
[MS-CSSP]: Credential Security Support Provider (CredSSP) Protocol

This topic lists the Errata found in the MS-CSSP document since it was last
published. Since this topic is updated frequently, we recommend that you

subscribe to these RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications documentation
referenced.

RSS

Atom

Errata below are for Protocol Document Version V15.0 – 2017/12/01.

Errata Published* Description

2018/03/13 In Section 1.7, Versioning and Capability Negotiation, the sentence stating that only
version 2.0 of the protocol is available has been removed.

Changed from:

…

● Protocol versions: The CredSSP Protocol supports versioning (the version field of the
TSRequest structure, section 2.2.1); however, version 2.0 is currently the only
available version.

Changed to:

…

● Protocol versions: The CredSSP Protocol supports versioning (the version field of the
TSRequest structure, section 2.2.1).

In Section 2.2.1, TSRequest, the section has been modified to specify that in version 5
and higher of the protocol, the pubKeyAuth field stores a computed hash of the public
key, and to add the clientNonce field for version 5 to provide sufficient entropy during
hash computation.

Changed from:

The TSRequest structure is the top-most structure used by the CredSSP client and
CredSSP server. It contains the SPNEGO tokens or MAY contain Kerberos (1)/NTLM
messages that are passed between the client and server, and either the public key
authentication messages that are used to bind to the TLS session or the client
credentials that are delegated to the server. The TSRequest message is always sent
over the TLS-encrypted channel between the client and server in a CredSSP Protocol
exchange (see step 1 in section 3.1.5).

 TSRequest ::= SEQUENCE {

 version [0] INTEGER,

 negoTokens [1] NegoData OPTIONAL,

 authInfo [2] OCTET STRING OPTIONAL,

 pubKeyAuth [3] OCTET STRING OPTIONAL,

 errorCode [4] INTEGER OPTIONAL

 }

version: This field specifies the supported version of the CredSSP Protocol. Valid values
for this field are 2 and 3. If the version received is greater than the implementation
understands, treat the peer as one that is compatible with the version of the CredSSP
Protocol that the implementation understands.

negoTokens: A NegoData structure, as defined in section 2.2.1.1, that contains the
SPNEGO tokens or Kerberos (1)/NTLM messages that are passed between the client
and server.

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
https://msdn.microsoft.com/en-us/library/cc226764.aspx

Errata Published* Description

authInfo: A TSCredentials structure, as defined in section 2.2.1.2, that contains the
user's credentials that are delegated to the server. The authInfo field MUST be
encrypted under the encryption key that is negotiated under the SPNEGO package. The
authInfo field carries the message signature and then the encrypted data.

pubKeyAuth: This field is used to assure that the public key that is used by the server
during the TLS handshake belongs to the target server and not to a man-in-the-
middle. This TLS session-binding is specified in section 3.1.5. After the client completes
the SPNEGO phase of the CredSSP Protocol, it uses GSS_WrapEx() for the negotiated
protocol to encrypt the server's public key. The pubKeyAuth field carries the message
signature and then the encrypted public key to the server. In response, the server
uses the pubKeyAuth field to transmit to the client a modified version of the public key
(as specified in section 3.1.5) that is encrypted under the encryption key that is
negotiated under SPNEGO.

errorCode: If the negotiated protocol version is 3 and the SPNEGO exchange fails on
the server, this field SHOULD be used to send the NTSTATUS failure code ([MS-
ERREF] section 2.3) to the client so that it will know what failed and be able to display
a descriptive error to the user.

Changed to:

The TSRequest structure is the top-most structure used by the CredSSP client and
CredSSP server. It contains the SPNEGO tokens and MAY contain Kerberos (1)/NTLM
messages that are passed between the client and server, and either the public key
authentication messages that are used to bind to the TLS session or the client
credentials that are delegated to the server. The TSRequest message is always sent
over the TLS-encrypted channel between the client and server in a CredSSP Protocol
exchange (see step 1 in section 3.1.5).

 TSRequest ::= SEQUENCE {

 version [0] INTEGER,

 negoTokens [1] NegoData OPTIONAL,

 authInfo [2] OCTET STRING OPTIONAL,

 pubKeyAuth [3] OCTET STRING OPTIONAL,

 errorCode [4] INTEGER OPTIONAL,

 clientNonce [5] OCTET STRING OPTIONAL

 }

version: This field specifies the supported version of the CredSSP Protocol. Valid values
for this field are 2, 3, 4, 5, and 6. If the version received is greater than the
implementation understands, treat the peer as one that is compatible with the version
of the CredSSP Protocol that the implementation understands.

negoTokens: A NegoData structure, as defined in section 2.2.1.1, that contains the
SPNEGO tokens or Kerberos (1)/NTLM messages that are passed between the client
and server.

authInfo: A TSCredentials structure, as defined in section 2.2.1.2, that contains the
user's credentials that are delegated to the server. The authInfo field MUST be
encrypted under the encryption key that is negotiated under the SPNEGO package. The
authInfo field carries the message signature and then the encrypted data.

pubKeyAuth: This field is used to assure that the public key that is used by the server
during the TLS handshake belongs to the target server and not to a man-in-the-
middle. This TLS session-binding is specified in section 3.1.5. After the client completes
the SPNEGO phase of the CredSSP Protocol, it uses GSS_WrapEx() for the negotiated
protocol to encrypt the server's public key. With version 4 or lower, the pubKeyAuth
field carries the message signature and then the encrypted public key to the server. In
response, the server uses the pubKeyAuth field to transmit to the client a modified
version of the public key (as specified in section 3.1.5) that is encrypted under the
encryption key that is negotiated under SPNEGO. In version 5 or higher, this field
stores a computed hash of the public key.

errorCode: If the negotiated protocol version is 3, 4, or 6, and the SPNEGO exchange
fails on the server, this field SHOULD be used to send the NTSTATUS failure code

Errata Published* Description

([MS-ERREF] section 2.3) to the client so that it knows what failed and be able to
display a descriptive error to the user.

clientNonce: A 32-byte array of cryptographically random bytes used to provide
sufficient entropy during hash computation. This value is only used in version 5 or
higher of this protocol.

In Section 3.1.5, Processing Events, the processing rules for steps 3 through 5 have
been changed to accommodate changes in versions 5 and 6 of the protocol.

Changed from:

…

2. Over the encrypted TLS channel, the SPNEGO, Kerberos (1), or NTLM handshake
between the client and server completes authentication and establishes an encryption
key that is used by the SPNEGO confidentiality services…

…

Note If the SPNEGO handshake fails on the server side and the client sent a version of
3 or greater, the server SHOULD send a TSRequest structure back to the client for
which the errorCode field is populated with an unsuccessful NTSTATUS code ([MS-
ERREF] section 2.3). The NTSTATUS code indicates the reason for the failure to the
client. If the client receives a TSRequest message with the errorCode present, it must
immediately fail with the provided status code and cease all further processing.

The client encrypts the public key it received from the server (contained in the X.509
certificate) in the TLS handshake from step 1, by using the confidentiality support of
the authentication protocol. The public key that is encrypted is the ASN.1-encoded
SubjectPublicKey sub-field of SubjectPublicKeyInfo from the X.509 certificate, as
specified in [RFC3280] section 4.1. The encrypted key is encapsulated in the
pubKeyAuth field of the TSRequest structure and is sent over the TLS channel to the
server.

Note During this phase of the protocol, the OPTIONAL authInfo field is omitted from
the TSRequest structure; the client MUST send its last SPNEGO token or Kerberos
(1)/NTLM message to the server in the negoTokens field (see step 2) along with the
encrypted public key in the pubKeyAuth field.

After the server receives the public key in step 3, it first verifies that it has the same
public key that it used as part of the TLS handshake in step 1. The server then adds 1
to the first byte representing the public key (the ASN.1 structure corresponding to the
SubjectPublicKey field, as described in step 3) and encrypts the binary result by using
the authentication protocol's encryption services. Due to the addition of 1 to the binary
data, and encryption of the data as a binary structure, the resulting value might not be
valid ASN.1-encoded values. The encrypted binary data is encapsulated in the
pubKeyAuth field of the TSRequest structure and is sent over the encrypted TLS

channel to the client.The addition of 1 to the first byte of the public key is performed
so that the client-generated pubKeyAuth message cannot be replayed back to the
client by an attacker.

Note During this phase of the protocol, the OPTIONAL authInfo and negoTokens fields
are omitted from the TSRequest structure.

3. After the client successfully verifies server authenticity by performing a binary
comparison of the data from step 4 to that of the data representing the public key
from the server's X.509 certificate (as specified in [RFC3280], section 4.1), it encrypts
the user's credentials (either password or smart card PIN) by using the authentication
protocol's encryption services. The resulting value is encapsulated in the authInfo field
of the TSRequest structure and sent over the encrypted TLS channel to the server.

The TSCredentials structure within the authInfo field of the TSRequest structure MUST
NOT contain more than one of the following structures: TSPasswordCreds,
TSSmartCardCreds, or TSRemoteGuardCreds structures.

Note During this phase of the protocol, the option pubKeyAuth and negoTokens fields
are omitted from the TSRequest structure.

Errata Published* Description

Note If the credentials were of type TSRemoteGuardCreds, the TLS channel continues
to be used for redirected authentication requests, as specified in [MS-RDPEAR].

Changed to:

…

2. Over the encrypted TLS channel, the SPNEGO, Kerberos (1), or NTLM
handshake between the client and server completes authentication and establishes an
encryption key that is used by the SPNEGO confidentiality services…

…

Note If the SPNEGO handshake fails on the server side and the client sent a version of
3 or greater, the server SHOULD send a TSRequest structure back to the client for
which the errorCode field is populated with an unsuccessful NTSTATUS code ([MS-
ERREF] section 2.3). The NTSTATUS code indicates the reason for the failure to the
client. If the client receives a TSRequest message with the errorCode present, it must
immediately fail with the provided status code and cease all further processing.

3. This step is version-dependent as follows:

Version 5 or 6

The client SHOULD generate a cryptographically random 32-byte value and set the
nonce field of the TSRequest structure to this value. It then computes a SHA256 hash
of the ASN.1 encoded SubjectPublicKey concatenated with the bytes of the well-known
string “CredSSP Client-To-Server Binding Hash” and the generated nonce. The hash is
then encrypted using the confidentiality support of the authentication protocol.

The process is defined as:

 Set ClientServerHashMagic to "CredSSP Client-To-Server Binding Hash"

 Set ClientServerHash to SHA256(UNICODE(ClientServerHashMagic), Nonce,
SubjectPublicKey)

 Set TSRequest.pubKeyAuth to Encrypt(ClientServerHash)

Note The hash MUST include the null terminator (\0) of the string.

Version 2, 3, 4:

The client encrypts the public key it received from the server (contained in the X.509
certificate) in the TLS handshake from step 1, by using the confidentiality support of
the authentication protocol. The public key that is encrypted is the ASN.1-encoded
SubjectPublicKey sub-field of SubjectPublicKeyInfo from the X.509 certificate, as
specified in [RFC3280] section 4.1.

All Versions:

The encrypted key is encapsulated in the pubKeyAuth field of the TSRequest structure
and is sent over the TLS channel to the server.

Note During this phase of the protocol, the OPTIONAL authInfo field is omitted from
the TSRequest structure; the client MUST send its last SPNEGO token or Kerberos

(1)/NTLM message to the server in the negoTokens field (see step 2) along with the
encrypted public key in the pubKeyAuth field.

4. This step is version-dependent as follows:

Version 5 and 6

After the server receives the TSRequest structure from step 3, it verifies the hash by
computing the hash using the Nonce field from the request and the ASN.1-encoded
public key used as part of the TLS handshake in step 1. If the hash matches, the
server generates its own SHA256 hash of the SubjectPublicKey concatenated with the
bytes of the well-known string "CredSSP Server-To-Client Binding Hash" and the
provided nonce, and encrypts the binary result using the authentication protocol's
encryption services.

The process is defined as:

 Set ServerClientHashMagic to "CredSSP Server-To-Client Binding Hash"

Errata Published* Description

 Set ServerClientHash to SHA256(UNICODE(ServerClientHashMagic), Nonce,
SubjectPublicKey)

 Set TSRequest.pubKeyAuth to Encrypt(ServerClientHash)

Note The hash MUST include the null terminator (\0) of the string.

Version 2, 3, and 4

After the server receives the public key in step 3, it first verifies that it has the same
public key that it used as part of the TLS handshake in step 1. The server then adds 1
to the first byte representing the public key (the ASN.1 structure corresponding to the
SubjectPublicKey field, as described in step 3) and encrypts the binary result by using
the authentication protocol's encryption services. Due to the addition of 1 to the binary
data, and encryption of the data as a binary structure, the resulting value might not be
valid ASN.1-encoded values. The addition of 1 to the first byte of the public key is
performed so that the client-generated pubKeyAuth message cannot be replayed back
to the client by an attacker.

All versions:

The encrypted binary data is encapsulated in the pubKeyAuth field of the TSRequest
structure and is sent over the encrypted TLS channel to the client.

Note The server SHOULD set the errorCode to STATUS_NOT_SUPPORTED if the server
does not support the requested version.

Note During this phase of the protocol, the OPTIONAL authInfo and negoTokens fields
are omitted from the TSRequest structure.

5. The client validates the server authenticity by generating and comparing the
server hash if using version 5, or higher. Otherwise, it performs a binary comparison of
the data from step 4 to that of the data representing the public key from the server's
X.509 certificate (as specified in [RFC3280], section 4.1). Once it successfully validates
the server authenticity, it encrypts the user's credentials (either password or smart
card PIN) by using the authentication protocol's encryption services. The resulting
value is encapsulated in the authInfo field of the TSRequest structure and sent over
the encrypted TLS channel to the server.

The TSCredentials structure within the authInfo field of the TSRequest structure MUST
NOT contain more than one of the following structures: TSPasswordCreds,
TSSmartCardCreds, or TSRemoteGuardCreds structures.

Note During this phase of the protocol, the OPTIONAL pubKeyAuth and negoTokens
fields are omitted from the TSRequest structure.

Note If the credentials were of type TSRemoteGuardCreds, the TLS channel continues
to be used for redirected authentication requests, as specified in [MS-RDPEAR].

In Section 4, Protocol Examples, Figure 1 (CredSSP negotiation sequence using
SPNEGO) has been updated.

Changed from:

Errata Published* Description

Figure 1: CredSSP negotiation sequence using SPNEGO

Changed to:

Figure 1: CredSSP negotiation sequence using SPNEGO

*Date format: YYYY/MM/DD

	[MS-CSSP]: Credential Security Support Provider (CredSSP) Protocol

