFS clients to navigate the DFS namespace and to
locate the share on a server that contains the required data. The DFS Referral Protocol is
implemented as a set of SMB Protocol extensions to commands, such as
TRANS2_GET_DFS_REFERRAL to request DFS referrals from DCs, as specified in [MS-SMB].

After a DFS path is resolved to a DFS target by using the DFS Referral Protocol, a client accesses

resources on the server identified by the DFS target by using a resource access protocol, such as
the following:

SMB, as specified in [MS-SMB].

SMB2, as specified in [MS-SMB2].

Network File System (NFS), as specified in [RFC3530].

Network Control Protocol (NCP), as specified in [NOVELL].

Web Distributed Authoring and Versioning (WebDAV), as specified in [RFC2518].

A resource access protocol implementation uses name resolution protocols, such as DNS (as
specified in [RFC1034]) or SLP (as specified in [RFC2165]), to resolve DFS target host names.

%5bMS-DFSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90430
http://go.microsoft.com/fwlink/?LinkId=90363
http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90320

15 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The DFS metadata of a domain-based DFS namespace is stored in Directory Services. A DFS server
uses the Lightweight Directory Access Protocol (LDAP), as specified in [RFC2251], to access

the DFS metadata from the DS for use with both the DFS: Namespace Management Protocol and the
DFS Referral Protocol.

1.5 Prerequisites/Preconditions

The DFS: Namespace Management Protocol is an RPC interface and, as a result, has prerequisites
common to RPC interfaces. These prerequisites are specified in [MS-RPCE].

Before a client invokes this protocol, it must obtain the name of a server that supports DFS services
and RPC.

To avoid conflicts between updates to DFS metadata:

At most, one client can modify the metadata for a given DFS namespace at a time.

A domain-based DFS server must perform all DFS metadata updates to the primary domain

controller (PDC) independently of the DFS root scalability mode setting of the DFS
namespace.<2>

1.6 Applicability Statement

The DFS: Namespace Management Protocol is appropriate for managing a domain-based DFS
namespace or a stand-alone DFS namespace.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported transports: The DFS: Namespace Management Protocol uses RPC over SMB1.x or

SMB2 as its only supported transport. For more information on transport specifications, see
section 2.1.

Protocol versions: The RPC interface for this protocol has a single version number of 3.0. This

protocol can be extended without altering the version number by adding RPC methods to the
interface, with opnums positioned numerically beyond those defined in this specification. A client
determines whether such methods are supported by attempting to invoke the method; if the

method is not supported, the RPC server returns an "opnum out of range" error. RPC versioning
and capacity negotiation in this situation is specified in [C706] and [MS-RPCE].<3>

Security and authentication methods: As specified in [MS-RPCE].

Capability negotiation: None.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

No standards assignments have been received for the RPC interface UUID or for the well-known
pipe name described in this document. All values used in these extensions are in private ranges, as
specified in [MS-RPCE] and [MS-SMB].

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SMB%5d.pdf

16 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

2.1 Transport

The DFS root target MUST reside on a server that is accessible through SMB (as specified in [MS-
SMB]) or SMB2 (as specified in [MS-SMB2]). A link target MAY reside on a server that is accessible
through any resource access protocol for which appropriate client-side software exists.<4>

The DFS: Namespace Management Protocol uses RPC over SMB, as specified in [MS-RPCE].

This protocol uses a well-known endpoint, \\PIPE\NETDFS, for RPC over SMB. The RPC interface

uses transport-level authentication, as specified in [MS-RPCE]. DFS is not directly involved in
authentication; however, the DFS service MUST verify whether the user has administrator privileges
to the namespace. The authenticated RPC interface allows RPC to negotiate the use of
authentication and the authentication level on behalf of the client and server, as specified in [MS-
RPCE] section 3.3.1.5.2. The server MUST find the security context indicated by the auth_context_id
in the sec_trailer of the request, and it MUST ask the security provider that created the security

context to retrieve the client identity.

This protocol MUST use the universally unique identifier (UUID) 4FC742E0-4A10-11CF-8273-
00AA004AE673. The RPC version number is 3.0.

This protocol allows any user to establish a connection to a DFS server. It uses the underlying RPC
protocol to retrieve the identity of the caller that made the request, as specified in [MS-RPCE]
section 3.3.3.4.3. The RPC server SHOULD use this identity to verify method-specific access.

2.2 Common Data Types

2.2.1 Common Conventions

Unless otherwise specified, all strings in this protocol are null-terminated strings of UTF-16, as
specified in [UNICODE] characters. Backslashes (\) in string descriptions are literal characters.

Constructs of the form "<value>" in strings are placeholders to be replaced with client-specified or
server-specified values. For example, the string description "\\<servername>\<share>" would take

the form "\\myserver\myshare" when populated with the values "myserver" for the <servername>
placeholder and "myshare" for the <share> placeholder.

A number of string formats are common to many of the data types and methods in this protocol. To
avoid repetition, this section describes the specific formats.

2.2.1.1 Host Name

A host name represents the host name of a server or the domain name of a domain hosting
resource as specified in [MS-DTYP] section 2.2.57.

2.2.1.2 Share Name

Unless specified otherwise, a share name is a null-terminated Unicode character string whose
format depends on the actual file server protocol used to access the share as specified in [MS-DTYP]
section 2.2.57.

%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90550
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

17 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.1.3 Domain Name

Unless specified otherwise, a domain name is a null-terminated Unicode character string consisting
of the name of a Directory Service domain. For more details, see [MS-DTYP] section 2.2.57.

2.2.1.4 UNC Path

A Universal Naming Convention (UNC) path, as specified in [MS-DTYP] section 2.2.57, can be
used to access network resources.

2.2.1.5 DFS Root

A DFS root has one of the following UNC path formats.

\\<ServerName>\<DFSName>

\\<DomainName>\<DFSName>

where:

<ServerName> is the host name (as specified in section 2.2.1.1) of a DFS root target (as

specified in section 2.2.1.7) of the DFS namespace.

<DomainName> is the domain name (as specified in section 2.2.1.3) of the domain hosting the

domain-based DFS namespace.

<DFSName> is the DFS namespace name. A stand-alone DFS namespace can be referred to

only by the first format. A domain-based DFS namespace can be referred to in either format, with
the second format preferred.

2.2.1.6 DFS Link

A DFS link has one of the following UNC path formats.

\\<ServerName>\<DFSName>\<LinkPath>

\\<DomainName>\<DFSName>\<LinkPath>

where:

<ServerName> is the host name of a DFS root target of the DFS namespace.

<DomainName> is the domain name of the domain hosting the domain-based DFS namespace.

<DFSName> is the DFS namespace name.

<LinkPath> is the path of the DFS link relative to the DFS root target share. A stand-alone DFS

namespace can be referred to only by the first format. A domain-based DFS namespace can be

referred to in either format, with the second format preferred.

2.2.1.7 DFS Root Target

A DFS root target is a UNC path with the following format.

\\<servername>\<sharename>

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

18 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

where:

<servername> is the host name of a DFS root target server.

<sharename> is the share name corresponding to a DFS namespace on the DFS root target

server.

2.2.1.8 DFS Link Target

A DFS link target is any UNC path that resolves to a directory.

2.2.1.9 DFS Target

A DFS target is either a DFS root target or a DFS link target.

2.2.2 Common Data Types

In addition to RPC base types and definitions, as specified in [C706] and [MS-RPCE], the following
sections use the definitions of DWORD, GUID, and WCHAR, as specified in [MS-DTYP] DWORD
section 2.2.9, GUID section 2.3.4.2, and WCHAR section 2.2.60. Any remaining data types in this
section are defined in the Interface Definition Language (IDL) specification for this RPC
interface.

This protocol MUST enable the ms_union extension as specified in [MS-RPCE], section 2.2.4.

2.2.2.1 NET_API_STATUS

The NET_API_STATUS type is an unsigned, 32-bit integer value representing the return code from
an RPC method.

This type is declared as follows:

typedef DWORD NET_API_STATUS;

This protocol uses Microsoft Win32 error codes. The values are taken from the Windows error

number space, as specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated
meanings. Choosing any other value creates the risk of collisions in the future.

2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE

The NETDFS_SERVER_OR_DOMAIN_HANDLE is a pointer to a Unicode string representing a host

name for an RPC method.

This type is declared as follows:

typedef WCHAR* NETDFS_SERVER_OR_DOMAIN_HANDLE;

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-ERREF%5d.pdf

19 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.3 DFS_INFO_STRUCT

The DFS_INFO_STRUCT union relates to the NetrDfsGetInfo, NetrDfsSetInfo, and
NetrDfsSetInfo2 methods when used to retrieve or set the configuration of the DFS server. The

usage model of this union is for the client to specify a Level parameter to determine which case of
the DFS_INFO_STRUCT to use.

The DFS_INFO_STRUCT union has the following format.

typedef

[switch_type(unsigned long)]

 union _DFS_INFO_STRUCT {

 [case(1)]

 DFS_INFO_1* DfsInfo1;

 [case(2)]

 DFS_INFO_2* DfsInfo2;

 [case(3)]

 DFS_INFO_3* DfsInfo3;

 [case(4)]

 DFS_INFO_4* DfsInfo4;

 [case(5)]

 DFS_INFO_5* DfsInfo5;

 [case(6)]

 DFS_INFO_6* DfsInfo6;

 [case(7)]

 DFS_INFO_7* DfsInfo7;

 [case(8)]

 DFS_INFO_8* DfsInfo8;

 [case(9)]

 DFS_INFO_9* DfsInfo9;

 [case(50)]

 DFS_INFO_50* DfsInfo50;

 [case(100)]

 DFS_INFO_100* DfsInfo100;

 [case(101)]

 DFS_INFO_101* DfsInfo101;

 [case(102)]

 DFS_INFO_102* DfsInfo102;

 [case(103)]

 DFS_INFO_103* DfsInfo103;

 [case(104)]

 DFS_INFO_104* DfsInfo104;

 [case(105)]

 DFS_INFO_105* DfsInfo105;

 [case(106)]

 DFS_INFO_106* DfsInfo106;

 [case(107)]

 DFS_INFO_107* DfsInfo107;

 [case(150)]

 DFS_INFO_150* DfsInfo150;

 [default] ;

} DFS_INFO_STRUCT;

DfsInfo1: The DFS_INFO_1 structure contains the name of a DFS root or DFS link. For more

information on the specifications, see section 2.2.3.1.

DfsInfo2: The DFS_INFO_2 structure contains information for a DFS root or DFS link. For
more information on specifications, see section 2.2.3.2.

20 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DfsInfo3: The DFS_INFO_3 structure contains information for a DFS root or DFS link. For
more information on specifications, see section 2.2.3.3.

DfsInfo4: The DFS_INFO_4 structure contains information for a DFS root or DFS link. For
more information on specifications, see section 2.2.3.4.

DfsInfo5: The DFS_INFO_5 structure contains information for a DFS root or DFS link. For
more information on specifications, see section 2.2.3.5.

DfsInfo6: The DFS_INFO_6 structure contains information for a DFS root or DFS link. For
more information on specifications, see section 2.2.3.6.

DfsInfo7: The DFS_INFO_7 structure contains information about a DFS root or DFS link. For
more information on specifications, see section 2.2.3.7.

DfsInfo8: The DFS_INFO_8 structure contains information about a DFS root or DFS link. For

more information on specifications, see section 2.2.3.8.

DfsInfo9: The DFS_INFO_9 structure contains information about a DFS root or DFS link. For
more information on specifications, see section 2.2.3.9.

DfsInfo50: The DFS_INFO_50 structure contains information about a DFS root or DFS link.
For more information on specifications, see section 2.2.3.10.

DfsInfo100: The DFS_INFO_100 structure contains a comment associated with a DFS root or

DFS link. For more information on specifications, see section 2.2.5.1.

DfsInfo101: The DFS_INFO_101 structure describes the storage state on a DFS root, DFS
link, DFS root target, or DFS link target. For more information on specifications, see section
2.2.4.1.

DfsInfo102: The DFS_INFO_102 structure contains a time-out value for a DFS root or DFS
link. For more information on specifications, see section 2.2.4.2.

DfsInfo103: The DFS_INFO_103 structure contains properties that set specific behaviors for a

DFS root or DFS link. For more information on specifications, see section 2.2.4.3.

DfsInfo104: The DFS_INFO_104 structure contains the priority of a DFS root target or DFS
link target. For more information on specifications, see section 2.2.4.4.

DfsInfo105: The DFS_INFO_105 structure contains information about a DFS root or DFS link,
including comment, state, time-out, and DFS behaviors that property flags specify. For more
information on specifications, see section 2.2.4.5.

DfsInfo106: The DFS_INFO_106 structure contains the storage state and priority for a DFS

root target or DFS link target. For more information on specifications, see section 2.2.4.6.

DfsInfo107: The DFS_INFO_107 structure contains the storage state and priority for a DFS
root target or DFS link target. For more information on specifications, see section 2.2.4.7.

DfsInfo150: The DFS_INFO_150 structure contains the self-relative security descriptor

associated with the DFS link. For more information on specifications, see section 2.2.5.2.

2.2.2.4 DFS_INFO_ENUM_STRUCT

The DFS_INFO_ENUM_STRUCT union relates to the NetrDfsEnum and NetrDfsEnumEx
methods when used to enumerate the configuration of the DFS server.

21 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The DFS_INFO_ENUM_STRUCT union structure has the following format.

typedef struct _DFS_INFO_ENUM_STRUCT {

 DWORD Level;

 [switch_is(Level)] union {

 [case(1)]

 DFS_INFO_1_CONTAINER* DfsInfo1Container;

 [case(2)]

 DFS_INFO_2_CONTAINER* DfsInfo2Container;

 [case(3)]

 DFS_INFO_3_CONTAINER* DfsInfo3Container;

 [case(4)]

 DFS_INFO_4_CONTAINER* DfsInfo4Container;

 [case(5)]

 DFS_INFO_5_CONTAINER* DfsInfo5Container;

 [case(6)]

 DFS_INFO_6_CONTAINER* DfsInfo6Container;

 [case(8)]

 DFS_INFO_8_CONTAINER* DfsInfo8Container;

 [case(9)]

 DFS_INFO_9_CONTAINER* DfsInfo9Container;

 [case(200)]

 DFS_INFO_200_CONTAINER* DfsInfo200Container;

 [case(300)]

 DFS_INFO_300_CONTAINER* DfsInfo300Container;

 } DfsInfoContainer;

} DFS_INFO_ENUM_STRUCT;

Level: Specifies the case of the DfsInfoContainer union.

DfsInfoContainer: Union of the possible enumeration containers.

DfsInfo1Container: The DFS_INFO_1_CONTAINER structure contains an array of the

names of DFS roots or DFS links. For more information, see section 2.2.6.1.

DfsInfo2Container: The DFS_INFO_2_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.2.

DfsInfo3Container: The DFS_INFO_3_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.3.

DfsInfo4Container: The DFS_INFO_4_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.4.

DfsInfo5Container: The DFS_INFO_5_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.5.

DfsInfo6Container: The DFS_INFO_6_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.6.

DfsInfo8Container: The DFS_INFO_8_CONTAINER structure contains an array of
information for DFS roots or DFS links. For more information, see section 2.2.6.7.

DfsInfo9Container: The DFS_INFO_9_CONTAINER structure contains an array of

information for DFS roots or DFS links. For more information, see section 2.2.6.8.

22 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DfsInfo200Container: The DFS_INFO_200_CONTAINER structure contains an array
of the names of domain-based DFS namespaces in a domain-based DFS. For more

information, see section 2.2.6.9.

DfsInfo300Container: The DFS_INFO_300_CONTAINER structure contains an array

of the DFS roots hosted on a server. For more information, see section 2.2.6.10.

2.2.2.5 DFS_STORAGE_INFO

The DFS_STORAGE_INFO structure relates to the NetrDfsEnum, NetrDfsEnumEx, and
NetrDfsGetInfo methods when used to enumerate DFS links and DFS targets in a namespace or to
get information about a DFS link. The structure contains information about the target of a DFS root
or DFS link.

The DFS_STORAGE_INFO structure has the following format.

typedef struct _DFS_STORAGE_INFO {

 unsigned long State;

 [string] WCHAR* ServerName;

 [string] WCHAR* ShareName;

} DFS_STORAGE_INFO;

State: Refers to the State field of DFS_INFO_106. For more information, see section 2.2.4.6.

ServerName: The pointer to a null-terminated Unicode string containing the DFS target host
name.

ShareName: The pointer to a null-terminated Unicode string containing the DFS target share
name.

DFS_INFO_3 and DFS_INFO_4 structures contain one or more DFS_STORAGE_INFO structures,
one for each DFS target.

2.2.2.6 DFS_STORAGE_INFO_1

The DFS_STORAGE_INFO_1 structure relates to the NetrDfsEnum, NetrDfsEnumEx, and
NetrDfsGetInfo methods when used to enumerate DFS links and targets in a namespace or to get
information about a DFS link. The structure contains data about a DFS target, including the host
name and share name, as well as the target state and priority. For more information on
prioritization, see section 2.2.2.7.

The DFS_STORAGE_INFO_1 structure has the following format.

typedef struct _DFS_STORAGE_INFO_1 {

 unsigned long State;

 [string] WCHAR* ServerName;

 [string] WCHAR* ShareName;

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_STORAGE_INFO_1,

 *PDFS_STORAGE_INFO_1,

 *LPDFS_STORAGE_INFO_1;

State: Refers to the State field of DFS_INFO_106. For more information, see section 2.2.4.6.

23 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ServerName: A pointer to a null-terminated Unicode string containing the DFS target host
name.

ShareName: A pointer to a null-terminated Unicode string containing the DFS target share
name.

TargetPriority: A DFS_TARGET_PRIORITY structure containing the priority class and priority
rank.

2.2.2.7 DFS_TARGET_PRIORITY

The DFS_TARGET_PRIORITY structure relates to the NetrDfsSetInfo and NetrDfsSetInfo2
methods when used to set the priority of a DFS target in referrals from a server. It also relates to
the DFS_STORAGE_INFO_1 structure that the NetrDfsEnum, NetrDfsEnumEx, and

NetrDfsGetInfo methods return. The structure defines the priority of a DFS target. The DFS
targets can be prioritized independently of site cost. The DFS target priority is manually assigned to
link targets and root targets and allows for load balancing of clients.

The DFS_TARGET_PRIORITY structure has the following format.

typedef struct _DFS_TARGET_PRIORITY {

 DFS_TARGET_PRIORITY_CLASS TargetPriorityClass;

 unsigned short TargetPriorityRank;

 unsigned short Reserved;

} DFS_TARGET_PRIORITY;

TargetPriorityClass: The DFS_TARGET_PRIORITY_CLASS enumeration value that specifies

the priority class of the target. For more information, see section 2.2.2.8.

TargetPriorityRank: The priority rank of the target, ranging in value from 0x0000 to 0x001F,
where 0x0000 is the highest rank. Priority ranks apply only within a priority class, not across

priority classes.

Reserved: MUST be set to 0 by the sender and ignored by the receiver.

2.2.2.8 DFS_TARGET_PRIORITY_CLASS

The DFS_TARGET_PRIORITY_CLASS enumeration relates to the NetrDfsSetInfo and
NetrDfsSetInfo2 methods when used to set the priority of DFS targets in referrals from a server.
For more information on prioritization, see section 2.2.2.7. The enumeration defines five possible

DFS target priority class settings.

typedef [v1_enum] enum _DFS_TARGET_PRIORITY_CLASS

{

 DfsInvalidPriorityClass = -1,

 DfsSiteCostNormalPriorityClass = 0,

 DfsGlobalHighPriorityClass = 1,

 DfsSiteCostHighPriorityClass = 2,

 DfsSiteCostLowPriorityClass = 3,

 DfsGlobalLowPriorityClass = 4

} DFS_TARGET_PRIORITY_CLASS;

DfsInvalidPriorityClass: This is not a valid priority class.

24 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DfsSiteCostNormalPriorityClass: The default or "normal" site cost priority class for a DFS
target.

DfsGlobalHighPriorityClass: The highest priority class for a DFS target. Targets assigned to
this class receive global preference.

DfsSiteCostHighPriorityClass: The highest site cost priority class for a DFS target. Targets
assigned to this class receive the highest preference among targets of the same site cost for a
given DFS client.

DfsSiteCostLowPriorityClass: The lowest site cost priority class for a DFS target. Targets
assigned to this class receive the least preference among targets of the same site cost for a
given DFS client.

DfsGlobalLowPriorityClass: The lowest priority class level for a DFS target. Targets assigned

to this class receive the least preference globally.

The underlying data type of this enumeration is long integer.

The order of priority classes, from highest to lowest, is as follows:

DfsGlobalHighPriorityClass

DfsSiteCostHighPriorityClass

DfsSiteCostNormalPriorityClass

DfsSiteCostLowPriorityClass

DfsGlobalLowPriorityClass

Server targets are initially grouped into global high-priority, normal-priority, and global low-priority
classes. The normal-priority class is then subdivided, based on site cost, into site cost high-priority,

site cost normal-priority, and site-cost low-priority classes.

For example, all server targets with a site cost value of 0 are grouped into site cost high-priority,
normal-priority, and low-priority classes. Then, all server targets with higher site costs are likewise
separated into site cost high-priority, normal-priority, and low-priority classes. Thus, a server target
with a site cost value of 0 and a site cost low-priority class is still ranked higher than a server target
with a site cost value of 1 and a site cost high-priority class.

Be aware that the value for a "normal-priority class" is set to 0 even though it is lower in priority

than DfsGlobalHighPriorityClass and DfsSiteCostHighPriorityClass. This is the default priority class
setting. For added granularity, priority rank can be used to discriminate within a priority class.

2.2.2.9 DFSM_ROOT_LIST

The DFSM_ROOT_LIST structure relates to the NetrDfsAdd2, NetrDfsAddFtRoot, and
NetrDfsSetInfo2 methods when used to add a DFS link or a DFS root target, or to modify the
configuration of a domain-based DFS namespace. The structure contains an array of

DFSM_ROOT_LIST_ENTRY structures, each of which contains information about a DFS root
target.

The DFSM_ROOT_LIST structure has the following format.

typedef struct _DFSM_ROOT_LIST {

 DWORD cEntries;

25 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [size_is(cEntries)] DFSM_ROOT_LIST_ENTRY Entry[];

} DFSM_ROOT_LIST;

cEntries: The number of DFS targets. The value of this member indicates the size of the array
in the Entry member.

Entry: An array of DFSM_ROOT_LIST_ENTRY structures. Each structure provides information
about one DFS target. For more information, see section 2.2.2.10.

2.2.2.10 DFSM_ROOT_LIST_ENTRY

The DFSM_ROOT_LIST_ENTRY structure relates to the NetrDfsAdd2, NetrDfsAddFtRoot, and
NetrDfsSetInfo2 methods when used to add a DFS link or a DFS root target, or to modify the
configuration of a domain-based DFS namespace. The structure contains information about a DFS

root target.

The DFSM_ROOT_LIST_ENTRY structure has the following format.

typedef struct _DFSM_ROOT_LIST_ENTRY {

 [string, unique] WCHAR* ServerShare;

} DFSM_ROOT_LIST_ENTRY;

ServerShare: Specifies a DFS root target.

2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN

The DFS_NAMESPACE_VERSION_ORIGIN is an enumeration that relates to the

NetrDfsGetSupportedNamespaceVersion method when used to determine the supported DFS
metadata version number.

The DFS_NAMESPACE_VERSION_ORIGIN enumeration has the following format.

typedef enum _DFS_NAMESPACE_VERSION_ORIGIN

{

 DFS_NAMESPACE_VERSION_ORIGIN_COMBINED = 0,

 DFS_NAMESPACE_VERSION_ORIGIN_SERVER,

 DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN

} DFS_NAMESPACE_VERSION_ORIGIN;

DFS_NAMESPACE_VERSION_ORIGIN_COMBINED: This value is not used in communication.

DFS_NAMESPACE_VERSION_ORIGIN_SERVER: The maximum version that a server can
support.

DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN: The maximum version that the domain can

support.

26 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO

The DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure relates to the
NetrDfsGetSupportedNamespaceVersion method when used to determine the domain-based or

standalone-based DFS major and minor version information.

The DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure has the following format.

typedef struct _DFS_SUPPORTED_NAMESPACE_VERSION_INFO {

 unsigned long DomainDfsMajorVersion;

 unsigned long DomainDfsMinorVersion;

 ULONGLONG DomainDfsCapabilities;

 unsigned long StandaloneDfsMajorVersion;

 unsigned long StandaloneDfsMinorVersion;

 ULONGLONG StandaloneDfsCapabilities;

} DFS_SUPPORTED_NAMESPACE_VERSION_INFO,

 *PDFS_SUPPORTED_NAMESPACE_VERSION_INFO;

DomainDfsMajorVersion: A value containing the major version number of the DFS metadata

format supported by a domain-based DFS namespace.

DomainDfsMinorVersion: A value containing the minor version number of the DFS metadata

format supported by a domain-based DFS namespace.

DomainDfsCapabilities: A value containing the capability information of a domain-based DFS
namespace.

StandaloneDfsMajorVersion: A value containing the major version number of a stand-alone
DFS namespace.

StandaloneDfsMinorVersion: A value containing the minor version number of a stand-alone
DFS namespace.

StandaloneDfsCapabilities: A value containing the capability information of a stand-alone DFS
namespace.

DomainDfsCapabilities and StandaloneDfsCapabilities are bit fields with the following defined
value.

Value Meaning

DFS_NAMESPACE_CAPABILITY_ABDE

0x0000000000000001

This specifies support for Access Based Directory Enumeration

(ABDE) mode.<5>

When this structure is used for communication, all undefined bit fields MUST be set to zero. A client
SHOULD ignore all bit fields it does not understand.

2.2.2.13 DFS Volume State

The following table lists the valid states for a DFS root or a DFS link, and it relates to the State field
of the DFS_INFO_2, DFS_INFO_4, DFS_INFO_5, DFS_INFO_6, and DFS_INFO_8 structures.
The bitmask DFS_VOLUME_STATES (0x0000000F) MUST be used to extract the state of a DFS root
or a DFS link from the State field.

27 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The DFS root or DFS link is initialized to this state. In this state the DFS

root or link is available for referral request.

This state is persisted to the DFS metadata.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline, and none of the DFS targets will be included in

referral response. This flag is valid only for a DFS link and cannot be set

on a DFS root.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for referral request. This flag is valid

only for a DFS link and cannot be set on a DFS root.

This state is persisted to the DFS metadata.

2.2.3 Get Info Data Types

The structures in this section relate to the NetrDfsGetInfo, NetrDfsEnum, and NetrDfsEnumEx

methods when used to retrieve information about the DFS server configuration. The usage model of
these structures is for the client to specify a Level parameter to indicate which case of the
DFS_INFO_STRUCT to use.

2.2.3.1 DFS_INFO_1

The DFS_INFO_1 structure contains the name of a DFS root or DFS link.

The DFS_INFO_1 structure has the following format.

typedef struct _DFS_INFO_1 {

 [string] WCHAR* EntryPath;

} DFS_INFO_1;

EntryPath: The pointer to a DFS root or a DFS link path.

2.2.3.2 DFS_INFO_2

The DFS_INFO_2 structure contains information for a DFS root or DFS link.

The DFS_INFO_2 structure has the following format.

typedef struct _DFS_INFO_2 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 DWORD NumberOfStorages;

} DFS_INFO_2;

EntryPath: A pointer to a DFS root or a DFS link path.

28 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Comment: A pointer to a null-terminated Unicode string containing a comment that is used for
informational purposes and is associated with the DFS root or DFS link. This string has no

protocol-specified restrictions on length or content. The comment is meant for human
consumption and does not affect server functionality.

State: This field has the state of the DFS root or DFS link. For a DFS root, this field also
specifies whether the DFS namespace is stand-alone or domain-based.

The DFS_VOLUME_STATES bitmask (0x0000000F) MUST be used to extract the following DFS
root or DFS link state from this field. For more information about some of these states, see
section 2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The specified DFS root or DFS link is in the normal state.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline, and none of the DFS targets will be

included in the referral response. This flag is valid only for a DFS

link and cannot be set on a DFS root.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for referral request. This flag

is valid only for a DFS link and cannot be set on a DFS root.

This state is persisted to the DFS metadata.

The DFS_VOLUME_FLAVORS bitmask (0x00000300) MUST be used to extract the following
DFS namespace flavor from this field.

Value Meaning

DFS_VOLUME_FLAVOR_STANDALONE

0x00000100

Stand-alone DFS namespace.

DFS_VOLUME_FLAVOR_AD_BLOB

0x00000200

domainv1-based or domainv2-based DFS namespace.

NumberOfStorages: Number of DFS targets for the root or link.

2.2.3.3 DFS_INFO_3

The DFS_INFO_3 structure contains information for a DFS root or a DFS link.

The DFS_INFO_3 structure has the following format.

typedef struct _DFS_INFO_3 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO* Storage;

} DFS_INFO_3;

29 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

EntryPath: Pointer to a DFS root or DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

NumberOfStorages: The number of DFS targets for this root or link.

Storage: A pointer to an array of DFS_STORAGE_INFO structures containing information
about each target. (For more information, see section 2.2.2.5). The NumberOfStorages
member specifies the number of structures within this storage array.

2.2.3.4 DFS_INFO_4

The DFS_INFO_4 structure contains information for a DFS root or a DFS link.

The DFS_INFO_4 structure has the following format.

typedef struct _DFS_INFO_4 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO* Storage;

} DFS_INFO_4;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

NumberOfStorages: The number of DFS targets for this root or link. There are no protocol-
specified restrictions on the number of targets for a root or link.

Storage: A pointer to an array of DFS_STORAGE_INFO structures containing information

about each target. (For more information, see section 2.2.2.5). The NumberOfStorages
member specifies the number of structures within this storage array.

30 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.3.5 DFS_INFO_5

The DFS_INFO_5 structure contains information for a DFS root or a DFS link.

The DFS_INFO_5 structure has the following format.

typedef struct _DFS_INFO_5 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 DWORD NumberOfStorages;

} DFS_INFO_5;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: A bit field in which each bit is responsible for a specific property applicable to
the entire DFS namespace, the DFS root, or an individual DFS link, depending on the actual

property. Any combination of bits is allowed, unless indicated otherwise. The following are
valid bit definitions for this field.

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

When set, indicates that DFS in-site referral mode

is enabled.

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

When set, indicates DFS root scalability mode is

enabled. This flag is valid only for the DFS root of a

domain-based DFS namespace.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

When set, indicates DFS referral site costing is

enabled. This flag is valid only for a DFS root.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

When set, indicates DFS client target failback is

enabled.

DFS_PROPERTY_FLAG_CLUSTER_ENABLED

0x00000010

When set, indicates clustered DFS namespace is

enabled.

DFS_PROPERTY_FLAG_ABDE

0x00000020

When set, enables Access Based Directory

Enumeration (ABDE) mode on a domainv2-based

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

31 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

DFS namespace or a stand-alone DFS

namespace.<6>This flag is not supported on

domainv1-based namespaces.

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link,
this MUST be 0.

NumberOfStorages: The number of DFS targets for this root or link.

2.2.3.6 DFS_INFO_6

The DFS_INFO_6 structure contains information for a DFS root or a DFS link.

The DFS_INFO_6 structure has the following format.

typedef struct _DFS_INFO_6 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO_1* Storage;

} DFS_INFO_6;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with

the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see
section 2.2.3.5.

MetadataSize: The size of the DFS metadata of the DFS namespace. This MUST be 0 for a DFS
link.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

Storage: A pointer to an array of DFS_STORAGE_INFO_1 structures containing information
about each target. The NumberOfStorages member specifies the number of structures within
this storage array.

32 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.3.7 DFS_INFO_7

The DFS_INFO_7 structure contains information about a DFS root.

The DFS_INFO_7 structure has the following format.

typedef struct _DFS_INFO_7 {

 GUID GenerationGuid;

} DFS_INFO_7;

GenerationGuid: This GUID is modified each time DFS metadata is updated.

This data type is used to detect when the metadata of a DFS namespace has changed. It
MUST be supported for domain-based DFS namespaces. It MAY be supported for stand-alone
DFS namespaces; a null GUID (all 128-bits are 0) MUST be returned if this is not
supported.<7>

2.2.3.8 DFS_INFO_8

The DFS_INFO_8 structure contains information for a DFS root or a DFS link.

The DFS_INFO_8 structure has the following format.

typedef struct _DFS_INFO_8 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)]

 PUCHAR pSecurityDescriptor;

 DWORD NumberOfStorages;

} DFS_INFO_8,

 *LPDFS_INFO_8;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral

response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see
section 2.2.3.5.

33 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link,
this MUST be 0.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor
field points to.

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For
more information on security descriptors, see [MS-DTYP] section 2.4.6.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

2.2.3.9 DFS_INFO_9

The DFS_INFO_9 structure contains information for a DFS root or a DFS link.

The DFS_INFO_9 structure has the following format.

typedef struct _DFS_INFO_9 {

 [string] WCHAR* EntryPath;

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)]

 PUCHAR pSecurityDescriptor;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] LPDFS_STORAGE_INFO_1 Storage;

} DFS_INFO_9,

 *LPDFS_INFO_9;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: Pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. There are no protocol-specified

restrictions on the length or content of this string. The comment is meant for human
readability and has no effect on server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see

section 2.2.3.5.

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link,
this MUST be 0.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor
field points to.

%5bMS-DTYP%5d.pdf

34 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For
more information on security descriptors, see [MS-DTYP] section 2.4.6.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

Storage: A pointer to an array of DFS_STORAGE_INFO_1 structures containing information
about each target. The NumberOfStorages member specifies the number of structures within
this storage array.

For information on target priority rank and class information, see section 2.2.2.6.

2.2.3.10 DFS_INFO_50

The DFS_INFO_50 structure is used to get the DFS metadata version and the capability

information of an existing DFS namespace.

The DFS_INFO_50 structure has the following format.

typedef struct _DFS_INFO_50 {

 unsigned long NamespaceMajorVersion;

 unsigned long NamespaceMinorVersion;

 unsigned __int64 NamespaceCapabilities;

} DFS_INFO_50;

NamespaceMajorVersion: A value containing the major version number used to determine the

DFS metadata format supported in a domain-based DFS namespace or a stand-alone DFS
namespace.<8>

NamespaceMinorVersion: A value containing the minor version number used to determine the
DFS metadata format supported in a domain-based DFS namespace or stand-alone DFS
namespace.<9>

NamespaceCapabilities: A value containing the capability information of a DFS namespace.

Value Meaning

DFS__NAMESPACE_CAPABILITY_ABDE

0x0000000000000001

The specified DFS root supports using Access Based

Directory Enumeration (ABDE) mode.<10>

2.2.4 Set Info Data Types

The structures in this section relate to the NetrDfsSetInfo and NetrDfsSetInfo2 methods when used

to retrieve or set the configuration of the DFS server. The usage model of these structures is for the
client to specify a Level parameter to indicate which DFS_INFO_STRUCT case to use.

2.2.4.1 DFS_INFO_101

The DFS_INFO_101 structure describes the storage state on a root, link, root target, or link target.

The DFS_INFO_101 structure has the following format.

typedef struct _DFS_INFO_101 {

 unsigned long State;

%5bMS-DTYP%5d.pdf

35 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} DFS_INFO_101;

State: The state of the root, link, root target, or link target.

The following table lists the valid states that can be set for a root or a link. Some of these
states are used to perform a server operation and are not persisted to the DFS metadata, as
specified below. For more information about some of these states, see section 2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The specified DFS root or DFS link is in the normal state.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag

is valid only for a DFS link.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only

for a DFS link.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_RESYNCHRONIZE

0x00000010

Forces a resynchronization on the DFS root. This flag is

valid only for a DFS root. This operation is an

incremental synchronization that picks up only changed

objects in the metadata.

This state is used to perform a server operation. It is not

persisted to the DFS metadata.

DFS_VOLUME_STATE_STANDBY

0x00000020

Sets a root volume to standby mode. This flag is valid

only for a clustered DFS root.

This state is used to perform a server operation. It is not

persisted to the DFS metadata.

DFS_VOLUME_STATE_FORCE_SYNC

0x00000040

Forces a full resynchronization operation on the DFS root

target of a specified domainv2-based DFS namespace or

stand-alone DFS namespace to identify DFS links that

have been added or deleted. This is not supported on a

domainv1-based DFS namespace. DFS links MUST NOT

be specified.

This state is used to perform a server operation. It is not

persisted to the DFS metadata.

DFS_VOLUME_STATES (0x0000000F) is not relevant here, because it is a mask used when
reading the volume state, not for setting it.

The following table lists the valid states that can be set for a root target or a link target.

Value Meaning

DFS_STORAGE_STATE_OFFLINE

0x00000001

This target is offline and unavailable for use.

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

36 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.4.2 DFS_INFO_102

The DFS_INFO_102 structure contains a time-out value for a DFS root or a DFS link.

The DFS_INFO_102 structure has the following format.

typedef struct _DFS_INFO_102 {

 unsigned long Timeout;

} DFS_INFO_102;

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral

response to a DFS client.

2.2.4.3 DFS_INFO_103

The DFS_INFO_103 structure contains properties that set specific behaviors for a DFS root or a

DFS link.

The DFS_INFO_103 structure has the following format.

typedef struct _DFS_INFO_103 {

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

} DFS_INFO_103;

PropertyFlagMask: Indicates which bits in the PropertyFlags field are considered for

modification of DFS namespace root or link properties.

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

Valid for domain and stand-alone DFS roots and

links.

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

This flag is valid only for the DFS root of a domain-

based DFS namespace.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

This flag is valid only for a DFS root.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

Valid for domain and stand-alone DFS roots and

links.

DFS_PROPERTY_FLAG_ABDE

0x00000020

Valid only for a domainv2-based DFS namespace or

stand-alone DFS namespace root.<11> This flag is

not supported on domainv1-based namespaces.

PropertyFlags: A bit field in which each bit is responsible for a specific property applicable to
the whole DFS namespace, the DFS root, or an individual DFS link, depending on the actual

property. Any combination of bits is allowed, unless indicated otherwise. The server considers
the bits in this field only when the corresponding bit in the PropertyFlagMask field is set.
The following table lists the valid bits for this field and describes the actions taken when each
bit is set or not set in the request.

37 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

When set, enables DFS in-site referral mode. When

not set, disables DFS in-site referral mode.

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

When set, enables DFS root scalability mode. When

not set, disables DFS root scalability mode.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

When set, enables DFS referral site costing. When

not set, disables DFS referral site costing.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

When set, enables DFS client target failback. When

not set, disables DFS client target failback.

DFS_PROPERTY_FLAG_ABDE

0x00000020

When set, enables ABDE mode on a domainv2-based

DFS namespace or stand-alone DFS namespace.

When not set, disables ABDE mode on a domainv2-

based DFS namespace or stand-alone DFS

namespace.

2.2.4.4 DFS_INFO_104

The DFS_INFO_104 structure contains the priority of a DFS root target or a DFS link target.

The DFS_INFO_104 structure has the following format.

typedef struct _DFS_INFO_104 {

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_INFO_104;

TargetPriority: A DFS_TARGET_PRIORITY structure that indicates the priority rank and

priority class of a target. For more information on prioritization, see section 2.2.2.7.

2.2.4.5 DFS_INFO_105

The DFS_INFO_105 structure contains information about a DFS root or DFS link, including
comment, state, time-out, and DFS behaviors specified by property flags.

The DFS_INFO_105 structure has the following format.

typedef struct _DFS_INFO_105 {

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

} DFS_INFO_105;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with
the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and

does not affect server functionality.

38 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

State: The following table lists the valid states that can be set for links. All other values are
reserved and MUST NOT be used. For more information about some of these states, see

section 2.2.2.13.

Value Meaning

0x00000000 Indicates that the existing state MUST NOT be changed.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag is valid

only for a DFS link.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only for a

DFS link.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

PropertyFlagMask: Indicates which bits in the PropertyFlags field are valid.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_103, as specified in section
2.2.4.3.

2.2.4.6 DFS_INFO_106

The DFS_INFO_106 structure contains the storage state and priority of a DFS root target or a DFS
link target. For more information on prioritization, see section 2.2.2.7.

The DFS_INFO_106 structure has the following format.

typedef struct _DFS_INFO_106 {

 DWORD State;

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_INFO_106;

State: The state of the target. Contains one of the following valid state values.

Value Meaning

DFS_STORAGE_STATE_OFFLINE

0x00000001

This target is offline and unavailable for use.

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

TargetPriority: A DFS_TARGET_PRIORITY structure that indicates the priority class and rank
of the DFS target.

2.2.4.7 DFS_INFO_107

The DFS_INFO_107 structure contains information about a DFS root or DFS link, including

comment, state, time-out, security descriptor, and DFS behaviors specified by property flags.

The DFS_INFO_107 structure has the following format.

39 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct _DFS_INFO_107 {

 [string] WCHAR* Comment;

 DWORD State;

 unsigned long Timeout;

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)]

 PUCHAR pSecurityDescriptor;

} DFS_INFO_107;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with

the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human readability and

does not affect server functionality.

State: The states that can be set for links. The following table lists such states. All other values
are reserved and MUST NOT be used. For more information about some of these states, see
section 2.2.2.13.

Value Meaning

0x00000000 Indicates that the existing state MUST NOT be changed.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag is valid

only for a DFS link.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only for a

DFS link.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral

response to a DFS client.

PropertyFlagMask: Indicates which bits in the PropertyFlags field are valid.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_103, as specified in section
2.2.4.3.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor
field points to.

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For

more information on security descriptors, see [MS-DTYP] section 2.4.6.

2.2.5 Special Info Data Types

The structures in this section relate to the NetrDfsEnum, NetrDfsEnumEx, NetrDfsGetInfo,
NetrDfsSetInfo, and NetrDfsSetInfo2 methods when used to retrieve or set the DFS server

configuration. The usage model of these structures is for the client to specify a Level parameter to

indicate which case of the DFS_INFO_STRUCT to use.

%5bMS-DTYP%5d.pdf

40 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.5.1 DFS_INFO_100

The DFS_INFO_100 structure relates to the NetrDfsGetInfo, NetrDfsSetInfo, and
NetrDfsSetInfo2 methods when used to retrieve or set comment text about a DFS root or a DFS link.

The structure contains a comment associated with a DFS root or a DFS link.

The DFS_INFO_100 structure has the following format.

typedef struct _DFS_INFO_100 {

 [string] WCHAR* Comment;

} DFS_INFO_100;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with

the DFS root or DFS link that is for informational purposes. This string has no protocol-
specified restrictions on length or content. The comment is meant for human readability and
does not affect server functionality.

2.2.5.2 DFS_INFO_150

The DFS_INFO_150 structure relates to the NetrDfsGetInfo, NetrDfsSetInfo, and
NetrDfsSetInfo2 methods when used to retrieve or set security descriptors associated with a DFS
link. The structure contains the self-relative security descriptor associated with a DFS link.

The DFS_INFO_150 structure has the following format.

typedef struct _DFS_INFO_150 {

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)]

 PUCHAR pSecurityDescriptor;

} DFS_INFO_150;

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor
field points to.

pSecurityDescriptor: A self-relative security descriptor associated with DFS. For more
information on security descriptors, see [MS-DTYP] section 2.4.6.

2.2.5.3 DFS_INFO_200

The DFS_INFO_200 structure relates to the NetrDfsEnumEx method when used to enumerate all
of the domain-based DFS namespace in a domain. The structure contains the name of a domain-
based DFS namespace. The DFS_INFO_200 structure has the following format.

typedef struct _DFS_INFO_200 {

 [string] WCHAR* FtDfsName;

} DFS_INFO_200;

FtDfsName: A pointer to a DFS root path.

%5bMS-DTYP%5d.pdf

41 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.5.4 DFS_INFO_300

The DFS_INFO_300 structure relates to the NetrDfsEnum and NetrDfsEnumEx methods when used
to enumerate DFS roots hosted on a server. The structure contains the name and type (domain-

based or stand-alone) of a DFS namespace. The DFS_INFO_300 structure has the following
format.

typedef struct _DFS_INFO_300 {

 DWORD Flags;

 [string] WCHAR* DfsName;

} DFS_INFO_300;

Flags: This value specifies the type of the DFS namespace. This MUST have one of the following

two permitted values.

Value Meaning

DFS_VOLUME_FLAVOR_STANDALONE

0x00000100

Stand-alone DFS namespace.

DFS_VOLUME_FLAVOR_AD_BLOB

0x00000200

Domain-based DFS namespace.

DfsName: A pointer to a DFS root path.

2.2.6 Enum Info Data Types

The structures in this section relate to the NetrDfsEnum and NetrDfsEnumEx methods when used to
enumerate and retrieve the configuration of the DFS server. The usage model of these structures is
for the client to specify a Level parameter to indicate which case of the
DFS_INFO_ENUM_STRUCT to use.

2.2.6.1 DFS_INFO_1_CONTAINER

The DFS_INFO_1_CONTAINER structure contains an array of DFS_INFO_1 structures. The
DFS_INFO_1_CONTAINER structure has the following format.

typedef struct _DFS_INFO_1_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_1* Buffer;

} DFS_INFO_1_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_1 structures.

2.2.6.2 DFS_INFO_2_CONTAINER

The DFS_INFO_2_CONTAINER structure contains an array of DFS_INFO_2 structures. The
DFS_INFO_2_CONTAINER structure has the following format.

42 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct _DFS_INFO_2_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_2* Buffer;

} DFS_INFO_2_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_2 structures.

2.2.6.3 DFS_INFO_3_CONTAINER

The DFS_INFO_3_CONTAINER structure contains an array of DFS_INFO_3 structures. The
DFS_INFO_3_CONTAINER structure has the following format.

typedef struct _DFS_INFO_3_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_3* Buffer;

} DFS_INFO_3_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_3 structures.

2.2.6.4 DFS_INFO_4_CONTAINER

The DFS_INFO_4_CONTAINER structure contains an array of DFS_INFO_4 structures. The
DFS_INFO_4_CONTAINER structure has the following format.

typedef struct _DFS_INFO_4_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_4* Buffer;

} DFS_INFO_4_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_4 structures.

2.2.6.5 DFS_INFO_5_CONTAINER

The DFS_INFO_5_CONTAINER structure contains an array of DFS_INFO_5 structures. The
DFS_INFO_5_CONTAINER structure has the following format.

typedef struct _DFS_INFO_5_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_5* Buffer;

} DFS_INFO_5_CONTAINER;

EntriesRead: The number of elements in the array.

43 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Buffer: The array of DFS_INFO_5 structures.

2.2.6.6 DFS_INFO_6_CONTAINER

The DFS_INFO_6_CONTAINER structure contains an array of DFS_INFO_6 structures. The

DFS_INFO_6_CONTAINER structure has the following format.

typedef struct _DFS_INFO_6_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_6* Buffer;

} DFS_INFO_6_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_6 structures.

2.2.6.7 DFS_INFO_8_CONTAINER

The DFS_INFO_8_CONTAINER structure contains an array of DFS_INFO_8 structures. The
DFS_INFO_8_CONTAINER structure has the following format.

typedef struct _DFS_INFO_8_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPDFS_INFO_8 Buffer;

} DFS_INFO_8_CONTAINER,

 *LPDFS_INFO_8_CONTAINER;

EntriesRead: The number of DFS_INFO_8 elements in the array.

Buffer: The array of DFS_INFO_8 structures.

2.2.6.8 DFS_INFO_9_CONTAINER

The DFS_INFO_9_CONTAINER structure contains an array of DFS_INFO_9 structures. The
DFS_INFO_9_CONTAINER structure has the following format.

typedef struct _DFS_INFO_9_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPDFS_INFO_9 Buffer;

} DFS_INFO_9_CONTAINER,

 *LPDFS_INFO_9_CONTAINER;

EntriesRead: The number of DFS_INFO_9 elements in the array.

Buffer: The array of DFS_INFO_9 structures.

2.2.6.9 DFS_INFO_200_CONTAINER

The DFS_INFO_200_CONTAINER structure contains an array of DFS_INFO_200 structures. The
DFS_INFO_200_CONTAINER structure has the following format.

44 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct _DFS_INFO_200_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_200* Buffer;

} DFS_INFO_200_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_200 structures.

2.2.6.10 DFS_INFO_300_CONTAINER

The DFS_INFO_300_CONTAINER structure contains an array of DFS_INFO_300 structures. The
DFS_INFO_300_CONTAINER structure has the following format.

typedef struct _DFS_INFO_300_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_300* Buffer;

} DFS_INFO_300_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_300 structures.

2.3 Directory Service Schema Elements

The protocol accesses the following Directory Service (DS) schema classes and attributes listed in
the following table.

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, or rootDSE
attributes, refer either to Active Directory Domain Services (AD DS) ([MS-ADA2], [MS-ADA3],

and [MS-ADSC]) or to Active Directory Technical Specification ([MS-ADTS]).

Class Attribute

attributeSchema rangeUpper

dfsConfiguration All

ftDFS objectClass

pKT

pKTGuid

remoteServerName

msDFS-DeletedLinkv2 All

objectClass

msDFS-Linkv2 All

objectClass

msDFS-NamespaceAnchor All

msDFS-Namespacev2 All

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf

45 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Class Attribute

objectClass

rootDSE domainFunctionality

This section contains specifications for the DFS configuration container, DFS namespace object, and
pKT attribute.

2.3.1 DFS Configuration Container

The DFS configuration container is a well-known container in the domain directory that is used to
hold the DFS metadata for a domain-based DFS namespace. The container has the following
distinguished name (DN).

CN=Dfs-Configuration,CN=System,<domain>

where <domain> is the DN of the domain.

For example, the DFS configuration container for the contoso.com domain would be named as
follows.

CN=Dfs-Configuration,CN=System,DC=contoso,DC=com

The object class of this object is dfsConfiguration, and its schema is as specified in [MS-ADSC].

2.3.2 LDAP Entries for Domain-Based DFS Namespaces

LDAP entries exist in both domainv1-based DFS namespace and domainv2-based DFS namespace.
This relationship is shown in the following figure.

%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf

46 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 1: Organization of DFS-related LDAP entries in DFS namespaces

Each domainv1-based DFS namespace has its DFS metadata stored in the directory service as a
BLOB in the pKT attribute of an LDAP entry.

Each domainv2-based DFS namespace has one DFS namespace anchor LDAP entry, one DFS
namespace LDAP entry below it, and one LDAP entry per DFS link in the namespace under the DFS
namespace LDAP entry.

Like the relative distinguished name (RDN) of a domainv1-based DFS namespace, the relative
distinguished name (RDN) of a domainv2-based DFS namespace entry is based on the DFS
namespace. Thus, there is no issue of a name collision with a domainv1-based DFS namespace and

a domainv2-based DFS namespace having the same name. The directory service will fail an attempt
to create such a scenario.

The following sections specify both domain-based DFS namespace formats.

%5bMS-GLOS%5d.pdf

47 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace

An object exists for each domainv1-based DFS namespace in the DFS configuration container. The
following is a DN of the object of a domain-based DFS namespace.

CN=<DFSNamespaceName>,CN=Dfs-Configuration,CN=System,<domain>

where:

<DFSNamespaceName> is the domain-based DFS namespace.

<domain> is the DN of the domain.

The following attributes apply to this object.

Attribute Description

name The DFS namespace name.

remoteServerName A multivalued attribute that contains the DFS root targets for the DFS namespace

with the value "*" as the last attribute.

pKTGuid A GUID used as a generation number to detect changes to the DFS metadata. This

MUST be updated whenever the pKT attribute is changed.

pKT The BLOB containing the DFS metadata.

The objectClass of this object is fTDfs, and its schema is specified in [MS-ADSC]. The schema of the
attributes name, remoteServerName, pKTGuid, and pKT are specified in [MS-ADA3].

2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace)

The pKT attribute contains the DFS metadata of the domain-based DFS namespace that the object

represents.

The DFS metadata has the following format.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BLOBVersion

BLOBElementCount

BLOBElement (variable)

...

BLOBVersion (4 bytes): The DFS metadata format version stored as an unsigned, 32-bit,
little-endian integer. This MUST always be set to 0.

BLOBElementCount (4 bytes): The number of <BLOBElement> elements that immediately
follow this field in the DFS metadata stored as an unsigned, 32-bit, little-endian integer.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf

48 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

BLOBElement (variable): A variable number of DFSNamespaceElementBLOB structures, which
immediately follow the BLOBElementCount. Each DFSNamespaceElementBLOB contains

descriptive information about a DFS site, root, or link. The format and size of each
DFSNamespaceElementBLOB depend on the information contained in it.

2.3.3.1.1 DFSNamespaceElementBLOB

A DFSNamespaceElementBLOB contains information about a DFS root or a DFS link, or for mapping
a server to its site name.

The DFS metadata of a valid DFS namespace MUST consist of one DFSNamespaceRootBLOB for the
DFS root and one DFSNamespaceLinkBLOB for each DFS link in the DFS namespace. There MUST no
more than one SiteInformationBLOB. For more information on SiteInformationBLOB, see section

2.3.3.1.1.4.

No alignment padding requirements exist for any of a BLOB's fields, unless otherwise specified.

Each DFSNamespaceElementBLOB contains the following data elements. The first three fields are

standard for all DFSNamespaceElementBLOB structures. Following those fields are additional fields
that are specific to the type of DFSNamespaceElementBLOB, in the format of a
DFSNamespaceRootBLOB, a DFSNamespaceLinkBLOB, or a SiteInformationBLOB.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BLOBNameSize BLOBName (variable)

...

BLOBDataSize

BLOBData (variable)

...

BLOBNameSize (2 bytes): The size of the BLOBName, in bytes, stored as an unsigned, 16-
bit, little-endian integer.

BLOBName (variable): The name of the DFSNamespaceElementBLOB, stored as a string of
Unicode characters.

Value Meaning

SiteInformationBLOB

"\siteroot"

A string of Unicode characters that forms the literal

"\siteroot".<12>

DFSNamespaceRootBLOB

"\domainroot"

A string of Unicode characters that forms the literal "\domainroot".

DFSNamespaceLinkBLOB

"\domainroot\<GUIDString>"

A string of Unicode characters that forms the literal

"\domainroot\<GUIDString>", where <GUIDString> represents the

string form of a GUID, as specified in [RFC4122], section 3. The

GUID found in the link's ID BLOB MUST be used to create this.

http://go.microsoft.com/fwlink/?LinkId=90460

49 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

BLOBDataSize (4 bytes): The length of the BLOB in the BLOBData field, stored as an
unsigned, 32-bit, little-endian integer. The value of this field MUST be used to determine the

start of the next DFSNamespaceElementBLOB.

BLOBData (variable): Data specific to the type of BLOB described, in the form of a

DFSNamespaceRootBLOB, DFSNamespaceLinkBLOB, or SiteInformationBLOB.

The following sections specify the format of the DFSNamespaceRootBLOB, DFSNamespaceLinkBLOB,
and SiteInformationBLOB.

2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB

At most, only one DFSNamespaceRootBLOB can contain information about the DFS namespace root.
One DFSNamespaceLinkBLOB exists for each DFS link in the namespace.

Each DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB MUST have the following:

One BLOB containing the name and other information about the DFS namespace root or DFS link.

This is the DFSRootOrLinkIDBLOB, as specified in section 2.3.3.1.1.2.

One BLOB containing the DFS targets of the DFS root or DFS link. This is the DFSTargetListBLOB,

as specified in section 2.3.3.1.1.3.

One reserved BLOB.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

DFSRootOrLinkIDBLOB (variable)

...

DFSTargetListBLOBSize

DFSTargetListBLOB (variable)

...

ReservedBLOBSize

ReservedBLOB

ReferralTTL

DFSRootOrLinkIDBLOB (variable): A BLOB that contains identification and status information
for this DFS root or DFS link.

DFSTargetListBLOBSize (4 bytes): The size, in bytes, of the BLOB in the TargetListBLOB
field that immediately follows this field. The DFSTargetListBLOBSize is stored as an unsigned,
32-bit, little-endian integer.

DFSTargetListBLOB (variable): A BLOB that contains the list of targets for the DFS root or

DFS link.

50 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ReservedBLOBSize (4 bytes): The size, in bytes, of the BLOB in the ReservedBLOB field that
immediately follows this field. The ReservedBLOBSize is stored as an unsigned, 32-bit, little-

endian integer and MUST be 4.

ReservedBLOB (4 bytes): When creating a new DFSNamespaceRootBLOB or

DFSNamespaceLinkBLOB, this ReservedBLOB MUST be zero-filled. When updating an
existing DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB, the contents of this
ReservedBLOB MUST be preserved.

ReferralTTL (4 bytes): The referral time-out value, in seconds, for the DFS root or DFS link.
The ReferralTTL is stored as an unsigned, 32-bit, little-endian integer.

2.3.3.1.1.2 DFSRootOrLinkIDBLOB

This BLOB contains name and other information about the DFS namespace root or the DFS link.

If the PKT_ENTRY_TYPE_REFERRAL_SVC (0x00000080) bit is set in the Type field, then this

BLOB describes the DFS root and is, hence, part of the DFSNamespaceRootBLOB.

If the PKT_ENTRY_TYPE_REFERRAL_SVC (0x00000080) bit is not set in the Type field, then this

BLOB describes a link and is, hence, part of the DFSNamespaceLinkBLOB.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RootOrLinkGuid

...

...

...

PrefixSize Prefix (variable)

...

ShortPrefixSize ShortPrefix (variable)

...

Type

State

CommentSize Comment (variable)

...

PrefixTimeStamp

51 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

...

StateTimeStamp

...

CommentTimeStamp

...

Version

RootOrLinkGuid (16 bytes): A GUID that identifies the DFS root or the DFS link. It is used to
generate the name "\<domainroot>\<GUIDString>" in the BLOBName field of the

DFSNamespaceLinkBLOB, where <GUIDString> represents the string form of the GUID, as

specified in [RFC4122], section 3.

PrefixSize (2 bytes): The size, in bytes, of the Prefix field, stored as an unsigned, 16-bit,
little-endian integer.

Prefix (variable): The name of the DFS namespace root or the DFS link. The Prefix is stored
as a string of Unicode characters and MUST be a UNC path string with one leading backslash,
instead of the usual two, without a null termination.

ShortPrefixSize (2 bytes): The size, in bytes, of the ShortPrefix field, stored as an unsigned,
16-bit, little-endian integer.

ShortPrefix (variable): The name of the DFS namespace root or the DFS link, stored as a
string of Unicode characters. This MUST be a UNC path string with one leading backslash,
instead of the usual two, without a null termination. The string MAY be the same as that in the

Prefix field or its 8.3 name.<13>

Type (4 bytes): A bit field, stored as 32-bits in little-endian order, which describes this BLOB.

For domainv1 roots, the Type field parallels the functionality of the msDFS-Propertiesv2
attribute used for domainv2-based DFS namespaces (see section 2.3.4.2) and domainv2-
based DFS links (see section 2.3.4.3).

Value Meaning

PKT_ENTRY_TYPE_DFS

0x00000001

This value is reserved and the Type field

MUST always be set with this value.

PKT_ENTRY_TYPE_OUTSIDE_MY_DOM

0x00000010

The DFS interlink property. This MUST be

set only when at least one DFS link target

points to another DFS namespace. This MUST

NOT be set for a DFS root.

PKT_ENTRY_TYPE_INSITE_ONLY

0x00000020

The DFS in-site referral mode property. When

set, instructs the DFS server to enable the

DFS in-site referral mode.

PKT_ENTRY_TYPE_COST_BASED_SITE_SELECTION The DFS referral site costing property.

Enables DFS referral site costing. This

http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

52 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000040 SHOULD be supported.<14>

PKT_ENTRY_TYPE_REFERRAL_SVC

0x00000080

This identifies the DFS namespace root.

PKT_ENTRY_TYPE_ROOT_SCALABILITY

0x00000200

The DFS root scalability mode property. This

enables DFS root scalability mode. This

SHOULD be supported.<15>

PKT_ENTRY_TYPE_TARGET_FAILBACK

0x00008000

The DFS client target failback property. This

enables DFS client target failback for targets

of this root or link. This SHOULD be

supported.<16>

Undefined bit positions MUST be set to 0 on writes and ignored on reads.

State (4 bytes): The status of the DFS root or DFS link stored as an unsigned, 32-bit, little-
endian integer. The DFS_VOLUME_STATES bitmask (0x0000000F) MUST be used to access
the following DFS root or DFS link state from this field. For more information about some of
these states, see section 2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The DFS root or DFS link state is okay.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline and not available for use.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for use.

Undefined bit positions of this field MUST be set to 0 on writes and ignored on reads.

CommentSize (2 bytes): The size, in bytes, of the Comment field and stored as an unsigned,
16-bit, little-endian integer.

Comment (variable): A string of Unicode characters whose size in bytes is specified by the
CommentSize field. The Comment field is associated with the namespace root or link and is
for informational purposes. The comment is meant for human consumption and does not
affect server functionality.

PrefixTimeStamp (8 bytes): The time of the last Prefix field modification, stored as
FILETIME. This SHOULD be set to the last modification time of this BLOB.

StateTimeStamp (8 bytes): The time of the last State field modification, stored as FILETIME.

This SHOULD be set to the last modification time of this BLOB.

CommentTimeStamp (8 bytes): The time of the last Comment field modification, stored as
FILETIME. This SHOULD be set to the last modification time of this BLOB.

%5bMS-GLOS%5d.pdf

53 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Version (4 bytes): The version number of DFSRootOrLinkIDBLOB, stored as an unsigned, 32-
bit, little-endian integer. When creating a new DFSRootOrLinkIDBLOB, this MUST be set to

0x00000003. When updating an existing DFSRootOrLinkIDBLOB, the existing value MUST be
preserved.

2.3.3.1.1.3 DFSTargetListBLOB

The DFSTargetListBLOB contains information about all of the targets of the DFS root or DFS link.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

TargetCount

TargetEntryBLOB (variable)

...

TargetCount (4 bytes): The number of TargetEntryBLOB fields contained in this BLOB, stored
as an unsigned, 32-bit, little-endian integer.

TargetEntryBLOB (variable): A BLOB that contains metadata for a DFS target.

2.3.3.1.1.3.1 TargetEntryBLOB

The TargetEntryBLOB holds metadata for the DFS target of a root or a link.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

TargetEntrySize

TargetTimeStamp

...

TargetState

TargetType

ServerNameSize ServerName (variable)

...

ShareNameSize ShareName (variable)

...

54 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

TargetEntrySize (4 bytes): The size, in bytes, of this target entry, starting from the
TargetTimeStamp field, and stored as an unsigned, 32-bit, little-endian integer.

TargetTimeStamp (8 bytes): If bits 9 through 63 contain nonzero values, this field encodes
the last modification time of this target entry, stored as FILETIME. In this case the

PriorityRank and PriorityClass members, discussed below, are considered to logically
contain zero if referenced by an implementation.

If bits 9 through 63 are zero, the 64 bits of the TargetTimeStamp has the following format:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

PriorityRank PriorityClas

s

High56Bits

...

PriorityRank (5 bits): The priority rank of a target, ranging in value from 0x00 to 0x1F,
where 0x00 is the highest rank.

PriorityClass (3 bits): The priority class of a target. One of the following values.

Value Meaning

DFS_TARGET_PRIORITY_CLASS_SITE_COST_NORMAL

0x0

See DfsSiteCostNormalPriorityClass

in section 2.2.2.8.

DFS_TARGET_PRIORITY_CLASS_GLOBAL_HIGH

0x1

See DfsSGlobalHighPriorityClass in

section 2.2.2.8.

DFS_TARGET_PRIORITY_CLASS_SITE_COST_HIGH

0x2

See DfsSiteCostHighPriorityClass in

section 2.2.2.8

DFS_TARGET_PRIORITY_CLASS_SITE_COST_LOW

0x3

See DfsSiteCostLowPriorityClass in

section 2.2.2.8

DFS_TARGET_PRIORITY_CLASS_GLOBAL_LOW

0x4

see DfsGlobalLowPriorityClass in

section 2.2.2.8

High56Bits (7 bytes): Set to zero.

TargetState (4 bytes): The state of this target, stored as an unsigned, 32-bit, little-endian
integer. The mask 0x0000000F is used to extract a bit field that contains one of the following

valid state values.

Value Meaning

DFS_STORAGE_STATE_OFFLINE

0x00000001

This target is offline and unavailable for use.

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

55 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

DFS_STORAGE_STATE_ACTIVE

0x00000004

This target is active.

TargetType (4 bytes): The type of target, stored as an unsigned, 32-bit, little-endian integer
bit field. This SHOULD be set to 0x00000002.<17>

ServerNameSize (2 bytes): The size, in bytes, of the ServerName field, stored as an
unsigned 16-bit, little-endian integer.

ServerName (variable): An array of Unicode characters that contains the DFS target server
host name. The size of the array is given in the ServerNameSize field.

ShareNameSize (2 bytes): The size, in bytes, of the ShareName, stored as an unsigned, 16-
bit, little-endian integer.

ShareName (variable): An array of Unicode characters that contains the DFS target share
name.

2.3.3.1.1.4 SiteInformationBLOB

The SiteInformationBLOB contains the mapping from a DFS target host name to its site name. There
MUST be no more than one BLOB of this type. This BLOB contains zero or more SiteEntryBLOBs.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SiteTableGuid

...

...

...

SiteEntryCount

SiteEntryBLOB (variable)

...

SiteTableGuid (16 bytes): The GUID that uniquely identifies the SiteInformationBLOB.

SiteEntryCount (4 bytes): The number of SiteEntryBLOBs in the SiteEntryBLOB field, stored

as an unsigned, 32-bit, little-endian integer. This MAY be zero.<18> <19>

SiteEntryBLOB (variable): Zero or more BLOBs. Each BLOB contains the site of a root target

or link target server in the DFS namespace.

56 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.3.1.1.4.1 SiteEntryBLOB

This BLOB contains a host name whose site information is specified by the SiteNameInfoBLOB (for
more information, see section 2.3.3.1.1.4.1.1).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ServerNameSize ServerName (variable)

...

SiteNameInfoCount

SiteNameInfoBLOB (variable)

...

ServerNameSize (2 bytes): The size, in bytes, of the ServerName field, stored as an
unsigned, 16-bit, little-endian integer.

ServerName (variable): A string of Unicode characters representing the DFS target host

name.

SiteNameInfoCount (4 bytes): The number of SiteNameInfoBLOBs in the SiteNameInfoBLOB
field, stored as an unsigned, 32-bit, little-endian integer.

SiteNameInfoBLOB (variable): The BLOB containing the site name of the server in the
SiteEntryBLOB.

2.3.3.1.1.4.1.1 SiteNameInfoBLOB

The SiteNameInfoBLOB contains the name of a site to which a server belongs.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Flags

SiteNameSize SiteName (variable)

...

Flags (4 bytes): This MUST be set to 0 on write. MUST be ignored on read.

SiteNameSize (2 bytes): The size, in bytes, of the SiteName field, stored as an unsigned, 16-

bit, little-endian integer.

SiteName (variable): A string of Unicode characters representing the directory services site
name of the server. The case of the site name, as provided by directory services, MUST be
preserved when storing in this field.

%5bMS-GLOS%5d.pdf

57 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.3.4 Schema for Domainv2-Based DFS Namespace

Each domainv2-based DFS namespace has one DFS namespace anchor LDAP entry, one DFS
namespace LDAP entry below it, and one LDAP entry per DFS link in the namespace under the DFS

namespace LDAP entry. The following sections specify the mandatory and optional attributes of the
object classes.

2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor

Each domainv2-based DFS namespace under the DFS configuration container has a DFS namespace
anchor LDAP entry.

This object has a single attribute: msDFS-SchemaMajorVersion. This attribute is an integer value

containing the major version number of the supported DFS metadata format.

The object class of the LDAP entry corresponding to the domainv2-based DFS namespace anchor is
ms-DFS-Namespace-Anchor, and its schema is specified in [MS-ADSC]. The schema of the msDFS-
SchemaMajorVersion attribute is specified in [MS-ADA2]. Future revisions of the DFS namespace will

retain this LDAP entry to provide the DFS metadata version information of the DFS namespace.

2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace

A DFS namespace LDAP entry exists for each domainv2-based DFS namespace under the DFS
namespace anchor LDAP entry.

This object has the following attributes. The schemas for these attributes are specified in [MS-
ADA2].

Attribute Description

msDFS-

SchemaMajorVersion

An integer value that contains the major version number of the DFS

metadata format supported.

msDFS-

SchemaMinorVersion

An integer value that contains the minor version number of the DFS

metadata format supported. The rangeLower attribute of the attribute

schema's LDAP entry contains 0, and the rangeUpper attribute of the

attribute schema's LDAP entry contains the highest minor version number

supported.

msDFS-

NamespaceIdentityGUIDv2

This is the time-stable identifier for a DFS namespace. It is a binary value

set at DFS namespace creation time whose size is specified by the

rangeLower and rangeUpper attributes.

msDFS-GenerationGUIDv2 A binary value whose size is specified by the rangeLower and

rangeUpper attributes. This time-stable identifier is overwritten anytime

the LDAP entry corresponding to the DFS namespace or the DFS link is

modified.

This is reserved for future use and MUST NOT be currently used.

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards, as specified in [X680].

The Coordinated Universal Time (UTC) in the form

YYYYMMDDHHMMSS.0Z"0Z" indicates no time differential.

This attribute is updated each time the DFS root is updated.

msDFS-Ttlv2 A 32-bit signed integer that is interpreted as an unsigned referral Time to

Live (TTL), in seconds.

%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90594
%5bMS-GLOS%5d.pdf

58 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Attribute Description

msDFS-TargetListv2 This attribute stores the DFS target information. The information is stored

as an XML document that contains a list of targets for the root as well as

attributes associated with each target. The maximum size is 2 MB. For the

XML schema of the XML document, see Appendix C.

msDFS-Propertiesv2 This is a multivalued attribute that contains attributes corresponding to the

DFS root. Each attribute is a case-insensitive String(Unicode) (see [MS-

ADTS] section 3.1.1.2.2.2).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS

namespace root. A String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2).

Attribute values for msDFS-Propertiesv2 are described in the following table. A server MUST
ignore unrecognized attribute values when reading the metadata. A server SHOULD<20> preserve
unrecognized attribute values when writing the metadata. Note that they are fixed strings. They
have a more general appearance, but a string comparison is sufficient to analyze them. The absence

of an attribute value in the msDFS-Propertiesv2 attribute indicates that the corresponding

property is not set.

For domainv2-based DFS namespaces, the msDFS-Propertiesv2 attribute parallels the
functionality of the DFSRootOrLinkIDBLOB (section 2.3.3.1.1.2) Type field used for domainv1-based
namespaces.

Attribute Value Description

ABDE=on The Access Based Directory Enumeration (ABDE) mode property. Enables ABDE

mode.

InsiteReferral=on The DFS in-site referral mode property. When set, instructs the DFS server to

enable the DFS in-site referral mode.

ReferralSiteCosting=on The DFS referral site costing property. Enables DFS referral site costing and

SHOULD be supported.<21>

RootScalability=on The DFS root scalability mode property. This enables DFS root scalability mode

and SHOULD be supported.<22>

TargetFailback=on The DFS client target failback property. This enables DFS client target failback

for targets of this root and SHOULD be supported.<23>

State=Okay The DFS root is available for referral requests.

The following attributes are mandatory: msDFS-SchemaMajorVersion, msDFS-SchemaMinorVersion,
msDFS-NamespaceIdentityGUIDv2, msDFS-GenerationGUIDv2, msDFS-LastModifiedv2, msDFS-
Ttlv2, msDFS-TargetListv2, and msDFS-Propertiesv2.

The msDFS-Commentv2 attribute is optional.

The object class of the LDAP entry corresponding to the domainv2-based DFS namespace is msDFS-
Namespacev2, and its schema is specified in [MS-ADSC].

2.3.4.3 LDAP Entry for Domainv2-Based DFS Link

One LDAP entry exists for each DFS link in the namespace under the DFS namespace LDAP entry.

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADSC%5d.pdf

59 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

This object has the following attributes. The schemas for these attributes are specified in [MS-
ADA2].

Attribute Description

msDFS-

NamespaceIdentityGUIDv2

This is the time-stable identifier for the DFS namespace containing the link,

and matches the value specified in the namespace LDAP entry. It is a

binary value set at DFS namespace creation time whose size is specified by

the rangeLower and rangeUpper attributes.

msDFS-LinkIdentityGUIDv2 This is the time-stable identifier for a DFS link. It is a binary value set at

DFS link creation time whose size is specified by the rangeLower and

rangeUpper attributes. This value is retained in the dynamic object

created when the link is deleted.

msDFS-GenerationGUIDv2 A binary value whose size is specified by the rangeLower and

rangeUpper attributes. This time-stable identifier is overwritten anytime

the LDAP entry corresponding to the DFS namespace or the DFS link is

modified.

This is reserved for future use and MUST NOT be currently used.

msDFS-LinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2)

that is the DFS root-relative path to the DFS link reparse point. To simplify

LDAP searches, path separators are forward slashes (/) instead of

backward slashes (\).

msDFS-

ShortNameLinkPathv2

A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2)

that is the DFS namespace root-relative path to the DFS link reparse point

in short name form. To simplify LDAP searches, path separators are

forward slashes (/) instead of backward slashes (\).

This is reserved for future use and MUST NOT be currently used.

msDFS-

LinkSecurityDescriptorv2

A self-relative security descriptor associated with a DFS link. This attribute

is used for Access Based Directory Enumeration (ABDE) support.

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards. The UTC time in the form

YYYYMMDDHHMMSS.0Z"0Z" indicates no time differential.

This attribute is updated each time the DFS link is updated.

msDFS-Ttlv2 A 32-bit signed integer that is interpreted as an unsigned referral TTL, in

seconds.

msDFS-TargetListv2 This attribute stores the DFS target information. The information is stored

as an XML document that contains a list of targets for the link as well as

attributes associated with each target. The maximum size is 2 MB. For the

XML schema of the XML document, see Appendix C.

msDFS-Propertiesv2 This is a multivalued attribute that contains attributes corresponding to the

DFS link (not individual targets). Each attribute is a case-insensitive

String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS link.

A String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2).

Attribute values for msDFS-Propertiesv2 are described in the following table. A server MUST

ignore unrecognized attribute values when reading the metadata. A server SHOULD<24> preserve
unrecognized attribute values when writing the metadata. Note that they are fixed strings. While
they have a more general appearance, a string comparison is sufficient to analyze them. The

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf

60 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

absence of an attribute value in the msDFS-Propertiesv2 attribute indicates that the
corresponding property is not set.

For domainv2-based DFS links, the msDFS-Propertiesv2 attribute parallels the functionality of the
DFSRootOrLinkIDBLOB (section 2.3.3.1.1.2) Type field used for domainv1-based DFS links.

Attribute Value Description

InsiteReferral=on The DFS in-site referral mode property. When set, instructs the DFS server to

enable the DFS in-site referral mode.

ReferralSiteCosting=on The DFS referral site costing property. Enables DFS referral site costing. This

SHOULD be supported.<25>

TargetFailback=on The DFS client target failback property. This enables DFS client target failback

for targets of this link. This SHOULD be supported.<26>

Interlink=on The DFS interlink property. This MUST be set only when at least one DFS link

target points to another domain-based DFS namespace.

State=Okay

OR

State=Offline

OR

State=Online

The state of the DFS link.

"State=Okay" means that the DFS link is available for referral requests.

"State=Offline" means that the DFS link is offline and none of the DFS targets

will be included in the referral response.

"State=Online" means that the DFS link is online and available for referral

requests.

The following attributes are mandatory: msDFS-NamespaceIdentityGUIDv2, msDFS-
LinkIdentityGUIDv2, msDFS-GenerationGUIDv2, msDFS-LinkPathv2, msDFS-
LastModifiedv2, msDFS-Ttlv2, msDFS-TargetListv2, and msDFS-Propertiesv2.

The following attributes are optional: msDFS-ShortNameLinkPathv2, msDFS-
LinkSecurityDescriptorv2, and msDFS-Commentv2.

The object class of the LDAP entry corresponding to a DFS link in a domainV2-based DFS
namespace is msDFS-Linkv2, and its schema is specified in [MS-ADSC].

2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link

Only one LDAP entry corresponds to a deleted link in a domainv2-based DFS namespace. This is a
dynamic object.

This object has the following attributes. The schemas for these attributes are specified in [MS-

ADA2].

Attribute Description

msDFS-

NamespaceIdentityGUIDv2

This is the time-stable identifier for the DFS namespace containing the link,

and it matches the value specified in the namespace LDAP entry. It is a

binary value set at DFS namespace creation time whose size is specified by

the rangeLower and rangeUpper attributes.

msDFS-LinkIdentityGUIDv2 This is the time-stable identifier for a DFS link. It is a binary value set at

DFS link creation time whose size is specified by the rangeLower and

rangeUpper attributes. This value is retained in the dynamic object

created when the link is deleted.

%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

61 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Attribute Description

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards. The UTC time in the form

YYYYMMDDHHMMSS.0Z"0Z" indicates no time differential.

This attribute is updated each time the DFS link entry is updated.

msDFS-LinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2)

that is the DFS root-relative path to the DFS link reparse point. To simplify

LDAP searches, path separators are forward slashes (/) instead of

backward slashes (\).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS

namespace link. A case-insensitive String(Unicode) (see [MS-ADTS] section

3.1.1.2.2.2).

msDFS-

ShortNameLinkPathv2

A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2)

that is the DFS namespace root-relative path to the DFS link reparse point

in short name form. To simplify LDAP searches, path separators are

forward slashes (/) instead of backward slashes (\).

This is reserved for future use and MUST NOT be currently used.

The following attributes are mandatory: msDFS-NamespaceIdentityGUIDv2, msDFS-
LinkIdentityGUIDv2, msDFS-LastModifiedv2, and msDFS-LinkPathv2.

The following attributes are optional: msDFS-Commentv2 and msDFS-ShortNameLinkPathv2.

The object class of the LDAP entry corresponding to a DFS link in a domainv2-based DFS namespace
is msDFS-DeletedLinkv2, and its schema is as specified in [MS-ADSC].

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADSC%5d.pdf

62 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
could maintain in order to participate in this protocol. This organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model, as long as their external behavior is consistent with that described in this
document. The following data items are implemented on the server side and are specific to this
protocol:

PDCRoleHolder: For servers of domain-based DFS namespaces, this is the PDC corresponding

to the server's domain.

DFSMetadataCache: DFS metadata of DFS namespaces for which the server is a root target

MAY<27> be cached as an optimization.

Note The preceding conceptual data can be implemented using a variety of techniques. There are
no limitations on data implementation.

3.1.1.1 Global

The following element is global.

NamespaceList: A list of namespaces hosted by the server. Each entry is a tuple of

<NamespaceName, Namespace>, indexed by the NamespaceName, as specified in
section 3.1.1.2.

3.1.1.2 Per Namespace

The following are the elements of a Namespace element:

Namespace.NamespaceName: The DFS namespace name.

Namespace.NamespaceType: Type of the DFS namespace – stand-alone, domainv1-based or

domainv2-based.

Namespace.GenerationGUID: A GUID used as a generation number to detect changes to the
DFS metadata. This MUST be updated whenever the metadata of the DFS namespace is
changed.

Namespace.NamespaceElementsList: List of the DFS namespace elements as described in
section 3.1.1.3.

3.1.1.3 Per NamespaceElement

The NamespaceElement represents a DFS root or a DFS link and has the following parameters:

NamespaceElement.IdentityGUID: A GUID that identifies the DFS namespace element.

NamespaceElement.Prefix: Name of the DFS namespace element.

NamespaceElement.Properties: Set of properties that are applicable for the DFS namespace
element, as specified for PropertyFlags in section 2.2.3.5.

63 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

NamespaceElement.State: State of the DFS namespace element, as specified for State in
section 2.2.3.2.

NamespaceElement.Comment: Comment associated with the DFS namespace element.

NamespaceElement.ReferralTTL: The referral time-out value, in seconds, for the DFS

namespace element.

NamespaceElement.SecurityDescriptor: SecurityDescriptor to be associated with the DFS
namespace element. This is needed only for the DFS link of a stand-alone or domainv2-based
DFS namespace.

NamespaceElement.TargetsList: List of targets for the DFS namespace element. Each element
in the list is as described in section 3.1.1.4.

3.1.1.4 Per TargetsList

The following are the elements of a TargetsList.

TargetsList.TargetCount: Number of targets for the DFS namespace element.

TargetsList.Target : Metadata of the target. This is as described in the section 3.1.1.5.

3.1.1.5 Per Target

The following are the elements of a Target element.

Target.TargetState: State of the target, as specified for State in section 2.2.4.6.

Target.PriorityRank: Priority rank of the target, as specified for TargetPriorityRank in section
2.2.2.7.

Target.PriorityClass: Priority class of the target, as specified in section 2.2.2.8.

Target.ServerName: The DFS target host name.

Target.ShareName: The DFS target share name.

3.1.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.1.3 Initialization

The server MUST listen on the well-known endpoint defined for this RPC interface, as specified in

section 2.1.

Information about DFS namespaces that the server hosts SHOULD be obtained from a local
information store such as the registry. An entry MUST be created for each namespace in the

NamespaceList. If the server is hosting any stand-alone namespaces, the metadata for that
namespace MUST be initialized into the corresponding Namespace in the NamespaceList. If the
server is joined to a domain and is hosting at least one DFS namespace, it MAY<28> determine the
PDC for the domain and initialize PDCRoleHolder. As a performance optimization, it MAY<29>

preload the DFSMetadataCache with the DFS metadata of the DFS namespaces for which it is acting
as a root target.

%5bMS-RPCE%5d.pdf

64 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4 Message Processing Events and Sequencing Rules

When any RPC method is received for a domain-based DFS namespace that is hosted by the server,
the server MUST first check whether the DFS namespace is up-to-date with any changes that may

have happened on it. This check MUST be done against the PDC. When any changes are detected,
the server MUST first bring the namespace it hosts up-to-date and then process the RPC method
received. The details of this operation are implementation-specific.

For a domainv1-based DFS namespace, if the pKTGuid value matches the cached value, the server
MAY work on a cached copy of the pKT attribute. The update operation MUST be committed by
issuing LDAP writes for both the updated pKT attribute and a newly generated pKTGuid attribute.
Using the same LDAP update operation for both attributes ensures atomicity of the update.

For non-update operations in domain-based DFS namespaces, DFS servers MAY retrieve DFS
metadata from any DC within the domain. For update operations in domain-based DFS namespaces,
DFS servers MUST retrieve and store DFS metadata on the PDC.

Unless noted otherwise, DFS servers MUST process host names as case-insensitive string literals.

The DFS server MUST NOT, for example, consider a DNS-conformant host name (as specified in
[RFC1034]) and an IP address as equivalent, even if the host name resolves via DNS to the IP

address.

This protocol uses Win32 error codes. These values are taken from the Windows error number
space, as specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated
meanings. Choosing any other value runs the risk of future collisions.<30>

The remainder of this section describes the methods used in the DFS: Namespace Management
Protocol. The following table lists opnum values associated with the methods described in this
document, as well as the section where each is described.

Methods in RPC Opnum Order

Method Description

NetrDfsManagerGetVersion A basic method that returns the version number of the

DFS server.

Opnum: 0

NetrDfsAdd A basic method that creates a new DFS link or that adds a

new target to an existing link of a DFS namespace.

Opnum: 1

NetrDfsRemove A basic method that removes a link or a link target from a

DFS namespace.

Opnum: 2

NetrDfsSetInfo A basic method that sets or modifies information relevant

to a specific DFS root, DFS root target, DFS link, or DFS

link target.

Opnum: 3

NetrDfsGetInfo A basic method that returns information about a DFS root,

a DFS link, or a DFS namespace.

Opnum: 4

NetrDfsEnum A basic method that enumerates the DFS roots hosted on

http://go.microsoft.com/fwlink/?LinkId=90263
%5bMS-ERREF%5d.pdf

65 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Method Description

a server or the DFS links of a namespace on the server.

Opnum: 5

NetrDfsMove A basic method that renames or moves one or more DFS

links. <31>

Opnum: 6

Opnum7NotUsedOnWire Reserved for local use.

Opnum: 7

Opnum8NotUsedOnWire Reserved for local use.

Opnum: 8

Opnum9NotUsedOnWire Reserved for local use.

Opnum: 9

NetrDfsAddFtRoot A root target method that creates a new domainv1-based

DFS namespace or that adds a root target to an existing

namespace.

Opnum: 10

NetrDfsRemoveFtRoot A root target method that removes a root target from a

domain-based DFS namespace or that removes a domain-

based DFS namespace.

Opnum: 11

NetrDfsAddStdRoot A stand-alone namespace method that creates a new

stand-alone DFS namespace.

Opnum: 12

NetrDfsRemoveStdRoot A stand-alone namespace method that deletes a stand-

alone DFS namespace.

Opnum: 13

NetrDfsManagerInitialize A basic method that instructs the DFS server to discard its

current state and to reinitialize itself from its stored

configuration settings.

Opnum: 14

NetrDfsAddStdRootForced A stand-alone namespace method that creates a new

stand-alone DFS namespace without verifying the

existence of the DFS root target share.

Opnum: 15

NetrDfsGetDcAddress A domain-based namespace method that returns the host

name of the DC for the client to use during the following

processes: creating a domain-based DFS namespace,

adding a root target to a domain-based DFS namespace,

removing a root target from a domain-based DFS

namespace, or removing a domain-based DFS namespace.

Opnum: 16

NetrDfsSetDcAddress A domain-based namespace method that instructs a DFS

server to use a specific DC for DFS metadata access in a

66 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Method Description

domain-based DFS namespace.

Opnum: 17

NetrDfsFlushFtTable A root target method that instructs the DFS server on a

DC to purge a domain-based DFS entry from its referral

cache.

Opnum: 18

NetrDfsAdd2 An extended method that creates a new DFS link or that

adds a new target to an existing link of a DFS namespace.

Opnum: 19

NetrDfsRemove2 An extended method that removes a link or a link target.

Opnum: 20

NetrDfsEnumEx An extended method that enumerates DFS roots hosted on

a machine or DFS links of a namespace.

Opnum: 21

NetrDfsSetInfo2 An extended method that sets or modifies the information

that is associated with a DFS root, a DFS root target, a

DFS link, or a DFS link target.

Opnum: 22

NetrDfsAddRootTarget A basic method that creates a stand-alone DFS

namespace, a domainv1-based DFS namespace, or a

domainv2-based DFS namespace.<32>

Opnum: 23

NetrDfsRemoveRootTarget A basic method that deletes a stand-alone DFS

namespace, a domainv1-based DFS namespace, or a

domainv2-based DFS namespace.<33>

Opnum: 24

NetrDfsGetSupportedNamespaceVersion A basic method that determines the supported DFS

metadata version number. This method is useful in

determining an appropriate version number to pass to the

NetrDfsAddRootTarget() method.<34>

Opnum: 25

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<35> because it does not affect interoperability.

3.1.4.1 Basic Methods

3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14)

The NetrDfsManagerInitialize method instructs the DFS server to discard its current state and
reinitialize itself from its stored configuration settings. The server SHOULD<36> choose to
implement this method.

The NetrDfsManagerInitialize method has the following Microsoft Interface Definition
Language (MIDL) syntax.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

67 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

NET_API_STATUS NetrDfsManagerInitialize(

 [in, string] WCHAR* ServerName,

 [in] DWORD Flags

);

ServerName: The pointer to a null-terminated Unicode host name string of the DFS root target

server or DC where the DFS service is to be reinitialized.

Flags: This parameter MUST be zero.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

Server does not support the requested operation.

If this method is implemented, the DFS server SHOULD<37> discard its current state and
reinitialize itself from its stored configuration settings.

3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0)

The NetrDfsManagerGetVersion method returns the version number of the DFS server in use on
the server.

The NetrDfsManagerGetVersion method has the following MIDL syntax.

DWORD NetrDfsManagerGetVersion();

This method has no parameters.

Return Values: This method MUST return one of the following values.

Return

value Description

0x00000001 The server MUST support stand-alone DFS namespaces and opnums from 0

through 5, inclusive. The server MAY support domain-based DFS namespaces and

other opnums.

0x00000002 In addition to the preceding, the server MUST support domainv1-based DFS

namespaces and opnums 10 through 22, inclusive. The server MAY support hosting

more than one DFS namespace on the same server.

0x00000004 In addition to the preceding, the server MUST support hosting more than one DFS

namespace on the same server and Level parameter value 200 of the

%5bMS-ERREF%5d.pdf

68 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return

value Description

NetrDfsEnumEx method. It SHOULD support opnum 6.

0x00000006 In addition to the preceding, the server MUST support domainv2-based DFS

namespace and opnums 23 through 25, inclusive.

The clients MAY use the version information to determine the RPC methods that the DFS server

supports.<38><39><40><41><42>

3.1.4.1.3 NetrDfsAdd (Opnum 1)

The NetrDfsAdd method creates a new DFS link or adds a new target to an existing link of a DFS
namespace.

The NetrDfsAdd (Opnum 1) method has the following MIDL syntax.

NET_API_STATUS NetrDfsAdd(

 [in, string] WCHAR* DfsEntryPath,

 [in, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in, unique, string] WCHAR* Comment,

 [in] DWORD Flags

);

DfsEntryPath: The pointer to a DFS link path that contains the name of an existing link when
additional link targets are being added or the name of a new link is being created.

ServerName: The pointer to a null-terminated Unicode string that specifies the DFS link target

host name.

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This

may also be a share name with a path relative to the share, for example,
"share1\mydir1\mydir2". When specified this way, each pathname component MUST be a
directory.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated

with this root or link. This string has no protocol-specified restrictions on length or content.
The comment is meant for human consumption and does not affect server functionality. The
comment MUST be ignored when adding a target to an existing link.

Flags: A value indicating the operation to perform. The following table lists such flags.

Value Meaning

0x00000000 Create a new link or adds a new target to an existing link.

DFS_ADD_VOLUME

0x00000001

Create a new link in the DFS namespace if one does not already exist or

fails if a link already exists.

DFS_RESTORE_VOLUME

0x00000002

Add a target without verifying its existence.

69 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If a Flags value other than the bitwise-OR of the above values is provided, the server MUST
return ERROR_INVALID_PARAMETER (0x00000057).

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The

most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050

ERROR_FILE_EXISTS

The specified DFS link target already exists.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

0x00000032

ERROR_NOT_SUPPORTED

The method does not support a domain-based namespace.

0x00000906

NERR_NetNameNotFound

The DFS link target does not exist.

The NetrDfsAdd method SHOULD<43> support a domain-based DFS namespace. If it does not
support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter

specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify whether the link to be added overlaps an existing link. If there is a link for
which the specified DfsEntryPath parameter is a prefix, the server MUST return
ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is set in the Flags field of the
request, the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is not set in the Flags field of the

request, the server MUST attempt to add a new link target to the link. If a target with the path
specified by ServerName and ShareName was already added to the link, the server MUST return
ERROR_FILE_EXISTS.

If DFS_RESTORE_VOLUME is not specified on the Flags parameter, the server MAY<44> choose to
verify whether the link target exists. If DFS_RESTORE_VOLUME is specified, the server MUST NOT

perform this test. If it performs the test and the link target does not exist, the server MUST fail the
call with NERR_NetNameNotFound.

The exact test the server performs to verify link target existence is implementation-defined. A
server MAY,<45> for example, assume all link targets are administered through [MS-SRVS] section
3.1.4.10 and use NetShareGetInfo level 1005 to perform the test. Three reasons not to implement
this test are that

%5bMS-ERREF%5d.pdf
%5bMS-SRVS%5d.pdf

70 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

It may not be practical to determine the correct administration interface to query to perform the

test.

A link target server may export a share with a network protocol and administration interface that

this server does not understand.

A secured link target server may not permit this server to contact it.

The Comment parameter MUST be ignored when a target is added to an existing link.

The server SHOULD<46> create a new link without requiring the DFS_ADD_VOLUME Flags
parameter.

The server MUST determine whether the specified link target refers to a domain-based namespace.

If it does, this request is creating a DFS interlink. If it is creating an interlink and the link already
exists, the server MUST return an implementation-defined failure value. For domain-based
namespaces, the server MUST set the DFS interlink property as appropriate for the link for each
type of domain-based namespace. See sections 2.3.3.1.1.2 and 2.3.4.3.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone
DFS namespace.

Operation DFS metadata changes required

Adding a new link New NamespaceElement in NamespaceElementsList.

Adding a new target to an

existing link

New Target in the TargetsList of the NamespaceElement and an

update to the TargetCount.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Adding a new link New DFSNamespaceLinkBLOB and BLOBElementCount.

Adding a new target

to an existing link

New TargetEntryBLOB and updated TargetCount in existing DFSTargetListBLOB,

updated DFSTargetListBLOBSize and BLOBDataSize of DFSNamespaceLinkBLOB.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace.

Operation DFS metadata changes required

Adding a new link The following mandatory attributes MUST be updated: msDFS-

NamespaceIdentityGUIDv2, msDFS-LinkIdentityGUIDv2, msDFS-GenerationGUIDv2,

msDFS-LinkPathv2, msDFS-LastModifiedv2, msDFS-TargetListv2, msDFS-

Propertiesv2, and msDFS-Ttlv2.

The following optional attribute MAY be updated: msDFS-Commentv2.<47>

Adding a new

target to an

existing link

Update targetCount, totalStringLengthInBytes, priority, and state attributes in

msDFS-TargetListv2. Update msDFS-LastModifiedv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

71 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo (Opnum 3) method with the Level parameter 101, and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<48><49>

3.1.4.1.4 NetrDfsRemove (Opnum 2)

The NetrDfsRemove method removes a link or a link target from a DFS namespace. A link can be
removed regardless of the number of targets associated with it.

The NetrDfsRemove method has the following MIDL syntax.

NET_API_STATUS NetrDfsRemove(

 [in, string] WCHAR* DfsEntryPath,

 [in, unique, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName

);

DfsEntryPath: The pointer to the DFS link path that contains the name of an existing link.

ServerName: The pointer to a null-terminated Unicode DFS link target host name string. Clients

MUST set ServerName to a NULL pointer in requests to remove the link and all its link targets.

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This
may also be a share name with a path relative to the share, for example,
"share1\mydir1\mydir2". Clients MUST set ShareName to a NULL pointer in requests to
remove the link and all its link targets.

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The

most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the

specified DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000032

ERROR_NOT_SUPPORTED

The method does not support a domain-based namespace.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace or DFS link does not exist.

The NetrDfsRemove method SHOULD<50> support a domain-based DFS namespace. If it does not
support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

%5bMS-ERREF%5d.pdf

72 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

If the ServerName and ShareName parameters are both NULL, the server MUST remove the link and
all its link targets. If the ServerName and ShareName are not NULL, the server MUST remove the
specified link target. If the specific target is the last target of the link, the server MUST remove the
link as well. If only one of ServerName or ShareName is NULL, the server MUST return

ERROR_INVALID_PARAMETER.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone
DFS namespace.

Operation DFS metadata changes required

Remove link Remove corresponding NamespaceElement from NamespaceElementsList.

Remove link

target

Remove Target from the TargetsList of the NamespaceElement, and update the

TargetCount.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Remove link Remove DFSNamespaceLinkBLOB; update BLOBElementCount.

Remove link

target

Update TargetCount in existing DFSTargetListBLOB, remove TargetEntryBLOB. Update

DFSTargetListBLOBSize, update BLOBDataSize of DFSNamespaceLinkBLOB.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS

namespace.

Operation DFS metadata Changes Required

Remove link Remove the DFS link object.

Remove link

target

Update TargetCount and totalStringLengthInBytes attributes in msDFS-

TargetListv2; update msDFS-LastModifiedv2.

A remove link operation in a domainv2-based DFS namespace first creates a dynamic object for the
entry to be deleted. To create a dynamic object, the server MUST do the following:

Set the object class to msDFS-DeletedLinkv2; a normal DFS link LDAP entry's object class is

msDFS-Linkv2.

Set the deleted DFS link's identity GUID.

Set an updated msDFS-LastModifiedv2 time-stamp attribute.

73 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the dynamic object is created successfully, the original link LDAP entry is then deleted. If the
delete is successful, the dynamic object is left intact; otherwise, the dynamic object is itself deleted.

The advantage of using a dynamic object is that directory services perform garbage collection.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101, and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<51><52>

3.1.4.1.5 NetrDfsSetInfo (Opnum 3)

The NetrDfsSetInfo method sets or modifies information relevant to a specific DFS root, DFS root

target, DFS link, or DFS link target.

The NetrDfsSetInfo method uses the following MIDL syntax.

NET_API_STATUS NetrDfsSetInfo(

 [in, string] WCHAR* DfsEntryPath,

 [in, unique, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in] DWORD Level,

 [in, switch_is(Level)] DFS_INFO_STRUCT* DfsInfo

);

DfsEntryPath: The pointer to a DFS root or a DFS link path.

ServerName: The pointer to a null-terminated Unicode DFS root target or DFS link target host
name string. Clients MUST set this to a NULL pointer when the DFS root or DFS link is used
and not the DFS root target or DFS link target.

ShareName: The pointer to a null-terminated Unicode string DFS root target or DFS link target

host name. Clients MUST set this to a NULL pointer when the DFS root or DFS link is used and
not the DFS root target or DFS link target.

Level: Specifies the information level of the data and, in turn, determines the action the method
performs.

Value Meaning

Level_100

0x00000064

Sets the comment associated with the root or link specified in the DfsInfo

parameter. The ServerName and ShareName parameters MUST be NULL.

Level_101

0x00000065

Sets the state associated with the root, link, root target, or link target specified in

DfsInfo.<53>

Level_102

0x00000066

Sets the time-out value associated with the root or link specified in DfsInfo. The

ServerName and ShareName parameters MUST be ignored.

Level_103

0x00000067

Sets the property flags for the root or link specified in DfsInfo. The ServerName and

ShareName parameters MUST be NULL.

Level_104

0x00000068

Sets the target priority rank and class for the root target or link target specified in

DfsInfo.

74 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

Level_105

0x00000069

Sets the comment, state, time-out information, and property flags for the

namespace root or link specified in DfsInfo. Does not apply to a root target or link

target. The ServerName and ShareName parameters MUST be NULL.

Level_106

0x0000006A

Sets the target state and priority for the DFS root target or DFS link target specified

in DfsInfo.<54> This does not apply to the DFS namespace root or link.

Level_107

0x0000006B

Sets the comment, state, time-out, security descriptor information, and property

flags for the namespace root or link specified in DfsInfo. Does not apply to a root

target or link target. The ServerName and ShareName parameters MUST be NULL.

The security descriptor MUST NOT have owner, group, or SACLs in it.

The security descriptor MUST be a NULL, zero length value if used on a namespace

root. In this case, note that it is equivalent to using Level_105.

Level_150

0x00000096

Sets the security descriptor associated with a DFS link. Only stand-alone DFS

namespaces and domainv2-based DFS namespaces are supported. The ServerName

and ShareName parameters MUST both be NULL. The security descriptor MUST NOT

have owner, group, or SACLs in it.

The server MUST support Level values 100 and 101. The server SHOULD support Level values
102-107 and 150. If the server does not support the provided Level, it MUST fail the
call.<55> The server SHOULD return error code ERROR_INVALID_PARAMETER for

unsupported level values.<56>

DfsInfo: The pointer to a DFS_INFO_STRUCT union that contains the specified data. The value
of the Level parameter selects the case of the union.

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF], section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the

specified DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace or DFS link, or DFS link or root

target, does not exist.

The NetrDfsSetInfo method SHOULD<57> support a domain-based DFS namespace. If it does not
support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

%5bMS-GLOS%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

75 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If
that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

The server MUST fail any attempt to set the state of a DFS root, a DFS link, a DFS root target or a
DFS link target to a value that is not specified for the Level parameter. The server MUST fail any
attempt to set the property flags on a DFS link that are defined only for a DFS root.

When the Level parameter is 101 and the State field in the DFS_INFO_101 structure is

DFS_VOLUME_STATE_RESYNCHRONIZE, the server MUST reload the contents of the
DFSMetadataCache for the DFS namespace that the ShareName parameter specifies. It MUST then
update its local DFS namespace information by comparing this information against the DFS

metadata. The details of this update operation are implementation-dependent.

When level 107 is used for a DFS namespace root or for a domainv1-based DFS link, the
pSecurityDescriptor parameter has no meaning because security descriptors cannot be associated

with those objects. In these cases, if pSecurityDescriptor is not NULL, the server MUST fail with
ERROR_NOT_SUPPORTED.

For domainv1-based DFS root, if the Level in the DfsInfo structure is 103, 105, or 107, and if the
PropertyFlagMask field has the DFS_PROPERTY_FLAG_ABDE flag set, the server MUST fail the call
with ERROR_NOT_SUPPORTED.

If the Level in the DfsInfo structure is 103, 105, or 107, and if PropertyFlagMask field has
DFS_PROPERTY_FLAG_CLUSTER_ENABLED flag set, the server MUST fail the call with

ERROR_NOT_SUPPORTED.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone

DFS namespace, depending on the value of the Level parameter.

Value DFS metadata changes required

100

(0x00000064)

Update Comment in the NamespaceElement.

101

(0x00000065)

If a link, update the State field of NamespaceElement. If a root target or link target,

update the TargetState field of Target.

102

(0x00000066)

Update the ReferralTTL field of NamespaceElement.

103

(0x00000067)

Update the Properties field of NamespaceElement.

104

(0x00000068)

Update the PriorityRank and PriorityClass fields of Target.

105

(0x00000069)

Update the Comment, State, ReferralTTL, and Properties fields of

NamespaceElement.

76 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value DFS metadata changes required

106

(0x0000006A)

Update the PriorityRank, PriorityClass, and TargetState fields of Target.

107

(0x0000006B)

Update the Comment, State, ReferralTTL, SecurityDescriptor, and Properties fields

of NamespaceElement.

150

(0x00000096)

Update SecurityDescriptor of the NamespaceElement.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace, depending on the value of the Level parameter.

Value DFS metadata changes required

100

(0x00000064)

Update CommentSize and Comment in DFSRootOrLinkIDBLOB and BLOBDataSize of

DFSNamespaceLinkBLOB.

101

(0x00000065)

If a link, update the State field of DFSRootOrLinkIDBLOB.

If a root target or link target, update the TargetState field of TargetEntryBLOB.

102

(0x00000066)

Update the ReferralTTL field of DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB.

103

(0x00000067)

Update the Type field of DFSRootOrLinkIDBLOB.

104

(0x00000068)

Update the PriorityRank and PriorityClass fields of TargetEntryBLOB.

105

(0x00000069)

Update CommentSize and Comment in DFSRootOrLinkIDBLOB, the State field of

DFSRootOrLinkIDBLOB, the ReferralTTL field of DFSNamespaceRootBLOB or

DFSNamespaceLinkBLOB, and the Type field of DFSRootOrLinkIDBLOB.

106

(0x0000006A)

Update the PriorityRank, PriorityClass, and TargetState fields of TargetEntryBLOB.

107

(0x0000006B)

See 105 (0x00000069).

If the server does not support levels 104 or 106, it MUST use the FILETIME encoding for the
TargetTimestamp field of the TargetEntryBLOB and update the field for each modified

TargetEntryBLOB, as specified in section 2.3.3.1.1.3.1.

If the server supports levels 104 and 106, it MUST instead use the encoding which provides the
PriorityRank and PriorityClass in the TargetTimestamp field.

Note that for interoperability, all root targets of a namespace SHOULD use the same encoding for

this TargetTimestamp field.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace, depending on the value of the Level parameter. For information about these fields, see

section 2.3.4.

%5bMS-DTYP%5d.pdf

77 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value DFS metadata changes required

100

(0x00000064)

Update msDFS-Commentv2.

101

(0x00000065)

State field of msDFS-TargetListv2.

102

(0x00000066)

Update msDFS-Ttlv2.

103

(0x00000067)

Update msDFS-Propertiesv2.

104

(0x00000068)

Update the priorityClass and priorityRank attributes in msDFS-TargetListv2.

105

(0x00000069)

Update msDFS-Commentv2, msDFS-Ttlv2, msDFS-Propertiesv2, and the State field of

msDFS-Targetlistv2.

106

(0x0000006A)

Update priorityClass, priorityRank, and the State field of msDFS-TargetListv2.

107

(0x0000006B)

Update msDFS-Commentv2, msDFS-Ttlv2, msDFS-Propertiesv2, msDFS-

LinkSecurityDescriptorv2, and the State field of msDFS-TargetListv2.

150

(0x00000096)

Update msDFS-LinkSecurityDescriptorv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

For domainv2-based or standalone DFS root, if the DFS_PROPERTY_FLAG_ABDE flag in
NamespaceElement.Properties is either set or cleared as a result of this method, the server
MUST communicate with the local SMB service to enable (DFS_PROPERTY_FLAG_ABDE set) or
disable (DFS_PROPERTY_FLAG_ABDE cleared) the Access-Based Directory Enumeration property on

the DFS root target by calling the NetrShareSetinfo method using Level 1005 (as specified in [MS-
SRVS] section 3.1.4.11).

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101, and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<58>

3.1.4.1.6 NetrDfsGetInfo (Opnum 4)

The NetrDfsGetInfo method returns information about a DFS root or a DFS link of the specified
DFS namespace.

The NetrDfsGetInfo method has the following MIDL syntax.

NET_API_STATUS NetrDfsGetInfo(

 [in, string] WCHAR* DfsEntryPath,

 [in, unique, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in] DWORD Level,

 [out, switch_is(Level)] DFS_INFO_STRUCT* DfsInfo

);

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

78 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DfsEntryPath: The pointer to a DFS root or a DFS link path.

ServerName: This parameter MUST be a NULL pointer for Level_50 and MUST be ignored for
other levels.

ShareName: This parameter MUST be a NULL pointer for Level_50 and MUST be ignored for

other levels.

Level: This parameter specifies the information level of the data and, in turn, determines the
action the method performs.

Value Meaning

Level_1

0x00000001

Returns the name of the DFS root or the DFS link.

Level_2

0x00000002

Returns the name, comment, state, and number of targets for the DFS root or the

DFS link.

Level_3

0x00000003

Returns the name, comment, state, number of targets, and target information for

the DFS root or the DFS link.

Level_4

0x00000004

Returns the name, comment, state, time-out, GUID, number of targets, and target

information for the DFS root or the DFS link.

Level_5

0x00000005

Returns the name, comment, state, time-out, GUID, property flags, metadata size,

and number of targets for the DFS root or the DFS link.

Level_6

0x00000006

Returns the name, comment, state, GUID, time-out, property flags, metadata size,

number of targets, and target information for the DFS root or the DFS link.

Level_7

0x00000007

Returns the version number GUID of the DFS metadata. This value only applies to

the DFS root.

Level_8

0x00000008

Returns the name, comment, state, time-out, GUID, property flags, metadata size,

number of targets, and security descriptor associated with the DFS root or the DFS

link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are

supported.

Level_9

0x00000009

Returns the name, comment, state, GUID, time-out, property flags, metadata size,

number of targets, list of targets, and security descriptor for the DFS root or the

DFS link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are

supported.

Level_50

0x00000032

Returns the DFS metadata version and capability information of an existing DFS

namespace. This level is valid only for the DFS namespace root, not for DFS links.

The ServerName and ShareName parameters MUST both be NULL.<59>

Level_100

0x00000064

Returns the comment associated with the root or DFS link specified in the

DfsEntryPath parameter.

Level_150

0x00000096

Returns the security descriptor associated with a DFS link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are

supported.

79 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server MUST support Level values 1-3 and 100. The server SHOULD support Level values
4-9, 50 and 150. If the server does not support the provided Level, it MUST fail the call.<60>

The server SHOULD return error code ERROR_INVALID_PARAMETER for unsupported Level
values.<61>

DfsInfo: The pointer to a DFS_INFO_STRUCT union to receive the returned information. The
case of the union is selected by the value of the Level parameter.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root or DFS link, or DFS link or root target does

not exist.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If

that existence check fails, the server MUST return ERROR_NOT_FOUND.

For a standalone DFS namespace, the server MUST identify a consistent GUID for the specified DFS
link or DFS root path. This value MUST conform to the expectations of UUID uniqueness provided

by [RFC4122] or [C706], though those specific algorithms are not required. This GUID value MUST
be used when responding to calls specifying a Level parameter whose corresponding return
structure provides the GUID: values of 4, 5, 6, 8, or 9.

The server MUST use the following fields in the DFS metadata for a stand-alone DFS namespace to
return the required information, depending on the value of the Level parameter.

Value DFS metadata field

1

(0x00000001)

The Prefix field of NamespaceElement.

2

(0x00000002)

In addition to those for Level 1: the Comment and State fields of NamespaceElement

and the TargetCount field of TargetsList.

3

(0x00000003)

In addition to those for Level 2: Target entries in the TargetsList.

4

(0x00000004)

In addition to those for Level 3: the ReferralTTL and IdentityGUID fields of

NamespaceElement.

5 In addition to those for Level 4: the Properties field of NamespaceElement, and the

%5bMS-ERREF%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

80 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value DFS metadata field

(0x00000005) size of the DFS namespace metadata,<62> but excluding Target entries.

6

(0x00000006)

In addition to those for Level 5: Target entries in the TargetsList.

7

(0x00000007)

The value of GenerationGUID attribute of the Namespace object.

8

(0x00000008)

In addition to those for Level 5: SecurityDescriptor of the NamespaceElement.

9

(0x00000009)

In addition to those for Level 6: SecurityDescriptor of the NamespaceElement.

50

(0x00000032)

No metadata attribute stores this data. The value returned MUST, however, be one of the

values defined in the table in section 2.2.3.10.

100

(0x00000064)

Comment in NamespaceElement.

150

(0x00000096)

SecurityDescriptor of the NamespaceElement.

The server MUST use the following fields in the DFS metadata for a domainv1-based DFS

namespace to return the required information, depending on the value of the Level parameter.

Value DFS metadata field

1

(0x00000001)

The PrefixSize and Prefix fields of DFSRootOrLinkIDBLOB.

2

(0x00000002)

In addition to those for Level 1: the CommentSize, Comment, and State fields of

DFSRootOrLinkIDBLOB and the TargetCount field of DFSTargetListBLOB.

3

(0x00000003)

In addition to those for Level 2: TargetEntryBLOB.

4

(0x00000004)

In addition to those for Level 3: the ReferralTTL field of DFSNamespaceRootBLOB or

DFSNamespaceLinkBLOB; the RootOrLinkGuid field of DFSRootOrLinkIDBLOB.

5

(0x00000005)

In addition to those for Level 4: the RootOrLinkGuid field of DFSRootOrLinkIDBLOB, the

Type field of DFSRootOrLinkIDBLOB, and the Size field of the value stored in the pKT

attribute of the DFS namespace's object, but excluding TargetEntryBLOB.

6

(0x00000006)

In addition to those for Level 5: TargetEntryBLOB.

7

(0x00000007)

The Value of pKTGuid attribute of the DFS namespace's object.

50

(0x00000032)

No metadata attribute stores this data. The value returned MUST, however, be one of the

values defined in the table in section 2.2.3.10.

81 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value DFS metadata field

100

(0x00000064)

CommentSize and Comment in DFSRootOrLinkIDBLOB, and BLOBDataSize of

DFSNamespaceLinkBLOB.

Note that for interoperability, all root targets of a namespace SHOULD use the same encoding for
this TargetTimestamp field, as specified in section 2.3.3.1.1.3.1.

The server MUST use the following fields in the DFS metadata for a domainv2-based DFS
namespace to return the required information, depending on the value of the Level parameter.

Value DFS metadata field

1

(0x00000001)

The msDFS-LinkPathv2 attribute.

2

(0x00000002)

In addition to those for Level 1: msDFS-Commentv2, msDFS-Propertiesv2, and the

TargetCount field of msDFS-TargetListv2.

3

(0x00000003)

In addition to those for Level 2: msDFS-TargetListv2.

4

(0x00000004)

In addition to those for Level 3: msDFS-Ttlv2, msDFS-NamespaceIdentityGUIDv2 for DFS

root, and msDFS-LinkIdentityGUIDv2 for DFS link.

5

(0x00000005)

In addition to those for Level 4: msDFS-Propertiesv2. Excludes msDFS-TargetListv2.

6

(0x00000006)

In addition to those for Level 4: msDFS-Propertiesv2.

7

(0x00000007)

The value of the msDFS-GenerationGUIDv2 attribute of the DFS namespace's object.

8

(0x00000008)

In addition to those for Level 5: msDFS-LinkSecurityDescriptorv2.

9

(0x00000009)

In addition to those for Level 6: msDFS-LinkSecurityDescriptorv2.

50

(0x00000032)

The msDFS-SchemaMajorVersion and msDFS-SchemaMinorVersion attributes.

100

(0x00000064)

The msDFS-Commentv2 attribute.

150

(0x00000096)

The msDFS-LinkSecurityDescriptorv2 attribute.

3.1.4.1.7 NetrDfsEnum (Opnum 5)

The NetrDfsEnum method enumerates the DFS root hosted on a server or the DFS links of the
namespace hosted by a server. Depending on the information level, the targets of the root and links
are also displayed.

82 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The NetrDfsEnum method uses the following MIDL syntax.

NET_API_STATUS NetrDfsEnum(

 [in] DWORD Level,

 [in] DWORD PrefMaxLen,

 [in, out, unique] DFS_INFO_ENUM_STRUCT* DfsEnum,

 [in, out, unique] DWORD* ResumeHandle

);

Level: This parameter specifies the information level of the data and, in turn, determines the

action that the method performs. On successful return, the server MUST return an array of the
corresponding structures in the buffer pointed to by DfsEnum.

Value Meaning

Level_1

0x00000001

Gets the name of the DFS root and all links beneath it. In this case, on successful

return DfsEnum MUST point to an array of DFS_INFO_1 structures.

Level_2

0x00000002

Gets the name, comment, state, and number of targets for the DFS root and all

links under the root. In this case, on successful return DfsEnum MUST point to an

array of DFS_INFO_2 structures.

Level_3

0x00000003

Gets the name, comment, state, number of targets, and target information for the

DFS root and all links under the root. In this case, on successful return DfsEnum

MUST point to an array of DFS_INFO_3 structures.

Level_4

0x00000004

Gets the name, comment, state, time-out, GUID, number of targets, and target

information for the DFS root and all links under the root. In this case, on successful

return DfsEnum MUST point to an array of DFS_INFO_4 structures.

Level_5

0x00000005

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets for a DFS root and all links under the root. In this case, on

successful return DfsEnum MUST point to an array of DFS_INFO_5 structures.

Level_6

0x00000006

Gets the name, comment, state, time-out, GUID, property flags, metadata size,

number of targets, and target information for a DFS root or DFS links. In this case,

on successful return DfsEnum MUST point to an array of DFS_INFO_6 structures.

Level_8

0x00000008

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets for a DFS root and all DFS links under the root. Also returns the

security descriptor associated with each of the DFS links. In this case, on successful

return DfsEnum MUST point to an array of DFS_INFO_8 structures.

Level_9

0x00000009

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets, and target information for a DFS root and all DFS links under the

root. Also returns the security descriptor associated with each of the DFS links. In

this case, on successful return DfsEnum MUST point to an array of DFS_INFO_9

structures.

The server MUST support Level values 1, 2 and 3. The server SHOULD support Level values

5, 6, 8, 9, and 300. The server on a DC SHOULD support Level value 200. If the server does

not support the provided Level, it MUST fail the call.<63> The server SHOULD return error
code ERROR_INVALID_PARAMETER for unsupported Level values.<64>

PrefMaxLen: This parameter specifies restrictions on the number of elements returned. A value
of 0xFFFFFFFF means there are no restrictions, in which case all entries MUST be
returned.<65>

83 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

DfsEnum: A pointer to a DFS_INFO_ENUM_STRUCT union to receive the returned
information. The client SHOULD set the Level member to the same value as the method's

Level parameter, and MUST set the DfsInfoContainer union member to a pointer to the
corresponding container structure as specified in section 2.2.6. The client MUST initialize the

container structure's EntriesRead member to zero and Buffer member to a NULL pointer.
The value of the Level member determines the case of the union.

ResumeHandle: This parameter is used to continue an enumeration when more data is available
than can be returned in a single invocation of this method.

If this parameter is not a NULL pointer, and the method returns ERROR_SUCCESS, this

parameter receives an implementation-specific nonzero value that can be passed in

subsequent calls to this method to continue the enumeration.

If this parameter is a NULL pointer or points to a 0 value, it indicates that this is an initial

enumeration request.

If this parameter is not a NULL pointer and points to a nonzero value returned in

ResumeHandle by an earlier invocation of this method, the server will attempt to continue
a previous enumeration, but MAY produce incomplete or inconsistent results due to the

possibility of concurrent updates to the DFS namespace.<66>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000103

ERROR_NO_MORE_ITEMS

There is no data to return.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

0x000010DF

ERROR_DEVICE_NOT_AVAILABLE

The server hosts more than one root.

A server MAY<67> implement this method.

The server MUST verify that it hosts a DFS namespace. If that check fails, the server MUST return

ERROR_NOT_FOUND.

The server MUST return ERROR_NO_MORE_ITEMS (0x00000103) if there is no data to return.

The server MUST return ERROR_DEVICE_NOT_AVAILABLE if the server hosts more than one root.

Each member of the DFS_INFO_ENUM_STRUCT return buffer MUST be constructed according to the
rules of section 3.1.4.1.6 (NetrDfsGetInfo) for the specified value of the Level parameter.<68>

%5bMS-ERREF%5d.pdf

84 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the requested Level is 1 through 9 and ResumeHandle indicates initial enumeration, the server
MUST return the DFS root entry as the first member of the DFS_INFO_ENUM_STRUCT return buffer

followed by DFS links in implementation-specific order.

If the requested Level is 1 through 9 and ResumeHandle does not indicate initial enumeration, the

server MUST NOT return the DFS root entry and all the entries of the DFS_INFO_ENUM_STRUCT
return buffer MUST be DFS links in implementation-specific order.

3.1.4.1.8 NetrDfsMove (Opnum 6)

The NetrDfsMove (Opnum 6) method renames or moves a DFS link. This method has the
following MIDL syntax.

NET_API_STATUS NetrDfsMove(

 [in, string] WCHAR* DfsEntryPath,

 [in, string] WCHAR* NewDfsEntryPath,

 [in] unsigned long Flags

);

DfsEntryPath: The pointer to a DFS path, this parameter specifies the source path for the move

operation. This MUST be a DFS link or the path prefix of any DFS link in the DFS namespace.

NewDfsEntryPath: The pointer to a DFS path, this parameter specifies the destination DFS path
for the move operation. This MUST be a path or a DFS link in the same DFS namespace.

Flags: A bit field specifying additional actions to take.

Value Meaning

DFS_MOVE_FLAG_REPLACE_IF_EXISTS

0x00000001

If the destination path is an existing link, replace it as

part of the move operation.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server

SHOULD fail the call with ERROR_INVALID_PARAMETER (0x00000057) .

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000050

ERROR_FILE_EXISTS

The destination path specifies an existing link.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

%5bMS-ERREF%5d.pdf

85 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000490

ERROR_NOT_FOUND

A specified DFS root namespace does not exist, or no links were

matched.

The server MUST verify the existence of the DFS namespaces that the DfsEntryPath and
NewDfsEntryPath parameters specify. If the existence check fails, the server MUST return

ERROR_NOT_FOUND.

The server MUST validate that the source and destination paths are

1. In the same DFS namespace.

2. Below the root of the namespace.

Otherwise, the server MUST return ERROR_NOT_SUPPORTED.

The server MUST return ERROR_NOT_FOUND if the DfsEntryPath parameter does not match any

DFS links in the namespace, as specified below.

The server MUST validate that the source and destination paths do not specify illegal characters or
path elements. If either path is illegal, the server MUST return ERROR_INVALID_NAME.<69>

The server SHOULD perform DFS link move operations atomically. That is, either all of the
constituent operations are performed as part of the move and the call succeeds, or no changes are
made to the DFS namespace and the call fails.<70>

When the source and destination are both paths in the DFS namespace and not links themselves, all

DFS links in the DFS namespace that have the source path as their prefix MUST be converted to DFS
links with the destination path as the prefix. In effect, each DFS link that has the prefix specified by
the source path is removed, and new DFS links that have exactly the same targets and target
properties are added, but with the prefix specified by the destination path. For example, with a
source path of "\\MyServer\MyDfs\dir1" and a destination path of "\\MyServer\MyDfs\dir2", the DFS

link "\\MyServer\MyDfs\dir1\link1" becomes "\\MyServer\MyDfs\dir2\link1", while the DFS
link"\\MyServer\MyDfs\link2" is unaffected by the move operation.

If a DFS link already exists at the destination path, unless the Flags parameter is
DFS_MOVE_FLAG_REPLACE_IF_EXISTS, the server MUST fail the call with ERROR_FILE_EXISTS.
This MUST be enforced only if the destination is an existing link, not if the destination is an existing
file or directory. In the preceding example, if a DFS link "\\MyServer\MyDfs\dir2\link1" already
exists, the move operation will fail unless the DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags
parameter is specified. If the DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags parameter is specified,

the DFS link at the destination path is removed and replaced by the moved DFS link. If
"\\MySever\MyDfs\dir2\link1" is an existing directory and not a link, the operation does not require
the DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags parameter to be specified.

DFS servers SHOULD support the case in which intermediate or leaf pathname components in the
destination path are files. For example, a server should support the case of a source path being
"\\MyServer\MyDfs\dir1\link1", a destination path being "\\MyServer\MyDfs\comp1\link1", and

"\\MyServer\MyDfs\comp1" being a file.<71>

If intermediate directories in the pathname of a source DFS link are empty, they SHOULD be
removed, as required, after a move operation. For example, if "\\MyServer\MyDfs\dir1\dir2\link1" is
moved to "\\MyServer\MyDfs\link1", the dir1 and dir2 directories are removed if they are
empty.<72>

86 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the move operation results in a source DFS link becoming the prefix of an existing destination DFS
link, the move operation MUST be failed. For example, if the source is a DFS link

"\\MyServer\MyDfs\dir1\link1", the destination DFS link specified is "\\MyServer\MyDfs\dir2", and if
a DFS link "\\MyServer\MyDfs\dir2\link2" already exists, the server MUST fail the call with

ERROR_FILE_EXISTS.

For a domainv1-based DFS namespace and stand-alone DFS namespaces, the link's identity is
changed. Thus, to another DFS root target of the same domainv1-based DFS namespace, one link is
deleted and then another link is created instead of an existing link being moved.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone
DFS namespace.

Operation DFS metadata changes required

Remove link Remove NamespaceElement from NamespaceElementsList.

Add link Add NamespaceElement in NamespaceElementsList.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Remove link Remove DFSNamespaceLinkBLOB and update BLOBElementCount.

Add link Add DFSNamespaceLinkBLOB and update BLOBElementCount.

In contrast, for a domainv2-based DFS namespace, the link's identity is not changed. Instead, the
msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2 attributes of a
DFS link's LDAP entry are updated during a move operation. When a destination link is deleted, the

required local state changes (on-disk, in-memory) are performed on the DFS root target server
performing the move operation as well.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace.

Operation DFS metadata changes required

Remove link Update msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2.

Add link Update msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST

notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of

DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<73>

The move operation on a stand-alone DFS namespace or a domainv2-based DFS namespace also
correctly applies to any security descriptor that is associated with the DFS link, to the new reparse
point created after the move operation.

87 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23)

The NetrDfsAddRootTarget method is used to create a stand-alone DFS namespace, a domainv1-
based DFS namespace, or a domainv2-based DFS namespace.<74>

The NetrDfsAddRootTarget method uses the following MIDL syntax.

NET_API_STATUS NetrDfsAddRootTarget(

 [in, unique, string] LPWSTR DfsPath,

 [in, unique, string] LPWSTR TargetPath,

 [in] ULONG MajorVersion,

 [in, unique, string] LPWSTR Comment,

 [in] BOOLEAN NewNamespace,

 [in] ULONG Flags

);

DfsPath: The pointer to a null-terminated Unicode string. This MUST be
\\<domain>\<dfsname> for domain-based DFS or \\<server>\<share> for stand-alone

DFS.

TargetPath: The pointer to a null-terminated Unicode string. This MUST be
\\<server>\<share>[\<path>] for domain-based DFS or NULL for stand-alone DFS. The

latter restriction is required to ensure that a typographic error in the domain name, while
attempting to create a domain-based DFS, does not result in a stand-alone DFS namespace
being created on the DFS root target server, if the first pathname component of the DfsPath

parameter is used to detect whether a domain-based DFS namespace or stand-alone DFS
namespace is being created. When TargetPath is not NULL, the <server> MUST be used as
the host name of the new DFS root target in the metadata.

MajorVersion: The DFS metadata version to use to create the DFS namespace. When adding a
DFS root target to an existing DFS namespace, MajorVersion MUST be either 0 or the major
version number of the existing DFS namespace. Otherwise, the call MUST fail.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated
with this root or link. This string has no protocol-specified restrictions on length or content.
The comment is meant for human consumption and does not affect server functionality. The
comment MUST be ignored when adding a target to an existing link.

NewNamespace: A Boolean value that, if TRUE, indicates a request to create a new root. If
FALSE, this value indicates a request to add a new root target to an existing root.

Flags: This parameter MUST be zero for a domain-based DFS namespace and MUST be ignored

for a stand-alone DFS namespace.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

%5bMS-ERREF%5d.pdf

88 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified namespace already exists on this server.

0x00000906

NERR_NetNameNotFound

The share that the TargetPath parameter specifies does not already

exist.

The following table summarizes the various actions that the NetrDfsAddRootTarget method takes

based on the parameter values.

pDfsPath parameter

pTargetPath

parameter

MajorVersion

parameter Explanation

\\<domain>\<dfsname> \\<server>\<share> 1 Creates a new domainv1-based

DFS namespace or adds a new

root target to an existing

domainv1-based DFS namespace.

If a DFS namespace already

exists, the version specified MUST

match the DFS namespace;

otherwise, the call fails.

\\<domain>\<dfsname> \\<server>\<share> 2 Creates a new domainv2-based

DFS namespace or adds a new

root target to an existing

domainv2-based DFS namespace.

If a DFS namespace already

exists, the version specified MUST

match the DFS namespace;

otherwise, the call fails.

\\<domain>\<dfsname> \\<server>\<share> 0 Adds a new root target to an

existing domain-based DFS

namespace or a domainv2-based

DFS namespace. If a DFS

namespace does not already exist,

the call fails.

\\<server>\<share> NULL 1 Creates a new stand-alone DFS

namespace.

The following scheme is used to create a new domainv2-based DFS namespace:

NetrDfsGetSupportedNamespaceVersion is called to determine an appropriate version

number to pass to the NetrDfsAddRootTarget() method.

The client-side method creates a DFS metadata, format-independent LDAP entry called the DFS

namespace anchor. It contains only the DFS metadata major version number.

Updates the access control list (ACL) on the object of the DFS namespace to permit read/write

access by the DFS root target server.

The client-side method then issues an RPC call to the DFS root target server.

The DFS server creates a new DFS namespace LDAP entry with the DFS namespace anchor LDAP

entry as its parent.

%5bMS-GLOS%5d.pdf

89 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

All DFS links are created with the DFS namespace LDAP entry as the parent. For more

information, see section 2.3.2.

This results in two LDAP entries in domainv2 corresponding to the single LDAP entry in domainv1.

If the domain-based DFS namespace already exists, and the ServerName and RootShare
parameters are a root target, the server MUST fail with ERROR_ALREADY_EXISTS.

If the share that the TargetPath parameter specifies does not already exist, the RPC method MUST
fail with NERR_NetNameNotFound (0x00000906).

The server MUST synchronously update the following fields in the stand-alone DFS metadata.

Operation DFS metadata changes required.

Adding a new

namespace

Creates a new Namespace object for the namespace, and inserts the object into

NamespaceList.

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Adding a new

namespace

Creates new DFS metadata.

Adding a new

root target

Updates the TargetCount field of the DFSTargetListBLOB, creates a new

TargetEntryBLOB, updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the

DFSNamespaceRootBLOB, and adds the DFSRootTarget to the remoteServerName

attribute in the object.

The server MUST update the following fields in the domainv2-based DFS metadata.

Operation DFS metadata changes required

Adding a new

namespace

Creates new DFS namespace LDAP entry with the DFS namespace anchor LDAP as

its parent.

Adding a new root

target

Updates the msDFS-TargetListv2 attribute, which is stored as an XML document, by

adding *server* into the list of root targets.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.

3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24)

The NetrDfsRemoveRootTarget (Opnum 24) method is the unified DFS namespace deletion
method. It deletes stand-alone DFS namespaces, domainv1-based DFS namespaces, or domainv2-
based DFS namespaces based on parameters specified.<75>

The NetrDfsRemoveRootTarget (Opnum 24) method has the following MIDL syntax.

NET_API_STATUS NetrDfsRemoveRootTarget(

90 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in, unique, string] LPWSTR pDfsPath,

 [in, unique, string] LPWSTR pTargetPath,

 [in] ULONG Flags

);

pDfsPath: The pointer to a null-terminated Unicode string. This MUST be
\\<domain>\<dfsname> for domain-based DFS or \\<server>\<share> for stand-alone

DFS.

pTargetPath: The pointer to a null-terminated Unicode string. This MUST be
\\<server>\<share>[\<path>] for domain-based DFS or NULL for stand-alone DFS.

Flags: A bit field specifying the type of removal operation. For a standalone namespace, this bit-
field parameter MUST be zero. For a domain-based DFS namespace, it can be zero or the
following value. Zero indicates a normal removal operation.

Value Meaning

DFS_FORCE_REMOVE

0x80000000

Specifying this flag for a domain-based DFS namespace removes the root

target even if it is not accessible.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server
SHOULD fail the call with an implementation-dependent failure value.<76>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS root target was not found as a target of the

specified DFS namespace.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

The server MUST verify the existence of the DFS namespace that the pDfsPath parameter specifies.
If that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS root target of the DFS namespace that the
pTargetPath parameter specifies. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

The server MUST support deleting a DFS namespace without first requiring removal of all the DFS
links in it.

%5bMS-ERREF%5d.pdf

91 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The client-side method is responsible for deleting the DFS namespace anchor LDAP entry
corresponding to a domainv2-based DFS namespace.

The server MAY support DFS_FORCE_REMOVE on member servers.<77> If it is not supported and
DFS_FORCE_REMOVE is specified, the server MUST return a failure.

If DFS_FORCE_REMOVE is not specified and it is a domain-based DFS namespace, the server MUST
verify it is the host specified by the pTargetPath parameter. If it is not, the server MUST return
ERROR_FILE_NOT_FOUND.

If DFS_FORCE_REMOVE is not specified, the server SHOULD<78> also remove any local information
related to hosting the removed root target. If DFS_FORCE_REMOVE is specified, the server MUST
NOT do so.

The effect of DFS_FORCE_REMOVE is to clean up after the named root target has become

nonfunctional and is unable to remove itself from the namespace.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.

The following table summarizes the various actions that the NetrDfsRemoveRootTarget method
takes based on the parameter values.

pDfsPath parameter

pTargetPath

parameter Explanation

\\<domain>\<dfsname> \\<server>\<share> Deletes a domain-based DFS root target. If the DFS

root target that is removed is the last one for the DFS

namespace, then it removes the DFS namespace

itself. This parameter can be used for either a

domainv1-based DFS namespace or a domainv2-

based DFS namespace.

\\<server>\<dfsname> NULL Deletes a stand-alone DFS namespace.

3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25)

The NetrDfsGetSupportedNamespaceVersion (Opnum 25) method is used to determine the
supported DFS metadata version number.<79>

The NetrDfsGetSupportedNamespaceVersion (Opnum 25) method has the following MIDL
syntax.

NET_API_STATUS NetrDfsGetSupportedNamespaceVersion(

 [in] DFS_NAMESPACE_VERSION_ORIGIN Origin,

 [in, unique, string] NETDFS_SERVER_OR_DOMAIN_HANDLE pName,

 [out] PDFS_SUPPORTED_NAMESPACE_VERSION_INFO pVersionInfo

);

%5bMS-GLOS%5d.pdf

92 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Origin: This parameter specifies the version information requested.

Value Meaning

DFS_NAMESPACE_VERSION_ORIGIN_SERVER

0x0001

This specifies that the returned information MUST

reflect the metadata versions supported by the

server.

Versions supported by the server may be higher

(or lower) than those supported by the domain.

DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN

0x0002

This specifies that the returned information MUST

reflect the metadata versions supported by the

domain schema of the domain to which the server

is joined.

Versions supported by the domain schema may

be higher (or lower) than those supported by the

server.

pName: The pointer to a null-terminated Unicode string. The server MUST ignore the pName
parameter.

pVersionInfo: The pointer to a DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure
to receive the DFS metadata version number determined.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

The standalone namespace version supported by a server may be unaffected by the domain
metadata schema. If this is the case, the server MUST return a standalone DFS major and minor
version of zero for the DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN query. In this case, the
standalone DFS capability field has no meaning and MUST also be zero.

The version number of the DFS metadata that can be used for a new DFS namespace depends on
the following:

For domain-based DFS namespaces, the version supported by the DFS metadata schema in use

in the server's domain.

The version supported by the server that is to host the DFS root target.

Thus, the version that can be used for creating a new DFS namespace is the minimum version that
the domain and the server support.

This method is useful in determining an appropriate version number to pass to the

NetrDfsAddRootTarget method.

%5bMS-ERREF%5d.pdf

93 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.2 Extended Methods

3.1.4.2.1 NetrDfsAdd2 (Opnum 19)

The NetrDfsAdd2 (Opnum 19) method creates a new DFS link or adds a new target to an existing
link of a DFS namespace.

The NetrDfsAdd2 method has the following MIDL syntax.

NET_API_STATUS NetrDfsAdd2(

 [in, string] WCHAR* DfsEntryPath,

 [in, string] WCHAR* DcName,

 [in, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in, unique, string] WCHAR* Comment,

 [in] DWORD Flags,

 [in, out, unique] DFSM_ROOT_LIST** ppRootList

);

DfsEntryPath: A pointer to a DFS link path that contains the name of an existing link when

additional link targets are added or the name of a new link is created.

DcName: A pointer to a null-terminated Unicode string. For a domain-based DFS namespace,
this is the host name of the DC that the DFS root target uses to get or update DFS metadata
for the DFS namespace. This parameter MAY be a NULL pointer; otherwise, it MUST be the
host name of the PDC for the domain of the DFS namespace.<80>

ServerName: A pointer to a null-terminated Unicode string that specifies the DFS link target
host name.

ShareName: A pointer to a null-terminated Unicode DFS link target share name string. This may
also be a share name with a path relative to the share (for example,
share1\mydir1\mydir2). When specified in this manner, each pathname component MUST

be a directory.

Comment: A pointer to a null-terminated, human-readable Unicode string description associated
with this root or link. This string is not subject to protocol-specified restrictions on length or

content and does not affect server functionality. The description MUST be ignored when
adding a target to an existing link.

Flags: The flag that indicates the operation to perform. The following table lists the possible
values.

Value Meaning

0x00000000 Create a new link or add a new target to an existing link.

DFS_ADD_VOLUME

0x00000001

Create a new link in the DFS namespace if one does not already exist or

fail if it exists.

DFS_RESTORE_VOLUME

0x00000002

Add a target without verifying its existence.

If the Flags value is not a bitwise OR of the values above, the server MUST return

ERROR_INVALID_PARAMETER (0x00000057).

94 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace
that the client will be responsible for notifying of the change in the DFS namespace. See

section 3.2.4.2.1. This list MAY be empty if the server performs the notification.<81>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050

ERROR_FILE_EXISTS

The specified DFS link target already exists.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace does not exist.

0x00000906

NERR_NetNameNotFound

The DFS link target does not exist.

A server MAY<82> implement this method.

If the NetrDfsAdd (Opnum 1) method on a server does not support a domain-based namespace,
the server SHOULD support a domain-based namespace in the NetrDfsAdd2 (Opnum 19) method.

<83><84>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify whether the link to be added overlaps an existing link. If there is a link for
which the specified DfsEntryPath parameter is a prefix, the server MUST return
ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is set in the Flags field of the

request, the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is not set in the Flags field of the
request, the server MUST attempt to add a new link target to the link. If a target with the path
specified by ServerName and ShareName was already added to the link, the server MUST return
ERROR_FILE_EXISTS.

If DFS_RESTORE_VOLUME is not specified on the Flags parameter, the server MAY<85> choose to

verify whether the link target exists. If DFS_RESTORE_VOLUME is specified, the server MUST NOT

perform this test. If it performs the test and the link target does not exist, the server MUST fail the
call with NERR_NetNameNotFound.

The exact test the server performs to verify link target existence is implementation-defined. A
server MAY,<86> for example, be implemented with the expectation that all link targets are

%5bMS-ERREF%5d.pdf

95 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

administered through [MS-SRVS] section 3.1.4.10 and use NetShareGetInfo level 1005 to perform
the test. Reasons not to implement this test include:

It may not be practical to determine the correct administration interface to query to perform the

test.

A link target server may export a share with a network protocol and administration interface that

this server does not understand.

A secured link target server may not permit this server to contact it.

The Comment parameter MUST be ignored when adding a target to an existing link.

The server SHOULD<87> create a new link without requiring the DFS_ADD_VOLUME Flags

parameter.

The server MUST update the same fields in the DFS metadata for a domain-based DFS namespace
as in the NetrDfsAdd method, as specified in section 3.1.4.1.3.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
do one of the following:

Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList
parameter MUST be empty.

Perform no notification of the other root targets, returning a list of DFS root targets to the client

in the ppRootList parameter.

3.1.4.2.2 NetrDfsRemove2 (Opnum 20)

The NetrDfsRemove2 (Opnum 20) method removes the specified link or link target.

The NetrDfsRemove2 method uses the following MIDL syntax.

NET_API_STATUS NetrDfsRemove2(

 [in, string] WCHAR* DfsEntryPath,

 [in, string] WCHAR* DcName,

 [in, unique, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in, out, unique] DFSM_ROOT_LIST** ppRootList

);

DfsEntryPath: The pointer to a DFS link path that contains the name of the DFS link to remove.

DcName: The pointer to a null-terminated Unicode string. For a domain-based DFS namespace,
this string contains the host name of the DC to be used by the DFS root target that is

removing the DFS link. This parameter MAY be a NULL pointer; otherwise, it MUST be the PDC
for the domain of the DFS namespace.<88>

ServerName: The pointer to a null-terminated Unicode DFS link target host name string. This

MUST be a NULL pointer when the link and all of the link targets are to be removed.

%5bMS-SRVS%5d.pdf

96 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This
MUST be a NULL pointer when the link and all of the link targets are to be removed.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace
that the client will be responsible for notifying of the change in the DFS namespace. See

section 3.2.4.2.2. This list MAY be empty if the server has performed the notification.<89>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the

specified DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace or DFS link does not exist.

The server MAY<90> implement this method.

If the NetrDfsRemove (Opnum 2) method on a server does not support a domain-based
namespace, the server SHOULD support a domain-based namespace in the NetrDfsRemove2

(Opnum 20) method.<91><92>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and

RootShare parameters specify. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

If the ServerName and ShareName parameters are both NULL, the server MUST remove the link and
all its link targets. If the ServerName and ShareName are not NULL, the server MUST remove the
specified link target. If the specific target is the last target of the link, the server MUST remove the
link as well. If only one of ServerName or ShareName is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

The server MUST update the same fields in the DFS metadata for a domain-based DFS namespace,
as specified in the NetrDfsRemove method.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
do one of the following:

%5bMS-ERREF%5d.pdf

97 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo method with the Level parameter 101, and with the State field of

DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList

parameter MUST be empty.

Perform no notification of the other root targets, returning a list of DFS root targets to the client

in the ppRootList parameter.

3.1.4.2.3 NetrDfsEnumEx (Opnum 21)

The NetrDfsEnumEx (Opnum 21) method enumerates the DFS roots hosted on a server, or DFS
links of a namespace hosted by the server.<93><94> Depending on the information level, the

targets associated with the roots and links are also displayed.

The NetrDfsEnumEx method uses the following MIDL syntax.

NET_API_STATUS NetrDfsEnumEx(

 [in, string] WCHAR* DfsEntryPath,

 [in] DWORD Level,

 [in] DWORD PrefMaxLen,

 [in, out, unique] DFS_INFO_ENUM_STRUCT* DfsEnum,

 [in, out, unique] DWORD* ResumeHandle

);

DfsEntryPath: The pointer to a domain name, a host name, or a DFS path, depending on the

Level parameter.

A domain name MUST be a null-terminated Unicode string in the following forms:

<DomainName> or \<DomainName> or \\<DomainName>

where <DomainName> is the domain name to use for the enumeration.

A host name MUST be a null-terminated Unicode string in the following formats:

<ServerName> or \<ServerName> or \\<ServerName>

where <ServerName> is a host name.

A DFS root or a DFS link path.

When DfsEntryPath points to a DFS link path, the remaining path after the DFS namespace
name MUST be ignored.

Level: This parameter specifies the information level of the data and in turn determines the

action the method performs. On successful return, the server MUST return an array of the
corresponding structures in the buffer pointed to by DfsEnum.

Value Meaning

Level_1 Gets the name of the DFS root and all links beneath it. In this case, on successful

98 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

0x00000001 return DfsEnum MUST point to an array of DFS_INFO_1 structures.

Level_2

0x00000002

Gets the name, comment, state, and number of targets for the DFS root and all

links under the root. In this case, on successful return DfsEnum MUST point to an

array of DFS_INFO_2 structures.

Level_3

0x00000003

Gets the name, comment, state, number of targets, and information about each

target for the DFS root and all links under the root. In this case, on successful

return DfsEnum MUST point to an array of DFS_INFO_3 structures.

Level_4

0x00000004

Gets the name, comment, state, time-out, GUID, number of targets, and

information about each target for the DFS root and all links under the root. In this

case, on successful return DfsEnum MUST point to an array of DFS_INFO_4

structures.

Level_5

0x00000005

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets for a DFS root and all links under the root. In this case, on

successful return DfsEnum MUST point to an array of DFS_INFO_5 structures.

Level_6

0x00000006

Gets the name, comment, state, time-out, GUID, property flags, metadata size,

number of targets, and target information for a root or link. In this case, on

successful return DfsEnum MUST point to an array of DFS_INFO_6 structures.

Level_8

0x00000008

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets for a DFS root and all links under the root. Also returns the

security descriptor associated with each of the DFS links. In this case, on successful

return DfsEnum MUST point to an array of DFS_INFO_8 structures.

Level_9

0x00000009

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and

number of targets and target information for a DFS root and all links under the root.

Also returns the security descriptor associated with each of the DFS links. In this

case, on successful return DfsEnum MUST point to an array of DFS_INFO_9

structures.

Level_200

0x000000C8

Enumerates all of the domain-based DFS namespace in the specified domain. In this

case, on successful return DfsEnum MUST point to an array of DFS_INFO_200

structures.

Level_300

0x0000012C

Enumerates the stand-alone and domain-based DFS roots that the server hosts. In

this case, on successful return DfsEnum MUST point to an array of

DFS_INFO_300 structures.

The server MUST support Level values 1, 2 and 3. The server SHOULD support Level values 5,
6, 8, 9, and 300. The server on a DC SHOULD support Level value 200.<95> If the server
does not support the provided Level, it MUST fail the call. The server SHOULD return error
code ERROR_INVALID_PARAMETER for unsupported Level values.<96>

PrefMaxLen: This parameter specifies restrictions on the number of elements returned. A value

of 0xFFFFFFFF means there are no restrictions, in which case all entries MUST be

returned.<97>

DfsEnum: A pointer to a DFS_INFO_ENUM_STRUCT union to receive the returned
information. The client SHOULD set the Level member to the same value as the method's
Level parameter, and MUST set the DfsInfoContainer union member to a pointer to the
corresponding container structure as specified in section 2.2.6. The client MUST initialize the

99 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

container structure's EntriesRead member to zero and the Buffer member to a NULL
pointer. The value of the Level member determines the case of the union.

ResumeHandle: This parameter is used to continue an enumeration when more data is available
than can be returned in a single invocation of this method.

If this parameter is not a NULL pointer, and the method returns ERROR_SUCCESS, this

parameter receives an implementation-specific nonzero value that can be passed in
subsequent calls to this method to continue the enumeration.

If this parameter is a NULL pointer, or it points to a zero value, it indicates that this is an

initial enumeration.

If this parameter is not a NULL pointer, and it points to a nonzero value returned in

ResumeHandle by an earlier invocation of this method, the server will attempt to continue
a previous enumeration.<98>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF], section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000103

ERROR_NO_MORE_ITEMS

There is no data to return.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST return ERROR_NO_MORE_ITEMS (0x00000103) if there is no data to return.

Unlike the NetrDfsEnum method, this method can be used even when the server is hosting more
than one DFS root.

If the server hosts exactly one DFS namespace, the requested Level is 1 through 9, and the
DfsEntryPath does not specify a DFS namespace name, the server MAY enumerate the namespace it
hosts.<99>

Each member of the DFS_INFO_ENUM_STRUCT return buffer MUST be constructed according to the

rules of section 3.1.4.1.6 (NetrDfsGetInfo) for the specified value of the Level parameter.

If the requested Level is 1 through 9 and ResumeHandle indicates initial enumeration, the server
MUST return the DFS root entry as the first member of the DFS_INFO_ENUM_STRUCT return buffer
followed by DFS links in implementation-specific order.

If the requested Level is 1 through 9 and ResumeHandle does not indicate initial enumeration, the
server MUST NOT return the DFS root entry and all the entries of the DFS_INFO_ENUM_STRUCT

return buffer MUST be DFS links in implementation-specific order.

%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

100 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22)

The NetrDfsSetInfo2 (Opnum 22) method sets or modifies the information associated with a DFS
root, a DFS root target, a DFS link, or a DFS link target.

The NetrDfsSetInfo2 method has the following MIDL syntax.

NET_API_STATUS NetrDfsSetInfo2(

 [in, string] WCHAR* DfsEntryPath,

 [in, string] WCHAR* DcName,

 [in, unique, string] WCHAR* ServerName,

 [in, unique, string] WCHAR* ShareName,

 [in] DWORD Level,

 [in, switch_is(Level)] DFS_INFO_STRUCT* pDfsInfo,

 [in, out, unique] DFSM_ROOT_LIST** ppRootList

);

DfsEntryPath: The pointer to a DFS root path or a DFS link path that contains the name of a

DFS root or DFS link name.

DcName: The pointer to a null-terminated Unicode string. It MUST be ignored for a stand-alone

DFS namespace. For a domain-based DFS namespace, this string contains the host name of
the DC that the DFS root target uses to get or update DFS metadata for the DFS namespace.
This parameter MAY be a NULL pointer; otherwise, it MUST be the PDC for the domain of the
DFS namespace.<100>

ServerName: The pointer to a null-terminated Unicode DFS root target or a DFS link target host
name string. This parameter MUST be a NULL pointer if the operation is intended for a DFS
root or a DFS link and not for targets.

ShareName: The pointer to a null-terminated Unicode DFS root target or a DFS link target share
name string. This parameter MUST be a NULL pointer if the operation is intended for a DFS
root or a DFS link and not for targets.

Level: This parameter specifies the information level of the data and, in turn, determines the
action the method performs.

Value Meaning

Level_100

0x00000064

Sets the comment associated with the root or link that specified in DfsInfo.

Level_101

0x00000065

Sets the storage state associated with the root, link, root target, or link target

specified in DfsInfo.<101>

Level_102

0x00000066

Sets the time-out value associated with the root or link specified in DfsInfo.

Level_103

0x00000067

Sets the property flags for the root or link specified in DfsInfo.

Level_104

0x00000068

Sets the target priority rank and class for the root target or link target specified in

DfsInfo.

Level_105

0x00000069

Sets the comment, state, time-out information, and property flags for the root or

link specified in DfsInfo. This does not apply to a root target or link target.

101 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Value Meaning

Level_106

0x0000006A

Sets the target state and priority for the root target or link target specified in

DfsInfo. This does not apply to the DFS namespace root or link.<102>

Level_107

0x0000006B

Sets the comment, state, time-out, security descriptor information, and property

flags for the root or link specified in DfsInfo. Does not apply to a root target or link

target. The ServerName and ShareName parameters MUST be NULL. The security

descriptor MUST NOT have an owner, group, or SACLs in it.

The security descriptor MUST be a NULL, zero length value if used on a namespace

root. In this case, note that it is equivalent to using Level_105.

Level_150

0x00000096

Sets the security descriptor associated with a link. Only stand-alone DFS

namespaces and domainv2-based DFS namespaces are supported. The ServerName

and ShareName parameters MUST both be NULL. The security descriptor MUST NOT

have an owner, group, or SACLs in it.

The server MUST support Level values 100 and 101. The server SHOULD support Level values

102-107 and 150. If the server does not support the provided Level, it MUST fail the
call.<103> The server SHOULD return error code ERROR_INVALID_PARAMETER for
unsupported Level values.<104>

pDfsInfo: The pointer to a DFS_INFO_STRUCT union that contains the specified data. The
Level parameter value determines the case of the union.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace
which the client will be responsible for notifying about the change in the DFS namespace. See
section 3.2.4.2.3. This list MAY be empty if the server has performed the notification.<105>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the

specified DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root, DFS link, or DFS link or root target does

not exist.

The server MAY<106> implement this method.

%5bMS-ERREF%5d.pdf

102 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the NetrDfsSetInfo (Opnum 3) method on a server does not support a domain-based
namespace, the server SHOULD support a domain-based namespace in the NetrDfsSetInfo2

(Opnum 22) method.<107><108>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter

specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If
that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

If the DcName parameter is not NULL, it MUST be the PDC for the domain of the domain-based DFS

namespace.

The server MUST fail any attempt to set the state of a DFS root, a DFS link, a DFS root target, or a

DFS link target to a value that is not specified. The server MUST fail any attempt to set the property
flags on a DFS link that are defined only for a DFS root.

With the Level parameter 101 and the State field in the DFS_INFO_101 structure as
DFS_VOLUME_STATE_RESYNCHRONIZE, the server MUST reload the contents of the

DFSMetadataCache, if maintained, for the domain-based DFS namespace that the ShareName
parameter specifies. In the case of both domain-based DFS namespaces and stand-alone DFS
namespaces, the server MUST check the DFS namespace it hosts locally with the DFS metadata and
perform any required modifications.

With the Level parameter 101 and the State field in the DFS_INFO_101 structure as
DFS_VOLUME_STATE_FORCE_SYNC, the server MUST perform a full synchronization instead of an
incremental synchronization to reload the contents of the DFSMetadataCache and to identify added

or deleted DFS links. This State field is supported on domainv2-based DFS namespaces and stand-
alone DFS namespaces.

When level parameter 107 is used for a DFS namespace root or for a domainv1-based DFS link, the
pSecurityDescriptor parameter has no meaning because security descriptors cannot be associated
with those objects. In these cases, if pSecurityDescriptor is not NULL, the server MUST fail with
ERROR_NOT_SUPPORTED.

The server MUST update the same fields in the DFS metadata for a domain-basedv1 DFS namespace

as for the NetrDfsSetInfo (Opnum 3) method, as specified in section 3.1.4.1.5.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
do one of the following:

Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of

DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList

parameter MUST be empty.

Perform no notification of the other root targets, returning a list of DFS root targets to the client

in the ppRootList parameter.

103 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.3 Root Target Methods

3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10)

The NetrDfsAddFtRoot (Opnum 10) method creates a new domainv1-based DFS namespace or
adds a root target to an existing namespace.

The NetrDfsAddFtRoot method uses the following MIDL syntax.

NET_API_STATUS NetrDfsAddFtRoot(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* DcName,

 [in, string] WCHAR* RootShare,

 [in, string] WCHAR* FtDfsName,

 [in, string] WCHAR* Comment,

 [in, string] WCHAR* ConfigDN,

 [in] BOOLEAN NewFtDfs,

 [in] DWORD ApiFlags,

 [in, out, unique] DFSM_ROOT_LIST** ppRootList

);

ServerName: The pointer to a null-terminated Unicode string. This MUST be used as the host

name of the new DFS root target in the metadata.<109>

DcName: The pointer to a null-terminated Unicode string. For a domainv1-based DFS

namespace, this string contains the host name of the DC that the new DFS root target is to
use to get or update DFS metadata for the DFS namespace. This parameter MAY be a NULL
pointer, otherwise, it MUST be the PDC for the domain of the DFS namespace.

RootShare: The pointer to a null-terminated Unicode string. This is the new DFS root target
share name. This may be different from the FtDfsName parameter. The share MUST already
exist.

FtDfsName: The pointer to a null-terminated Unicode string. This is the name of the new or

existing domain-based DFS namespace.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated
with the DFS namespace. Used for informational purposes, this string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality. This parameter MAY be NULL.

ConfigDN: The pointer to a null-terminated Unicode string. This string MUST be the path of the
DFS namespace object entry in the DFS Configuration Container (see section 2.3.3).<110>

NewFtDfs: A Boolean value that, if TRUE, indicates a request to create a new root. If FALSE,
then this value indicates a request to add a new root target to an existing root.

ApiFlags: This parameter MUST be 0.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace
that the client will be responsible for notifying of the change in the DFS namespace. See
section 3.2.4.3.1. The list MAY be empty if the server has performed the notification.<111>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

%5bMS-ERREF%5d.pdf

104 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x000000B7

ERROR_ALREADY_EXISTS

A namespace of the specified name already exists on the server.

0x00000906

NERR_NetNameNotFound

The share that the RootShare parameter specifies does not already

exist.

The share that the RootShare parameter specifies MUST already exist on the server.

If the DcName parameter is not NULL, the server assumes that this is the PDC for the domain in
which the DFS namespace is to be created.

If the domain-based DFS namespace already exists, and the ServerName and RootShare

parameters are a root target, the server MUST fail with ERROR_ALREADY_EXISTS.

If the share that the RootShare parameter specifies does not already exist, the RPC method MUST
fail with NERR_NetNameNotFound (0x00000906).

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Adding a new

namespace

Creates new DFS metadata.

Adding a new

root target

Updates the TargetCount field of the DFSTargetListBLOB, creates a new

TargetEntryBLOB, updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the

DFSNamespaceRootBLOB, and adds the DFSRootTarget to the remoteServerName

attribute in the object.

The server MUST synchronously update the DFS metadata.

The server MUST return a list of DFS root targets to the client in the ppRootList parameter.<112>

3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

The NetrDfsRemoveFtRoot (Opnum 11) method removes the specified root target from a
domainv1-based DFS namespace.<113> If the target is the last one associated with the DFS

namespace, then this method also deletes the DFS namespace. The DFS namespace can be
removed without first removing all of the links in it.

If a client tries to use this method on a domainv2-based DFS namespace target, then the server
MUST fail with the return value of ERROR_NOT_SUPPORTED.

The NetrDfsRemoveFtRoot method uses the following MIDL syntax.

105 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

NET_API_STATUS NetrDfsRemoveFtRoot(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* DcName,

 [in, string] WCHAR* RootShare,

 [in, string] WCHAR* FtDfsName,

 [in] DWORD ApiFlags,

 [in, out, unique] DFSM_ROOT_LIST** ppRootList

);

ServerName: The pointer to a null-terminated Unicode string. This is the host name DFS root

target to be removed.

DcName: The pointer to a null-terminated Unicode string. For a domainv1-based DFS
namespace, this string contains the host name of the DC to be used by the DFS root targets
being removed for getting or updating DFS metadata for the DFS namespace. This parameter
MAY be a NULL pointer; otherwise, it MUST be the PDC for the domain of the DFS namespace.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. The

share is not removed automatically when the method is successful; it MUST be removed
explicitly as needed.

FtDfsName: The pointer to a null-terminated Unicode string that contains the DFS namespace in
which the operation is to be performed. It MAY be different from the RootShare.

ApiFlags: The only supported bit in the ApiFlags parameter is DFS_FORCE_REMOVE.

Value Meaning

DFS_FORCE_REMOVE

0x80000000

Removes the named DFS root target from the namespace's directory

service metadata only.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server

SHOULD<114> fail the call.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace
which the client will be responsible for notifying about the change in the DFS namespace. See
section 3.2.4.3.2. The list MAY be empty if the server has performed the notification.<115>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2.The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS root target was not found as a target of the

specified DFS namespace.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

%5bMS-ERREF%5d.pdf

106 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000490

ERROR_NOT_FOUND

The specified DFS rootnamespace does not exist.

The server MUST verify the existence of the DFS namespace that the FtDfsName parameter
specifies. If that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS root target of the DFS namespace that the
ServerName and RootShare parameters specify. If that existence check fails, the server MUST
return ERROR_FILE_NOT_FOUND.

The server MUST support deleting a DFS namespace without first requiring removal of all the DFS
links in it.

If the DcName parameter is not NULL, then it MUST be the PDC for the domain of the DFS

namespace.

The server MAY support DFS_FORCE_REMOVE on member servers.<116> If it is not supported and
DFS_FORCE_REMOVE is specified, the server MUST return a failure.

If DFS_FORCE_REMOVE is not specified, the server MUST verify it is the host specified by the
ServerName and RootShare parameters. If it is not, the server MUST return ERROR_NOT_FOUND.

If DFS_FORCE_REMOVE is not specified, the server SHOULD<117> also remove any local
information related to hosting the removed root target. If DFS_FORCE_REMOVE is specified, the

server MUST NOT do so.

The effect of DFS_FORCE_REMOVE is to clean up after the named root target has become
nonfunctional and is unable to remove itself from the namespace.

The server MUST remove the root target of the domain-based DFS namespace specified by the
ServerName and RootShare parameters by updating the remoteServerName attribute of the

namespace's object (as specified in section 2.3.3) in the root target. If the last DFS root target is
being removed, then the server SHOULD NOT remove the object of the namespace; the client

invoking the method MUST do this.<118>

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Remove a

namespace.

Removes the object of DFS namespace.

Remove a

root target.

Updates the TargetCount in the existing DFSTargetListBLOB, removes the

TargetEntryBLOB, updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the

DFSNamespaceRootBLOB, and removes the root target from the remoteServerName

attribute in the object.

The server MUST synchronously update the DFS metadata of the namespace.

If DFS root scalability mode is not enabled, then the server MUST do one of the following:

107 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a

NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of

DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList

parameter MUST be empty.

Perform no notification of the other root targets, returning a list of DFS root targets to the client

in the ppRootList parameter.

3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18)

For information about this method, see 3.3.4.3.2.

3.1.4.4 Stand-Alone Namespace Methods

3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12)

The NetrDfsAddStdRoot (Opnum 12) method creates a new stand-alone DFS namespace.<119>

<120>

The NetrDfsAddStdRoot method uses the following MIDL syntax.

NET_API_STATUS NetrDfsAddStdRoot(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* RootShare,

 [in, string] WCHAR* Comment,

 [in] DWORD ApiFlags

);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the new
DFS root target.

RootShare: The pointer to a null-terminated Unicode string. This is the new DFS root target

share name as well as the DFS namespace name. The share MUST already exist.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated
with the DFS namespace. Used for informational purposes, this string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality. This parameter MAY be a NULL pointer.

ApiFlags: This parameter is reserved for future use and is ignored by the server.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050

ERROR_FILE_EXISTS

The DFS namespace that the ServerName and RootShare parameters

specify already exists.<121>

%5bMS-ERREF%5d.pdf

108 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The DFS namespace that the ServerName and RootShare parameters

specify already exists.<122>

0x00000906

NERR_NetNameNotFound

The share that the RootShare parameter specifies does not already

exist.

On receiving this method, the server MUST do the following:

If there is any entry in the NamespaceList with the NamespaceName matching RootShare,

then the RPC method MUST fail with either ERROR_FILE_EXISTS (0x00000050) or
ERROR_ALREADY_EXISTS (0x000000B7).

If the share that the RootShare parameter specifies does not already exist, the RPC method

MUST fail with NERR_NetNameNotFound (0x00000906).

Create the Namespace object, and insert it into the NamespaceList. The Namespace object

MUST be initialized as follows.

Namespace.NamespaceName is set to RootShare.

Namespace.NamespaceType is set to stand-alone.

Namespace.GenerationGUID is set with a GUID.

Create a NamespaceElement object and insert it into

Namespace.NamespaceElementsList.

NamespaceElementsList.NamespaceElement is initialized as follows.

NamespaceElement.Properties is set to 0.

NamespaceElement.State is set to DFS_VOLUME_STATE_OK.

NamespaceElement.Comment is set to Comment.

NamespaceElement.ReferralTTL is set to 300 seconds.

NamespaceElement.SecurityDescriptor is set to none.

Create a Target object, insert it into NamespaceElement.TargetsList and update

TargetsList.TargetCount to 1.

TargetsList.Target object is initialized as follows.

Target.PriorityRank is set to 0.

Target.PriorityClass is set to DfsSiteCostNormalPriorityClass.

Target.State is set to DFS_STORAGE_STATE_ONLINE.

Target.ServerName is set to ServerName.

Target.ShareName is set to RootShare.

The server MUST synchronously insert the Namespace object into the local information store.

109 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13)

The NetrDfsRemoveStdRoot (Opnum 13) method deletes the specified stand-alone DFS
namespace.<123> The DFS namespace can be removed without first removing all of the links in it.

The NetrDfsRemoveStdRoot method uses the following MIDL syntax.

NET_API_STATUS NetrDfsRemoveStdRoot(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* RootShare,

 [in] DWORD ApiFlags

);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the DFS

root target to be removed.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. This is

also the DFS namespace name. The share is not removed automatically when the method is
successful; it MUST be removed explicitly, as needed.

ApiFlags: This parameter is reserved for future use and is ignored by the server.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000490

ERROR_NOT_FOUND

The DFS namespace that the ServerName and RootShare parameters

specify does not already exist.

The server MUST support the removal of a DFS namespace without requiring that all of the DFS
links be removed first.

On receiving this method, the server MUST do the following:

If there is no entry in the NamespaceList with the NamespaceName matching RootShare,

then the RPC method MUST fail with ERROR_NOT_FOUND (0x00000490).

Remove the Namespace object corresponding to the RootShare from the NamespaceList.

Remove the Namespace object from the local information store.

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15)

The NetrDfsAddStdRootForced (Opnum 15) method creates a new stand-alone DFS namespace
without checking for the availability and accessibility of the specified share.<124><125><126>

%5bMS-ERREF%5d.pdf

110 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The NetrDfsAddStdRootForced method uses the following MIDL syntax.

NET_API_STATUS NetrDfsAddStdRootForced(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* RootShare,

 [in, string] WCHAR* Comment,

 [in, string] WCHAR* Share

);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the new

DFS root target.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. This is
also the DFS namespace name. This method does not create the share; it MUST be created

separately.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated

with the DFS namespace. Used for informational purposes, this string has no protocol-
specified restrictions on length or content. The comment is meant for human consumption and
does not affect server functionality. This parameter MAY be a NULL pointer.

Share: The pointer to a null-terminated Unicode string that contains the local file system path
corresponding to the share on the server receiving the RPC method, in the following form:

<X>:\<path>

where <X> is a drive letter (a single character from A to Z) and <path> is a file system path

whose leaf component is a directory.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The

most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x000000B7

ERROR_ALREADY_EXISTS

The DFS namespace that the ServerName and RootShare parameters

specify already exists.

The support for this method is optional. If supported, then the server MUST support the ability to

create a DFS namespace even when the share that the RootShare parameter specifies is not
available or accessible.

On receiving this method, the server MUST do the following.

If there is any entry in the NamespaceList with the NamespaceName matching RootShare,

then the RPC method MUST fail with ERROR_ALREADY_EXISTS (0x000000B7).

%5bMS-ERREF%5d.pdf

111 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Create and initialize the Namespace object, as specified in section 3.1.4.4.1, and insert it into

the NamespaceList.

The server MUST synchronously insert the Namespace object into the local information store.

3.1.4.5 Domain-Based Namespace Methods

3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16)

The NetrDfsGetDcAddress (Opnum 16) method returns the DC host name that is used by the
DFS server to which the RPC method is issued.<127> The client MUST use this DC to create a
domain-based DFS namespace, add a root target to a domain-based DFS namespace, remove a root

target from a domain-based DFS namespace, or remove a domain-based DFS namespace.

The NetrDfsGetDcAddress method uses the following MIDL syntax.

NET_API_STATUS NetrDfsGetDcAddress(

 [in, string] WCHAR* ServerName,

 [in, out, string] WCHAR** DcName,

 [in, out] BOOLEAN* IsRoot,

 [in, out] unsigned long* Timeout

);

ServerName: A pointer to a null-terminated Unicode string. This is the host name of the server

to which the RPC method is issued.<128>

DcName: A null-terminated Unicode string that contains the DC host name when the
NetrDfsGetDcAddress method is successful.<129>

IsRoot: A pointer to a Boolean value, set to TRUE on return if the server hosts any DFS root
target, and FALSE otherwise.<130>

Timeout: A pointer to an unsigned 32-bit integer value indicating the count of seconds for which

the server will use the DC that is returned to access DFS metadata.<131>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

A server MAY<132> implement this method if it supports domain-based DFS namespaces.

In the DcName parameter, the server SHOULD return the host name of the DC it is using to access
DFS metadata for any domain-based DFS namespace that the server is hosting. If the server is not

currently using a DC, it MUST determine a DC and return its name.

The server SHOULD also return a time-out value, in seconds, that is equal to the length of time that
the server will be using the DC in the Timeout parameter, assuming that another RPC method does

not change it.

%5bMS-ERREF%5d.pdf

112 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server uses the IsRoot parameter to specify whether it supports the ability to host more than
one DFS namespace, and to indicate whether it is currently hosting a DFS namespace. If the server

supports the ability to host more than one DFS namespace, it MUST return a value of FALSE in the
IsRoot parameter, regardless of whether it is actually hosting a DFS namespace. If the server does

not support the ability to host more than one DFS namespace, and if it currently hosts a DFS
namespace, it SHOULD return a value of TRUE in the IsRoot parameter; otherwise, it SHOULD
return FALSE.

3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17)

The NetrDfsSetDcAddress (Opnum 17) method instructs the server receiving the RPC method to
use the specified DC for DFS metadata accesses for domain-based DFS namespaces.<133>

The NetrDfsSetDcAddress method uses the following MIDL syntax.

NET_API_STATUS NetrDfsSetDcAddress(

 [in, string] WCHAR* ServerName,

 [in, string] WCHAR* DcName,

 [in] DWORD Timeout,

 [in] DWORD Flags

);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the

server to which the RPC method is issued.

DcName: The pointer to a null-terminated Unicode DC host name string.

Timeout: The time period, in seconds, that the server uses the specified DC when storing and
retrieving domain-based DFS metadata. This is valid only when the
NET_DFS_SETDC_TIMEOUT bit of the Flags parameter is set.

Flags: The bit field specifying additional operations to perform. Possible values are as follows.

Value Meaning

NET_DFS_SETDC_FLAGS

0x00000000

Indicates that no additional operation is requested.

NET_DFS_SETDC_TIMEOUT

0x00000001

Sets the time-out value based on the Timeout parameter.

NET_DFS_SETDC_INIT_PKT

0x00000002

Instructs the called server to reload its DFS metadata from the

specified DC.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server
MAY fail the call with an implementation-defined failure value.<134>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

%5bMS-ERREF%5d.pdf

113 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

Servers MAY choose not to implement this method or implement it as a method with no effect that
returns ERROR_SUCCESS.<135>

Otherwise, the server MUST update the DC it uses for accessing DFS metadata for the domain-
based DFS namespace it is hosting with the specified DC. If no time-out is specified in the Timeout
parameter (NET_DFS_SETDC_TIMEOUT is not set in the Flags parameter), the server MUST use its
default time-out. The DC the server should use at the end of this time-out is implementation-
defined.

When NET_DFS_SETDC_INIT_PKT is set in the Flags parameter, the server SHOULD initiate a

background synchronization of the domain-based DFS namespace it is hosting with either the DC
specified by this method or the default DC the server is using. This MUST be treated as functionally

equivalent to receiving a NetrDfsSetInfo (Opnum 3) method with the Level parameter value 101
and the State field of DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<136>

3.1.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying

RPC transport.

3.1.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying
RPC transport.

3.2 Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

No protocol timers are required beyond those used internally by the RPC method to implement
resiliency to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client creates an RPC binding handle to the server RPC method endpoint when an RPC method
is called. For more information on binding handles, see [C706]. The client MAY create a separate
binding handle for each method invocation, or it MAY reuse a binding handle for multiple
invocations. The client MUST create an authenticated RPC binding handle.<137>

3.2.4 Message Processing Events and Sequencing Rules

The client MUST pass any error received from the invocation of an RPC method to the application
that issued the RPC call.

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

114 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

On successful completion of methods returning lists of servers to notify (NetrDfsAdd2,
NetrDfsRemove2, and NetrDfsSetInfo2), the application SHOULD notify the servers that the

namespace metadata has been updated. This is done by issuing the NetrDfsSetDcAddress method
to each server, specifying NET_DFS_SETDC_INITPKT on the Flags parameter.

As specified in section 3.1.4.5.2 and its references, issuing the NetrDfsSetDcAddress method will
cause the targeted server to update the cached copy of the metadata it may hold. If this notification
is not delivered, the specified servers could be unaware of the namespace metadata update for an
indeterminate period of time. Such a failure to deliver the notification is normal, however, and may
be due to client or application failure (for example a crash or a power or network outage).

The server recovers from notification failure because of the updating requirement in section 3.1.4.
The updating requirement states the preconditions that a server MUST satisfy before processing an

RPC method.

3.2.4.1 Basic Methods

3.2.4.1.1 NetrDfsAdd (Opnum 1)

If a NetrDfsAdd call to the DFS root target fails with ERROR_NOT_SUPPORTED (0x00000032), an

application may use this as an indication to issue the NetrDfsAdd2 method instead.<138>

3.2.4.1.2 NetrDfsRemove (Opnum 2)

If a NetrDfsRemove call fails with ERROR_NOT_SUPPORTED (0x00000032), an application may use
this as an indication to issue the NetrDfsRemove2 method.<139>

3.2.4.1.3 NetrDfsSetInfo (Opnum 3)

If a NetrDfsSetInfo call fails with ERROR_NOT_SUPPORTED (0x00000032), an application may use
this as an indication to issue the NetrDfsSetInfo2 method instead.<140>

3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21)

An application may use either the NetrDfsEnum or the NetrDfsEnumEx method to enumerate roots
and links. The application may use the value that NetrDfsManagerGetVersion returns, to
determine the enumeration method to use.<141><142>

Due to the possibility of concurrent updates to the DFS namespace, an application SHOULD NOT
assume completeness or uniqueness of the results returned when resuming an enumeration (for
more information on NetrDfsEnum, see section 3.1.4.1.7).<143>

3.2.4.2 Extended Methods

3.2.4.2.1 NetrDfsAdd2 (Opnum 19)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified
by the DfsEntryPath parameter and invoke the NetrDfsAdd2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList
parameter, as specified in section 3.2.4.

115 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.4.2.2 NetrDfsRemove2 (Opnum 20)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified
by the DfsEntryPath parameter and invoke the NetrDfsRemove2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList
parameter, as specified in section 3.2.4.

3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified
by the DfsEntryPath parameter and invoke the NetrDfsSetInfo2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList

parameter, as specified in section 3.2.4.

3.2.4.3 Root Target Methods

3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10)

The NetrDfsAddFtRoot method is supported only for a domainv1-based DFS namespace scenario.

An application MUST perform the following steps before invoking the NetrDfsAddFtRoot method:

1. Determine the PDC of the domain of the DFS root target server that the ServerName parameter
specifies.

2. If an object of type fTDfs with the name of the domain-based DFS namespace does not already
exist in the DFS Configuration Container, create a new object for the domain-based DFS
namespace, as specified in section 2.3.3.

3. Update the ACL on the object of the DFS namespace to permit read/write access by the DFS root

target server.

4. Call the NetrDfsFlushFtTable method on the PDC, specifying the DFS namespace name.

5. If all prior steps succeeded without error, then the client MUST issue the NetrDfsSetDcAddress
(Opnum 17) method to each server that the ppRootList parameter returns.<144><145>

3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

An application MUST determine the PDC of the domain of the DFS root target server that the

ServerName parameter specifies.<146> If the ApiFlags parameter is not DFS_FORCE_REMOVE, the
application MUST issue the RPC method to the DFS root target server that the ServerName
parameter specifies; otherwise, the application MUST issue the RPC method to the PDC.

This method is supported only for a domainv1-based DFS namespace scenario. If a client application
attempts to use it on a domainv2-based DFS namespace or target, the server MUST fail with a
return value of ERROR_NOT_SUPPORTED.

If all prior steps succeeded without error, then the application MUST perform the following steps:

1. Invoke the NetrDfsSetDcAddress method to each server returned in the ppRootList
parameter.<147>

116 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. Update the ACL on the object (as specified in section 2.3.3) of the DFS namespace to remove
read/write access by the DFS root target server.

3. Remove the object itself if the remoteServerName attribute of the DFS namespace object (as
specified in section 2.3.3) has exactly one value in it.

4. Call the NetrDfsFlushFtTable method on the PDC, specifying the DFS namespace name.

3.2.5 Timer Events

No protocol timer events are required on the client beyond those required in the underlying RPC call
transport.

3.2.6 Other Local Events

No additional local events are used on the client beyond those maintained in the underlying RPC
transport.

3.3 Domain Controller Details

A DC hosting a DFS root target MUST conform to the specification in section 3.1.

In addition, the DFS server on a DC MUST do the following:

Receive and respond to DFS root and DFS link referral requests for any domain-based DFS

namespace in the domain. The DC need not be a DFS root target for the domain-based DFS
namespace identified in the referral request.

Receive and respond to the RPC methods, as specified in section 3.3.4.

3.3.1 Abstract Data Model

A DFS server on a DC MAY maintain the following data item:

ReferralCache: A referral cache that is used when distributing referrals for domain-based DFS

namespaces. This is for use by the DFS Referral Protocol, as specified in [MS-DFSC].

3.3.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.3.3 Initialization

No initialization is required beyond that used internally by RPC, as specified in [MS-RPCE].

3.3.4 Message Processing Events and Sequencing Rules

A DC MAY<148> itself be a DFS root target. In such cases, it MUST process RPC methods, as

specified in section 3.1. In addition, some methods SHOULD be specially supported, as specified in

the following topics.

%5bMS-DFSC%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

117 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.3.4.1 Basic Methods

3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24)

A DFS server on a DC MUST support the DFS_FORCE_REMOVE value (0x80000000) for the ApiFlags
parameter. DFS_FORCE_REMOVE value is used to delete a domain-based DFS namespace when the
root target servers of the namespace are no longer available (for example, they have been
decommissioned).

3.3.4.2 Extended Methods

3.3.4.2.1 NetrDfsEnumEx (Opnum 21)

A DFS server on a DC SHOULD support the Level parameter 200. The DFS server MUST validate the
DfsEntryPath parameter against the name of the domain to which the DC is joined, and fail with
ERROR_INVALID_NAME (0x0000007B) if it does not match. The DFS server then returns the list of
domain-based DFS namespaces in the domain. This MUST be returned by performing an LDAP

search for objects on the domain controller under the container. The container has the following DN:

CN=Dfs-Configuration,CN=System,<domain>

where <domain> is the DN of the domain. For details and more information, see section

2.3.1.<149>

3.3.4.3 Root Target Methods

3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11)

A DFS server on a DC MUST support the DFS_FORCE_REMOVE value (0x80000000) for the ApiFlags
parameter. The DFS_FORCE_REMOVE value is used to delete a domain-based DFS namespace when

the root target servers of the namespace are no longer available (for example, decommissioned).

3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18)

The NetrDfsFlushFtTable method instructs the DFS server on a DC to purge the specified

domainv1-based DFS entry from any DFS root referral cache it may have.

Note This method MUST fail on non-DC servers, as specified in this section.

The NetrDfsFlushFtTable method uses the following MIDL syntax.

NET_API_STATUS NetrDfsFlushFtTable(

 [in, string] WCHAR* DcName,

 [in, string] WCHAR* wszFtDfsName

);

DcName: The pointer to a null-terminated Unicode string that contains the host name of the DC

to which the RPC method is issued.

wszFtDfsName: The pointer to a null-terminated Unicode string that contains the name of the

domain-based DFS namespace.

118 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The
values transmitted in this field are implementation-specific. For protocol purposes, all nonzero

values MUST be treated as equivalent failures.

Note This method MUST return ERROR_NOT_SUPPORTED on non-DC servers.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000032

ERROR_NOT_SUPPORTED

Operation not supported. This MUST be returned if the server does not

implement the method.

The server MAY choose not to implement this method.<150> If it does, ERROR_NOT_SUPPORTED
MUST be returned.

3.3.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
transport.

3.3.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying
RPC transport.

119 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

The following examples for domainv1 are in a Windows Server 2003 operating system domain; the
client used is Windows XP operating system Service Pack 2 (SP2). The member servers and domain
controllers used in the example are all Windows Server 2003 operating system with Service Pack 1
(SP1).

For domainv2, the client is Windows Vista operating system. The member servers and domain
controllers in this scenario are all Windows Server 2008 operating system.

4.1 Creating a New Domainv1-Based DFS Namespace

The following example describes the steps used to create a new domainv1-based DFS namespace.
The namespace name is testroot1, to be created on a server named CFS-41X-2C02 within the dfsn-
dev.microsoft.com domain.

1. A client determines whether a new domainv1-based DFS namespace is being created, or a new

DFS root target is being added to an existing domain-based DFS namespace, by issuing an LDAP
search for the object corresponding to the domainv1-based DFS namespace. The following

illustration shows the LDAP search parameters that do this.

2. Because the domainv1-based DFS namespace does not already exist, the DC fails the LDAP
search with LDAP_NO_SUCH_OBJECT.

3. The client creates an object for the new domainv1-based DFS namespace.

4. Object creation is successful.

5. The client updates the ACL on the object to permit the new DFS root target to update the object.

6. The ACL change on the object is successful.

7. The client issues a NetrDfsAddFtRoot method to the DFS root target server.

8. The DFS root target creates the DFS metadata required for the new domainv1-based DFS
namespace and updates the DFS metadata in the object corresponding to the DFS namespace.
This is shown as an LDAP modify operation to the PDC for the domain. The following illustration
shows the LDAP modify parameters that do this.

9. The DFS metadata write is successful.

10.The DFS root target completes the NetrDfsAddFtRoot method to the client.

The following illustration shows the sequence of events.

120 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 2: Creating a new domainv1-based DFS namespace

4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace

The following example describes the steps used to create a new root target in an existing domainv1-
based DFS namespace.

1. The client determines whether a new domainv1-based DFS namespace is being created or a new
DFS root target is being added to an existing domainv1-based DFS namespace, by issuing an
LDAP search for the object corresponding to the domainv1-based DFS namespace to the PDC.

121 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. Because the domainv1-based DFS namespace already exists, the LDAP search is successful.

3. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C03 to
update the object.

4. The ACL change on the object is successful.

5. The client issues a NetrDfsAddFtRoot method to the new DFS root target server CFS-41X-2C03.

6. The DFS root target server CFS-41X-2C03 creates the DFS metadata required for the new
domainv1-based DFS namespace and writes it to the PDC for the domain. The following
illustration shows the LDAP modify parameters that do this.

7. The DFS metadata write is successful.

8. The DFS root target CFS-41X-2C03 completes the NetrDfsAddFtRoot method to the client.

The following illustration shows the sequence of events.

122 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 3: Adding a root target to an existing domainv1-based DFS namespace

4.3 Adding a New Link to a Domain-Based DFS Namespace

The following example describes the steps for adding a new DFS link to an existing domainv1-based

DFS namespace that has two root targets. The illustration in this example also shows how the DFS
root target uses NetrDfsSetInfo, Level parameter 101, and
DFS_VOLUME_STATE_RESYNCHRONIZE to update the DFS metadata of the domain-based DFS
namespace with the new DFS link information, and then notifies the other root targets.

1. A client issues a NetrDfsAdd RPC method to the DFS root target CFS-41X-2C02 for the domainv1-

based DFS namespace.

123 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. The DFS root target CFS-41X-2C02 issues an LDAP search operation to retrieve the pKTGuid
attribute in the object for the domainv1-based DFS namespace to the PDC for the domain. The

following illustration shows the DN of the object and the attribute searched.

3. The LDAP search is successful, and the value of the PktGuid attribute is returned.

4. The DFS root target CFS-41X-2C02 determines that the DFS metadata in its cache is up-to-date
and determines whether the new link target is already in another DFS namespace. This is done
by issuing the NetrShareGetInfo method, as specified in [MS-SRVS], specifying a Level
parameter 1005 to the DFS link target CFS-44X-2B08 to check the link target share's properties.
For more information on the NetrShareGetInfo method, see [MS-SRVS].

5. The NetrShareGetInfo RPC method returns an indication that the DFS link target share is not a
DFS namespace. This information is used to determine the value of the

PKT_ENTRY_TYPE_OUTSIDE_MY_DOM bit of the Type field of the DFSRootOrLinkIDBLOB (for
more information, see section 2.3.3.1.1.2) for the DFS link. For this example, the bit is set to 0.

6. DFS link target CFS-41X-2C02 issues an LDAP modify operation to the PDC with a new pKTGuid

value and the updated DFS metadata containing the new DFS link information.

7. The LDAP modify operation is successful.

8. The NetrDfsAdd method invoked by the client completes successfully.

9. The DFS root target, which updated the DFS metadata, issues the NetrDfsSetInfo method with
the Level parameter 101 and the State field of DFS_INFO_101 set to
DFS_VOLUME_STATE_RESYNCHRONIZE to all of the other root targets. CFS-41X-2C02, in this
example, is notifying CFS-41X-2C03.

10.On receiving the NetrDfsSetInfo method, Level parameter 101, and
DFS_VOLUME_STATE_RESYNCHRONIZE, CFS-41X-2C03 issues an LDAP search to the PDC to
verify whether the DFS metadata in its cache is up-to-date.

11.The LDAP search operation is successful and contains the pKTGuid attribute's value.

12.CFS-41X-2C03 determines that the cached DFS metadata it has needs to be refreshed. It then
issues an LDAP search operation to retrieve the value of the pKT attribute, which contains the
actual DFS metadata.

13.The LDAP search is successful and contains the DFS metadata in the reply.

14.In this example, CFS-41X-2C03 performs the required changes to its local state by adding the
new DFS link. The NetrDfsSetInfo method that CFS-41X-2C02 issued is then completed.

%5bMS-SRVS%5d.pdf

124 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 4: Adding a new link to a domainv1-based DFS namespace

4.4 Creating a New Domainv2-Based DFS Namespace

The following example describes the steps used to create a new domainv2-based DFS namespace.

125 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1. A client determines whether a new domainv2-based DFS namespace is being created or a new
DFS root target is being added to an existing domainv2-based DFS namespace, by issuing an

LDAP search for the object corresponding to the domainv2-based DFS namespace. The following
illustration shows the LDAP search parameters that do this.

2. Because the domainv2-based DFS namespace does not already exist, the DC fails the LDAP
search with LDAP_NO_SUCH_OBJECT.

3. The client creates an object for the new domainv2-based DFS namespace.

4. Object creation is successful.

5. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C02 to
update the object.

6. The ACL change on the object is successful.

7. The client issues a NetrDfsAddRootTarget method to the DFS root target server.

8. The DFS root target server creates a new DFS namespace LDAP entry with the DFS namespace
anchor LDAP entry as its parent. The server also creates the DFS metadata required for the new
domainv2-based DFS namespace and updates the DFS metadata in the object corresponding to
the DFS namespace. This appears as an LDAP modify operation to the PDC for the domain. The
following illustration shows the LDAP modify parameters that do this.

9. The DFS metadata write is successful.

10.The DFS root target completes the NetrDfsAddRootTarget method to the client.

The following illustration shows this sequence of events.

126 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 5: Creating a new domainv2-based DFS namespace

4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace

The following example describes the steps used to create a new root target in an existing domainv2-
based DFS namespace.

1. The client determines whether a new domainv2-based DFS namespace is being created, or a new
DFS root target is being added to an existing domainv2-based DFS namespace, by issuing an
LDAP search for the object corresponding to the domainv2-based DFS namespace to the PDC.

2. Because the domainv2-based DFS namespace already exists, the LDAP search is successful.

127 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C03 to
update the object.

4. The ACL change on the object is successful.

5. The client issues a NetrDfsAddRootTarget method to the new DFS root target server CFS-41X-

2C03.

6. The DFS root target server CFS-41X-2C03 creates the DFS metadata required for the new
domainv2-based DFS namespace and writes it to the PDC for the domain. The following
illustration shows the LDAP modify parameters that do this.

7. The DFS metadata write is successful.

8. The DFS root target CFS-41X-2C03 completes the NetrDfsAddRootTarget method to the client.

The following illustration shows the sequence of events.

128 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 6: Adding a root target to an existing domainv2-based DFS namespace

4.6 Adding a New Link to a Domainv2-Based DFS Namespace

The following example describes the steps used to add a new DFS link to an existing domainv2-
based DFS namespace with two root targets. The illustration in this example also shows how the
DFS root target uses NetrDfsSetInfo, Level parameter 101, and
DFS_VOLUME_STATE_RESYNCHRONIZE, to update the DFS metadata of the domain-based DFS

namespace with the new DFS link information, and then notifies the other root targets.

1. A client issues a NetrDfsAdd RPC method to the DFS root target CFS-41X-2C02 for the
domainv2-based DFS namespace.

2. The DFS root target CFS-41X-2C02 performs either a full synchronization or an incremental
synchronization. A full synchronization is performed if the DFS root target server is switching to a

129 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

new PDC or if the DC that the synchronization operation is currently using is different from that in
the <uSNChanged, DC invocation ID> tuple that was saved at the start of a previous full

synchronization for the DFS namespace. An incremental synchronization is performed if the DFS
root target server is already syncing with the PDC.

3. An incremental synchronization is done by issuing an LDAP search operation for the DFS
namespace LDAP entry subtree to determine whether in any of the object classes of msDFS-
Namespacev2, msDFS-Linkv2, or msDFS-DeletedLinkv2 the uSNChanged is greater than the
saveduSNChanged value, where saveduSNChanged is the uSNChanged value from the tuple
<uSNChanged, DC invocation ID> that was saved previously.

4. The DFS root target CFS-41X-2C02 determines that the DFS metadata in its cache is up-to-date
and whether the new link points to another DFS namespace.

5. DFS link target CFS-41X-2C02 issues an LDAP modify operation to the PDC with a new identity
GUID (msDFS-LinkIdentityGUID) value and the updated DFS metadata that contains the new
DFS link information. The link identity GUID is set at DFS link creation time and does not change
for the lifetime of the LDAP entry. It is used to locate the in-memory data structure that

corresponds to the DFS link in the DFS metadata cache.

6. The LDAP modify operation is successful.

7. The NetrDfsAdd method invoked by the client completes successfully.

8. To perform a full synchronization to ensure that this is propagated to all other root targets, the
DFS root target, which updated the DFS metadata, issues the NetrDfsSetInfo method, with the
Level parameter 101 and the State field of DFS_INFO_101 set to
DFS_VOLUME_STATE_RESYNCHRONIZE, to all of the other root targets. This is used to identify
added or deleted DFS links. In this example, CFS-41X-2C02 is notifying CFS-41X-2C03.

9. On receiving the NetrDfsSetInfo method with Level parameter 101 and

DFS_VOLUME_STATE_RESYNCHRONIZE, CFS-41X-2C03 issues an LDAP search to the PDC to
verify whether the DFS metadata in its cache is up-to-date. A different uSNChanged value from
the <uSNChanged, DC invocation ID> tuple saved at the start of a previous full sync would

indicate what has changed, and it would subsequently perform an incremental sync to propagate
any DFS metadata change.

10.CFS-41X-2C03 determines that the cached DFS metadata it has needs to be refreshed. It then
issues an LDAP search operation to retrieve the attributes associated with the msDFS-Linkv2

class, which contains the actual DFS metadata.

11.The LDAP search is successful and contains the DFS metadata in the reply.

12.In this example, CFS-41X-2C03 performs the required changes to its local state by adding the
new DFS link. The NetrDfsSetInfo method that CFS-41X-2C02 issued is then completed.

130 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 7: Adding a new link to a domainv2-based DFS namespace

4.7 Enumerating DFS Links in a Domain-Based DFS Namespace

The following example describes the sequence of an interactive administration application that
enumerates all domain-based DFS namespaces in a domain and all DFS links of a domain-based
DFS namespace.

131 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1. To enumerate all of the domain-based DFS namespaces in the dfsn-dev domain, the
administration application issues the NetrDfsEnumEx RPC method with the DfsEntryPath

parameter \\dfsn-dev and Level parameter 200. This method is issued to the DC.

2. The DC returns two domain-based DFS namespaces in the domain: \\dfsn-dev\testroot1

and \\dfsn-dev\testroot2.

3. The user decides to view information about the domain-based DFS namespace\\dfsn-

dev\testroot1. Before the administering application can issue the RPC method to obtain

information about that DFS namespace, it must determine which DFS root target it will issue the
RPC method to. This is done by issuing a DFS root referral request to the DC, as specified in
[MSDFS].

4. The DC responds to the DFS root referral request with the two DFS root targets: \\cfs-41x-

2c02\testroot1 and \\cfs-41x-2c03\testroot1.

5. The NetrDfsEnumEx RPC method to obtain information about the DFS namespace\\dfsn-

dev\testroot1 is then issued to the root target cfs-41x-2c02.

6. The root target returns the DFS root and one DFS link in the domain-based DFS namespace.

http://go.microsoft.com/fwlink/?LinkId=89945

132 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 8: Enumerating DFS links in a domainv1-based DFS namespace

4.8 DFS Metadata of a Domainv1-Based DFS Namespace

This example uses the following domainv1-based DFS namespaces:

DFS root: \\dfsn-dev\testroot1

DFS root targets: \\cfs-41x-2c02\testroot1 and \\cfs-41x-2c03\testroot1

DFS link: \\dfsn-dev\testroot1\dfslinks\link1

DFS link target \\cfs-44x-2b08\public

The following illustration shows the hexadecimal dump of the DFS metadata for this domainv1-
based DFS namespace. The offsets in the hexadecimal dump are used to explain the dump.

133 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Figure 9: Hexadecimal dump of the DFS metadata for a domainv1-based DFS namespace

The following table lists elements of the hexadecimal dump.

Offset Raw hex values DFS metadata field

0x000 00 00 00 00 BLOBVersion: 0

0x004 03 00 00 00 BLOBElementCount: 3

0x008 - DFSNamespaceElementBLOB #1

134 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Offset Raw hex values DFS metadata field

0x008 16 00 BLOBNameSize: 0x0016 (22)

0x00A 5C 00 64 00 6F 00 6D 00

61 00 69 00 6E 00 72 00

6F 00 6F 00 74 00

BLOBName: \domainroot

0x020 4C 01 00 00 BLOBDataSize: 0x0000014c (332)

0x024 - DFSNamespaceRootBLOB

0x024 - DFSRootOrLinkIDBLOB

0x024 2E 79 A8 2C F6 F3 E5 44

BC 18 6C E6 76 A0 53

DA

RootOrLinkGuid: 2ca8792e-f3f6-44e5-bc18-6ce676a053da

0x034 26 00 PrefixSize: 0x0026 (38)

0x036 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00

Prefix: \DFSN-DEV\testroot1

0x05C 26 00 ShortPrefixSize: 0x0026 (38)

0x05E 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00

Short prefix: \DFSN-DEV\testroot1

0x084 81 00 00 00 Type: 0x00000081

0x088 01 00 00 00 State: 0x00000001

0x08C 2A 00 CommentSize: 0x002A (42)

0x08E 44 00 6F 00 6D 00 61 00

69 00 6E 00 2D 00 62 00

61 00 73 00 65 00 64 00

20 00 44 00 46 00 53 00

20 00 72 00 6F 00 6F 00

74 00

Comment: Domain-based DFS root

0x0B8 D0 5A B5 34 A2 99 C6

01

PrefixTimeStamp: June 26, 2006 21:28:57

0x0C0 D0 5A B5 34 A2 99 C6

01

StateTimeStamp: June 26, 2006 21:28:57

0x0C8 D0 5A B5 34 A2 99 C6

01

CommentTimeStamp: June 26, 2006 21:28:57

135 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Offset Raw hex values DFS metadata field

0x0D0 03 00 00 00 Version: 0x0000003

0x0D4 8C 00 00 00 DFSTargetListBLOBSize: 0x0000008C (140)

0x0D8 - DFSTargetListBLOB

0x0D8 02 00 00 00 TargetCount: 0x00000002

0x0DC - TargetEntryBLOB

0x0DC 3E 00 00 00 TargetEntrySize: 0x0000003E (62)

0x0E0 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x0E8 02 00 00 00 TargetState: 0x00000002

0x0EC 02 00 00 00 TargetType: 0x00000002

0x0F0 18 00 ServerNameSize: 0x0018 (24)

0x0F2 43 00 46 00 53 00 2D 00

34 00 31 00 58 00 2D 00

32 00 43 00 30 00 32 00

ServerName: CFS-41X-2C02

0x10A 12 00 ShareNameSize: 0x0012 (18)

0x10C 74 00 65 00 73 00 74 00

72 00 6F 00 6F 00 74 00

31 00

ShareName: testroot1

0x11E - TargetEntryBLOB

0x11E 3E 00 00 00 TargetEntrySize: 0x0000003E (62)

0x122 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x12A 02 00 00 00 TargetState: 0x00000002

0x12E 02 00 00 00 TargetType: 0x00000002

0x132 18 00 ServerNameSize: 0x0018 (24)

0x134 43 00 46 00 53 00 2D 00

34 00 31 00 58 00 2D 00

32 00 43 00 30 00 33 00

ServerName: CFS-41X-2C03

0x14C 12 00 ShareNameSize: 0x0012 (18)

0x14E 74 00 65 00 73 00 74 00

72 00 6F 00 6F 00 74 00

31 00

ShareName: testroot1

0x160 00 00 00 00 Padding

0x164 04 00 00 00 ReservedBLOBSize: 0x00000004

136 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Offset Raw hex values DFS metadata field

0x168 00 00 00 00 ReservedBLOB: 0x00000000

0x16C 2C 01 00 00 TTL: 0x0000012C (300 Seconds)

0x170 60 00 BLOBNameSize: 0x0060 (96)

0x172 5C 00 64 00 6F 00 6D 00

61 00 69 00 6E 00 72 00

6F 00 6F 00 74 00 5C 00

38 00 36 00 65 00 35 00

32 00 38 00 37 00 34 00

2D 00 30 00 31 00 63 00

33 00 2D 00 34 00 32 00

65 00 33 00 2D 00 38 00

33 00 37 00 31 00 2D 00

62 00 61 00 37 00 64 00

61 00 65 00 37 00 37 00

39 00 34 00 61 00 30 00

BLOBName: \domainroot\86e52874-01c3-42e3-8371-

ba7dae7794a0

0x1D2 40 01 00 00 BLOBDataSize: 0x00000140 (320)

0x1D6 - DFSNamespaceLinkBLOB

0x1D6 - DFSRootOrLinkIDBLOB

0x1D6 74 28 E5 86 C3 01 E3 42

83 71 BA 7D AE 77 94

A0

RootOrLinkGuid: 86e52874-1c3-42e3-8371-ba7dae7794a0

0x1E6 44 00 PrefixSize: 0x0044 (68)

0x1E8 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00 5C 00

64 00 66 00 73 00 6C 00

69 00 6E 00 6B 00 73 00

5C 00 6C 00 69 00 6E 00

6B 00 31 00

Prefix: \DFSN-DEV\testroot1\dfslinks\link1

0x22C 44 00 ShortPrefixSize: 0x0044 (68)

0x22E 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00 5C 00

64 00 66 00 73 00 6C 00

69 00 6E 00 6B 00 73 00

Short prefix: \DFSN-DEV\testroot1\dfslinks\link1

137 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Offset Raw hex values DFS metadata field

5C 00 6C 00 69 00 6E 00

6B 00 31 00

0x272 01 00 00 00 Type: 0x00000001

0x276 01 00 00 00 State: 0x00000001

0x27A 2A 00 CommentSize: 0x002A (42)

0x27C 44 00 46 00 53 00 20 00

4C 00 69 00 6E 00 6B 00

20 00 74 00 6F 00 20 00

53 00 4D 00 42 00 20 00

73 00 68 00 61 00 72 00

65 00

Comment: DFS link to SMB share

0x2A6 70 DD 98 47 A2 99 C6

01

PrefixTimeStamp: June 26, 2006 21:29:29

0x2AE 70 DD 98 47 A2 99 C6

01

StateTimeStamp: June 26, 2006 21:29:29

0x2B6 70 DD 98 47 A2 99 C6

01

CommentTimeStamp: June 26, 2006 21:29:29

0x2BE 03 00 00 00 Version: 3

0x2C2 44 00 00 00 DFSTargetListBLOBSize: 0x00000044 (68)

0x2C6 - DFSTargetListBLOB

0x2C6 01 00 00 00 TargetCount: 0x00000001

0x2CA - TargetEntryBLOB

0x2CA 38 00 00 00 TargetEntrySize: 0x00000038 (56)

0x2CE 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x2D6 02 00 00 00 TargetState: 0x00000002

0x2DA 02 00 00 00 TargetType: 0x00000002

0x2DE 18 00 ServerNameSize: 0x0018 (24)

0x2E0 63 00 66 00 73 00 2D 00

34 00 34 00 78 00 2D 00

32 00 62 00 30 00 38 00

ServerName: cfs-44x-2b08

0x2F8 0C 00 ShareNameSize: 0x000C (12)

0x2FA 70 00 75 00 62 00 6C 00

69 00 63 00

ShareName: public

0x306 00 00 00 00 Padding

138 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Offset Raw hex values DFS metadata field

0x30A 04 00 00 00 ReservedBLOBSize: 0x00000004

0x30E 00 00 00 00 ReservedBLOB

0x312 08 07 00 00 TTL: 0x00000708 (1800 Seconds)

0x316 12 00 BLOBNameSize: 0x0012 (18)

0x318 5C 00 73 00 69 00 74 00

65 00 72 00 6F 00 6F 00

74 00

BLOBName: \siteroot

0x32A 14 00 00 00 BLOBDataSize: 0x00000014 (20)

0x32E - SiteInformationBLOB

0x32E C9 CA C3 93 00 73 B6

43

8E 7A 89 1B FF 55 2A 43

SiteTableGuid: 93c3cac9-7300-43b6-8e7a-891bff552a43

0x33E 00 00 00 00 SiteEntryCount: 0x00000000

139 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

5.1 Security Considerations for Implementers

The DFS: Namespace Management Protocol allows any user to establish a connection to the RPC
server. The protocol uses the underlying RPC Protocol to retrieve the identity of the caller that made
the method call, as specified in [MS-RPCE] section 3.3.3.4.3. Clients SHOULD create an
authenticated RPC connection. Servers SHOULD use this identity to perform method-specific access
checks.<151>

5.2 Index of Security Parameters

The only security parameter is Authentication Protocol, section 2.1.

%5bMS-RPCE%5d.pdf

140 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Full IDL

The DFS: Namespace Management Protocol contains one interface, whose IDL definition is listed in
this section.

import "ms-dtyp.idl";

/* ----- structures and methods described [MS-DFSNM], section 2 and 3 ----- */

[

 uuid(4fc742e0-4a10-11cf-8273-00aa004ae673),

 version(3.0),

 ms_union,

 pointer_default(unique)

]

interface netdfs {

typedef DWORD NET_API_STATUS;

typedef WCHAR * NETDFS_SERVER_OR_DOMAIN_HANDLE;

typedef [v1_enum] enum _DFS_TARGET_PRIORITY_CLASS {

 DfsInvalidPriorityClass = -1,

 DfsSiteCostNormalPriorityClass = 0,

 DfsGlobalHighPriorityClass = 1,

 DfsSiteCostHighPriorityClass = 2,

 DfsSiteCostLowPriorityClass = 3,

 DfsGlobalLowPriorityClass = 4

} DFS_TARGET_PRIORITY_CLASS;

typedef struct _DFS_TARGET_PRIORITY {

 DFS_TARGET_PRIORITY_CLASS TargetPriorityClass;

 unsigned short TargetPriorityRank;

 unsigned short Reserved;

} DFS_TARGET_PRIORITY;

typedef struct _DFS_STORAGE_INFO {

 unsigned long State;

 [string] WCHAR * ServerName;

 [string] WCHAR * ShareName;

} DFS_STORAGE_INFO;

typedef struct _DFS_STORAGE_INFO_1 {

 unsigned long State;

 [string] WCHAR * ServerName;

 [string] WCHAR * ShareName;

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_STORAGE_INFO_1, *PDFS_STORAGE_INFO_1, *LPDFS_STORAGE_INFO_1;

typedef struct _DFSM_ROOT_LIST_ENTRY {

 [string, unique] WCHAR * ServerShare;

} DFSM_ROOT_LIST_ENTRY;

typedef struct _DFSM_ROOT_LIST {

 DWORD cEntries;

 [size_is(cEntries)] DFSM_ROOT_LIST_ENTRY Entry[];

} DFSM_ROOT_LIST;

141 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef enum {

 DFS_NAMESPACE_VERSION_ORIGIN_COMBINED = 0,

 DFS_NAMESPACE_VERSION_ORIGIN_SERVER,

 DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN

} DFS_NAMESPACE_VERSION_ORIGIN;

typedef struct _DFS_SUPPORTED_NAMESPACE_VERSION_INFO {

 unsigned long DomainDfsMajorVersion;

 unsigned long DomainDfsMinorVersion;

 ULONGLONG DomainDfsCapabilities;

 unsigned long StandaloneDfsMajorVersion;

 unsigned long StandaloneDfsMinorVersion;

 ULONGLONG StandaloneDfsCapabilities;

} DFS_SUPPORTED_NAMESPACE_VERSION_INFO,

 *PDFS_SUPPORTED_NAMESPACE_VERSION_INFO;

typedef struct _DFS_INFO_1 {

 [string] WCHAR * EntryPath;

} DFS_INFO_1;

typedef struct _DFS_INFO_2 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 DWORD NumberOfStorages;

} DFS_INFO_2;

typedef struct _DFS_INFO_3 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO * Storage;

} DFS_INFO_3;

typedef struct _DFS_INFO_4 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO * Storage;

} DFS_INFO_4;

typedef struct _DFS_INFO_5 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 DWORD NumberOfStorages;

} DFS_INFO_5;

typedef struct _DFS_INFO_6 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

142 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] DFS_STORAGE_INFO_1 * Storage;

} DFS_INFO_6;

typedef struct _DFS_INFO_7 {

 GUID GenerationGuid;

} DFS_INFO_7;

typedef struct _DFS_INFO_8 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;

 DWORD NumberOfStorages;

} DFS_INFO_8,

 *LPDFS_INFO_8;

typedef struct _DFS_INFO_9 {

 [string] WCHAR * EntryPath;

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 GUID Guid;

 unsigned long PropertyFlags;

 unsigned long MetadataSize;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;

 DWORD NumberOfStorages;

 [size_is(NumberOfStorages)] LPDFS_STORAGE_INFO_1 Storage;

} DFS_INFO_9,

 *LPDFS_INFO_9;

typedef struct _DFS_INFO_50 {

 unsigned long NamespaceMajorVersion;

 unsigned long NamespaceMinorVersion;

 unsigned __int64 NamespaceCapabilities;

} DFS_INFO_50;

typedef struct _DFS_INFO_100 {

 [string] WCHAR * Comment;

} DFS_INFO_100;

typedef struct _DFS_INFO_101 {

 unsigned long State;

} DFS_INFO_101;

typedef struct _DFS_INFO_102 {

 unsigned long Timeout;

143 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

} DFS_INFO_102;

typedef struct _DFS_INFO_103 {

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

} DFS_INFO_103;

typedef struct _DFS_INFO_104 {

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_INFO_104;

typedef struct _DFS_INFO_105 {

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

} DFS_INFO_105;

typedef struct _DFS_INFO_106 {

 DWORD State;

 DFS_TARGET_PRIORITY TargetPriority;

} DFS_INFO_106;

typedef struct _DFS_INFO_107 {

 [string] WCHAR * Comment;

 DWORD State;

 unsigned long Timeout;

 unsigned long PropertyFlagMask;

 unsigned long PropertyFlags;

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;

} DFS_INFO_107;

typedef struct _DFS_INFO_150 {

 ULONG SecurityDescriptorLength;

 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;

} DFS_INFO_150;

typedef struct _DFS_INFO_200 {

 [string] WCHAR * FtDfsName;

} DFS_INFO_200;

typedef struct _DFS_INFO_300 {

 DWORD Flags;

 [string] WCHAR * DfsName;

} DFS_INFO_300;

typedef [switch_type(unsigned long)] union _DFS_INFO_STRUCT {

 [case(1)]

 DFS_INFO_1 * DfsInfo1;

 [case(2)]

 DFS_INFO_2 * DfsInfo2;

 [case(3)]

 DFS_INFO_3 * DfsInfo3;

 [case(4)]

 DFS_INFO_4 * DfsInfo4;

 [case(5)]

144 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 DFS_INFO_5 * DfsInfo5;

 [case(6)]

 DFS_INFO_6 * DfsInfo6;

 [case(7)]

 DFS_INFO_7 * DfsInfo7;

 [case(8)]

 DFS_INFO_8 * DfsInfo8;

 [case(9)]

 DFS_INFO_9 * DfsInfo9;

 [case(50)]

 DFS_INFO_50 * DfsInfo50;

 [case(100)]

 DFS_INFO_100 * DfsInfo100;

 [case(101)]

 DFS_INFO_101 * DfsInfo101;

 [case(102)]

 DFS_INFO_102 * DfsInfo102;

 [case(103)]

 DFS_INFO_103 * DfsInfo103;

 [case(104)]

 DFS_INFO_104 * DfsInfo104;

 [case(105)]

 DFS_INFO_105 * DfsInfo105;

 [case(106)]

 DFS_INFO_106 * DfsInfo106;

 [case(107)]

 DFS_INFO_107 * DfsInfo107;

 [case(150)]

 DFS_INFO_150 * DfsInfo150;

 [default]

 ;

} DFS_INFO_STRUCT;

typedef struct _DFS_INFO_1_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_1 * Buffer;

} DFS_INFO_1_CONTAINER;

typedef struct _DFS_INFO_2_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_2 * Buffer;

} DFS_INFO_2_CONTAINER;

typedef struct _DFS_INFO_3_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_3 * Buffer;

} DFS_INFO_3_CONTAINER;

typedef struct _DFS_INFO_4_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_4 * Buffer;

} DFS_INFO_4_CONTAINER;

typedef struct _DFS_INFO_5_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_5 * Buffer;

} DFS_INFO_5_CONTAINER;

145 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

typedef struct _DFS_INFO_6_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_6 * Buffer;

} DFS_INFO_6_CONTAINER;

typedef struct _DFS_INFO_8_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPDFS_INFO_8 Buffer;

} DFS_INFO_8_CONTAINER,

 *LPDFS_INFO_8_CONTAINER;

typedef struct _DFS_INFO_9_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] LPDFS_INFO_9 Buffer;

} DFS_INFO_9_CONTAINER,

 *LPDFS_INFO_9_CONTAINER;

typedef struct _DFS_INFO_200_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_200 * Buffer;

} DFS_INFO_200_CONTAINER;

typedef struct _DFS_INFO_300_CONTAINER {

 DWORD EntriesRead;

 [size_is(EntriesRead)] DFS_INFO_300 * Buffer;

} DFS_INFO_300_CONTAINER;

typedef struct _DFS_INFO_ENUM_STRUCT {

 DWORD Level;

 [switch_is(Level)] union {

 [case(1)]

 DFS_INFO_1_CONTAINER * DfsInfo1Container;

 [case(2)]

 DFS_INFO_2_CONTAINER * DfsInfo2Container;

 [case(3)]

 DFS_INFO_3_CONTAINER * DfsInfo3Container;

 [case(4)]

 DFS_INFO_4_CONTAINER * DfsInfo4Container;

 [case(5)]

 DFS_INFO_5_CONTAINER * DfsInfo5Container;

 [case(6)]

 DFS_INFO_6_CONTAINER * DfsInfo6Container;

 [case(8)]

 DFS_INFO_8_CONTAINER * DfsInfo8Container;

 [case(9)]

 DFS_INFO_9_CONTAINER * DfsInfo9Container;

 [case(200)]

 DFS_INFO_200_CONTAINER * DfsInfo200Container;

 [case(300)]

 DFS_INFO_300_CONTAINER * DfsInfo300Container;

 } DfsInfoContainer;

} DFS_INFO_ENUM_STRUCT;

DWORD NetrDfsManagerGetVersion();

NET_API_STATUS NetrDfsAdd(

 [in,string] WCHAR * DfsEntryPath,

 [in,string] WCHAR * ServerName,

146 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 [in,unique,string] WCHAR * ShareName,

 [in,unique,string] WCHAR * Comment,

 [in] DWORD Flags);

NET_API_STATUS NetrDfsRemove(

 [in,string] WCHAR * DfsEntryPath,

 [in,unique,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName);

NET_API_STATUS NetrDfsSetInfo(

 [in,string] WCHAR * DfsEntryPath,

 [in,unique,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName,

 [in] DWORD Level,

 [in,switch_is(Level)] DFS_INFO_STRUCT * DfsInfo);

NET_API_STATUS NetrDfsGetInfo(

 [in,string] WCHAR * DfsEntryPath,

 [in,unique,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName,

 [in] DWORD Level,

 [out,switch_is(Level)] DFS_INFO_STRUCT * DfsInfo);

NET_API_STATUS NetrDfsEnum(

 [in] DWORD Level,

 [in] DWORD PrefMaxLen,

 [in,out,unique] DFS_INFO_ENUM_STRUCT * DfsEnum,

 [in,out,unique] DWORD * ResumeHandle);

NET_API_STATUS NetrDfsMove(

 [in,string] WCHAR * DfsEntryPath,

 [in,string] WCHAR * NewDfsEntryPath,

 [in] unsigned long Flags);

void Opnum7NotUsedOnWire();

void Opnum8NotUsedOnWire();

void Opnum9NotUsedOnWire();

NET_API_STATUS NetrDfsAddFtRoot(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * DcName,

 [in,string] WCHAR * RootShare,

 [in,string] WCHAR * FtDfsName,

 [in,string] WCHAR * Comment,

 [in,string] WCHAR * ConfigDN,

 [in] BOOLEAN NewFtDfs,

 [in] DWORD ApiFlags,

 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

NET_API_STATUS NetrDfsRemoveFtRoot(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * DcName,

 [in,string] WCHAR * RootShare,

 [in,string] WCHAR * FtDfsName,

 [in] DWORD ApiFlags,

 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

147 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

NET_API_STATUS NetrDfsAddStdRoot(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * RootShare,

 [in,string] WCHAR * Comment,

 [in] DWORD ApiFlags);

NET_API_STATUS NetrDfsRemoveStdRoot(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * RootShare,

 [in] DWORD ApiFlags);

NET_API_STATUS NetrDfsManagerInitialize(

 [in,string] WCHAR * ServerName,

 [in] DWORD Flags);

NET_API_STATUS NetrDfsAddStdRootForced(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * RootShare,

 [in,string] WCHAR * Comment,

 [in,string] WCHAR * Share);

NET_API_STATUS NetrDfsGetDcAddress(

 [in,string] WCHAR * ServerName,

 [in,out,string] WCHAR ** DcName,

 [in,out] BOOLEAN * IsRoot,

 [in,out] unsigned long * Timeout);

NET_API_STATUS NetrDfsSetDcAddress(

 [in,string] WCHAR * ServerName,

 [in,string] WCHAR * DcName,

 [in] DWORD Timeout,

 [in] DWORD Flags);

NET_API_STATUS NetrDfsFlushFtTable(

 [in,string] WCHAR * DcName,

 [in,string] WCHAR * wszFtDfsName);

NET_API_STATUS NetrDfsAdd2(

 [in,string] WCHAR * DfsEntryPath,

 [in,string] WCHAR * DcName,

 [in,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName,

 [in,unique,string] WCHAR * Comment,

 [in] DWORD Flags,

 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

NET_API_STATUS NetrDfsRemove2(

 [in,string] WCHAR * DfsEntryPath,

 [in,string] WCHAR * DcName,

 [in,unique,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName,

 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

NET_API_STATUS NetrDfsEnumEx(

 [in,string] WCHAR * DfsEntryPath,

 [in] DWORD Level,

 [in] DWORD PrefMaxLen,

 [in,out,unique] DFS_INFO_ENUM_STRUCT * DfsEnum,

 [in,out,unique] DWORD * ResumeHandle);

148 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

NET_API_STATUS NetrDfsSetInfo2(

 [in,string] WCHAR * DfsEntryPath,

 [in,string] WCHAR * DcName,

 [in,unique,string] WCHAR * ServerName,

 [in,unique,string] WCHAR * ShareName,

 [in] DWORD Level,

 [in,switch_is(Level)] DFS_INFO_STRUCT * pDfsInfo,

 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

NET_API_STATUS NetrDfsAddRootTarget(

 [in,unique,string] LPWSTR pDfsPath,

 [in,unique,string] LPWSTR pTargetPath,

 [in] ULONG MajorVersion,

 [in,unique,string] LPWSTR pComment,

 [in] BOOLEAN NewNamespace,

 [in] ULONG Flags);

NET_API_STATUS NetrDfsRemoveRootTarget(

 [in,unique,string] LPWSTR pDfsPath,

 [in,unique,string] LPWSTR pTargetPath,

 [in] ULONG Flags);

NET_API_STATUS NetrDfsGetSupportedNamespaceVersion(

 [in] DFS_NAMESPACE_VERSION_ORIGIN Origin,

 [in,unique,string] NETDFS_SERVER_OR_DOMAIN_HANDLE pName,

 [out] PDFS_SUPPORTED_NAMESPACE_VERSION_INFO pVersionInfo);

}

149 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT 4.0 operating system

Windows NT Server 4.0 operating system

Windows 2000 Server operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Server 2003 R2 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3: Windows NT Server 4.0 supports only stand-alone DFS namespaces.

<2> Section 1.5: Windows relies on manual coordination between human operators to ensure that
only one DFS metadata modification is in progress at any time.

<3> Section 1.7: The Windows RPC Protocol returns RPC_S_PROCNUM_OUT_OF_RANGE to notify
the client that an RPC method is out of range, as specified in [MS-RPCE].

<4> Section 2.1: All Windows clients support the SMB access protocol.

Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2 support SMB2.

%5bMS-RPCE%5d.pdf

150 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2

support the Microsoft WebDAV client.

Windows 2000, Windows 2000 Server, Windows XP, Windows Server 2003, Windows Vista, Windows

Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows
8.1, and Windows Server 2012 R2 support the Microsoft NFS client.

<5> Section 2.2.2.12: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support ABDE mode.

<6> Section 2.2.3.5: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
and Windows Server 2012 R2 support ABDE mode.

<7> Section 2.2.3.7: Windows servers return a null GUID for stand-alone DFS namespaces.

<8> Section 2.2.3.10: This level is supported only in Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

To identify the DFS metadata format in use, two mandatory attributes are defined in the schema to
hold the major version (ldapDisplayName = msDFS-SchemaMajorVersion) and minor version
(ldapDisplayName = msDFS-SchemaMinorVersion) numbers. The rangeUpper attribute in the
attribute schema for these version number attributes determines the format of the DFS metadata

supported in the forest. The value of these attributes determines the DFS metadata format in use
for an existing DFS namespace. The implementation of a domainv2-based DFS namespace has
rangeUpper=2, rangeLower=2 for the NamespaceMajorVersion; and rangeUpper=0, rangeLower=0
for the NamespaceMinorVersion.

A change to an existing, or the addition of a new, mandatory attribute increments the major version
and sets the minor version to 0. A change to an existing, or the addition of a new, optional attribute
increments the minor version without changing the major version.

The NamespaceMajorVersion and NamespaceMinorVersion determine the format of the DFS
metadata supported in the forest. The following table applies only to Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

 NamespaceMajorVersion NamespaceMinorVersion

Domainv1-based DFS 1 1

Domainv2-based DFS 2 0

Stand-alone DFS 1 2

<9> Section 2.2.3.10: This level is supported only in Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

To identify the DFS metadata format in use, two mandatory attributes are defined in the schema to
hold the major version (ldapDisplayName = msDFS-SchemaMajorVersion) and minor version
(ldapDisplayName = msDFS-SchemaMinorVersion) numbers. The rangeUpper attribute in the

attribute schema for these version number attributes determines the format of the DFS metadata
supported in the forest. The value of these attributes determines the DFS metadata format in use
for an existing DFS namespace. The implementation of a domainv2-based DFS namespace has
rangeUpper=2, rangeLower=2 for the NamespaceMajorVersion and rangeUpper=0, rangeLower=0
for the NamespaceMinorVersion.

%5bMS-GLOS%5d.pdf

151 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A change to an existing, or the addition of a new, mandatory attribute increments the major version
and sets the minor version to 0. A change to an existing, or the addition of a new, optional attribute

increments the minor version without changing the major version.

The NamespaceMajorVersion and NamespaceMinorVersion determine the format of the DFS

metadata supported in the forest. The following table applies only to Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

 NamespaceMajorVersion NamespaceMinorVersion

Domainv1-based DFS 1 1

Domainv2-based DFS 2 0

Stand-alone DFS 1 2

<10> Section 2.2.3.10: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support ABDE mode.

<11> Section 2.2.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support ABDE mode.

<12> Section 2.3.3.1.1: Windows 2000 Server performs a case-sensitive comparison of the name.
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and

Windows Server 2012 R2 perform a case-insensitive comparison of the name.

<13> Section 2.3.3.1.1.2: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 use the same name for the ShortPrefix field
and the Prefix field. Windows 2000 Server stores an 8.3 name in the ShortPrefix field.

<14> Section 2.3.3.1.1.2: Only Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 support DFS referral site

costing.

<15> Section 2.3.3.1.1.2: Only Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 support DFS root scalability
mode.

<16> Section 2.3.3.1.1.2: Only Windows Server 2003 with SP1, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 support DFS client target
failback.

<17> Section 2.3.3.1.1.3.1: Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 always set this field to
0x00000002. Windows 2000 Server sets this field to 0x00000001 for DFS root targets and to
0x00000002 for DFS link targets.

<18> Section 2.3.3.1.1.4: Only Windows 2000 Server uses the SiteInformationBLOB. Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2 preserve this BLOB if it already exists. When creating a new DFS namespace,

Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2 create this BLOB with a SiteEntryCount of 0 and do not create any
SiteEntryBLOBs.

<19> Section 2.3.3.1.1.4: Windows 2000 Server determines the site of a DFS root target or a DFS
link target when it is added to a domain-based DFS namespace, and stores the target in this BLOB.

152 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The NetrDfsManagerReportSiteInfo method, as specified in [MS-SRVS], is issued to the DFS root
target server or the DFS link target server that were added to determine the site information.

<20> Section 2.3.4.2: Windows does not preserve unrecognized values.

<21> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server

2012, and Windows Server 2012 R2 support Domainv2.

<22> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support Domainv2.

<23> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support Domainv2.

<24> Section 2.3.4.3: Windows does not preserve unrecognized values.

<25> Section 2.3.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server

2012, and Windows Server 2012 R2 support Domainv2.

<26> Section 2.3.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 support Domainv2.

<27> Section 3.1.1: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 cache the DFS metadata as
an optimization.

<28> Section 3.1.3: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 determine the PDC for the
domain and initialize the PDCRoleHolder.

<29> Section 3.1.3: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 cache the DFS metadata as
an optimization.

<30> Section 3.1.4: Windows uses only the error code values, as specified in [MS-ERREF].

<31> Section 3.1.4: This method is not supported in Windows NT Server 4.0 and Windows 2000
Server.

<32> Section 3.1.4: This method is supported only in Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<33> Section 3.1.4: This method is supported only in Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<34> Section 3.1.4: This method is supported only in Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<35> Section 3.1.4: For historical reasons, Windows 2000 Server uses method opnums 7, 8, and 9
for local RPC calls to itself. These methods are never called over the network by Windows clients or
servers (to another server).

Opnums reserved for local use apply to Windows as follows: opnums 7-9 are only used locally, never
remotely, by Windows 2000 Server and not by any other Windows version.

<36> Section 3.1.4.1.1: This method is not implemented in Windows NT Server 4.0.

%5bMS-SRVS%5d.pdf
%5bMS-ERREF%5d.pdf

153 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<37> Section 3.1.4.1.1: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 return ERROR_NOT_SUPPORTED

(0x00000032).

<38> Section 3.1.4.1.2: The following table gives the return value of NetrDfsManagerGetVersion

for different versions of Windows.

Windows Version Return Value

Windows NT Server 4.0 0x00000001

Windows 2000 Server 0x00000002

Windows Server 2003 0x00000004

Windows Server 2008 0x00000006

Windows Server 2008 R2 0x00000006

Windows Server 2012 0x00000006

Windows Server 2012 R2 0x00000006

<39> Section 3.1.4.1.2: The RPC interface version has remained constant since Windows NT
Server 4.0. Windows 2000 Server adds new methods to the same RPC interface. Also,

Windows 2000 Server supports hosting of at most one DFS namespace. Hence, applications could
potentially handle version differences by using the returned version information.

<40> Section 3.1.4.1.2: A Windows NT Server 4.0 can host at most one DFS namespace. Windows
Server 2003, except for Windows Server 2003 Standard Edition, supports hosting of more than one
DFS namespace per server. In default configurations, Windows Server 2003 Standard Edition
supports hosting of at most one DFS namespace per server.

<41> Section 3.1.4.1.2: Windows clients use the returned value to determine when to call

NetrDfsEnum versus NetrDfsEnumEx. For more information, see section 3.2.4.1.4.

<42> Section 3.1.4.1.2: Windows Server 2003 with SP1, Windows Server 2003 SP2, Windows
Server 2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2 support NetrDfsMove (Opnum 6).

<43> Section 3.1.4.1.3: Windows 2000 Server does not support a domain-based DFS namespace in
the NetrDfsAdd method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the

NetrDfsAdd2 method, as specified when the NetrDfsAdd method fails with
ERROR_NOT_SUPPORTED (0x00000032).

<44> Section 3.1.4.1.3: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 do not verify whether link targets exist.
Windows 2000 and Windows NT 4.0 do verify whether link targets exist unless
DFS_RESTORE_VOLUME is specified.

<45> Section 3.1.4.1.3: Windows 2000 and Windows NT 4.0 do use this test.

<46> Section 3.1.4.1.3: Windows 2000 Server requires that the DFS_ADD_VOLUME flags
parameter be specified when a new link is being created; Windows Server 2003, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 do not
require this.

154 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Windows servers check whether a folder or a file that has the same name as the link appears in the
object store under the root and take the following actions:

If no folder or file exists, create the link folder.

If an empty folder with the same name as the link exists, do not create a new link folder.

If a non-empty folder or a file with the same name as the link exists, rename the non-empty

folder or the file to DFS.GUIDLinkName, and create a new link folder. An example of a renamed
non-empty folder or file is DFS.cf13c05f-5c10-4879-9acb-04ced8f46c7aTemplates, where
cf13c05f-5c10-4879-9acb-04ced8f46c7a is the GUID and Templates is the LinkName.

Set the reparse point to the leaf folder of the link path. For example, if the link path is

HR\Documents, set the reparse point to the Documents folder.

<47> Section 3.1.4.1.3: The msDFS-Commentv2 field in the Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 metadata is updated with the
value that is passed on as input.

<48> Section 3.1.4.1.3: NetrDfsAdd in Windows 2000 Server supports only a stand-alone DFS
namespace. Windows 2000 Server returns ERROR_NOT_SUPPORTED (0x00000032) if NetrDfsAdd

is called on a domain-based DFS namespace.

<49> Section 3.1.4.1.3: In Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2, NetrDfsAdd supports both stand-alone and
domain-based DFS namespaces.

<50> Section 3.1.4.1.4: Windows 2000 Server does not support a domain-based DFS namespace in
the NetrDfsRemove method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the

NetrDfsRemove2 method, as previously specified when the NetrDfsRemove method fails with
ERROR_NOT_SUPPORTED (0x00000032).

<51> Section 3.1.4.1.4: This method does not support domain-based DFS namespaces in

Windows 2000 Server; NetrDfsRemove2 is used instead. Windows 2000 Server will return
ERROR_NOT_SUPPORTED (0x00000032) if NetrDfsRemove is called on a domain-based DFS
namespace.

<52> Section 3.1.4.1.4: In Windows Server 2003, the NetrDfsRemove method is functionally

equivalent to NetrDfsRemove2.

<53> Section 3.1.4.1.5: Windows 2000, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, and Windows Server 2012 R2 allow the target state of a root target or a link target to
be set to either DFS_STORAGE_STATE_ONLINE or DFS_STORAGE_STATE_OFFLINE. Windows
Server 2003 does not allow the target state of a root target to be set to
DFS_STORAGE_STATE_OFFLINE.

Windows 2000 Server does not support DFS_VOLUME_STATE_RESYNCHRONIZE for the State field
of DFS_INFO_101 for a Level parameter value of 101.

<54> Section 3.1.4.1.5: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
and Windows Server 2012 R2 allow setting the target state of a root target or a link target to either
DFS_STORAGE_STATE_ONLINE or DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does not
allow setting the target state of a root target to DFS_STORAGE_STATE_OFFLINE.

<55> Section 3.1.4.1.5: A Level value of 102 is not supported on Windows NT Server 4.0.

155 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Level parameter values 103-106 are not supported on Windows NT Server 4.0, Windows 2000
Server, or Windows Server 2003 RTM.

Level parameter values 107 and 150 are not supported in Windows NT Server 4.0, Windows 2000
Server, or Windows Server 2003.

<56> Section 3.1.4.1.5: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<57> Section 3.1.4.1.5: Windows 2000 Server does not support a domain-based DFS namespace in
the NetrDfsSetInfo method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the
NetrDfsSetInfo2 method, as previously specified when the NetrDfsSetInfo method fails with
ERROR_NOT_SUPPORTED (0x00000032).

<58> Section 3.1.4.1.5: The NetrDfsSetInfo method supports only the stand-alone DFS
namespace on Windows 2000 Server. NetrDfsSetInfo supports both stand-alone and domain-
based DFS namespaces on Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2. Level parameter values 103, 104, 105, and
106 are valid only on Windows Server 2003 with SP1, Windows Server 2003 SP2, Windows
Server 2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and

Windows Server 2012 R2. Level parameter values 107 and 150 are supported only on Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<59> Section 3.1.4.1.6: This level is supported only on Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<60> Section 3.1.4.1.6: Level 4 is not supported in Windows NT Server 4.0.

Levels 5, 6, and 7 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003 RTM. Level 7 is supported for domain-based DFS only. It is used to determine whether

the DFS metadata of the namespace has changed.

Level 50 and 150 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows

Server 2003.

<61> Section 3.1.4.1.6: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<62> Section 3.1.4.1.6: For a stand-alone namespace in Windows, metadata size is the sum of the
following:

Size of the name of all the keys in the namespace (all keys under the DFS root key in registry)

Size of the values under each key

Size of the data of each value

<63> Section 3.1.4.1.7: Level 4 is not supported in Windows NT Server 4.0.

Levels 5 and 6 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows

Server 2003 RTM.

Levels 8 and 9 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

Level 200 is not supported in Windows NT Server 4.0 and is only valid on a domain controller (DC).

156 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Level 300 is not supported in Windows NT Server 4.0, or Windows 2000 Server.

<64> Section 3.1.4.1.7: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<65> Section 3.1.4.1.7: On return, the DfsEnum's DfsInfoContainer member contains an array of

information structures specific to the Level requested by the caller. In Windows 2000 Server,
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2, the number of entries
to return in the enumeration is calculated by dividing PrefMaxLen by the size of the Level-specific
information structure, using integer division. If the result is zero, one entry is returned.

This calculation is performed on the server by using the native size of the specified information
structure on the server's architecture. As all of the Level-specific information structures contain
pointers, such as the DFS_INFO_1 EntryPath member, this condition has an important effect.

Because the size of a pointer on a 32-bit architecture differs as compared to a 64-bit architecture,
the returned number of entries may be higher or lower than that implied by the native architecture
of the client, depending on the native architecture of the server.

<66> Section 3.1.4.1.7: Windows servers use the ResumeHandle parameter as an index into the
collection of enumerable items. Due to intervening or concurrent updates, a resumed enumeration
may return non-unique or incomplete results.

<67> Section 3.1.4.1.7: This method is supported only by Windows NT Server 4.0, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<68> Section 3.1.4.1.7: The NetrDfsEnum method is used only with Windows 2000 Server
because there is no parameter to specify the name of a DFS namespace. In Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2, the DFS server can successfully process this
method if it is hosting only one DFS namespace root target.

<69> Section 3.1.4.1.8:

Windows Server 2003 with SP1, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2 do not allow the following:

The Unicode code points 0x0000 through 0x001F, 0x0022 ("), 0x002A (*), 0x002F (/), 0x003A

(:), 0x003C, (<), 0x003E (>), 0x003F (?), or 0x007C (|).

The relative path elements "." or "..".

<70> Section 3.1.4.1.8: Windows servers perform DFS link move operations atomically for

domainv1-based DFS namespaces. Move operations in stand-alone DFS namespaces and domainv2-
based DFS namespaces are not atomic.

<71> Section 3.1.4.1.8: If there is a conflict between an existing file and a pathname component in
the destination path or DFS link of a move operation, Windows servers rename the existing file by
appending a ".{GUID}" to the file name, where "{GUID}" is a newly generated GUID.

<72> Section 3.1.4.1.8: Windows servers remove intermediate directories in the pathname of a

source DFS link if they are empty.

<73> Section 3.1.4.1.8: This method is supported only on Windows Server 2003 with SP1, Windows
Server 2003 SP2, Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2.

<74> Section 3.1.4.1.9: This method is supported only on Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

157 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<75> Section 3.1.4.1.10: This method is supported only on Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<76> Section 3.1.4.1.10: Windows does not fail calls that specify reserved bits.

<77> Section 3.1.4.1.10: Windows does not support DFS_FORCE_REMOVE on member servers.

<78> Section 3.1.4.1.10: Windows removes local information related to the root.

<79> Section 3.1.4.1.11: This method is supported only on Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2.

<80> Section 3.1.4.2.1: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 ignore the DcName parameter.

<81> Section 3.1.4.2.1: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. On success in Windows 2000, the RPC call

returns a list of the remaining root targets of the DFS namespace .

To support down-level compatibility with Windows 2000, Windows clients issue a
NetrDfsSetDcAddress to each root target listed in ppRootList by specifying the name of the PDC
used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT
flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the
Timeout parameter.

<82> Section 3.1.4.2.1: This method is supported only by Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2.

<83> Section 3.1.4.2.1: This method supports both stand-alone DFS namespaces and domain-
based DFS namespaces in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2.

The DFS_RESTORE_VOLUME bit of the Flags parameter is used only with Windows 2000 Server.

Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 ignore the DcName and

ppRootList parameters.

To support down-level compatibility with Windows 2000 Server, Windows clients issue
NetrDfsSetDcAddress to each root target listed in ppRootList. NetrDfsSetDcAddress specifies
the name of the PDC that is used for the DcName parameter, and the NET_DFS_SETDC_INIT_PKT
and NET_DFS_SETDC_TIMEOUT flags for the Flags parameter. NetrDfsSetDcAddress also specifies
a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<84> Section 3.1.4.2.1: Windows NT Server 4.0 does not support this method.

<85> Section 3.1.4.2.1: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 do not verify whether link targets exist. Windows 2000 Server and Windows NT 4.0
do verify whether link targets exist, unless DFS_RESTORE_VOLUME is specified.

<86> Section 3.1.4.2.1: Windows 2000 Server and Windows NT 4.0 do use this test.

<87> Section 3.1.4.2.1: Windows 2000 Server requires that the DFS_ADD_VOLUME Flags
parameter be specified when creating a new link; Windows Server 2003, Windows Server 2008, and

Windows Server 2008 R2 do not.

Windows servers check whether a folder or a file that has the same name as the link appears in the
object store under the root and take the following actions:

158 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If no folder or file exists, create the link folder.

If an empty folder with the same name as the link exists, do not create a new link folder.

If a non-empty folder or a file with the same name as the link exists, rename the non-empty

folder or the file to DFS.GUIDLinkName, and create a new link folder. An example of a renamed
non-empty folder or file is DFS.cf13c05f-5c10-4879-9acb-04ced8f46c7aTemplates, where
cf13c05f-5c10-4879-9acb-04ced8f46c7a is the GUID and Templates is the LinkName.

Set the reparse point to the leaf folder of the link path. For example, if the link path is

HR\Documents, set the reparse point to the Documents folder.

<88> Section 3.1.4.2.2: Windows Server 2003, Windows Server 2008, and Windows

Server 2008 R2 ignore the DcName parameter.

<89> Section 3.1.4.2.2: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. In Windows 2000, a list of remaining root
targets of the DFS namespace is returned when the RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a
NetrDfsSetDcAddress to each root target listed in ppRootList by specifying the name of the PDC

used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT
flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the
Timeout parameter.

<90> Section 3.1.4.2.2: This method is supported only by Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2.

<91> Section 3.1.4.2.2: This method supports both stand-alone DFS namespaces and domain-
based DFS namespaces in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and

Windows Server 2008 R2.

The ppRootList parameter is not used in Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2.

To support down-level compatibility with Windows 2000 Server, Windows clients issue a
NetrDfsSetDcAddress to each root target listed in ppRootList by specifying the name of the PDC
used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT
flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the

Timeout parameter.

<92> Section 3.1.4.2.2: Windows NT Server 4.0 does not support this method.

<93> Section 3.1.4.2.3: While Windows 2000 Server can host at most one root target, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2 can host more than one root target on the same server. This precludes meaningful
use of the NetrDfsEnum method by Windows Server 2003 and Windows Server 2008 because

NetrDfsEnum does not have a parameter to specify the DFS namespace of interest. Hence, the
NetrDfsEnumEx method is used on Windows Server 2003 and Windows Server 2008.

<94> Section 3.1.4.2.3: Windows NT Server 4.0 does not support the NetrDfsEnumEx method.

<95> Section 3.1.4.2.3: Level 4 is not supported in Windows NT Server 4.0.

Levels 5 and 6 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

159 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Levels 8 and 9 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

Level 200 is not supported in Windows NT Server 4.0, and it is only valid on a domain controller
(DC).

Level 300 is not supported in Windows NT Server 4.0 or Windows 2000 Server.

<96> Section 3.1.4.2.3: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<97> Section 3.1.4.2.3: On return, the DfsEnum's DfsInfoContainer member contains an array of
information structures specific to the Level requested by the caller. In Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2, the number of entries to return in the enumeration is calculated by

dividing PrefMaxLen by the size of the Level-specific information structure, using integer division. If
the result is zero, one entry is returned.

This calculation is performed on the server by using the native size of the given information
structure on the server's architecture. As all of the Level specific information structures contain
pointers, such as the DFS_INFO_1 EntryPath member, this condition has an important effect.
Because the size of a pointer on a 32-bit architecture differs as compared to a 64-bit architecture,

the returned number of entries may be higher or lower than that implied by the native architecture
of the client, depending on the native architecture of the server.

<98> Section 3.1.4.2.3: Windows servers use the ResumeHandle parameter as an index into the
collection of enumerable items. Due to intervening or concurrent updates, a resumed enumeration
may return non-unique or incomplete results.

<99> Section 3.1.4.2.3: To be backward-compatible with the NetrDfsEnum method, in this case
the NetrDfsEnumEx method in Windows Server 2003, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 ignores the <ServerName> in
DfsEntryPath and returns the required information for the specified Level based on the namespace it
hosts.

The NetrDfsEnum method is used only with Windows 2000 Server because there is no parameter
to specify the name of a DFS namespace. In Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2, the DFS server can
successfully process this method if it is hosting only one DFS namespace root target.

<100> Section 3.1.4.2.4: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 ignore the DcName parameter.

<101> Section 3.1.4.2.4: Windows 2000, Windows Server 2008, and Windows Server 2008 R2
allow the target state of a root target or a link target to be set to either
DFS_STORAGE_STATE_ONLINE or to DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does
not allow the target state of a root target to be set to DFS_STORAGE_STATE_OFFLINE.

Windows 2000 Server does not support DFS_VOLUME_STATE_RESYNCHRONIZE for the State field
of DFS_INFO_101 for a Level parameter value of 101.

<102> Section 3.1.4.2.4: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 allows the target state of a root target or a link target to be set to either
DFS_STORAGE_STATE_ONLINE or to DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does
not allow the target state of a root target to be set to DFS_STORAGE_STATE_OFFLINE.

<103> Section 3.1.4.2.4: Level 102 is not supported in Windows NT Server 4.0.

160 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Levels 103-106 are not supported in Windows NT Server 4.0, Windows 2000 Server or Windows
Server 2003 RTM.

Levels 107 and 150 are not supported in Windows NT Server 4.0, Windows 2000 Server or Windows
Server 2003.

<104> Section 3.1.4.2.4: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<105> Section 3.1.4.2.4: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. In Windows 2000, a list of remaining root
targets of the DFS namespace is returned when the RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a
NetrDfsSetDcAddress to each root target listed in ppRootList by specifying the name of the PDC

used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT
flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the
Timeout parameter.

<106> Section 3.1.4.2.4: This method is supported only on Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2.

<107> Section 3.1.4.2.4: Windows 2000, Windows Server 2003, Windows Server 2008, and

Windows Server 2008 R2 support both stand-alone and domain-based DFS namespaces for
NetrDfsSetInfo2 (Opnum 22).

<108> Section 3.1.4.2.4: Windows NT Server 4.0 does not support this method.

<109> Section 3.1.4.3.1: Windows 2000, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 ignore this parameter and use the local
NetBIOS host name instead.

<110> Section 3.1.4.3.1: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2 ignore the ConfigDN parameter.

<111> Section 3.1.4.3.1: No information is returned through the ppRootList parameter on Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2.

To support down-level compatibility with Windows 2000 Server, Windows clients issue a
NetrDfsSetDcAddress (Opnum 17) method to each root target listed in ppRootList by specifying
the name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and

NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200
seconds or 2 hours) for the Timeout parameter.

Windows NT Server 4.0 does not support this method.

<112> Section 3.1.4.3.1: No information is returned through the ppRootList parameter on Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2. To support down-level compatibility with Windows 2000, Windows clients issue a

NetrDfsSetDcAddress (Opnum 17) method to each root target listed in ppRootList specifying the
name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and the
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200
seconds or 2 hours) for the Timeout parameter. Windows NT 4.0 does not support this method.

<113> Section 3.1.4.3.2: Windows NT Server 4.0 does not support the NetrDfsRemoveFtRoot
method.

%5bMS-GLOS%5d.pdf

161 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<114> Section 3.1.4.3.2: Windows does not fail calls that specify reserved bits.

<115> Section 3.1.4.3.2: The ppRootList parameter is not referenced on Windows Server 2003,
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012
R2. On Windows 2000, a list of remaining root targets of the DFS namespace is returned when the

RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a
NetrDfsSetDcAddress (Opnum 17) to each root target listed in ppRootList by specifying the
name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200
seconds or 2 hours) for the Timeout parameter.

<116> Section 3.1.4.3.2: Windows does not support DFS_FORCE_REMOVE on member servers.

<117> Section 3.1.4.3.2: Windows does remove local information related to the root.

<118> Section 3.1.4.3.2: Windows servers do not remove the object of a domain-based DFS

namespace if the last DFS root target is being removed. Windows clients remove the object of the
DFS namespace on successful return from this method.

<119> Section 3.1.4.4.1: The NetrDfsAddStdRoot (Opnum 12) method can also be used for
clustered DFS with Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2.

<120> Section 3.1.4.4.1: Windows NT Server 4.0 does not support this method.

<121> Section 3.1.4.4.1: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 return this error code for the described condition.

<122> Section 3.1.4.4.1: Windows 2000, Windows Server 2012, and Windows Server 2012 R2
return this error code for the described condition.

<123> Section 3.1.4.4.2: Windows NT Server 4.0 does not support the NetrDfsRemoveStdRoot

method.

<124> Section 3.1.4.4.3: The NetrDfsAddStdRootForced method is used to create a clustered
DFS namespace in Windows 2000 Server. This call allows an offline share to host the DFS root.

<125> Section 3.1.4.4.3: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 do not support the
NetrDfsAddStdRootForced method. Use the NetrDfsAddStdRoot (Opnum 12) method instead.

<126> Section 3.1.4.4.3: Windows NT Server 4.0 does not support the

NetrDfsAddStdRootForced (Opnum 15) method.

<127> Section 3.1.4.5.1: Windows NT Server 4.0 does not support the NetrDfsGetDcAddress
method.

<128> Section 3.1.4.5.1: Windows Server 2003, Windows Server 2008, and Windows

Server 2008 R2 ignore the ServerName parameter.

<129> Section 3.1.4.5.1: Windows clients ignore the value returned in the DcName parameter;

Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 return a blank name.

<130> Section 3.1.4.5.1: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 always return FALSE in the IsRoot parameter. While Windows Server 2003 Standard

162 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Edition supports the ability to host only one DFS namespace, it returns FALSE in the IsRoot
parameter even when it is hosting a DFS namespace.

The client-side wrapper of the NetrDfsAddFtRoot (Opnum 10) RPC method in Windows 2000
Server, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, and Windows

Server 2008 R2 uses the NetrDfsGetDcAddress method to determine whether the server to which
the RPC is to be issued is already hosting a DFS namespace. If the value returned in the IsRoot
parameter is TRUE, the NetrDfsAddFtRoot () method fails at the client. This is meant for
Windows 2000 Server, which supports the ability to host at most one DFS namespace. This is why
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 always return FALSE for
the IsRoot parameter.

<131> Section 3.1.4.5.1: In Windows 2000 Server, the default time-out value is 2 hours. This value

can be overridden by calling NetrDfsSetDcAddress (Opnum 17).

<132> Section 3.1.4.5.1: This method is supported only by Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2.

<133> Section 3.1.4.5.2: Windows NT Server 4.0 does not support the NetrDfsSetDcAddress
method.

<134> Section 3.1.4.5.2: Windows does not fail the call if reserved bits are specified.

<135> Section 3.1.4.5.2: Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2 implement it as a method with no effect that returns ERROR_SUCCESS. Windows
Server 2012 and Windows Server 2012 R2 do not implement this method.

<136> Section 3.1.4.5.2: To support down-level compatibility with Windows 2000 Server, Windows
clients issue a NetrDfsSetDcAddress (Opnum 17) to each DFS root target returned in the
ppRootList parameter from an invocation of NetrDfsAdd2 (Opnum 19), NetrDfsRemove2
(Opnum 20), NetrDfsSetInfo2 (Opnum 22), NetrDfsAddFtRoot (Opnum 10), or

NetrDfsRemoveFtRoot (Opnum 11) methods. NetrDfsSetDcAddress (Opnum 17) specifies
the name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and the
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200

seconds or 2 hours) for the Timeout parameter.

<137> Section 3.2.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 clients create a separate
binding for every method invocation.

<138> Section 3.2.4.1.1: Windows 2000 Server does not support a domain-based DFS namespace
in the NetrDfsAdd method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the
NetrDfsAdd2 method, as specified when the NetrDfsAdd method fails with
ERROR_NOT_SUPPORTED (0x00000032).

<139> Section 3.2.4.1.2: Windows 2000 Server does not support a domain-based DFS namespace

in the NetrDfsRemove method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the
NetrDfsRemove2 method, as previously specified, when the NetrDfsRemove method fails with

ERROR_NOT_SUPPORTED (0x00000032).

<140> Section 3.2.4.1.3: Windows 2000 Server does not support a domain-based DFS namespace
in the NetrDfsSetInfo method. To work around this behavior, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 clients invoke the

NetrDfsSetInfo2 method, as previously specified when the NetrDfsSetInfo method fails with
ERROR_NOT_SUPPORTED (0x00000032).

163 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

<141> Section 3.2.4.1.4: For level values other than 200, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, and Windows Server 2012 R2 clients first call the
NetrDfsManagerGetVersion method. If the returned version value is 0x00000004 or greater, the

client calls the NetrDfsEnumEx method. If the returned version value is less than 0x00000004, the
client calls the NetrDfsEnum method. For level 200, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2 clients always call the NetrDfsEnumEx
method on the PDC.

<142> Section 3.2.4.1.4: The Windows 2000 Server client does not call either NetrDfsEnum or
NetrDfsEnumEx for level 200; rather, it determines the list of domain-based DFS namespaces

through an LDAP query directly on the DFS configuration container.

<143> Section 3.2.4.1.4: Windows clients rely on human operators to detect inconsistent results in
displayed output and to request a new enumeration.

<144> Section 3.2.4.3.1: Only Windows 2000 Server returns other existing DFS root targets of the

DFS namespace in the ppRootList parameter. Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 do not return any

information in the ppRootList parameter.

<145> Section 3.2.4.3.1: Windows clients fail the NetrDfsAddFtRoot operation on the client if an IP
address is given as the ServerName parameter. This is because Windows clients attempt to use the
ServerName parameter as the security principal when updating the ACL of the object of a domain-
based DFS namespace. Because AD does not permit an IP address to be used as a security
principal, a Windows client will fail on the ACL update before sending the NetrDfsAddFtRoot request
message.

<146> Section 3.2.4.3.2: Windows NT Server 4.0 does not support the NetrDfsRemoveFtRoot
method.

<147> Section 3.2.4.3.2: Only Windows 2000 Server returns other existing DFS root targets of the
DFS namespace in the ppRootList parameter. Windows Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 do not return any
information in the ppRootList parameter.

<148> Section 3.3.4: Windows allows DCs to be DFS root targets.

<149> Section 3.3.4.2.1: Level parameter value 200 is not supported in Windows NT 4.0 and only
valid on a domain controller (DC).

<150> Section 3.3.4.3.2: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 do not support this method and will fail with
ERROR_NOT_SUPPORTED (0x00000032).

On a successful call to the NetrDfsAddFtRoot or NetrDfsRemoveFtRoot methods, Windows clients

call the NetrDfsFlushFtTable method on the PDC of the domain of the DFS root target server. For
more information, see sections 3.2.4.3.1 and 3.2.4.3.2.

This method is not supported on Windows NT Server 4.0.

<151> Section 5.1: Windows servers use the RPC Protocol to retrieve the identity of the caller, as
specified in [MS-RPCE] section 3.3.3.4.3. The server uses the underlying Windows security
subsystem to determine the permissions for the caller. If the caller does not have the required
permissions to execute a specific method, the method call fails with ERROR_ACCESS_DENIED

(0x00000005).

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf

164 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Appendix C: XML Schema of XML Document Stored in msDFS-

TargetListv2 Attribute

For more information about XML and XML schemas, see [XML] and [XMLSCHEMA], respectively.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.microsoft.com/dfs/2007/03"

 targetNamespace="http://schemas.microsoft.com/dfs/2007/03"

 elementFormDefault="qualified">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Schema document for DFS targets (root or link) for use by the

 domainV2 code in the DFS service. An XML document conforming

 to this schema is stored as the value of an attribute of the

 LDAP entry corresponding to a DFS namespace root or DFS link

 and contains the information on the targets of that DFS

 namespace root or DFS link.

 Conventions:

 - There is a target namespace for this schema document.

 This means instances instances must also declare the same

 namespace for them to be validated using this schema.

 - The elementFormDefault attribute is set to qualified so

 that an instance conforming to this schema can set this

 schema document's namespace as its default namespace and

 have all all unqualified element-type names be considered

 part of the default namespace.

 - Data are in elements, metadata in attributes.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:attributeGroup name="VersionGroup">

 <xsd:attribute name="majorVersion" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:unsignedByte">

 <xsd:minInclusive value="2"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="minorVersion" type="xsd:unsignedByte"

 use="required"/>

 </xsd:attributeGroup>

 <xsd:simpleType name="TargetStateType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Type used for specifying the state of a target.

 This is global to support extension or redefinition.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:enumeration value="online"/>

 <xsd:enumeration value="offline"/>

 </xsd:restriction>

 </xsd:simpleType>

http://go.microsoft.com/fwlink/?LinkId=90598
http://go.microsoft.com/fwlink/?LinkId=90603

165 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 <xsd:simpleType name="TargetPriorityClassType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Type used for specifying the priority class of a target.

 This is global to support extension or redefinition.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:enumeration value="siteCostNormal"/>

 <xsd:enumeration value="globalHigh"/>

 <xsd:enumeration value="siteCostHigh"/>

 <xsd:enumeration value="siteCostLow"/>

 <xsd:enumeration value="globalLow"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="TargetPriorityRankType">

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 Type used for specifying the priority rank of a target.

 This is global to support extension or redefinition.

 </xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:unsignedByte">

 <xsd:maxInclusive value="31"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name="targets">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="target" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:annotation>

 <xsd:documentation xml:lang="en">

 This is an anonymous complex type with simple content:

 i.e. it allows character data only with no children.

 Of course, attributes are allowed.

 A pattern restriction is used to ensure a UNC path.

 Pathname components cannot have embedded forward

 slashes (/).

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:restriction base="xsd:anyType">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern

 value="\\\\([^/\\])+(\\([^/\\])+)+(\\)?"/>

 </xsd:restriction>

 </xsd:simpleType>

166 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

 <xsd:attribute name="state" type="TargetStateType"

 default="online"/>

 <xsd:attribute name="priorityClass"

 type="TargetPriorityClassType"

 default="siteCostNormal"/>

 <xsd:attribute name="priorityRank"

 type="TargetPriorityRankType"

 default="0"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attributeGroup ref="VersionGroup"/>

 <xsd:attribute name="targetCount" use="required">

 <xsd:simpleType>

 <xsd:restriction base="xsd:unsignedInt">

 <xsd:minInclusive value="1"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="totalStringLengthInBytes"

 type="xsd:unsignedInt" use="required">

 <xsd:annotation>

 <xsd:documentation>

 To permit a single-pass parsing, this attribute contains

 the length (in bytes) of all strings (including NULL

 termination) that will be retained in that form in an

 in-memory representation.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

<!-- Editor settings. DO NOT delete -->

<!-- vi: set ts=2 sw=2 filetype=xml: -->

167 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

168 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

10 Index

A

Abstract data model
client 113
domain controller 116
server 62

Adding a root target to an existing domainv2-based
DFS namespace 126

Applicability 15

B

Basic methods
client 114
server 66

C

Capability negotiation 15
Change tracking 167
Client

abstract data model 113
initialization 113
local events 116
message processing 113
sequencing rules 113
timer events 116
timers 113

Conventions 16
Creating a new domainv2-Based DFS namespace

124

D

Data model - abstract
client 113
domain controller 116
server 62

Data types 18
DFS configuration container 45
DFS link 17
DFS link target 18
DFS metadata of a domainv1-based DFS

namespace example 132
DFS namespace object 47
DFS root 17
DFS root target 17
DFS target 18
DFS_INFO_1 structure 27
DFS_INFO_1_CONTAINER structure 41
DFS_INFO_100 structure 40
DFS_INFO_101 structure 34
DFS_INFO_102 structure 36
DFS_INFO_103 structure 36
DFS_INFO_104 structure 37
DFS_INFO_105 structure 37
DFS_INFO_106 structure 38
DFS_INFO_107 structure 38
DFS_INFO_150 structure 40

DFS_INFO_2 structure 27
DFS_INFO_2_CONTAINER structure 41
DFS_INFO_200 structure 40
DFS_INFO_200_CONTAINER structure 43
DFS_INFO_3 structure 28
DFS_INFO_3_CONTAINER structure 42
DFS_INFO_300 structure 41
DFS_INFO_300_CONTAINER structure 44
DFS_INFO_4 structure 29
DFS_INFO_4_CONTAINER structure 42
DFS_INFO_5 structure 30
DFS_INFO_5_CONTAINER structure 42
DFS_INFO_50 structure 34
DFS_INFO_6 structure 31
DFS_INFO_6_CONTAINER structure 43
DFS_INFO_7 structure 32
DFS_INFO_8 structure 32
DFS_INFO_8_CONTAINER structure 43
DFS_INFO_9 structure 33
DFS_INFO_9_CONTAINER structure 43
DFS_INFO_ENUM_STRUCT structure 20
DFS_NAMESPACE_VERSION_ORIGIN enumeration

25
DFS_STORAGE_INFO structure 22
DFS_STORAGE_INFO_1 structure 22
DFS_SUPPORTED_NAMESPACE_VERSION_INFO

structure 26
DFS_TARGET_PRIORITY structure 23
DFS_TARGET_PRIORITY_CLASS enumeration 23
DFSM_ROOT_LIST structure 24
DFSM_ROOT_LIST_ENTRY structure 25
DFSNamespaceElementBLOB packet 48
DFSNamespaceRootBLOBorDFSNamespaceLinkBLO

B packet 49
DFSRootOrLinkIDBLOB packet 50
DFSTargetListBLOB packet 53
Directory service schema elements 44
Domain controller

abstract data model 116
initialization 116
local events 118
message processing 116
overview 116
sequencing rules 116

timer events 118
timers 116

domain name 17
Domain-based DFS namespace example 130
Domain-based namespace methods - server 111
Domainv1-Based DFS Namespace example

adding a new link to 122
adding a root target to existing 120
creating 119

Domainv2-Based DFS namespace example - adding
a new link to 128

E

Elements - directory service schema 44

169 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Enum Info data types 41
Examples 119

adding a new link to a Domain-Based DFS
Namespace example 122

adding a new link to a Domainv2-Based DFS
namespace example 128

adding a root target to an existing Domainv1-
Based DFS namespace example 120

adding a root target to an existing domainv2-
based DFS namespace 126

creating a new Domainv1-Based DFS Namespace
example 119

creating a new domainv2-Based DFS namespace
124

DFS Metadata of a domainv1-based DFS
namespace example 132

enumerating DFS Links in a domain-based DFS
namespace example 130

Extended methods
client 114
domain controller 117
server 93

F

Fields - vendor-extensible 15
Full IDL 140

G

Get Info data types 27
Glossary 8

H

Host name 16

I

IDL 140
Implementer - security considerations 139
Index of security parameters 139
Informative references 11
Initialization

client 113
domain controller 116
server 63

Introduction 8

L

LDAP entries - domain-based DFS namespace 45
LDAP entry

domainv2-based deleted link 60
domainv2-based DFS link 58
domainv2-based DFS namespace 57
domainv2-based DFS namespace anchor 57

Local events
client 116
domain controller 118
server 113

LPDFS_INFO_8 32

LPDFS_INFO_8_CONTAINER 43
LPDFS_INFO_9 33
LPDFS_INFO_9_CONTAINER 43
LPDFS_STORAGE_INFO_1 22

M

Message processing
client 113
domain controller 116

Messages
syntax 16
transport 16

msDFS-TargetListv2 attribute 164

N

NetrDfsAdd 114
NetrDfsAdd method 68
NetrDfsAdd2 114
NetrDfsAdd2 method 93
NetrDfsAddFtRoot 115
NetrDfsAddFtRoot method 103
NetrDfsAddRootTarget method 87
NetrDfsAddStdRoot method 107
NetrDfsAddStdRootForced method 109
NetrDfsEnum 114
NetrDfsEnum method 81
NetrDfsEnumEx (section 3.2.4.1.4 114, section

3.3.4.2.1 117)
NetrDfsEnumEx method 97
NetrDfsFlushFtTable method 117
NetrDfsGetDcAddress method 111
NetrDfsGetInfo method 77
NetrDfsGetSupportedNamespaceVersion method 91
NetrDfsManagerGetVersion method 67
NetrDfsManagerInitialize method 66
NetrDfsMove method 84
NetrDfsRemove 114
NetrDfsRemove method 71
NetrDfsRemove2 115
NetrDfsRemove2 method 95
NetrDfsRemoveFtRoot (section 3.2.4.3.2 115,

section 3.3.4.3.1 117)
NetrDfsRemoveFtRoot method 104
NetrDfsRemoveRootTarget method 89
NetrDfsRemoveStdRoot method 109
NetrDfsSetDcAddress method 112
NetrDfsSetInfo 114
NetrDfsSetInfo method 73
NetrDfsSetInfo2 115
NetrDfsSetInfo2 method 100
Normative references 10

O

Overview (synopsis) 11

P

Parameters - security index 139
PDFS_STORAGE_INFO_1 22

170 / 170

[MS-DFSNM] — v20131025
 Distributed File System (DFS): Namespace Management Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PDFS_SUPPORTED_NAMESPACE_VERSION_INFO 26
pKT packet 47
Preconditions 15
Prerequisites 15
Product behavior 149

R

References
informative 11
normative 10

Relationship to other protocols 14
Root target methods

client 115
domain controller 117
server 103

S

schema 57
Schema elements - directory service 44
Security

implementer considerations 139
parameter index 139

Sequencing rules
client 113
domain controller 116

Server
abstract data model 62
initialization 63
local events 113
timer events 113
timers 63

Set Info data types 34
Share name 16
SiteEntryBLOB packet 56
SiteInformationBLOB packet 55
SiteNameInfoBLOB packet 56
Special Info data types 39
Stand-alone namespace methods - server 107
Standards assignments 15
Syntax

message 16

T

TargetEntryBLOB packet 53
Timer events

client 116
domain controller 118
server 113

Timers
client 113
domain controller 116
server 63

Tracking changes 167
Transport - message 16

U

UNC path 17

V

Vendor-extensible fields 15
Versioning 15

X

XML Schema of XML document stored in msDFS-
TargetListv2 attribute 164

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Common Conventions
	2.2.1.1 Host Name
	2.2.1.2 Share Name
	2.2.1.3 Domain Name
	2.2.1.4 UNC Path
	2.2.1.5 DFS Root
	2.2.1.6 DFS Link
	2.2.1.7 DFS Root Target
	2.2.1.8 DFS Link Target
	2.2.1.9 DFS Target

	2.2.2 Common Data Types
	2.2.2.1 NET_API_STATUS
	2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE
	2.2.2.3 DFS_INFO_STRUCT
	2.2.2.4 DFS_INFO_ENUM_STRUCT
	2.2.2.5 DFS_STORAGE_INFO
	2.2.2.6 DFS_STORAGE_INFO_1
	2.2.2.7 DFS_TARGET_PRIORITY
	2.2.2.8 DFS_TARGET_PRIORITY_CLASS
	2.2.2.9 DFSM_ROOT_LIST
	2.2.2.10 DFSM_ROOT_LIST_ENTRY
	2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN
	2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO
	2.2.2.13 DFS Volume State

	2.2.3 Get Info Data Types
	2.2.3.1 DFS_INFO_1
	2.2.3.2 DFS_INFO_2
	2.2.3.3 DFS_INFO_3
	2.2.3.4 DFS_INFO_4
	2.2.3.5 DFS_INFO_5
	2.2.3.6 DFS_INFO_6
	2.2.3.7 DFS_INFO_7
	2.2.3.8 DFS_INFO_8
	2.2.3.9 DFS_INFO_9
	2.2.3.10 DFS_INFO_50

	2.2.4 Set Info Data Types
	2.2.4.1 DFS_INFO_101
	2.2.4.2 DFS_INFO_102
	2.2.4.3 DFS_INFO_103
	2.2.4.4 DFS_INFO_104
	2.2.4.5 DFS_INFO_105
	2.2.4.6 DFS_INFO_106
	2.2.4.7 DFS_INFO_107

	2.2.5 Special Info Data Types
	2.2.5.1 DFS_INFO_100
	2.2.5.2 DFS_INFO_150
	2.2.5.3 DFS_INFO_200
	2.2.5.4 DFS_INFO_300

	2.2.6 Enum Info Data Types
	2.2.6.1 DFS_INFO_1_CONTAINER
	2.2.6.2 DFS_INFO_2_CONTAINER
	2.2.6.3 DFS_INFO_3_CONTAINER
	2.2.6.4 DFS_INFO_4_CONTAINER
	2.2.6.5 DFS_INFO_5_CONTAINER
	2.2.6.6 DFS_INFO_6_CONTAINER
	2.2.6.7 DFS_INFO_8_CONTAINER
	2.2.6.8 DFS_INFO_9_CONTAINER
	2.2.6.9 DFS_INFO_200_CONTAINER
	2.2.6.10 DFS_INFO_300_CONTAINER

	2.3 Directory Service Schema Elements
	2.3.1 DFS Configuration Container
	2.3.2 LDAP Entries for Domain-Based DFS Namespaces
	2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace
	2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace)
	2.3.3.1.1 DFSNamespaceElementBLOB
	2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB
	2.3.3.1.1.2 DFSRootOrLinkIDBLOB
	2.3.3.1.1.3 DFSTargetListBLOB
	2.3.3.1.1.3.1 TargetEntryBLOB

	2.3.3.1.1.4 SiteInformationBLOB
	2.3.3.1.1.4.1 SiteEntryBLOB
	2.3.3.1.1.4.1.1 SiteNameInfoBLOB

	2.3.4 Schema for Domainv2-Based DFS Namespace
	2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor
	2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace
	2.3.4.3 LDAP Entry for Domainv2-Based DFS Link
	2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global
	3.1.1.2 Per Namespace
	3.1.1.3 Per NamespaceElement
	3.1.1.4 Per TargetsList
	3.1.1.5 Per Target

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Basic Methods
	3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14)
	3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0)
	3.1.4.1.3 NetrDfsAdd (Opnum 1)
	3.1.4.1.4 NetrDfsRemove (Opnum 2)
	3.1.4.1.5 NetrDfsSetInfo (Opnum 3)
	3.1.4.1.6 NetrDfsGetInfo (Opnum 4)
	3.1.4.1.7 NetrDfsEnum (Opnum 5)
	3.1.4.1.8 NetrDfsMove (Opnum 6)
	3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23)
	3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24)
	3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25)

	3.1.4.2 Extended Methods
	3.1.4.2.1 NetrDfsAdd2 (Opnum 19)
	3.1.4.2.2 NetrDfsRemove2 (Opnum 20)
	3.1.4.2.3 NetrDfsEnumEx (Opnum 21)
	3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22)

	3.1.4.3 Root Target Methods
	3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10)
	3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)
	3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18)

	3.1.4.4 Stand-Alone Namespace Methods
	3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12)
	3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13)
	3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15)

	3.1.4.5 Domain-Based Namespace Methods
	3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16)
	3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Basic Methods
	3.2.4.1.1 NetrDfsAdd (Opnum 1)
	3.2.4.1.2 NetrDfsRemove (Opnum 2)
	3.2.4.1.3 NetrDfsSetInfo (Opnum 3)
	3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21)

	3.2.4.2 Extended Methods
	3.2.4.2.1 NetrDfsAdd2 (Opnum 19)
	3.2.4.2.2 NetrDfsRemove2 (Opnum 20)
	3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22)

	3.2.4.3 Root Target Methods
	3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10)
	3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Domain Controller Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Basic Methods
	3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24)

	3.3.4.2 Extended Methods
	3.3.4.2.1 NetrDfsEnumEx (Opnum 21)

	3.3.4.3 Root Target Methods
	3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11)
	3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	4 Protocol Examples
	4.1 Creating a New Domainv1-Based DFS Namespace
	4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace
	4.3 Adding a New Link to a Domain-Based DFS Namespace
	4.4 Creating a New Domainv2-Based DFS Namespace
	4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace
	4.6 Adding a New Link to a Domainv2-Based DFS Namespace
	4.7 Enumerating DFS Links in a Domain-Based DFS Namespace
	4.8 DFS Metadata of a Domainv1-Based DFS Namespace

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Appendix C: XML Schema of XML Document Stored in msDFS-TargetListv2 Attribute
	9 Change Tracking
	10 Index

