
1 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS-CIFS]:

Common Internet File System (CIFS) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to Microsoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader either is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

9/25/2009 1.0 Major First Release.

11/6/2009 2.0 Major Updated and revised the technical content.

12/18/2009 3.0 Major Updated and revised the technical content.

1/29/2010 4.0 Major Updated and revised the technical content.

3/12/2010 5.0 Major Updated and revised the technical content.

4/23/2010 6.0 Major Updated and revised the technical content.

6/4/2010 7.0 Major Updated and revised the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 9.0 Major Updated and revised the technical content.

10/8/2010 10.0 Major Updated and revised the technical content.

11/19/2010 11.0 Major Updated and revised the technical content.

1/7/2011 12.0 Major Updated and revised the technical content.

2/11/2011 13.0 Major Updated and revised the technical content.

3/25/2011 14.0 Major Updated and revised the technical content.

5/6/2011 15.0 Major Updated and revised the technical content.

6/17/2011 15.1 Minor Clarified the meaning of the technical content.

9/23/2011 16.0 Major Updated and revised the technical content.

12/16/2011 17.0 Major Updated and revised the technical content.

3/30/2012 18.0 Major Updated and revised the technical content.

7/12/2012 19.0 Major Updated and revised the technical content.

10/25/2012 20.0 Major Updated and revised the technical content.

1/31/2013 21.0 Major Updated and revised the technical content.

8/8/2013 22.0 Major Updated and revised the technical content.

11/14/2013 22.0 None No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 23.0 Major Updated and revised the technical content.

5/15/2014 24.0 Major Updated and revised the technical content.

6/30/2015 25.0 Major Significantly changed the technical content.

3 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Table of Contents

1 Introduction .. 16
1.1 Glossary ... 16
1.2 References .. 22

1.2.1 Normative References ... 22
1.2.2 Informative References ... 23

1.3 Overview .. 26
1.4 Relationship to Other Protocols .. 28
1.5 Prerequisites/Preconditions ... 29
1.6 Applicability Statement ... 29
1.7 Versioning and Capability Negotiation ... 30
1.8 Vendor-Extensible Fields ... 31
1.9 Standards Assignments ... 32

2 Messages ... 33
2.1 Transport .. 33

2.1.1 NetBIOS-Based Transports .. 33
2.1.1.1 NetBIOS Frames (NBF) Protocol Transport ... 33
2.1.1.2 NetBIOS over TCP/UDP (NBT) Transport .. 34
2.1.1.3 NetBIOS over IPX/SPX (NBIPX) Transport .. 34
2.1.1.4 Other NetBIOS-Based Transports .. 34

2.1.2 Direct Hosting .. 34
2.1.2.1 Direct IPX Transport .. 34

2.1.3 Virtual Circuits ... 38
2.2 Message Syntax ... 38

2.2.1 Common Data Types ... 40
2.2.1.1 Character Sequences ... 41

2.2.1.1.1 File and Directory names .. 41
2.2.1.1.2 Pathnames ... 42
2.2.1.1.3 Wildcards ... 42

2.2.1.2 File Attributes ... 42
2.2.1.2.1 SMB_GEA ... 43

2.2.1.2.1.1 SMB_GEA_LIST ... 43
2.2.1.2.2 SMB_FEA .. 44

2.2.1.2.2.1 SMB_FEA_LIST .. 45
2.2.1.2.3 SMB_EXT_FILE_ATTR ... 45
2.2.1.2.4 SMB_FILE_ATTRIBUTES ... 46

2.2.1.3 Named Pipe Status (SMB_NMPIPE_STATUS) ... 47
2.2.1.4 Time ... 48

2.2.1.4.1 SMB_DATE ... 49
2.2.1.4.2 SMB_TIME .. 49
2.2.1.4.3 UTIME .. 49

2.2.1.5 Status Codes (SMB_ERROR) ... 50
2.2.1.6 Unique Identifiers ... 50

2.2.1.6.1 FID Generation ... 51
2.2.1.6.2 MID Generation ... 51
2.2.1.6.3 PID Generation ... 52
2.2.1.6.4 Connection ID (CID) Generation .. 52
2.2.1.6.5 Search ID (SID) Generation .. 52
2.2.1.6.6 SessionKey Generation... 53
2.2.1.6.7 TID Generation ... 53
2.2.1.6.8 UID Generation ... 53

2.2.2 Defined Constants .. 54
2.2.2.1 SMB_COM Command Codes ... 54
2.2.2.2 Transaction Subcommand Codes ... 60
2.2.2.3 Information Level Codes .. 63

4 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.2.3.1 FIND Information Level Codes ... 64
2.2.2.3.2 QUERY_FS Information Level Codes ... 64
2.2.2.3.3 QUERY Information Level Codes .. 65
2.2.2.3.4 SET Information Level Codes .. 65

2.2.2.4 SMB Error Classes and Codes ... 66
2.2.2.5 Data Buffer Format Codes .. 76

2.2.3 SMB Message Structure ... 77
2.2.3.1 The SMB Header ... 77
2.2.3.2 Parameter Block ... 83
2.2.3.3 Data Block ... 83
2.2.3.4 Batched Messages ("AndX" Messages) ... 84

2.2.3.4.1 Follow-on Commands ... 84
2.2.4 SMB Commands ... 85

2.2.4.1 SMB_COM_CREATE_DIRECTORY (0x00) .. 85
2.2.4.1.1 Request ... 85
2.2.4.1.2 Response ... 86

2.2.4.2 SMB_COM_DELETE_DIRECTORY (0x01) ... 87
2.2.4.2.1 Request ... 87
2.2.4.2.2 Response ... 88

2.2.4.3 SMB_COM_OPEN (0x02) .. 90
2.2.4.3.1 Request ... 90
2.2.4.3.2 Response ... 93

2.2.4.4 SMB_COM_CREATE (0x03) ... 97
2.2.4.4.1 Request ... 97
2.2.4.4.2 Response ... 98

2.2.4.5 SMB_COM_CLOSE (0x04) ... 101
2.2.4.5.1 Request .. 101
2.2.4.5.2 Response .. 102

2.2.4.6 SMB_COM_FLUSH (0x05) .. 103
2.2.4.6.1 Request .. 103
2.2.4.6.2 Response .. 104

2.2.4.7 SMB_COM_DELETE (0x06) .. 106
2.2.4.7.1 Request .. 106
2.2.4.7.2 Response .. 108

2.2.4.8 SMB_COM_RENAME (0x07) ... 109
2.2.4.8.1 Request .. 109
2.2.4.8.2 Response .. 111

2.2.4.9 SMB_COM_QUERY_INFORMATION (0x08) ... 113
2.2.4.9.1 Request .. 113
2.2.4.9.2 Response .. 114

2.2.4.10 SMB_COM_SET_INFORMATION (0x09) ... 116
2.2.4.10.1 Request .. 116
2.2.4.10.2 Response .. 118

2.2.4.11 SMB_COM_READ (0x0A) ... 120
2.2.4.11.1 Request .. 120
2.2.4.11.2 Response .. 121

2.2.4.12 SMB_COM_WRITE (0x0B) ... 124
2.2.4.12.1 Request .. 125
2.2.4.12.2 Response .. 127

2.2.4.13 SMB_COM_LOCK_BYTE_RANGE (0x0C) .. 129
2.2.4.13.1 Request .. 130
2.2.4.13.2 Response .. 131

2.2.4.14 SMB_COM_UNLOCK_BYTE_RANGE (0x0D) .. 132
2.2.4.14.1 Request .. 133
2.2.4.14.2 Response .. 134

2.2.4.15 SMB_COM_CREATE_TEMPORARY (0x0E) ... 136
2.2.4.15.1 Request .. 136
2.2.4.15.2 Response .. 137

5 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.16 SMB_COM_CREATE_NEW (0x0F).. 140
2.2.4.16.1 Request .. 140
2.2.4.16.2 Response .. 142

2.2.4.17 SMB_COM_CHECK_DIRECTORY (0x10) ... 144
2.2.4.17.1 Request .. 144
2.2.4.17.2 Response .. 145

2.2.4.18 SMB_COM_PROCESS_EXIT (0x11) ... 147
2.2.4.18.1 Request .. 147
2.2.4.18.2 Response .. 148

2.2.4.19 SMB_COM_SEEK (0x12) ... 149
2.2.4.19.1 Request .. 149
2.2.4.19.2 Response .. 150

2.2.4.20 SMB_COM_LOCK_AND_READ (0x13) .. 152
2.2.4.20.1 Request .. 152
2.2.4.20.2 Response .. 154

2.2.4.21 SMB_COM_WRITE_AND_UNLOCK (0x14) .. 157
2.2.4.21.1 Request .. 157
2.2.4.21.2 Response .. 159

2.2.4.22 SMB_COM_READ_RAW (0x1A)... 163
2.2.4.22.1 Request .. 163
2.2.4.22.2 Response .. 164

2.2.4.23 SMB_COM_READ_MPX (0x1B) ... 165
2.2.4.23.1 Request .. 165
2.2.4.23.2 Response .. 167

2.2.4.24 SMB_COM_READ_MPX_SECONDARY (0x1C) .. 171
2.2.4.25 SMB_COM_WRITE_RAW (0x1D) ... 171

2.2.4.25.1 Request .. 171
2.2.4.25.2 Interim Server Response ... 174
2.2.4.25.3 Final Server Response ... 175

2.2.4.26 SMB_COM_WRITE_MPX (0x1E) .. 178
2.2.4.26.1 Request .. 178
2.2.4.26.2 Response .. 181

2.2.4.27 SMB_COM_WRITE_MPX_SECONDARY (0x1F) ... 184
2.2.4.28 SMB_COM_WRITE_COMPLETE (0x20) ... 184
2.2.4.29 SMB_COM_QUERY_SERVER (0x21) .. 184
2.2.4.30 SMB_COM_SET_INFORMATION2 (0x22) ... 184

2.2.4.30.1 Request .. 184
2.2.4.30.2 Response .. 186

2.2.4.31 SMB_COM_QUERY_INFORMATION2 (0x23) ... 187
2.2.4.31.1 Request .. 188
2.2.4.31.2 Response .. 188

2.2.4.32 SMB_COM_LOCKING_ANDX (0x24) .. 191
2.2.4.32.1 Request .. 192
2.2.4.32.2 Response .. 196

2.2.4.33 SMB_COM_TRANSACTION (0x25) .. 199
2.2.4.33.1 Request .. 199
2.2.4.33.2 Response .. 204

2.2.4.34 SMB_COM_TRANSACTION_SECONDARY (0x26) 209
2.2.4.34.1 Request .. 209
2.2.4.34.2 Response .. 212

2.2.4.35 SMB_COM_IOCTL (0x27) .. 212
2.2.4.35.1 Request .. 213
2.2.4.35.2 Response .. 216

2.2.4.36 SMB_COM_IOCTL_SECONDARY (0x28) ... 219
2.2.4.37 SMB_COM_COPY (0x29) ... 220
2.2.4.38 SMB_COM_MOVE (0x2A) .. 220
2.2.4.39 SMB_COM_ECHO (0x2B) ... 220

2.2.4.39.1 Request .. 220

6 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.39.2 Response .. 221
2.2.4.40 SMB_COM_WRITE_AND_CLOSE (0x2C) .. 223

2.2.4.40.1 Request .. 223
2.2.4.40.2 Response .. 225

2.2.4.41 SMB_COM_OPEN_ANDX (0x2D) ... 228
2.2.4.41.1 Request .. 228
2.2.4.41.2 Response .. 232

2.2.4.42 SMB_COM_READ_ANDX (0x2E) ... 237
2.2.4.42.1 Request .. 237
2.2.4.42.2 Response .. 239

2.2.4.43 SMB_COM_WRITE_ANDX (0x2F) .. 243
2.2.4.43.1 Request .. 244
2.2.4.43.2 Response .. 247

2.2.4.44 SMB_COM_NEW_FILE_SIZE (0x30) .. 250
2.2.4.45 SMB_COM_CLOSE_AND_TREE_DISC (0x31) .. 251
2.2.4.46 SMB_COM_TRANSACTION2 (0x32) .. 251

2.2.4.46.1 Request .. 251
2.2.4.46.2 Response .. 256

2.2.4.47 SMB_COM_TRANSACTION2_SECONDARY (0x33) 260
2.2.4.47.1 Request .. 260
2.2.4.47.2 Response .. 263

2.2.4.48 SMB_COM_FIND_CLOSE2 (0x34) ... 263
2.2.4.48.1 Request .. 263
2.2.4.48.2 Response .. 264

2.2.4.49 SMB_COM_FIND_NOTIFY_CLOSE (0x35) .. 265
2.2.4.50 SMB_COM_TREE_CONNECT (0x70) .. 265

2.2.4.50.1 Request .. 265
2.2.4.50.2 Response .. 267

2.2.4.51 SMB_COM_TREE_DISCONNECT (0x71) ... 269
2.2.4.51.1 Request .. 270
2.2.4.51.2 Response .. 270

2.2.4.52 SMB_COM_NEGOTIATE (0x72) .. 271
2.2.4.52.1 Request .. 271
2.2.4.52.2 Response .. 273

2.2.4.53 SMB_COM_SESSION_SETUP_ANDX (0x73) ... 279
2.2.4.53.1 Request .. 280
2.2.4.53.2 Response .. 286

2.2.4.54 SMB_COM_LOGOFF_ANDX (0x74) .. 289
2.2.4.54.1 Request .. 289
2.2.4.54.2 Response .. 290

2.2.4.55 SMB_COM_TREE_CONNECT_ANDX (0x75) .. 292
2.2.4.55.1 Request .. 292
2.2.4.55.2 Response .. 296

2.2.4.56 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E) .. 299
2.2.4.57 SMB_COM_QUERY_INFORMATION_DISK (0x80) 299

2.2.4.57.1 Request .. 299
2.2.4.57.2 Response .. 300

2.2.4.58 SMB_COM_SEARCH (0x81) ... 302
2.2.4.58.1 Request .. 302
2.2.4.58.2 Response .. 305

2.2.4.59 SMB_COM_FIND (0x82) .. 309
2.2.4.59.1 Request .. 309
2.2.4.59.2 Response .. 311

2.2.4.60 SMB_COM_FIND_UNIQUE (0x83) ... 315
2.2.4.60.1 Request .. 315
2.2.4.60.2 Response .. 317

2.2.4.61 SMB_COM_FIND_CLOSE (0x84) ... 320
2.2.4.61.1 Request .. 320

7 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.61.2 Response .. 322
2.2.4.62 SMB_COM_NT_TRANSACT (0xA0) .. 324

2.2.4.62.1 Request .. 325
2.2.4.62.2 Response .. 329

2.2.4.63 SMB_COM_NT_TRANSACT_SECONDARY (0xA1) 333
2.2.4.63.1 Request .. 333
2.2.4.63.2 Response .. 336

2.2.4.64 SMB_COM_NT_CREATE_ANDX (0xA2) .. 337
2.2.4.64.1 Request .. 337
2.2.4.64.2 Response .. 346

2.2.4.65 SMB_COM_NT_CANCEL (0xA4) .. 351
2.2.4.65.1 Request .. 351

2.2.4.66 SMB_COM_NT_RENAME (0xA5) ... 353
2.2.4.66.1 Request .. 353
2.2.4.66.2 Response .. 354

2.2.4.67 SMB_COM_OPEN_PRINT_FILE (0xC0) ... 355
2.2.4.67.1 Request .. 356
2.2.4.67.2 Response .. 357

2.2.4.68 SMB_COM_WRITE_PRINT_FILE (0xC1) ... 359
2.2.4.68.1 Request .. 359
2.2.4.68.2 Response .. 361

2.2.4.69 SMB_COM_CLOSE_PRINT_FILE (0xC2) ... 362
2.2.4.69.1 Request .. 362
2.2.4.69.2 Response .. 363

2.2.4.70 SMB_COM_GET_PRINT_QUEUE (0xC3) ... 364
2.2.4.71 SMB_COM_READ_BULK (0xD8) ... 365
2.2.4.72 SMB_COM_WRITE_BULK (0xD9) .. 365
2.2.4.73 SMB_COM_WRITE_BULK_DATA (0xDA) .. 365
2.2.4.74 SMB_COM_INVALID (0xFE) ... 365
2.2.4.75 SMB_COM_NO_ANDX_COMMAND (0xFF) .. 365

2.2.5 Transaction Subcommands ... 366
2.2.5.1 TRANS_SET_NMPIPE_STATE (0x0001) ... 366

2.2.5.1.1 Request .. 366
2.2.5.1.2 Response .. 367

2.2.5.2 TRANS_RAW_READ_NMPIPE (0x0011).. 368
2.2.5.2.1 Request .. 368
2.2.5.2.2 Response .. 369

2.2.5.3 TRANS_QUERY_NMPIPE_STATE (0x0021) ... 371
2.2.5.3.1 Request .. 371
2.2.5.3.2 Response .. 372

2.2.5.4 TRANS_QUERY_NMPIPE_INFO (0x0022) ... 373
2.2.5.4.1 Request .. 373
2.2.5.4.2 Response .. 374

2.2.5.5 TRANS_PEEK_NMPIPE (0x0023) .. 377
2.2.5.5.1 Request .. 377
2.2.5.5.2 Response .. 377

2.2.5.6 TRANS_TRANSACT_NMPIPE (0x0026) .. 380
2.2.5.6.1 Request .. 380
2.2.5.6.2 Response .. 381

2.2.5.7 TRANS_RAW_WRITE_NMPIPE (0x0031) .. 383
2.2.5.7.1 Request .. 383
2.2.5.7.2 Response .. 384

2.2.5.8 TRANS_READ_NMPIPE (0x0036) .. 385
2.2.5.8.1 Request .. 385
2.2.5.8.2 Response .. 386

2.2.5.9 TRANS_WRITE_NMPIPE (0x0037) .. 388
2.2.5.9.1 Request .. 388
2.2.5.9.2 Response .. 389

8 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.5.10 TRANS_WAIT_NMPIPE (0x0053) .. 390
2.2.5.10.1 Request .. 391
2.2.5.10.2 Response .. 391

2.2.5.11 TRANS_CALL_NMPIPE (0x0054) ... 392
2.2.5.11.1 Request .. 392
2.2.5.11.2 Response .. 394

2.2.5.12 TRANS_MAILSLOT_WRITE (0x0001) ... 395
2.2.6 Transaction2 Subcommands ... 396

2.2.6.1 TRANS2_OPEN2 (0x0000) ... 396
2.2.6.1.1 Request .. 396
2.2.6.1.2 Response .. 399

2.2.6.2 TRANS2_FIND_FIRST2 (0x0001) ... 402
2.2.6.2.1 Request .. 402
2.2.6.2.2 Response .. 404

2.2.6.3 TRANS2_FIND_NEXT2 (0x0002) .. 406
2.2.6.3.1 Request .. 406
2.2.6.3.2 Response .. 408

2.2.6.4 TRANS2_QUERY_FS_INFORMATION (0x0003) ... 410
2.2.6.4.1 Request .. 410
2.2.6.4.2 Response .. 411

2.2.6.5 TRANS2_SET_FS_INFORMATION (0x0004).. 412
2.2.6.6 TRANS2_QUERY_PATH_INFORMATION (0x0005) 412

2.2.6.6.1 Request .. 412
2.2.6.6.2 Response .. 413

2.2.6.7 TRANS2_SET_PATH_INFORMATION (0x0006) .. 414
2.2.6.7.1 Request .. 415
2.2.6.7.2 Response .. 415

2.2.6.8 TRANS2_QUERY_FILE_INFORMATION (0x0007) 417
2.2.6.8.1 Request .. 417
2.2.6.8.2 Response .. 418

2.2.6.9 TRANS2_SET_FILE_INFORMATION (0x0008) ... 420
2.2.6.9.1 Request .. 420
2.2.6.9.2 Response .. 421

2.2.6.10 TRANS2_FSCTL (0x0009) .. 422
2.2.6.11 TRANS2_IOCTL2 (0x000A) .. 423
2.2.6.12 TRANS2_FIND_NOTIFY_FIRST (0x000B) ... 423
2.2.6.13 TRANS2_FIND_NOTIFY_NEXT (0x000C) .. 423
2.2.6.14 TRANS2_CREATE_DIRECTORY (0x000D) ... 423

2.2.6.14.1 Request .. 423
2.2.6.14.2 Response .. 424

2.2.6.15 TRANS2_SESSION_SETUP (0x000E) ... 426
2.2.6.16 TRANS2_GET_DFS_REFERRAL (0x0010) ... 426

2.2.6.16.1 Request .. 426
2.2.6.16.2 Response .. 427

2.2.6.17 TRANS2_REPORT_DFS_INCONSISTENCY (0x0011) 427
2.2.7 NT Transact Subcommands ... 428

2.2.7.1 NT_TRANSACT_CREATE (0x0001) .. 428
2.2.7.1.1 Request .. 428
2.2.7.1.2 Response .. 435

2.2.7.2 NT_TRANSACT_IOCTL (0x0002) .. 439
2.2.7.2.1 Request .. 440
2.2.7.2.2 Response .. 441

2.2.7.3 NT_TRANSACT_SET_SECURITY_DESC (0x0003) 442
2.2.7.3.1 Request .. 443
2.2.7.3.2 Response .. 444

2.2.7.4 NT_TRANSACT_NOTIFY_CHANGE (0x0004) ... 445
2.2.7.4.1 Request .. 445
2.2.7.4.2 Response .. 447

9 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.7.5 NT_TRANSACT_RENAME (0x0005) ... 448
2.2.7.6 NT_TRANSACT_QUERY_SECURITY_DESC (0x0006) 448

2.2.7.6.1 Request .. 449
2.2.7.6.2 Response .. 450

2.2.8 Information Levels ... 451
2.2.8.1 FIND Information Levels ... 453

2.2.8.1.1 SMB_INFO_STANDARD ... 453
2.2.8.1.2 SMB_INFO_QUERY_EA_SIZE ... 454
2.2.8.1.3 SMB_INFO_QUERY_EAS_FROM_LIST .. 454
2.2.8.1.4 SMB_FIND_FILE_DIRECTORY_INFO .. 455
2.2.8.1.5 SMB_FIND_FILE_FULL_DIRECTORY_INFO ... 456
2.2.8.1.6 SMB_FIND_FILE_NAMES_INFO .. 457
2.2.8.1.7 SMB_FIND_FILE_BOTH_DIRECTORY_INFO .. 458

2.2.8.2 QUERY_FS Information Levels ... 459
2.2.8.2.1 SMB_INFO_ALLOCATION ... 459
2.2.8.2.2 SMB_INFO_VOLUME ... 459
2.2.8.2.3 SMB_QUERY_FS_VOLUME_INFO ... 460
2.2.8.2.4 SMB_QUERY_FS_SIZE_INFO .. 460
2.2.8.2.5 SMB_QUERY_FS_DEVICE_INFO .. 460
2.2.8.2.6 SMB_QUERY_FS_ATTRIBUTE_INFO ... 462

2.2.8.3 QUERY Information Levels ... 463
2.2.8.3.1 SMB_INFO_STANDARD ... 463
2.2.8.3.2 SMB_INFO_QUERY_EA_SIZE ... 464
2.2.8.3.3 SMB_INFO_QUERY_EAS_FROM_LIST .. 464
2.2.8.3.4 SMB_INFO_QUERY_ALL_EAS ... 465
2.2.8.3.5 SMB_INFO_IS_NAME_VALID .. 465
2.2.8.3.6 SMB_QUERY_FILE_BASIC_INFO ... 465
2.2.8.3.7 SMB_QUERY_FILE_STANDARD_INFO .. 466
2.2.8.3.8 SMB_QUERY_FILE_EA_INFO .. 466
2.2.8.3.9 SMB_QUERY_FILE_NAME_INFO .. 466
2.2.8.3.10 SMB_QUERY_FILE_ALL_INFO ... 467
2.2.8.3.11 SMB_QUERY_FILE_ALT_NAME_INFO ... 468
2.2.8.3.12 SMB_QUERY_FILE_STREAM_INFO .. 468
2.2.8.3.13 SMB_QUERY_FILE_COMRESSION_INFO .. 469

2.2.8.4 SET Information levels .. 470
2.2.8.4.1 SMB_INFO_STANDARD ... 470
2.2.8.4.2 SMB_INFO_SET_EAS .. 470
2.2.8.4.3 SMB_SET_FILE_BASIC_INFO ... 470
2.2.8.4.4 SMB_SET_FILE_DISPOSITION_INFO ... 471
2.2.8.4.5 SMB_SET_FILE_ALLOCATION_INFO .. 472
2.2.8.4.6 SMB_SET_FILE_END_OF_FILE_INFO ... 472

3 Protocol Details ... 473
3.1 Common Details ... 473

3.1.1 Abstract Data Model ... 473
3.1.1.1 Global... 473

3.1.2 Timers ... 473
3.1.3 Initialization .. 473
3.1.4 Higher-Layer Triggered Events .. 473

3.1.4.1 Sending Any Message ... 473
3.1.4.1.1 Command Sequence Requirements ... 474

3.1.5 Processing Events and Sequencing Rules .. 474
3.1.5.1 Receiving Any Message ... 474
3.1.5.2 Algorithms for Challenge/Response Authentication 475

3.1.6 Timer Events ... 476
3.1.7 Other Local Events ... 476

3.2 Client Details .. 476
3.2.1 Abstract Data Model ... 476

10 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.1.1 Global... 476
3.2.1.2 Per SMB Connection ... 478
3.2.1.3 Per SMB Session .. 480
3.2.1.4 Per Tree Connect ... 480
3.2.1.5 Per Unique Open .. 480
3.2.1.6 Per Unique Open Search ... 481

3.2.2 Timers ... 481
3.2.2.1 Request Expiration Timer .. 481

3.2.3 Initialization .. 481
3.2.4 Higher-Layer Triggered Events .. 482

3.2.4.1 Sending Any Message ... 482
3.2.4.1.1 Command Processing .. 483
3.2.4.1.2 Processing Options ... 483
3.2.4.1.3 Message Signing .. 484
3.2.4.1.4 Sending Any Batched ("AndX") Request .. 484
3.2.4.1.5 Sending Any Transaction ... 485
3.2.4.1.6 Accessing a Share in the DFS Namespace .. 488

3.2.4.2 Application Requests Connecting to a Share .. 489
3.2.4.2.1 Connection Establishment .. 490
3.2.4.2.2 Dialect Negotiation ... 491
3.2.4.2.3 Capabilities Negotiation ... 491
3.2.4.2.4 User Authentication .. 492
3.2.4.2.5 Connecting to the Share (Tree Connect) .. 494

3.2.4.3 Application Requests Creating a Directory ... 494
3.2.4.4 Application Requests Deleting a Directory ... 495
3.2.4.5 Application Requests Opening an Existing File .. 495

3.2.4.5.1 Compatibility Mode ... 498
3.2.4.5.2 FID Permissions ... 498

3.2.4.6 Application Requests to Create or Overwrite a File.................................... 499
3.2.4.7 Application Requests Closing a File ... 501
3.2.4.8 Application Requests Flushing File Data .. 501
3.2.4.9 Application Requests Deleting a File or Set of Files 502
3.2.4.10 Application Requests Renaming a File or Set of Files 502
3.2.4.11 Application Requests Creating a Hard Link to a File 503
3.2.4.12 Application Requests Querying File Attributes .. 504
3.2.4.13 Application Requests Setting File Attributes ... 505
3.2.4.14 Application Requests Reading from a File, Named Pipe, or Device 507

3.2.4.14.1 Client Requests Read Raw ... 509
3.2.4.14.2 Client Requests Multiplexed Read ... 510

3.2.4.15 Application Requests Writing to a File, Named Pipe, or Device 511
3.2.4.15.1 Client Requests Raw Write ... 513
3.2.4.15.2 Client Requests Multiplexed Write ... 514

3.2.4.16 Application Requests a Byte-Range Lock on a File 517
3.2.4.17 Application Requests the Release of a Byte-Range Lock on a File 518
3.2.4.18 Application Requests an Opportunistic Lock on a File 519
3.2.4.19 Application Requests Verifying a Directory Path 519
3.2.4.20 Client Notifies the Server of a Process Exit .. 520
3.2.4.21 Application Requests to Seek to a Location in a File 520
3.2.4.22 Application Requests Sending an IOCTL to a File or Device 520
3.2.4.23 Application Requests Testing Transport Layer Connection 521
3.2.4.24 Application Requests a Tree Disconnect (Unmount Share) 521
3.2.4.25 Application Requests an SMB Session Logoff .. 521
3.2.4.26 Application Requests Querying File System Attributes 521
3.2.4.27 Application Requests a Directory Enumeration ... 522
3.2.4.28 Application Requests Canceling Pending Operations 523
3.2.4.29 Application Requests to Print a File ... 524
3.2.4.30 Application Requests Setting Named Pipe State 524
3.2.4.31 Application Requests Querying Named Pipe Handle State 524

11 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.32 Application Requests Querying Named Pipe Information 525
3.2.4.33 Application Requests Peeking at Named Pipe Data 525
3.2.4.34 Application Requests Executing a Transaction on a Named Pipe 525
3.2.4.35 Application Requests Waiting for Named Pipe Availability 525
3.2.4.36 Application Requests Named Pipe Exchange (Call) 525
3.2.4.37 Application Requests to Read from a Named Pipe 526
3.2.4.38 Application Requests Writing to a Named Pipe ... 526
3.2.4.39 Application Requests Notification of Change in Directory Contents 526
3.2.4.40 Application Requests Querying Security Descriptors 527
3.2.4.41 Application Requests Setting Security Descriptors 527
3.2.4.42 Application Requests a Named RAP Transaction 527
3.2.4.43 DFS Subsystem Notifies That It Is Active .. 528
3.2.4.44 Application Requests Querying DFS Referrals ... 528
3.2.4.45 Application Requests Querying Cryptographic Session Key 528
3.2.4.46 Application Requests Number of Opens on a Tree Connect 528

3.2.5 Processing Events and Sequencing Rules .. 528
3.2.5.1 Receiving Any Message ... 528

3.2.5.1.1 Command Processing .. 530
3.2.5.1.2 Message Signing .. 530
3.2.5.1.3 Receiving any Batched ("AndX") Response .. 530
3.2.5.1.4 Receiving Any Transaction Response ... 530

3.2.5.2 Receiving an SMB_COM_NEGOTIATE Response .. 531
3.2.5.3 Receiving an SMB_COM_SESSION_SETUP_ANDX Response 532
3.2.5.4 Receiving an SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX

Response .. 533
3.2.5.5 Receiving an SMB_COM_OPEN Response .. 533
3.2.5.6 Receiving an SMB_COM_CREATE Response ... 534
3.2.5.7 Receiving an SMB_COM_CLOSE Response ... 534
3.2.5.8 Receiving an SMB_COM_QUERY_INFORMATION Response 534
3.2.5.9 Receiving an SMB_COM_READ Response .. 534
3.2.5.10 Receiving an SMB_COM_WRITE Response ... 534
3.2.5.11 Receiving an SMB_COM_CREATE_TEMPORARY Response 534
3.2.5.12 Receiving an SMB_COM_CREATE_NEW Response 535
3.2.5.13 Receiving an SMB_COM_SEEK Response ... 535
3.2.5.14 Receiving an SMB_COM_LOCK_AND_READ Response 535
3.2.5.15 Receiving an SMB_COM_WRITE_AND_UNLOCK Response 535
3.2.5.16 Receiving an SMB_COM_READ_RAW Response .. 536
3.2.5.17 Receiving an SMB_COM_READ_MPX Response ... 536
3.2.5.18 Receiving an SMB_COM_WRITE_RAW Response 537
3.2.5.19 Receiving an SMB_COM_WRITE_MPX Response 537
3.2.5.20 Receiving an SMB_COM_QUERY_INFORMATION2 Response 538
3.2.5.21 Receiving an SMB_COM_TRANSACTION Response 538
3.2.5.22 Receiving an SMB_COM_IOCTL Response .. 538
3.2.5.23 Receiving an SMB_COM_ECHO Response .. 538
3.2.5.24 Receiving an SMB_COM_WRITE_AND_CLOSE Response 538
3.2.5.25 Receiving an SMB_COM_OPEN_ANDX Response 538
3.2.5.26 Receiving an SMB_COM_READ_ANDX Response 539
3.2.5.27 Receiving an SMB_COM_WRITE_ANDX Response 539
3.2.5.28 Receiving an SMB_COM_TRANSACTION2 Response 539
3.2.5.29 Receiving an SMB_COM_FIND_CLOSE2 Response 540
3.2.5.30 Receiving an SMB_COM_TREE_DISCONNECT Response 540
3.2.5.31 Receiving an SMB_COM_LOGOFF_ANDX Response 540
3.2.5.32 Receiving an SMB_COM_QUERY_INFORMATION_DISK Response 540
3.2.5.33 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Response 540
3.2.5.34 Receiving an SMB_COM_FIND_UNIQUE Response 541
3.2.5.35 Receiving an SMB_COM_NT_TRANSACT Response 541
3.2.5.36 Receiving an SMB_COM_NT_CREATE_ANDX Response 541
3.2.5.37 Receiving an SMB_COM_OPEN_PRINT_FILE Response 541

12 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.38 Receiving any SMB_COM_TRANSACTION Subcommand Response 542
3.2.5.38.1 Receiving a RAP Transaction Response .. 542
3.2.5.38.2 Receiving a TRANS_RAW_READ_NMPIPE Response 542
3.2.5.38.3 Receiving a TRANS_QUERY_NMPIPE_STATE Response 542
3.2.5.38.4 Receiving a TRANS_QUERY_NMPIPE_INFO Response 542
3.2.5.38.5 Receiving a TRANS_PEEK_NMPIPE Response 542
3.2.5.38.6 Receiving a TRANS_TRASACT_NMPIPE Response 542
3.2.5.38.7 Receiving a TRANS_RAW_WRITE_NMPIPE Response 542
3.2.5.38.8 Receiving a TRANS_READ_NMPIPE Response 543
3.2.5.38.9 Receiving a TRANS_WRITE_NMPIPE Response 543
3.2.5.38.10 Receiving a TRANS_CALL_NMPIPE Response 543

3.2.5.39 Receiving any SMB_COM_TRANSACTION2 Subcommand Response 543
3.2.5.39.1 Receiving a TRANS2_OPEN2 Response .. 543
3.2.5.39.2 Receiving a TRANS2_FIND_FIRST2 or TRANS2_FIND_NEXT2 Response . 544
3.2.5.39.3 Receiving a TRANS2_QUERY_FS_INFORMATION Response 544
3.2.5.39.4 Receiving a TRANS2_QUERY_PATH_INFORMATION or

TRANS2_QUERY_FILE_INFORMATION Response 544
3.2.5.39.5 Receiving a TRANS2_CREATE_DIRECTORY Response 544
3.2.5.39.6 Receiving a TRANS2_GET_DFS_REFERRAL Response 544

3.2.5.40 Receiving any SMB_COM_NT_TRANSACT Subcommand Response 544
3.2.5.40.1 Receiving an NT_TRANSACT_CREATE Response 544
3.2.5.40.2 Receiving an NT_TRANSACT_IOCTL Response 545
3.2.5.40.3 Receiving an NT_TRANSACT_NOTIFY_CHANGE Response 545
3.2.5.40.4 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Response 545

3.2.5.41 Receiving any OpLock Grant .. 545
3.2.5.42 Receiving an OpLock Break Notification... 546
3.2.5.43 Receiving a STATUS_PATH_NOT_COVERED (ERRSRV/ERRbadpath) Error for an

Object in DFS .. 546
3.2.6 Timer Events ... 547

3.2.6.1 Request Expiration Timer Event ... 547
3.2.7 Other Local Events ... 547

3.2.7.1 Handling a Transport Disconnect .. 547
3.3 Server Details ... 548

3.3.1 Abstract Data Model ... 548
3.3.1.1 Global... 548
3.3.1.2 Per Share .. 550
3.3.1.3 Per SMB Connection ... 551
3.3.1.4 Per Pending SMB Command .. 553
3.3.1.5 Per SMB Session .. 554
3.3.1.6 Per Tree Connect ... 554
3.3.1.7 Per Unique Open .. 555
3.3.1.8 Per Unique Open Search ... 555

3.3.2 Timers ... 556
3.3.2.1 OpLock Break Acknowledgment Timer .. 556
3.3.2.2 Idle Connection Timer .. 556
3.3.2.3 Unused Open Search Timer ... 556
3.3.2.4 Unused Connection Timer ... 556

3.3.3 Initialization .. 556
3.3.4 Higher-Layer Triggered Events .. 557

3.3.4.1 Sending Any Message ... 557
3.3.4.1.1 Processing Options ... 558
3.3.4.1.2 Sending Any Error Response Message ... 558

3.3.4.2 Object Store Indicates an OpLock Break ... 558
3.3.4.3 DFS Subsystem Notifies That It Is Active .. 559
3.3.4.4 DFS Subsystem Notifies That a Share Is a DFS Share 559
3.3.4.5 DFS Subsystem Notifies That a Share Is Not a DFS Share 559
3.3.4.6 Application Requests the Session Key Associated with a Client Session 559
3.3.4.7 Application Requests the Security Context Associated with a Client Session . 560

13 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.4.8 Server Application Requests Closing a Session ... 560
3.3.4.9 Server Application Registers a Share .. 560
3.3.4.10 Server Application Updates a Share .. 561
3.3.4.11 Server Application Deregisters a Share ... 561
3.3.4.12 Server Application Requests Querying a Share ... 561
3.3.4.13 Server Application Requests Closing an Open .. 562
3.3.4.14 Server Application Queries a Session .. 562
3.3.4.15 Server Application Queries a TreeConnect ... 563
3.3.4.16 Server Application Queries an Open ... 563
3.3.4.17 Server Application Requests Transport Binding Change 564
3.3.4.18 Server Service Enables the CIFS Server .. 564
3.3.4.19 Server Services Disables the CIFS Server .. 564
3.3.4.20 Server Service Pauses the CIFS Server ... 564
3.3.4.21 Server Services Resumes (Continues) the CIFS Server 565
3.3.4.22 Server Application Requests Updating the Server Configuration 565
3.3.4.23 Server Application Requests Server Statistics .. 565

3.3.5 Processing Events and Sequencing Rules .. 566
3.3.5.1 Accepting an Incoming Connection ... 566
3.3.5.2 Receiving Any Message ... 567

3.3.5.2.1 Command Processing .. 568
3.3.5.2.2 Processing Options ... 569
3.3.5.2.3 Message Signing .. 569
3.3.5.2.4 Receiving any Batched ("AndX") Request... 569
3.3.5.2.5 Receiving Any Transaction Request ... 570
3.3.5.2.6 Supporting Shares in the DFS Namespace ... 570
3.3.5.2.7 Granting OpLocks ... 570

3.3.5.3 Receiving an SMB_COM_CREATE_DIRECTORY Request 571
3.3.5.4 Receiving an SMB_COM_DELETE_DIRECTORY Request 572
3.3.5.5 Receiving an SMB_COM_OPEN Request .. 572
3.3.5.6 Receiving an SMB_COM_CREATE Request ... 573
3.3.5.7 Receiving an SMB_COM_CLOSE Request ... 574
3.3.5.8 Receiving an SMB_COM_FLUSH Request ... 574
3.3.5.9 Receiving an SMB_COM_DELETE Request.. 575
3.3.5.10 Receiving an SMB_COM_RENAME Request .. 576
3.3.5.11 Receiving an SMB_COM_QUERY_INFORMATION Request 577
3.3.5.12 Receiving an SMB_COM_SET_INFORMATION Request 578
3.3.5.13 Receiving an SMB_COM_READ Request .. 578
3.3.5.14 Receiving an SMB_COM_WRITE Request ... 578
3.3.5.15 Receiving an SMB_COM_LOCK_BYTE_RANGE Request 579
3.3.5.16 Receiving an SMB_COM_UNLOCK_BYTE_RANGE Request 580
3.3.5.17 Receiving an SMB_COM_CREATE_TEMPORARY Request 580
3.3.5.18 Receiving an SMB_COM_CREATE_NEW Request 581
3.3.5.19 Receiving an SMB_COM_CHECK_DIRECTORY Request 582
3.3.5.20 Receiving an SMB_COM_PROCESS_EXIT Request 582
3.3.5.21 Receiving an SMB_COM_SEEK Request ... 583
3.3.5.22 Receiving an SMB_COM_LOCK_AND_READ Request 583
3.3.5.23 Receiving an SMB_COM_WRITE_AND_UNLOCK Request 584
3.3.5.24 Receiving an SMB_COM_READ_RAW Request .. 584
3.3.5.25 Receiving an SMB_COM_READ_MPX Request ... 585
3.3.5.26 Receiving an SMB_COM_WRITE_RAW Request... 586
3.3.5.27 Receiving an SMB_COM_WRITE_MPX Request ... 588
3.3.5.28 Receiving an SMB_COM_QUERY_INFORMATION2 Request 589
3.3.5.29 Receiving an SMB_COM_SET_INFORMATION2 Request 589
3.3.5.30 Receiving an SMB_COM_LOCKING_ANDX Request 589
3.3.5.31 Receiving an SMB_COM_TRANSACTION Request 591
3.3.5.32 Receiving an SMB_COM_IOCTL Request .. 591
3.3.5.33 Receiving an SMB_COM_ECHO Request .. 591
3.3.5.34 Receiving an SMB_COM_WRITE_AND_CLOSE Request 592

14 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.35 Receiving an SMB_COM_OPEN_ANDX Request ... 592
3.3.5.36 Receiving an SMB_COM_READ_ANDX Request ... 594
3.3.5.37 Receiving an SMB_COM_WRITE_ANDX Request 595
3.3.5.38 Receiving an SMB_COM_TRANSACTION2 Request 596
3.3.5.39 Receiving an SMB_COM_FIND_CLOSE2 Request 596
3.3.5.40 Receiving an SMB_COM_TREE_CONNECT Request 597
3.3.5.41 Receiving an SMB_COM_TREE_DISCONNECT Request 598
3.3.5.42 Receiving an SMB_COM_NEGOTIATE Request .. 598
3.3.5.43 Receiving an SMB_COM_SESSION_SETUP_ANDX Request 599
3.3.5.44 Receiving an SMB_COM_LOGOFF_ANDX Request 601
3.3.5.45 Receiving an SMB_COM_TREE_CONNECT_ANDX Request 602
3.3.5.46 Receiving an SMB_COM_QUERY_INFORMATION_DISK Request.................. 603
3.3.5.47 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Request 603
3.3.5.48 Receiving an SMB_COM_FIND_UNIQUE Request 606
3.3.5.49 Receiving an SMB_COM_FIND_CLOSE Request .. 606
3.3.5.50 Receiving an SMB_COM_NT_TRANSACT Request...................................... 606
3.3.5.51 Receiving an SMB_COM_NT_CREATE_ANDX Request 606
3.3.5.52 Receiving an SMB_COM_NT_CANCEL Request ... 608
3.3.5.53 Receiving an SMB_COM_NT_RENAME Request ... 609
3.3.5.54 Receiving an SMB_COM_OPEN_PRINT_FILE Request 610
3.3.5.55 Receiving an SMB_COM_WRITE_PRINT_FILE Request 611
3.3.5.56 Receiving an SMB_COM_CLOSE_PRINT_FILE Request 611
3.3.5.57 Receiving any SMB_COM_TRANSACTION Subcommand Request 611

3.3.5.57.1 Receiving a RAP Transaction Request .. 612
3.3.5.57.2 Receiving a TRANS_SET_NMPIPE_STATE Request 613
3.3.5.57.3 Receiving a TRANS_RAW_READ_NMPIPE Request 613
3.3.5.57.4 Receiving a TRANS_QUERY_NMPIPE_STATE Request 613
3.3.5.57.5 Receiving a TRANS_QUERY_NMPIPE_INFO Request 614
3.3.5.57.6 Receiving a TRANS_PEEK_NMPIPE Request .. 614
3.3.5.57.7 Receiving a TRANS_TRANSACT_NMPIPE Request 614
3.3.5.57.8 Receiving a TRANS_RAW_WRITE_NMPIPE Request 614
3.3.5.57.9 Receiving a TRANS_READ_NMPIPE Request 615
3.3.5.57.10 Receiving a TRANS_WRITE_NMPIPE Request 615
3.3.5.57.11 Receiving a TRANS_WAIT_NMPIPE Request 615
3.3.5.57.12 Receiving a TRANS_CALL_NMPIPE Request .. 615

3.3.5.58 Receiving Any SMB_COM_TRANSACTION2 Subcommand Request 616
3.3.5.58.1 Receiving Any Information Level .. 616
3.3.5.58.2 Receiving a TRANS2_OPEN2 Request .. 616
3.3.5.58.3 Receiving a TRANS2_FIND_FIRST2 Request 617
3.3.5.58.4 Receiving a TRANS2_FIND_NEXT2 Request.. 618
3.3.5.58.5 Receiving a TRANS2_QUERY_FS_INFORMATION Request 619
3.3.5.58.6 Receiving a TRANS2_QUERY_PATH_INFORMATION Request 619
3.3.5.58.7 Receiving a TRANS2_SET_PATH_INFORMATION Request 619
3.3.5.58.8 Receiving a TRANS2_QUERY_FILE_INFORMATION Request 619
3.3.5.58.9 Receiving a TRANS2_SET_FILE_INFORMATION Request 620
3.3.5.58.10 Receiving a TRANS2_CREATE_DIRECTORY Request 620
3.3.5.58.11 Receiving a TRANS2_GET_DFS_REFERRAL Request 620

3.3.5.59 Receiving any SMB_COM_NT_TRANSACT Subcommand Request 621
3.3.5.59.1 Receiving an NT_TRANSACT_CREATE Request 621
3.3.5.59.2 Receiving an NT_TRANSACT_IOCTL Request 623
3.3.5.59.3 Receiving an NT_TRANSACT_SET_SECURITY_DESC Request 623
3.3.5.59.4 Receiving an NT_TRANSACT_NOTIFY_CHANGE Request 623
3.3.5.59.5 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Request 624

3.3.6 Timer Events ... 624
3.3.6.1 OpLock Break Acknowledgment Timer Event ... 624
3.3.6.2 Idle Connection Timer Event .. 625
3.3.6.3 Unused Open Search Timer Event .. 625
3.3.6.4 Unused Connection Timer Event .. 625

15 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.7 Other Local Events ... 625
3.3.7.1 Handling a Transport Disconnect .. 625
3.3.7.2 Server Disconnects a Connection ... 625
3.3.7.3 Handling an Incoming Transport Connection .. 625

3.4 Local Interface Details for RPC Client Applications ... 626
3.4.1 Abstract Data Model ... 626
3.4.2 Timers ... 626
3.4.3 Initialization .. 626
3.4.4 Higher-Layer Triggered Events .. 626

3.4.4.1 An RPC Client Application Opens a Named Pipe .. 626
3.4.4.2 An RPC Client Application Writes to a Named Pipe 628
3.4.4.3 An RPC Client Application Reads from a Named Pipe 628
3.4.4.4 An RPC Client Application Issues a Named Pipe Transaction 629
3.4.4.5 An RPC Client Application Closes a Named Pipe .. 629
3.4.4.6 An RPC Client Application Requests the Session Key for an Authenticated

Context .. 630
3.4.4.7 A Local Client Application Initiates a Server Session 630
3.4.4.8 A Local Client Application Terminates a Server Session 630
3.4.4.9 A Local Client Application Queries DFS Referrals 631
3.4.4.10 A Local Client Application Requests a Connection to a Share 631
3.4.4.11 A Local Client Application Requests a Tree Disconnect 632
3.4.4.12 A Local Client Application Queries the Extended DFS Referral Capability 632

3.4.5 Message Processing Events and Sequencing Rules ... 632
3.4.6 Timer Events ... 633
3.4.7 Other Local Events ... 633

3.5 Local Interface Details for RPC Server Applications .. 633
3.5.1 Abstract Data Model ... 633
3.5.2 Timers ... 633
3.5.3 Initialization .. 633
3.5.4 Higher-Layer Triggered Events .. 633

3.5.4.1 An RPC Server Application Waits for Clients to Open a Named Pipe 633
3.5.4.2 An RPC Server Application Closes its Open to a Named Pipe 634
3.5.4.3 An RPC Server Application Requests the Security Context of a Client 634
3.5.4.4 An RPC Server Application Requests the Session Key of a Client 634

3.5.5 Message Processing Events and Sequencing Rules ... 634
3.5.6 Timer Events ... 634
3.5.7 Other Local Events ... 634

4 Protocol Examples ... 635
4.1 Negotiate and Tree Connect Example .. 635
4.2 Disconnect Example .. 635
4.3 Message Signing Example .. 636
4.4 Get File Attributes Example .. 638
4.5 Set File Attributes Example .. 639
4.6 Copy File from Share Example .. 641
4.7 Copy File to Share Example .. 642

5 Security ... 643
5.1 Security Considerations for Implementers .. 643
5.2 Index of Security Parameters ... 643

6 Appendix A: Product Behavior ... 644

7 Change Tracking .. 707

8 Index ... 710

16 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1 Introduction

The Common Internet File System (CIFS) Protocol is a cross-platform, transport-independent protocol
that provides a mechanism for client systems to use file and print services made available by server
systems over a network.

CIFS is a dialect of the Server Message Block (SMB) protocol, which was originally developed by
IBM Corporation and then further enhanced by Microsoft, IBM, Intel, 3Com, and others. There are

several dialects of SMB. A standard for the SMB protocol, covering dialects prior to CIFS, was
published by X/Open (now The Open Group) as [XOPEN-SMB].

The meaning of the term "CIFS" has changed since it was first introduced. It was originally used to
indicate a proposed standard version of SMB based upon the design of the Windows NT 4.0 operating
system and Windows 2000 operating system implementations. In some references, "CIFS" has been
used as a name for the SMB protocol in general (all dialects) and, additionally, the suite of protocols

that support and include SMB. In this document, the term "CIFS" is used specifically to identify the
Windows NT LAN Manager (NTLM) dialect of SMB as designed for use with Windows: in particular,

Windows NT Server 3.51 operating system and Windows NT Server 4.0 operating system, Windows NT
Workstation 4.0 operating system, and Microsoft Windows 98 operating system.

This document defines the protocol as it was designed for Windows NT operating system. It also
specifies the behaviors of Windows NT and Windows 98, with respect to optional behavior, and
documents known errors and variances in implementation. Changes and enhancements made to the

SMB protocol are documented in [MS-SMB].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are specific to this document:

8.3 name: A file name string restricted in length to 12 characters that includes a base name of up
to eight characters, one character for a period, and up to three characters for a file name
extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

authentication: The ability of one entity to determine the identity of another entity.

blocking mode: Determines if input/output (I/O) operations will wait for their entire data to be

transferred before returning to the caller. For a write operation, if blocking is enabled, the write
request will not complete until the named pipe reader has consumed all of the data inserted

into the named pipe as part of a write request. If blocking is not enabled, the write will
complete as soon as the data has been inserted into the named pipe, regardless of when the
data in the named pipe is consumed. For a read operation, if blocking is enabled, the read
request will be suspended until the data is available to be read. If blocking is not enabled, the
read will complete immediately, even if there is no data available to be read.

broadcast: A style of resource location or data transmission in which a client makes a request to
all parties on a network simultaneously (a one-to-many communication). Also, a mode of
resource location that does not use a name service.

%5bMS-SMB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-CIFS%5d.pdf

17 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

byte mode: One of two kinds of named pipe, the other of which is message mode. In byte
mode, the data sent or received on the named pipe does not have message boundaries but is

treated as a continuous stream. [XOPEN-SMB] uses the term stream mode instead of byte
mode, and [SMB-LM1X] refers to byte mode as byte stream mode.

Common Internet File System (CIFS): The “NT LM 0.12” / NT LAN Manager dialect of the
Server Message Block (SMB) Protocol, as implemented in Windows NT. The CIFS name
originated in the 1990's as part of an attempt to create an Internet standard for SMB, based
upon the then-current Windows NT implementation.

connection: Each user that has a session with a server can create multiple share connections, or
resource connections, using that user ID. This resource connection is created using a tree
connect Server Message Block (SMB) and is identified by an SMB TreeID or TID.

deprecated: A deprecated feature is one that has been superseded in the protocol by a newer
feature. Use of deprecated features is discouraged. Server implementations might need to
implement deprecated features to support clients that negotiate earlier SMB dialects.

dialog: The exchange of messages between client and server over a given SMB connection.

discretionary access control list (DACL): An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the

object.

disk: A persistent storage device that can include physical hard disks, removable disk units, optical
drive units, and logical unit numbers (LUNs) unmasked to the system.

Distributed File System (DFS): A file system that logically groups physical shared folders located
on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault-tolerance and load-sharing capabilities. DFS refers to the Microsoft DFS
available in Windows Server operating system platforms.

Distributed File System (DFS) namespace: A virtual view of shares on different servers as
provided by DFS. Each file in the namespace has a logical name and a corresponding address

(path). A DFS namespace consists of a root and many links and targets. The namespace starts
with a root that maps to one or more root targets. Below the root are links that map to their
own targets.

Distributed File System (DFS) path: Any Universal Naming Convention (UNC) path that
starts with a DFS root and is used for accessing a file or directory in a DFS namespace.

Distributed File System (DFS) referral: A DFS client issues a DFS referral request to a DFS
root target or a DC, depending on the DFS path accessed, to resolve a DFS root to a set of DFS
root targets, or a DFS link to a set of DFS link targets. The DFS client uses the referral request
process as needed to finally identify the actual share on a server that has accessed the leaf
component of the DFS path. The request for a DFS referral is referred to as DFS referral
request, and the response for such a request is referred to as DFS referral response.

Distributed File System (DFS) referral request: The request for a DFS referral.

Distributed File System (DFS) referral response: The response to a Distributed File System
(DFS) referral request.

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

error code: An integer that indicates success or failure. In Microsoft implementations, this is
defined as a Windows error code. A zero value indicates success; a nonzero value indicates

failure.

http://go.microsoft.com/fwlink/?LinkId=164302

18 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

exchange: A pair of messages, consisting of a request and a response.

Fid: A 16-bit value that the Server Message Block (SMB) server uses to represent an opened

file, named pipe, printer, or device. A Fid is returned by an SMB server in response to a client
request to open or create a file, named pipe, printer, or device. The SMB server guarantees

that the Fid value returned is unique for a given SMB connection until the SMB connection is
closed, at which time the Fid value may be reused. The Fid is used by the SMB client in
subsequent SMB commands to identify the opened file, named pipe, printer, or device.

file: An entity of data in the file system that a user can access and manage. A file must have a
unique name in its directory. It consists of one or more streams of bytes that hold a set of
related data, plus a set of attributes (also called properties) that describe the file or the data
within the file. The creation time of a file is an example of a file attribute.

file attribute: A 32-bit bitmask containing information on a file's properties. For instance,
0x00000001 is used for the read-only attribute.

file system control (FSCTL): A command issued to a file system to alter or query the behavior of

the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

flags: A set of values used to configure or report options or settings.

guest account: A security account available to users who do not have an account on the
computer.

I/O control (IOCTL): A command that is issued to a target file system or target device in order
to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

information level: A number used to identify the volume, file, or device information being
requested by a client. Corresponding to each information level, the server returns a specific

structure to the client that contains different information in the response.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to

address growth on the Internet. Improvements include a 128-bit IP address size, expanded
routing capabilities, and support for authentication and privacy.

Internetwork Packet Exchange (IPX): A protocol (see [IPX]) maintained by Novell's NetWare
product that provides connectionless datagram delivery of messages. IPX is based on Xerox
Corporation's Internetwork Packet protocol, XNS.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

mailslot: A mechanism for one-way interprocess communications (IPC). For more information, see
[MSLOT] and [MS-MAIL].

message mode: A named pipe can be of two types: byte mode or message mode. In byte
mode, the data sent or received on the named pipe does not have message boundaries but is

treated as a continuous Stream. In message mode, message boundaries are enforced.

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

NetBIOS: A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. The LAN Manager protocols were the default in Windows NT environments prior to
Windows 2000. A protocol family including name resolution, datagram, and connection services.

For more information, see [RFC1001] and [RFC1002].

http://go.microsoft.com/fwlink/?LinkId=89914
http://go.microsoft.com/fwlink/?LinkId=90218
%5bMS-MAIL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

19 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NetBIOS datagram service: An implementation of NetBIOS services in a datagram environment
as specified in [RFC1001] section 17.

NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network.
For more information, see [RFC1001] and [RFC1002].

NetBIOS Name Server (NBNS): A server that stores NetBIOS name-to-IPv4 address mappings
and that resolves NetBIOS names for NBT-enabled hosts. A server running the Windows
Internet Name Service (WINS) is the Microsoft implementation of an NBNS.

network address translation (NAT): The process of converting between IP addresses used
within an intranet, or other private network, and Internet IP addresses.

non-blocking mode (of a named pipe): Determines if input/output (I/O) operations on a
named pipe will return to the caller without waiting for the data transfer to complete. When

non-blocking mode is set, read requests return with all data available to be read from the
named pipe, up to the maximum read size set in the request; write requests return after writing
data to the named pipe without waiting for the data to be consumed.

NT file system (NTFS): NT file system (NTFS) is a proprietary Microsoft File System. For more
information, see [MSFT-NTFS].

NT LAN Manager (NTLM): A Microsoft authentication protocol that is based on a challenge-

response sequence for authentication. NT refers to the Windows operating system. For more
information, see [MS-NLMP].

object store: A system that provides the ability to create, query, modify, or apply policy to a local
resource on behalf of a remote client. The object store is backed by a file system, a named pipe,
or a print job that is accessed as a file.

Obsolescent: A feature that has no replacement but is becoming obsolete. Although the use of
obsolescent features is discouraged, server implementations might need to implement them to

support clients that negotiate earlier SMB dialects.

obsolete: An obsolete feature is one that was introduced in an earlier dialect but that is no longer

supported in the NT LAN Manager dialect. Support for obsolete features is to be avoided in new
implementations.

OEM character: See original equipment manufacturer (OEM) character.

OEM character set: See original equipment manufacturer (OEM) character set.

open: A runtime object that corresponds to a currently established access to a specific file or a

named pipe from a specific client to a specific server, using a specific user security context. Both
clients and servers maintain opens that represent active accesses.

oplock break: An unsolicited request sent by a Server Message Block (SMB) server to an SMB
client to inform the client to change the oplock level for a file.

opportunistic lock (oplock): A mechanism designed to allow clients to dynamically alter their
buffering strategy in a consistent manner to increase performance and reduce network use. The

network performance for remote file operations may be increased if a client can locally buffer file
data, which reduces or eliminates the need to send and receive network packets. For example, a
client may not have to write information into a file on a remote server if the client knows that no
other process is accessing the data. Likewise, the client may buffer read-ahead data from the
remote file if the client knows that no other process is writing data to the remote file. There are
three types of oplocks: Exclusive oplock allows a client to open a file for exclusive access and
allows the client to perform arbitrary buffering. Batch oplock allows a client to keep a file open

on the server even though the local accessor on the client machine has closed the file. Level II
oplock indicates that there are multiple readers of a file and no writers. Level II Oplocks are

http://go.microsoft.com/fwlink/?LinkId=90200
%5bMS-NLMP%5d.pdf

20 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

supported if the negotiated SMB Dialect is NT LM 0.12 or later. When a client opens a file, it
requests the server to grant it a particular type of oplock on the file. The response from the

server indicates the type of oplock granted to the client. The client uses the granted oplock
type to adjust its buffering policy.

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

pipe instance: A request to open a named pipe by a client application. Multiple Server Message
Block (SMB) clients can open the same named pipe. Each request to open the same named
pipe is a pipe instance.

pipe state: A series of attributes that describe how the pipe interacts with processes for various

input/output (I/O) operations and that indicate how much data is currently available to be read
from the named pipe.

print job: The rendered page description language (PDL) output data sent to a print device for a

particular application or user request.

process identifier (PID): A nonzero integer used by some operating systems (for example,
Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS].

raw read (on a named pipe): The act of reading data from a named pipe that ignores message
boundaries even if the pipe was set up as a message mode pipe.

RPC client: A computer on the network that sends messages using remote procedure call (RPC) as
its transport, waits for responses, and is the initiator in an RPC exchange.

RPC server: A computer on the network that waits for messages, processes them when they
arrive, and sends responses using RPC as its transport acts as the responder during a remote
procedure call (RPC) exchange.

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP] section

2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

security descriptor: A data structure containing the security information associated with a

securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are
allowed or denied access. Applications use this structure to set and query an object's security
status. The security descriptor is used to guard access to an object as well as to control which
type of auditing takes place when the object is accessed. The security descriptor format is

specified in [MS-DTYP] section 2.4.6; a string representation of security descriptors, called
SDDL, is specified in [MS-DTYP] section 2.5.1.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

Server Service: The CIFS file sharing service. The Server Service registers a NetBIOS name
with a suffix byte value of 0x20 and responds to SMB commands.

session: In Server Message Block (SMB), a persistent-state association between an SMB client
and SMB server. A session is tied to the lifetime of the underlying NetBIOS or TCP connection.

http://go.microsoft.com/fwlink/?LinkId=90251
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89836
%5bMS-SMB%5d.pdf

21 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

session key: A relatively short-lived symmetric key (a cryptographic key negotiated by the client
and the server based on a shared secret). A session key's lifespan is bounded by the session

to which it is associated. A session key should be strong enough to withstand cryptanalysis for
the lifespan of the session.

share: A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,
reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,

B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

share connect: The act of establishing authentication and shared state between a Common
Internet File System (CIFS) server and client that allows a CIFS client to access a share offered
by the CIFS server.

SMB command: A set of SMB messages that are exchanged in order to perform an operation. An
SMB command is typically identified by a unique command code in the message headers,

although some SMB commands require the use of secondary commands. Within [MS-CIFS],
the term command means an SMB command unless otherwise stated.

SMB connection: A transport connection between a Server Message Block (SMB) client and an
SMB server. The SMB connection is assumed to provide reliable in-order message delivery
semantics. An SMB connection can be established over any available SMB transport that is
supported by both the SMB client and the SMB server, as specified in [MS-CIFS].

SMB dialect: There are several different versions and subversions of the Server Message Block

(SMB) protocol. A particular version of the SMB protocol is referred to as an SMB dialect.
Different SMB dialects can include both new SMB messages as well as changes to the fields
and semantics of existing SMB messages used in other SMB dialects. When an SMB client
connects to an SMB server, the client and server negotiate the SMB dialect to be used.

SMB message: A protocol data unit. SMB messages are comprised of a header, a parameter
section, and a data section. The latter two can be zero length. An SMB message is sometimes
referred to simply as an SMB. Within [MS-CIFS], the term command means an SMB command

unless otherwise stated.

SMB session: An authenticated user connection established between an SMB client and an SMB
server over an SMB connection. There can be multiple active SMB sessions over a single
SMB connection. The Uid field in the SMB packet header distinguishes the various sessions.

SMB transport: Any protocol that acts as a transport layer for the SMB Protocol.

system access control list (SACL): An access control list (ACL) that controls the generation of

audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send

data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

tree connect: A connection between a CIFS client and a share on a remote CIFS server.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

http://go.microsoft.com/fwlink/?LinkId=154659

22 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit

string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered
sequence of 32-bit code units. In some cases, it may be acceptable not to terminate with a

terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE
encoding scheme with no Byte Order Mark (BOM).

unique identifier (UID): A pair consisting of a GUID and a version sequence number to identify
each resource uniquely. The UID is used to track the object for its entire lifetime through any
number of times that the object is modified or renamed.

Universal Naming Convention (UNC): A string format that specifies the location of a resource.
For more information, see [MS-DTYP] section 2.2.57.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

virtual circuit (VC): A transport-level connection between a CIFS client and a server. Some

references use the term "virtual connection" instead of "virtual circuit".

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IEEE802.2-1998] Institute of Electrical and Electronics Engineers, "Part 2: LAN/MAN Logical Link
Control", IEEE Std 802.2, 1998. This standard is also called ISO/IED 8802-2:1998,
http://standards.ieee.org/getieee802/802.2.html

[MS-BRWS] Microsoft Corporation, "Common Internet File System (CIFS) Browser Protocol".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DFSNM] Microsoft Corporation, "Distributed File System (DFS): Namespace Management
Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-MSRP] Microsoft Corporation, "Messenger Service Remote Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=127827
%5bMS-BRWS%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-DFSNM%5d.pdf
%5bMS-DFSNM%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-MSRP%5d.pdf
%5bMS-NLMP%5d.pdf

23 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MS-RAP] Microsoft Corporation, "Remote Administration Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

[NBF2CIFS] Evans, T. D., "NetBIOS, NetBEUI, NBF, NBT, NBIPX, SMB, CIFS Networking", July 2003,

http://timothydevans.me.uk/n2c.html

[NBF] Microsoft Corporation, "Comparison of Windows NT Network Protocols", November 2006,
http://support.microsoft.com/kb/q128233

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/BK8P7001/CCONTENTS

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc-
editor.org/rfc/rfc1002.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

[RYAN] Ryan, R., and Ryan, B., "LAN Manager: A Programmer's Guide, Version 2", Microsoft Press,
July 1990, ISBN: 1556151667.

[XOPEN-SMB] The Open Group, "Protocols for X/Open PC Interworking: SMB, Version 2", The Open
Group, 1992, ISBN: 1872630456.

1.2.2 Informative References

[CIFS] Leach, P. and Naik, D., "A Common Internet File System (CIFS/1.0) Protocol", March 1997,
http://www.microsoft.com/about/legal/protocols/BSTD/CIFS/draft-leach-cifs-v1-spec-02.txt

[ENSIGN] Microsoft Corporation, "How to enable SMB signing in Windows NT",
http://support.microsoft.com/kb/161372/

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June

2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
c696a890309f/File%20System%20Behavior%20Overview.pdf

[IBM-SMB] IBM Personal Computer Seminar Proceedings, "The IBM PC Network Program", vol 2, No 8,
October 1984.

[IMPCIFS] Hertel, C. R., "Implementing CIFS - The Common Internet File System", Prentice Hall,
August 2003, ISBN: 013047116X.

[KB102067] Microsoft Corporation, "SESSTIMEOUT Information",
http://support.microsoft.com/kb/102067

%5bMS-RAP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SRVS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=162020
http://go.microsoft.com/fwlink/?LinkId=90222
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90275
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=89836
http://go.microsoft.com/fwlink/?LinkId=161959
http://go.microsoft.com/fwlink/?LinkId=140636
http://go.microsoft.com/fwlink/?LinkId=140636
http://go.microsoft.com/fwlink/?LinkId=162005

24 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[KB129202] Microsoft Corporation, "PC Ext: Explanation of Opportunistic Locking on Windows NT",
http://support.microsoft.com/kb/129202

[KB143474] Microsoft Corporation, "Restricting information available to anonymous logon users",
http://support.microsoft.com/kb/143474

[KB297684] Microsoft Corporation, "Mapped Drive Connection to Network Share May Be Lost",
http://support.microsoft.com/kb/297684

[KB301673] Microsoft Corporation, "You cannot make more than one client connection over a NAT
device", http://www.tech-archive.net/Archive/Win2000/microsoft.public.win2000.networking/2004-
06/1748.html

[KB887429] Microsoft Corporation, "Overview of Server Message Block signing", Version 2.4,
November 2007, http://support.microsoft.com/kb/887429

[MD5Collision] Klima, V., "Tunnels in Hash Functions: MD5 Collisions Within a Minute", March 2006,
http://eprint.iacr.org/2006/105.pdf

[MS-FSA] Microsoft Corporation, "File System Algorithms".

[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol".

[MS-NBTE] Microsoft Corporation, "NetBIOS over TCP (NBT) Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[MSBRWSE] Thompson IV, D. and McLaughlin, R., "MS Windows NT Browser",
https://www.microsoft.com/technet/archive/winntas/deploy/prodspecs/ntbrowse.mspx

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-

us/library/cc782417%28WS.10%29.aspx

[MSDN-CallNmdPipe] Microsoft Corporation, "CallNamedPipe function", http://msdn.microsoft.com/en-
us/library/aa365144(VS.85).aspx

[MSDN-CreateFile] Microsoft Corporation, "CreateFile function", http://msdn.microsoft.com/en-
us/library/aa363858(VS.85).aspx

[MSDN-DiscntEndpoint] Microsoft Corporation, "Disconnecting an Endpoint-to-Endpoint Connection",

http://msdn.microsoft.com/en-us/library/ff545611(v=VS.85).aspx

[MSDN-ENPLAINTXT] Microsoft Corporation, "EnablePlainTextPassword",
http://msdn.microsoft.com/en-us/library/cc939354.aspx

[MSDN-GetNmdPipeHndState] Microsoft Corporation, "GetNamedPipeHandleState function",

http://msdn.microsoft.com/en-us/library/aa365443(VS.85).aspx

[MSDN-GetNmdPipeInfo] Microsoft Corporation, "GetNamedPipeInfo function",
http://msdn.microsoft.com/en-us/library/aa365445(VS.85).aspx

[MSDN-IMPERS] Microsoft Corporation, "Impersonation", http://msdn.microsoft.com/en-
us/library/ms691341.aspx

[MSDN-IoCreateFile] Microsoft Corporation, "IoCreateFile routine", http://msdn.microsoft.com/en-
us/library/ff548418.aspx

http://go.microsoft.com/fwlink/?LinkId=162006
http://go.microsoft.com/fwlink/?LinkId=162009
http://go.microsoft.com/fwlink/?LinkId=162010
http://go.microsoft.com/fwlink/?LinkId=162011
http://go.microsoft.com/fwlink/?LinkId=162011
http://go.microsoft.com/fwlink/?LinkId=122493
http://go.microsoft.com/fwlink/?LinkId=89937
%5bMS-FSA%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-NBTE%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-WPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89943
http://go.microsoft.com/fwlink/?LinkId=89945
http://go.microsoft.com/fwlink/?LinkId=89945
http://go.microsoft.com/fwlink/?LinkId=182715
http://go.microsoft.com/fwlink/?LinkId=182715
http://go.microsoft.com/fwlink/?LinkId=182698
http://go.microsoft.com/fwlink/?LinkId=182698
http://go.microsoft.com/fwlink/?LinkId=214274
http://go.microsoft.com/fwlink/?LinkId=162040
http://go.microsoft.com/fwlink/?LinkId=182699
http://go.microsoft.com/fwlink/?LinkId=182705
http://go.microsoft.com/fwlink/?LinkId=106009
http://go.microsoft.com/fwlink/?LinkId=106009
http://go.microsoft.com/fwlink/?LinkId=182725
http://go.microsoft.com/fwlink/?LinkId=182725

25 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[MSDN-MakeEndpoint] Microsoft Corporation, "Making an Endpoint-to-Endpoint Connection",
http://msdn.microsoft.com/en-us/library/ff549239(v=VS.85).aspx

[MSDN-OBJ_ATTRIBS] Microsoft Corporation, "OBJECT_ATTRIBUTES structure",
http://msdn.microsoft.com/en-us/library/ff557749.aspx

[MSDN-PkNmdPipe] Microsoft Corporation, "PeekNamedPipe function", http://msdn.microsoft.com/en-
us/library/aa365779(VS.85).aspx

[MSDN-RecErrorNotif] Microsoft Corporation, "Receiving Error Notifications",
http://msdn.microsoft.com/en-us/library/ff563300(v=VS.85).aspx

[MSDN-SDCTRLREQSTS] Microsoft Corporation, "Serial Device Control Requests",
http://msdn.microsoft.com/en-us/library/ff547466.aspx

[MSDN-SetNmdPipeHndState] Microsoft Corporation, "SetNamedPipeHandleState function",
http://msdn.microsoft.com/en-us/library/aa365787(VS.85).aspx

[MSDN-TDIDeviceObj] Microsoft Corporation, "TDI Device Objects", http://msdn.microsoft.com/en-
us/library/ff565087(v=VS.85).aspx

[MSDN-TrnsactNmdPipe] Microsoft Corporation, "TransactNamedPipe function",

http://msdn.microsoft.com/en-us/library/aa365790(VS.85).aspx

[MSDN-TrnspDrvIntfc] Microsoft Corporation, "Transport Driver interface",
http://msdn.microsoft.com/en-us/library/ff565685(v=VS.85).aspx

[MSDN-WaitNmdPipe] Microsoft Corporation, "WaitNamedPipe function",
http://msdn.microsoft.com/en-us/library/aa365800(VS.85).aspx

[MSFT-IPXWAN] Microsoft Corporation, "IPX WAN Broadcasting", http://technet.microsoft.com/en-
us/library/cc957949.aspx

[MSFT-NBNWLINK] Microsoft Corporation, "The NWLink IPX/SPX/NetBIOS Compatible Transport

Protocol (NWLink)", January 2005, http://technet.microsoft.com/en-us/library/cc782167(WS.10).aspx

[MSFT-SecurityWatch] Microsoft Corporation, "Security Watch", http://technet.microsoft.com/en-
us/magazine/2006.08.securitywatch.aspx

[MSFT-XEXTNP] Microsoft Corporation, "OpenNET/Microsoft Networks FILE SHARING PROTOCOL
EXTENSIONS", Version 1.9, September 1986, ftp://ftp.microsoft.com/developr/drg/cifs/DOSEXTP.TXT

[MSKB-235717] Microsoft Corporation, "BUG: CallNamedPipe() API lpBytesRead Parameter Returns
Bogus Number", Version 3.3, February 2007, http://support.microsoft.com/kb/235717

[MSKB-239869] Microsoft Corporation, "How to enable NTLM 2 authentication", Version 4.7, January

2007, http://support.microsoft.com/kb/239869

[MSKB-288358] Microsoft Corporation, "How to install the Active Directory Client Extension", Version
7.1, July 2007, http://support.microsoft.com/kb/288358

[MSKB-320829] Microsoft Corporation, "How to modify the default SizReqBuf value in Windows 2000
and Windows Server 2003", November 2006, http://support.microsoft.com/kb/320829

[MSLOT] Microsoft Corporation, "Mailslots", http://msdn.microsoft.com/en-us/library/aa365576.aspx

[NBGUIDE] Winston, G., "NetBIOS Specification", 2003, http://www.netbiosguide.com/

http://go.microsoft.com/fwlink/?LinkId=214275
http://go.microsoft.com/fwlink/?LinkId=182720
http://go.microsoft.com/fwlink/?LinkId=121801
http://go.microsoft.com/fwlink/?LinkId=121801
http://go.microsoft.com/fwlink/?LinkId=214276
http://go.microsoft.com/fwlink/?LinkId=182724
http://go.microsoft.com/fwlink/?LinkId=182918
http://go.microsoft.com/fwlink/?LinkId=214277
http://go.microsoft.com/fwlink/?LinkId=214277
http://go.microsoft.com/fwlink/?LinkId=182709
http://go.microsoft.com/fwlink/?LinkId=214278
http://go.microsoft.com/fwlink/?LinkId=182711
http://go.microsoft.com/fwlink/?LinkId=162041
http://go.microsoft.com/fwlink/?LinkId=162041
http://go.microsoft.com/fwlink/?LinkId=162031
http://go.microsoft.com/fwlink/?LinkId=177588
http://go.microsoft.com/fwlink/?LinkId=177588
http://go.microsoft.com/fwlink/?LinkId=162042
http://go.microsoft.com/fwlink/?LinkId=182630
http://go.microsoft.com/fwlink/?LinkId=182633
http://go.microsoft.com/fwlink/?LinkId=182635
http://go.microsoft.com/fwlink/?LinkId=304224
http://go.microsoft.com/fwlink/?LinkId=90218
http://go.microsoft.com/fwlink/?LinkId=162026

26 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

[NWLINK] Microsoft Corporation, "Description of Microsoft NWLINK IPX/SPX-Compatible Transport",
October 2006, http://support.microsoft.com/?kbid=203051

[RAP] Leach, P. and Naik, D., "CIFS Remote Administration Protocol - Preliminary Draft", February
1997, ftp://ftp.microsoft.com/developr/drg/CIFS/cifsrap2.txt

[SMB-CORE] Microsoft Corporation, Intel Corporation, "Microsoft Networks / OpenNet", Document
Version 2, November 1988, ftp://ftp.microsoft.com/developr/drg/CIFS/SMB-CORE.PS

[SMB-LM12] Microsoft Corporation, "Microsoft Networks SMB File Sharing Protocol Extensions",
Version 3.0, Document Version 1.09, November 1989,
ftp://ftp.microsoft.com/developr/drg/CIFS/SMB.TXT

[SMB-LM1X] Microsoft Corporation, "Microsoft Networks SMB File Sharing Protocol Extensions",
Version 2.0, Document Version 3.3, November 1988, ftp://ftp.microsoft.com/developr/drg/CIFS/SMB-
LM1X.PS

[SMB-LM20] Microsoft Corporation, "Microsoft Networks SMB File Sharing Protocol Extensions",

Version 3.0, Document Version 1.11, June 1990, ftp://ftp.microsoft.com/developr/drg/CIFS/SMB-
LM20.PS

[SMB-LM21] Microsoft Corporation, "Microsoft Networks SMB File Sharing Protocol Extensions",
Document Version 3.4, February 1992, ftp://ftp.microsoft.com/developr/drg/CIFS/SMB-LM21.DOC

[SNIA] Storage Networking Industry Association, "Common Internet File System (CIFS) Technical
Reference, Revision 1.0", March 2002,
http://networks.cs.ucdavis.edu/~zhuk/research/sans/documents/CIFS-TR-1p00_FINAL.pdf

1.3 Overview

The Common Internet File System (CIFS) is a general-purpose network file system protocol. It
provides clients with managed, concurrent access to files and directories hosted on server systems. It
also provides access to print queues and interprocess communication services, and supports

authenticated transport for remote procedure call subprotocols. With a few exceptions, CIFS is client-

driven in that a client makes requests to which a server responds.

To this end, CIFS defines three entities: the client, the server, and the application. The client is an
implementation of the protocol and originates most of the messages. The server is also an
implementation of the protocol and provides the majority of the functionality described herein as a
service. Remaining functionality is handled by a number of subsystems associated with CIFS. These
include:

 Transaction processing subsystems (SMB Trans, SMB Trans2, and NT Trans)

 User authentication subsystem

 Distributed File System (DFS) processing subsystem

 Remote Administration Protocol (RAP) processing subsystem

 Remote Procedure Call (RPC) processing subsystem

These subsystems can be integrated into a CIFS server implementation or can be accessed as
separate services via CIFS.

Although the client originates most exchanges in CIFS, it is not the triggering entity in most cases;

that role is filled by the application. The application is an entity that needs support of the CIFS
protocol, but does not directly implement the protocol. Instead, the application relies on the
implementation of CIFS by the client to gain the benefits of the CIFS services, through an API or other

http://go.microsoft.com/fwlink/?LinkId=90239
http://go.microsoft.com/fwlink/?LinkId=90255
http://go.microsoft.com/fwlink/?LinkId=164301
http://go.microsoft.com/fwlink/?LinkId=163208
http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=163213
http://go.microsoft.com/fwlink/?LinkId=163213
http://go.microsoft.com/fwlink/?LinkId=163216
http://go.microsoft.com/fwlink/?LinkId=90519

27 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

access method that is not defined in this specification. The application can be a piece of software that
fulfills purposes such as word processing or a graphic user interface to file management, but can be

particular to CIFS.

Hereafter, the terms "client", "server", and "application" describe the aforementioned entities. This

specification assumes that although the client and the application are independent entities, they are
considered to be tightly bound as far as CIFS is concerned. There is no direct interaction between the
application and the server, except through the client. As such, there is no independent role attributed
to the application in this specification.

CIFS is a stateful protocol. It imposes state to maintain security contexts, cryptographic protections,
and file access semantics such as locking and caching. CIFS allows multiple clients to concurrently
share files and printers hosted by server systems, thus facilitating collaboration, efficient use of

resources, and centralized management.

CIFS supports the following features:

 Transport independence. The CIFS protocol itself does not place any requirements upon the

transport protocol that is used to pass SMB messages between the client and the server. CIFS is
typically carried over a connection-oriented protocol, but connectionless protocols have been used
as CIFS transports.

 Flexible connectivity. A single client can connect to multiple servers, and can make one or more
connections to each server. The activity of multiple client processes can be multiplexed over a
single connection.

 Feature negotiation. The dialect and the supported feature set of the protocol are negotiated on
a per-connection basis.

 Resource access. A client can concurrently access multiple shared resources (files, named pipes,
print queues) on the target server.

 Security contexts. A client can create and use one or more security contexts over a connection.

 File access. A client can open, read, write, modify, delete, and close multiple files on the target

server. File sharing is managed by the server, so multiple clients can have the same file open at
the same time.

 Extended subprotocols. CIFS supports a set of subprotocols that provide direct access to
additional server functionality.

 Named pipe interprocess communication. A client can open, read, write, and close named

pipes on the target server. Named pipes provide a communications path between client and
server processes.

 File and record locking, and safe caching. CIFS supports file and record locking, as well as
opportunistic locking of files to allow clients to cache data for better performance.

 File, directory, and volume attributes. CIFS provides the ability to query and (with limitations)
set file, directory, and volume attributes, including extended attributes. CIFS also provides support

for the use of Access Control Lists (ACLs).

 File and directory change notification. CIFS clients can post a request to be notified when a
change is made to a file within a directory or directory tree on the server.

 Batched commands. CIFS AndX messages can be chained together and executed in sequence on
the server, avoiding multiple message round-trips.

 Distributed File System (DFS) support. The DFS namespace is supported. DFS provides a
single consistent object naming scheme (a unified namespace) that can span a collection of

different servers and shares. The DFS model employed is a referral-based model, which is

28 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

specified in [MS-DFSC]. CIFS specifies the manner in which clients and servers receive and
process referrals.

 Remote Procedure Call Transport. CIFS provides authenticated transport for remote procedure
call protocols such as RPC [MS-RPCE] and RAP [MS-RAP].

 Message verification. CIFS supports message signing, as described in [KB887429], which is
used to ensure that messages have not been modified in transit.

 Unicode file name support. CIFS supports both extended ASCII (OEM) character set and
Unicode file names. CIFS supports 8.3 name format file names, long file names using the
extended ASCII character set (8-bit characters), and long file names in Unicode.

1.4 Relationship to Other Protocols

CIFS Transports

The CIFS protocol is transport-independent. It requires only a mechanism for sending and receiving

the SMB messages that are specified in this document. CIFS is designed for use over reliable
transport, and is most commonly carried over connection-oriented sessions. With only minor

modifications, however, it is possible to use a connectionless transport to exchange CIFS messages.

The transport protocols most commonly used by CIFS fall into two basic categories: NetBIOS-based
and Direct Hosting. NetBIOS-based transports include:

 NetBIOS over TCP/IP (NBT), as specified in [RFC1001] and [RFC1002].

 NetBIOS Frames Protocol (NBF), as specified in [NETBEUI].

 NetBIOS over IPX/SPX, known as NBIPX, and described in [MSFT-NBNWLINK].

NetBIOS-based transports provide three common services: a Name Service, a Datagram Service, and

a Session Service. On DOS, OS/2, and Windows platforms, these three services are used to support a
NetBIOS interface layer that is accessed via a common API. Implementation of the NetBIOS API is not

required for CIFS.

It is also possible to build a direct interface between CIFS and an underlying network transport
without the use of a NetBIOS interface layer. In Microsoft documentation, this is referred to as "Direct
Hosting". CIFS on DOS, OS/2, and Windows systems supports Direct Hosting over the connectionless

IPX protocol. IPX Direct Hosting is briefly described in the Understanding NWLink section of [MSFT-
NBNWLINK].

Protocols Transported by CIFS

The following protocols use CIFS as a transport and provide CIFS clients with access to additional
server functionality:

 The SMB Transaction, Transaction2, and NT Transaction subprotocols. These are SMB/CIFS
extensions and are described within this document. The SMB Transaction subprotocol provides

support for writing to and reading from named pipes.

 Remote Administration Protocol (RAP), as specified in [MS-RAP]. See also [RAP] and [XOPEN-
SMB].

 The Remote Procedure Call (RPC) protocol over Named Pipes. SMB Transaction calls are used
to perform I/O to named pipes. See [MS-RPCE] for more information on RPC Protocol Extensions.

Additional Related Protocols

%5bMS-DFSC%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RAP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=122493
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=162031
%5bMS-RAP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90255
%5bMS-RPCE%5d.pdf

29 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 CIFS supports the Distributed File System (DFS) Namespace Referral Protocol, as specified in [MS-
DFSC]. For an overview of DFS, see [MSDFS]. For management of DFS, see [MS-DFSNM].

 CIFS services are announced via the CIFS Browser Protocol. CIFS clients access Local Master
Browser Server and Backup Browser Server nodes in order to retrieve a copy of the services

list, known as the Browse List. The CIFS Browser Protocol, which is specified in [MS-BRWS],
creates and maintains the Browse List. This protocol makes use of the Remote Mailslot protocol
and RAP. The CIFS Browser Protocol does not use this specification directly, but is included here
for completeness. For more information, see [MSBRWSE], [MS-RAP], and [MS-MAIL].

 The Messenger Service, which is documented in [MS-MSRP], is related to CIFS in that it uses
messages that are formatted as SMB messages. Although they are formatted as SMB messages,
Messenger Service messages are not part of the CIFS protocol.

 The CIFS server interacts with the Server Service Remote Protocol [MS-SRVS] for file server
management and for synchronizing the information on shares, sessions, treeconnects, file opens,
and server configurations. The synchronization mechanism is dependent on the CIFS server and
the server service starting up and terminating at the same time.

CIFS Successors

The Server Message Block Version 1.0 (SMB) Protocol, as implemented in Windows 2000 and above, is

specified in [MS-SMB], which lists extensions, enhancements, and clarifications to this document.
Note, however, that the protocol described in [MS-SMB] uses the same dialect identifier ("NT LM
0.12") as CIFS.

The Server Message Block Version 2.0 (SMB2) Protocol, in contrast, is an entirely new file sharing
protocol based upon SMB concepts. SMB2 is specified in [MS-SMB2].

1.5 Prerequisites/Preconditions

CIFS requires an underlying network transport that is generally connection-oriented. With some minor
modifications to CIFS protocol behavior, CIFS messages can be exchanged using a connectionless
transport. If the transport is connection-oriented, the connection needs to be established before CIFS

messages can be exchanged.

CIFS assumes that the server has one or more of the following local resources available:

 For file sharing services, a local file system or some other resource (such as a database) that can
be presented as a file system. This resource is known as the object store.

 For printer services, a local print queue that spools print jobs to a printer.

 For interprocess communications using the named pipe abstraction, a file system that supports
named pipes or a suitable emulation built into the CIFS server.

The server is also required to provide or have access to a password database for authentication. To

support challenge/response authentication, the password database is required to store the LAN
Manager (LM) and NT LAN Manager (NTLM) password hashes.

1.6 Applicability Statement

CIFS is a dialect of the SMB network file sharing protocol, designed to provide concurrent access to

directories and files hosted on server systems. CIFS is applicable for all scenarios that involve
transferring files between client and server. It is also applicable for accessing centralized print queues,
and for interprocess communications using named pipes.

%5bMS-DFSC%5d.pdf
%5bMS-DFSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89945
%5bMS-DFSNM%5d.pdf
%5bMS-BRWS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89943
%5bMS-MAIL%5d.pdf
%5bMS-MSRP%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf

30 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.7 Versioning and Capability Negotiation

The SMB Protocol supports dialect negotiation. A dialect is a version of the SMB Protocol that is
generally defined in terms of additions and changes relative to a previous version. New SMB dialects

typically provide new commands, can include modifications to previous commands, and are likely to
include extensions to existing semantics. When the SMB Protocol starts up, its first task is to
determine which dialect the client and server use to communicate. See the SMB_COM_NEGOTIATE
command for a detailed description of the SMB dialect negotiation process.

In the protocol negotiation process, SMB dialects are identified by Dialect Identifier Strings. For
example, the Core Protocol is identified by two strings: "PCLAN1.0" or "PC NETWORK PROGRAM
1.0". Either or both of these strings can be sent by the client. The CIFS dialect is also known as NT

LAN Manager (or, simply NT LANMAN), and is identified by the dialect string "NT LM 0.12".

The earliest dialect of SMB is now referred to as the Core Protocol because, for many years, it
represented the least common set of commands that were required to be implemented for
interoperability--the "core" set. In CIFS, many older commands including some original Core
Protocol commands have been declared obsolete and are no longer used. Others are listed as

deprecated or obsolescent, which means that they are likely to become obsolete and are not

recommended to be used by clients, even though it is recommended that servers support them.

The table below lists the most common or best-known dialects, as well as related documentation (if
available).

SMB Dialects

Dialect
name

Dialect
Identifier
String Comments

Core
Protocol

PCLAN1.0 The dialect supported by IBM Corporation in early implementations of the SMB
Protocol. It is documented in [IBM-SMB].

Core
Protocol

PC NETWORK
PROGRAM 1.0

Represents the MSNET SMB Protocol, which is also known as the "core protocol".
This dialect is identical to the "PCLAN1.0" dialect, and some versions of MSNET
accept either dialect string. This dialect is documented in [SMB-CORE].

Xenix
Extensions

xenix1.1 The "xenix1.1" dialect is documented in [MSFT-XEXTNP]. This dialect provides a
set of extensions to SMB to support the XENIX operating system.

Also known as the XENIX dialect.

Xenix
Extensions

XENIX CORE Another dialect supporting XENIX extensions, possibly the same as "xenix1.1".
The "XENIX CORE" dialect string is sent in protocol negotiation performed by
Windows NT and OS/2, among others.

CorePlus MICROSOFT
NETWORKS
1.03

This string denotes the "CorePlus" dialect, consisting of several minor extensions
to the core protocol, including raw read and write commands and compound
commands such as SMB_COM_LOCK_AND_READ and
SMB_COM_WRITE_AND_UNLOCK. The CorePlus extensions are documented in
[XOPEN-SMB].

LAN
Manager 1.0

LANMAN1.0 The LAN Manager 1.0 extended protocol was created to support OS/2 system
functions and file system features. It is documented in [SMB-LM1X] and
[XOPEN-SMB].

DOS LAN
Manager 1.0

MICROSOFT
NETWORKS
3.0

This is the DOS LAN Manager 1.0 extended protocol. It is identical to
"LANMAN1.0", except that OS/2 error codes are translated to DOS error codes
before being transmitted to the client.

LAN
Manager 1.2

LANMAN1.2 The LAN Manager 1.2 extended protocol adds support for additional OS/2
commands and features to "LANMAN1.0". LAN Manager 1.2 is documented in
[SMB-LM12] and [XOPEN-SMB].

http://go.microsoft.com/fwlink/?LinkId=164301
http://go.microsoft.com/fwlink/?LinkId=162042
http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=163208

31 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Dialect
name

Dialect
Identifier
String Comments

LAN
Manager 2.0

LM1.2X002 This represents the LAN Manager 2.0 extended protocol for OS/2. It is
documented in [SMB-LM20] and [XOPEN-SMB].

Also known as the LANMAN2.0 dialect.

DOS LAN
Manager 2.0

DOS
LM1.2X002

This is the DOS version of LAN Manager 2.0. It is also documented in [SMB-
LM20] and [XOPEN-SMB]. When this dialect is selected, OS/2 error codes are
translated to DOS error codes by the server before transmission to the client.

Also known as the DOS LANMAN2.0 dialect.

LAN
Manager 2.1

LANMAN2.1 LAN Manager 2.1 extended protocol. The additions and changes with respect to
LAN Manager 2.0 are documented in [SMB-LM21].

DOS LAN
Manager 2.1

DOS
LANMAN2.1

DOS LAN Manager 2.1 extended protocol. This is, once again, identical to the
OS/2 version of the dialect except that error codes are translated. See [SMB-
LM21].

NT LAN
Manager

NT LM 0.12 NT LAN Manager extended protocol. This set of extensions was created to
support Windows NT. OS/2 LAN Manager 2.1 features are also supported. This
dialect was originally documented in [CIFS].

Also known as the NT LANMAN dialect.

Security Negotiation: During the initialization of the SMB session, the server indicates support for:

 Either user-oriented or resource-oriented access controls.

 Plaintext or challenge/response authentication.

 Message signing. If it is supported, the server indicates that it is required.

If the client or server requires message signing but the other node does not support it, then SMB
session establishment fails. Similarly, if either node requires a higher level of authentication security

than the other supports, session establishment fails. See the SMB_COM_NEGOTIATE command for a

detailed description of security negotiation.

Feature Negotiation: The client and server can negotiate individual features on a per-connection or, in
some cases, per-message basis:

 CIFS provides a mechanism for negotiating a specific set of Capabilities, including support for
Unicode file names, 64-bit file offsets, and Opportunistic Locking. For the complete list of
Capabilities, see the SMB_COM_NEGOTIATE command specification. Capabilities are negotiated at

session startup.

 Each SMB message includes two bit fields (Flags and Flags2) that indicate whether a specific
feature or option has been selected for use in that message. These fields are described in section
2.2.3.1.

1.8 Vendor-Extensible Fields

This protocol uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to choose
their own values for this field, as long as the C bit (0x20000000) is set, indicating that it is a customer
code.

SMB command codes listed as Reserved or Unused can be defined in future versions of CIFS or new
SMB dialects, and thus MUST NOT be used in any CIFS implementation. Similarly, fields (including bit
fields) that are marked Reserved MUST NOT be used. Undefined transaction sub-command codes and

undefined Information Level values are reserved for future use.

http://go.microsoft.com/fwlink/?LinkId=163213
http://go.microsoft.com/fwlink/?LinkId=163216
http://go.microsoft.com/fwlink/?LinkId=89836
%5bMS-ERREF%5d.pdf

32 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.9 Standards Assignments

CIFS transports can have assigned port numbers or other assigned values. See the documentation for
the specific transport for more information.

33 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2 Messages

2.1 Transport

This section describes the transport protocols that are implemented by the operating systems

discussed in section 1, and which are used in transporting SMB messages.<1> Other transports may
be available from third parties. In this document, the transport layer is referred to generically as the
"SMB transport". The server assigns an implementation-specific name to each transport, as specified
in [MS-SRVS] section 2.2.4.96.

2.1.1 NetBIOS-Based Transports

The Network Basic Input/Output System (NetBIOS) is a software interface layer. NetBIOS is
specified in [NETBEUI].<2> NetBIOS imposes semantic requirements on the underlying transport
mechanism. NetBIOS-based transports MUST support three common services:

 The NetBIOS name service

 The NetBIOS datagram service

 The NetBIOS session service

The NetBIOS name service provides a mechanism for registering and releasing NetBIOS names.
NetBIOS names are end-point addresses; each name represents an application or service running on a
node on the network.

The NetBIOS datagram service provides connectionless, unreliable transport for unicast, multicast,
and broadcast messages (datagrams).

The NetBIOS session service provides reliable, point-to-point transport. When using the NetBIOS

session service, CIFS makes no higher-level attempts to ensure reliable, sequenced delivery of
messages between the client and server. The underlying transport is responsible for detecting failures

of either the client node or server node and for delivering failure indications to the client or server
software so that resources can be freed and errors can be reported to applications.

The NetBIOS session service supports the following behavior:

 If the client generates malformed requests (for example, if messages received on the session do

not begin with the '\xFF', 'S', 'M', 'B' protocol identifier string), a server can drop the transport
connection to the client. The server SHOULD<3> first return an error message response with an
SMB error class of ERRCMD (0xFF). If a server receives a hard error on the transport (such as a
send failure) the transport connection to that client can be aborted.

 If a client has no open resources on the server (no open files, directories, search contexts, and so
on), the server can terminate the transport connection. It is expected that the client
implementation can automatically reconnect to the server. See section 3.3.2.2 for a description of

the Idle Connection Timer.

For more information about NetBIOS, see [NBF2CIFS], [NBGUIDE], [XOPEN-SMB] Appendix E, [NBF],
and [RYAN].

2.1.1.1 NetBIOS Frames (NBF) Protocol Transport

The NetBIOS Frames (NBF) protocol is a non-routable transport that provides NetBIOS services
over IEEE 802.2 as specified in [NETBEUI]. The NBF NetBIOS session service makes use of IEEE
802.2 Logical Link Control connection-oriented services (Type 2), as specified in [IEEE802.2-1998].

%5bMS-SRVS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=162020
http://go.microsoft.com/fwlink/?LinkId=162026
http://go.microsoft.com/fwlink/?LinkId=90222
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=127827

34 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

IBM Corporation first introduced the NBF protocol specification in 1985 (see [NETBEUI]). The NBF
transport protocol is sometimes referred to as NetBEUI (NetBIOS Extended User Interface) in

Microsoft documentation (for more information, see [NBF]).

2.1.1.2 NetBIOS over TCP/UDP (NBT) Transport

NetBIOS over TCP/UDP (NBT) is specified in [RFC1001] and [RFC1002]. NBT provides a mapping
of the required NetBIOS services to the TCP and UDP internet protocols. Because the underlying IP
protocol is routable, NBT transport can provide NetBIOS services across an internetwork. However,

special servers are required in order to maintain the coherency of the NetBIOS name space across
multiple subnets. These are the NetBIOS Name Server (NBNS) and the NetBIOS Datagram
Distribution Server (NBDD).<4>

2.1.1.3 NetBIOS over IPX/SPX (NBIPX) Transport

Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX) is a network protocol
suite provided by Novell. CIFS can use NetBIOS over IPX/SPX (NBIPX) as a transport for SMB

messages.

Novell introduced an implementation of NetBIOS over IPX in 1986. Microsoft later provided its own
IPX/SPX/NetBIOS-compatible transport, NWLINK (see [NWLINK]). NBIPX provides a mapping of
the required NetBIOS services to IPX/SPX. The NBIPX NetBIOS session service is mapped to SPX
sessions, while datagrams are sent using the connectionless IPX protocol. For more information on

NWLINK and NBIPX components, see [NBF] and [NWLINK].

2.1.1.4 Other NetBIOS-Based Transports

Several other NetBIOS-based transports have been defined and/or implemented. Many of these are

proprietary, and most have fallen out of common use.

TOP/NetBIOS provides a specification for NetBIOS service support over OSI protocols. This
specification is available in Appendix E of [XOPEN-SMB].

2.1.2 Direct Hosting

Microsoft has also produced "Direct Hosting" transports, which bypass the NetBIOS interface
layer.<5>

2.1.2.1 Direct IPX Transport

Direct IPX Transport (also known as Direct Hosting IPX) carries CIFS over IPX protocol without
the use of the NetBIOS interface layer.

Unlike other transport protocols used with CIFS, the Direct IPX Transport protocol is asymmetric.
Wherever possible, processing is moved from the server to the client so that the server can scale to a
large number of clients efficiently. For example, the server does not initiate retransmission of lost
responses. It is entirely up to the client to resend the request in the case of lost packets in either

direction.

IPX is also a connectionless protocol, so CIFS itself provides mechanisms for ensuring sequential
delivery of messages between the client and server, and for detecting and recovering from failures of
either the client node or server node. To accomplish these goals, the SMB Header (section 2.2.3.1) is
modified to include a connection identifier (CID) and a sequence number (SequenceNumber). The
CID value is generated by the server and returned to the client in the SMB_COM_NEGOTIATE
Response (section 2.2.4.52.2). The client MUST use this CID in all future SMB exchanges with this
server during this resource sharing session.

http://go.microsoft.com/fwlink/?LinkId=90222
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90239
http://go.microsoft.com/fwlink/?LinkId=90222

35 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SequenceNumber value is provided by the client. If the sequence number is zero, the command
is known as an "unsequenced command" and the client MUST use the PID and MID fields to match a

response message to the client process that generated the request. In particular, the client MUST
ensure that it never has more than one distinct outstanding unsequenced request with the same MID.

Sequenced commands have nonzero SequenceNumber values. Sequenced commands are used for
operations that cause state changes on the server which cannot be repeated. For example, file open,
file close, or byte-range locking. Unsequenced commands are used for operations that can be
performed as many times as necessary with the same result each time. For example, reading or
writing to a disk file.

CIFS servers using Direct IPX Transport MUST maintain a small buffer for each client. This buffer is
used to temporarily store the response information from the most recent sequenced command. If the

client does not receive a response to a sequenced request it SHOULD resend the request. If the server
has already processed the request, the response MUST still be in the buffer and can be resent. If the
server did not receive the original request, it is able to process the retransmitted request. When the
client sends the next sequenced command request, it signals that the previous sequenced response
was received and that the buffer can be reused.

Because of the asymmetric nature of the Direct IPX Transport, the server allocates a limited

amount of space for the response buffer. Therefore, the client MUST send all commands that have a
"large" response size as unsequenced. Such commands include file read and directory search
operations. If the response to a sequenced command is too large for the response buffer, the server
MUST fail the request with ERRSRV/ERRerror.

SMB Transactions are capable of transferring large amounts of data from the server to the client.
Transactions can be used to change server state and so MUST NOT be sent as unsequenced
commands. There are ways for clients to organize the commands to work around this limitation.

Transactions can contain multi-part requests and/or multi-part responses. The sizes of the response
messages can be adjusted to fit within the response buffer. Therefore, SMB Transactions are handled
as a set of sequenced commands.

Section 3.2.4.1.5 describes SMB Transactions as used over connection-oriented transports.
Transaction processing is modified when CIFS is carried over a connectionless transport, such as

Direct IPX Transport.

When transactions are carried over a connectionless transport, each request message is sent as a

sequenced command. Each message MUST have a consistent MID value and a nonzero
SequenceNumber value that increases by one with each new message in the transaction. The server
MUST respond to each request message, except the last one, with a response indicating that the
server is ready for the next secondary request. For the initial transaction request message and all
subsequent transaction secondary requests, except for the last request message, the server MUST
send an interim response.

36 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 1: CIFS transaction messages over connectionless transport

When the last transaction request has been received by the server, the server MUST respond with a
final response message, as described in section 3.2.4.1.5. However, if the there are multiple final

response messages, then the client MUST respond to each of the final response messages, except the
last one, by sending an empty secondary request message. No parameters or data are transferred to
the server in these messages. They are used only as acknowledgments to indicate that the response
message has been received. These acknowledgment messages contain the following information:

 ParameterDisplacement is set to the number of parameter bytes that the client has received
from the server so far in this transaction.

 DataDisplacement is set to the number of data bytes that the client has received from the

server so far in this transaction.

 ParameterCount, ParameterOffset, DataCount, and DataOffset MUST be set to zero.

37 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

When the transaction has been completed, the client MUST send another sequenced command to the
server. This indicates to the server that all of the transaction final response messages have been

received and that the parameter and data transfer is complete. Resources allocated to the transaction
command may then be released by the server.

Figure 2: CIFS transaction completion messages over connectionless transport

For sequenced commands, the server requires that the sequence numbers are nonzero, start at 1, and

increase by one for each new sequenced command. At 65535 (216 - 1), the sequence wraps to
0x0001, not 0x0000. Sequenced command requests that have an incorrect sequence number MUST be
ignored.

If the CID value is incorrect, the server MUST fail the request with ERRSRV/ERRinvsess. If the server

is currently processing a command that matches either the sequence number (for sequenced
commands) or the MID (for unsequenced commands) of a new request, the server MUST respond
with ERRSRV/ERRworking. The values of ERRinvsess (0x0010) and ERRworking (0x0011) are defined
only for the Direct IPX Transport.

38 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server waits to receive commands from the client periodically; if no commands are received, the
server treats the client as no longer running and closes the SMB session. This includes closing file

handles and releasing any resources allocated on behalf of the client. Clients SHOULD, at minimum,
send an SMB_COM_ECHO (section 2.2.4.39) to the server every few minutes. The server MUST NOT

disconnect clients that have been inactive less than 5 minutes.<6>

Direct IPX Transport can be used in situations in which multiple low-bandwidth connections are
multiplexed together (for example, by using multiple telephone modems in parallel). CIFS provides
special SMB commands, such as SMB_COM_READ_MPX (section 2.2.4.23), for these environments.
These commands, and the Direct IPX Transport itself, are obsolescent.

See [MSFT-IPXWAN] for more information on Direct IPX Transport.

2.1.3 Virtual Circuits

In CIFS, a virtual circuit (VC) represents a transport-level connection between a client and a server.
VCs are of use in situations in which multiple physical connections are being combined to provide
improved overall bandwidth for an SMB connection. For example, VCs make it possible to multiplex

SMB messages from a single SMB connection over multiple dial-up modem connections in order to
increase throughput. Virtual circuits are rarely used over connection-oriented transports such as NBT;
they are typically associated with connectionless transports such as Direct-hosting IPX. VC
multiplexing is performed at the command level, with the exception of the SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX commands, which are specifically designed to be multiplexed.

VCs are established using the SMB_COM_SESSION_SETUP_ANDX command, and are combined based
upon the SessionKey provided in the SMB_COM_NEGOTIATE response.<7> Every VC created

between a client and server pair using the same SessionKey is considered to be part of the same
SMB connection. Each VC thus created MUST have a unique VcNumber in the
SMB_COM_SESSION_SETUP_ANDX request that is used to establish it. The first VC created SHOULD
have a VcNumber of zero (0). The implementation-defined maximum number of virtual circuits that
the client can establish per SMB connection is indicated by the MaxNumberVcs field in the server's
SMB_COM_NEGOTIATE response.<8>

A VcNumber of zero (0) has special significance. It is possible for a connectionless transport to not
provide any indication of failure when a client fails or is reset. A virtual circuit with a VcNumber of
zero (0), regardless of the SessionKey value, is defined to indicate to the server that the client has
abandoned all previous virtual circuits and that the server MUST close those VCs as well, ensuring
proper cleanup of resources.<9> This behavior can have unintended consequences in situations where
separate applications running on the same client establish individual connections to the same server,
or in cases in which multiple clients connect to a single server through a Network Address

Translation (NAT) device (see [KB301673] for a detailed explanation). In these situations, each
connection attempt from the same client (or NAT device) can cause all others from that client to be
disconnected. To avoid this, clients can use a VcNumber of greater than or equal to one, or servers
MAY be configured to bypass special processing of VcNumber zero over connection-oriented
transports.

2.2 Message Syntax

The CIFS Protocol is composed of, and driven by, SMB commands. SMB commands are comprised of
SMB message exchanges between the client and the server. SMB commands can be categorized by
functionality as follows.

Session management Transaction subprotocol

SMB_COM_NEGOTIATE

SMB_COM_SESSION_SETUP_ANDX

SMB_COM_TREE_CONNECT

SMB_COM_TRANSACTION

SMB_COM_TRANSACTION_SECONDARY

SMB_COM_TRANSACTION2

http://go.microsoft.com/fwlink/?LinkId=162041
http://go.microsoft.com/fwlink/?LinkId=162011

39 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Session management Transaction subprotocol

SMB_COM_TREE_CONNECT_ANDX

SMB_COM_TREE_DISCONNECT

SMB_COM_LOGOFF_ANDX

SMB_COM_TRANSACTION2_SECONDARY

SMB_COM_NT_TRANSACT

SMB_COM_NT_TRANSACT_SECONDARY

File/directory access methods Read/write/lock methods

SMB_COM_CREATE_DIRECTORY

SMB_COM_DELETE_DIRECTORY

SMB_COM_OPEN

SMB_COM_OPEN_ANDX

SMB_COM_CREATE

SMB_COM_CREATE_NEW

SMB_COM_CREATE_TEMPORARY

SMB_COM_NT_CREATE_ANDX

SMB_COM_CLOSE

SMB_COM_DELETE

SMB_COM_FLUSH

SMB_COM_SEEK

SMB_COM_READ

SMB_COM_LOCK_AND_READ

SMB_COM_LOCK_BYTE_RANGE

SMB_COM_UNLOCK_BYTE_RANGE

SMB_COM_LOCKING_ANDX

SMB_COM_READ_ANDX

SMB_COM_READ_RAW

SMB_COM_READ_MPX

SMB_COM_WRITE

SMB_COM_WRITE_AND_CLOSE

SMB_COM_WRITE_AND_UNLOCK

SMB_COM_WRITE_ANDX

SMB_COM_WRITE_RAW

SMB_COM_WRITE_COMPLETE

SMB_COM_WRITE_MPX

Query directory information Query/set attributes methods

SMB_COM_CHECK_DIRECTORY

SMB_COM_SEARCH

SMB_COM_FIND

SMB_COM_FIND_UNIQUE

SMB_COM_FIND_CLOSE

SMB_COM_FIND_CLOSE2

SMB_COM_RENAME

SMB_COM_NT_RENAME

SMB_COM_QUERY_INFORMATION

SMB_COM_SET_INFORMATION

SMB_COM_QUERY_INFORMATION_DISK

SMB_COM_QUERY_INFORMATION2

SMB_COM_SET_INFORMATION2

Printing methods Other

SMB_COM_OPEN_PRINT_FILE

SMB_COM_WRITE_PRINT_FILE

SMB_COM_CLOSE_PRINT_FILE

SMB_COM_ECHO

SMB_COM_PROCESS_EXIT

SMB_COM_NT_CANCEL

SMB_COM_INVALID

SMB_COM_IOCTL

SMB_COM_NO_ANDX_COMMAND

40 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CIFS has evolved over time. As a result, some commands have become obsolete and other commands
have been proposed but never implemented. The client MUST NOT use the commands listed in the

table below. The server SHOULD return implementation-specific error codes in response to receiving
any of these command requests.

Obsolete Reserved but not implemented

SMB_COM_COPY

SMB_COM_MOVE

SMB_COM_READ_MPX_SECONDARY

SMB_COM_SECURITY_PACKAGE_ANDX

SMB_COM_WRITE_MPX_SECONDARY

SMB_COM_GET_PRINT_QUEUE

SMB_COM_CLOSE_AND_TREE_DISC

SMB_COM_FIND_NOTIFY_CLOSE

SMB_COM_IOCTL_SECONDARY

SMB_COM_NEW_FILE_SIZE

SMB_COM_QUERY_SERVER

SMB_COM_READ_BULK

SMB_COM_WRITE_BULK

SMB_COM_WRITE_BULK_DATA

Specifications for the commands listed in the preceding tables are located in section 2.2.3.

An SMB message is the payload packet encapsulated in a transport packet. SMB messages are divided
into three blocks: a fixed-length SMB Header (section 2.2.3.1), and two variable-length blocks called
SMB Parameters (section 2.2.3.2) and SMB Data (section 2.2.3.3).

Unless otherwise specified, multiple-byte fields (SHORT, USHORT, LONG, and so on) in an SMB
message MUST be transmitted in little-endian order (least-significant byte first). Unless otherwise

indicated, numeric fields are integers of the specified byte length.

In dialects prior to NT LAN Manager, data alignment was not a consideration in SMB messages.
Commands introduced in the NT LAN Manager dialect, however, can include fixed or variable-length
padding fields used to align succeeding fields to 16-bit or 32-bit boundaries. Unicode strings, also
introduced in NT LAN Manager, MUST be aligned to 16-bit boundaries unless otherwise noted.

Unless otherwise noted, fields marked as "reserved" SHOULD be set to zero when sent and MUST be

ignored on receipt. These fields are reserved for future protocol expansion and MUST NOT be used for

implementation-specific functionality. When it is necessary to insert padding bytes into a buffer for
data alignment purposes, such bytes SHOULD be set to 0x00 when sent and MUST be ignored on
receipt.

CIFS defines a set of data types and data structures that are commonly used across multiple
commands in the protocol. These are specified in section 2.2.1. Some data structures exist that are
used only in one or two commands. Those are specified in their respective command's subsection of
section 2.2.4. All data types encountered in sections 2 and 3 that are not defined in section 2.2 are

found in [MS-DTYP].

Unless otherwise noted, when an error occurs the server MUST return a response SMB message with a
proper status code in the header (see section 2.2.3.1). Error responses SHOULD be sent with empty
SMB Parameters and SMB Data blocks (WordCount and ByteCount fields set to zero; see sections
2.2.3.2 and 2.2.3.3 respectively).

CIFS defines a number of constants, including CIFS-specific error codes, which are commonly used

across multiple commands in the protocol. The CIFS specific error codes include
STATUS_INVALID_SMB and all status code constants with names beginning with STATUS_SMB_ and
STATUS_OS2. These status codes are specified in section 2.2.2.4. All other constants in section 2 and
3 that begin with STATUS_ are defined in [MS-ERREF] section 2.3.

2.2.1 Common Data Types

CIFS makes use of the following data types and structures from [MS-DTYP]:

%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-DTYP%5d.pdf

41 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 BOOLEAN

 NTSTATUS

 UCHAR

 ULONG

 USHORT

 WCHAR

 FILETIME

 LARGE_INTEGER

 SECURITY_DESCRIPTOR

In addition, CIFS defines its own data types and structures, as specified in the following subsections.

2.2.1.1 Character Sequences

In all dialects prior to NT LAN Manager, all character sequences were encoded using the OEM
character set (extended ASCII). The NT LAN Manager dialect introduced support for Unicode, which
is negotiated during protocol negotiation and session setup. The use of Unicode characters is

indicated on a per-message basis by setting the SMB_FLAGS2_UNICODE flag in the
SMB_Header.Flags2 field. All Unicode characters MUST be in UTF-16LE encoding.

In CIFS, character sequences are transmitted over the wire as arrays of either UCHAR (for OEM
characters) or WCHAR (for Unicode characters). Throughout this document, null-terminated
character sequence fields that may be encoded in either Unicode or OEM characters (depending on the
result of Unicode capability negotiation) are labeled as SMB_STRING fields.

Unless otherwise noted, when a Unicode string is passed it MUST be aligned to a 16-bit boundary with

respect to the beginning of the SMB Header (section 2.2.3.1). In the case where the string does not

naturally fall on a 16-bit boundary, a null padding byte MUST be inserted, and the string MUST begin
at the next address. For Core Protocol messages in which a buffer format byte precedes a Unicode
string, the padding byte is found after the buffer format byte.

String fields that restrict character encoding to OEM characters only, even if Unicode support has been
negotiated, are labeled as OEM_STRING. Some examples of strings that are never passed in Unicode

are:

 The dialect strings in the SMB_COM_NEGOTIATE (section 2.2.4.52) command.

 The service name string in the SMB_COM_TREE_CONNECT_ANDX (section 2.2.4.55) command.

2.2.1.1.1 File and Directory names

Dialects prior to LAN Manager 2.0 required that file and directory names adhere to the 8.3 name

format. Names of this format consist of two parts: a basename of no more than eight characters, and

an extension of no more than three characters. The basename and extension are separated by a "."
(period). All characters are legal in the basename and extension except:

 The space character (0x20)

 "\/[]:+|<>=;?,*.

The LAN Manager 2.0 dialect introduced the SMB_FLAGS2_KNOWS_LONG_NAMES flag. If a client or
server sets this flag in its messages, this indicates that they are not bound by the 8.3 name

42 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

convention and support long file and directory names. Long names have MUST a total length of less
than 255 characters. The following characters are illegal in a long name:

 "\/[]:+|<>=;?,*

A "." (period) is treated as a delimiter of file name components. The 8.3 name format uses the period

to separate the filename from the file extension.

2.2.1.1.2 Pathnames

CIFS makes use of the pathname structure as defined in [MS-FSCC] section 2.1.5, with the following
restrictions:

Pathnames MUST adhere to the Universal Naming Convention (UNC). The <sharename>
component of a UNC-compliant pathname MUST adhere to the restrictions of a Share Name structure

as defined in [MS-FSCC] section 2.1.6, with an additional note that it MAY be subject to the
restrictions of file and directory names (section 2.2.1.1.1). The <filename> component of a UNC-
compliant pathname MAY be zero or more name components separated by the "\" (backslash)

character. All name components of a pathname MUST adhere to the restrictions of file and directory
names as specified in section 2.2.1.1.1.

If a pathname points to an object or device in DFS, it is a DFS Path and certain restrictions apply as

specified in [MS-DFSC] section 2.2.1. A client that recognizes DFS SHOULD set the SMB_FLAGS2_DFS
flag in the SMB Header (section 2.2.3.1) in all SMB requests using a DFS Path, and the server
SHOULD resolve it within the DFS namespace.

2.2.1.1.3 Wildcards

Some SMB requests allow wildcards to be used in a file name. Wildcards allow a client to operate on a
number of files as a unit without having to separately enumerate the files and operate on them

individually.<10>

Two wild card characters, the question mark and the asterisk, are used to match files whose names
are selected by the wildcard string used as a selection criterion. The "?" (question mark) character

matches a single character. If a file name selection criterion contains one or more "?" characters, then
exactly that number of characters is matched by the wildcards. For example, the criterion "??x"
matches "abx" but not "abcx" or "ax", because the two file names do not have enough characters
preceding the literal. When a file name criterion has "?" characters trailing a literal, then the match is

made with specified number of characters or less. For example, the criterion "x??" matches "xab",
"xa", and "x", but not "xabc". If only "?" characters are present in the file name selection criterion,
then the match is made as if the criterion contained "?" characters trailing a literal. The "*" (asterisk)
character matches an entire file name. A null or empty specification criterion also selects all file
names. For example, "*.abc" or ".abc" match any file with an extension of "abc". "*.*", "*", or empty
string("") match all files in a directory.

If the negotiated dialect is NT LAN Manager or later, and the filename in the client request contains
any of the following wildcards, the server SHOULD translate them as follows and the server MUST use
the resulting string to attempt the file operation:

 Translate the ? literal to >

 Translate the . literal to " if it is immediately followed by a ? or a *

 Translate the * literal to < if it is immediately followed by a .

2.2.1.2 File Attributes

CIFS makes use of three distinct methods for encoding file attributes:

%5bMS-FSCC%5d.pdf
%5bMS-DFSC%5d.pdf

43 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Extended Attributes (SMB_GEA (section 2.2.1.2.1) and SMB_FEA (section 2.2.1.2.2))

 Extended File Attributes (SMB_EXT_FILE_ATTR (section 2.2.1.2.3))

 File Attributes (SMB_FILE_ATTRIBUTES (section 2.2.1.2.4))

2.2.1.2.1 SMB_GEA

The SMB_GEA data structure is used in Transaction2 subcommand requests to request specific
extended attribute (EA) name/value pairs by name. This structure is used when the
SMB_INFO_QUERY_EAS_FROM_LIST information level is specified. "GEA" stands for "get extended
attribute".

 SMB_GEA
 {

 UCHAR AttributeNameLengthInBytes;

 UCHAR AttributeName[AttributeNameLengthInBytes + 1];

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AttributeNameLengthInBy

tes

AttributeName (variable)

...

AttributeNameLengthInBytes (1 byte): This field MUST contain the length, in bytes (excluding the
trailing null padding byte), of the AttributeName field.

AttributeName (variable): This field contains the name, in extended ASCII (OEM) characters, of an

extended attribute. The length of the name MUST NOT exceed 255 bytes. An additional byte is
added to store a null padding byte. This field MAY be interpreted as an OEM_STRING.

2.2.1.2.1.1 SMB_GEA_LIST

The SMB_GEA_LIST data structure is used to send a concatenated list of SMB_GEA (section 2.2.1.2.1)
structures.

 SMB_GEA_LIST
 {
 ULONG SizeOfListInBytes;
 UCHAR GEAList[];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfListInBytes

GEAList (variable)

...

44 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SizeOfListInBytes (4 bytes): This field MUST contain the total size of the GEAList field, plus the
size of the SizeOfListInBytes field (4 bytes).<11>

GEAList (variable): A concatenated list of SMB_GEA (section 2.2.1.2.1) structures.

2.2.1.2.2 SMB_FEA

The SMB_FEA data structure is used in Transaction2 subcommands and in the NT_TRANSACT_CREATE
subcommand to encode an extended attribute (EA) name/value pair. "FEA" stands for "full extended
attribute".<12>

 SMB_FEA
 {
 UCHAR ExtendedAttributeFlag;
 UCHAR AttributeNameLengthInBytes;
 USHORT AttributeValueLengthInBytes;
 UCHAR AttributeName[AttributeNameLengthInBytes + 1];
 UCHAR AttributeValue[AttributeValueLengthInBytes];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtendedAttributeFlag AttributeNameLengthInBy
tes

AttributeValueLengthInBytes

AttributeName (variable)

...

AttributeValue (variable)

...

ExtendedAttributeFlag (1 byte): This is a bit field. Only the 0x80 bit is defined.

Name and
Bitmask Meaning

0x7F Reserved.

FILE_NEED_EA

0x80

If set (1), this bit indicates that extended attribute (EA) support is required
on this file. Otherwise, EA support is not required. If this flag is set, the file
to which the EA belongs cannot be properly interpreted without
understanding the associated extended attributes.

A CIFS client that supports EAs can set this bit when adding an EA to a file
residing on a server that also supports EAs. The server MUST NOT allow this
bit to be set on an EA associated with directories.

If this bit is set on any EA associated with a file on the server, the server
MUST reject client requests to open the file (except to truncate the file) if
the SMB_FLAGS2_EAS flag is not set in the request header. In this case, the
server SHOULD fail this request with STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess) in the Status field of the SMB
Header (section 2.2.3.1) in the server response.

AttributeNameLengthInBytes (1 byte): This field MUST contain the length, in bytes, of the
AttributeName field (excluding the trailing null byte).

45 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AttributeValueLengthInBytes (2 bytes): This field MUST contain the length, in bytes, of the
AttributeValue field.

AttributeName (variable): This field contains the name, in extended ASCII (OEM) characters, of an
extended attribute. The length of the name MUST NOT exceed 255 bytes. An additional byte is

added to store a null padding byte. This field MAY be interpreted as an OEM_STRING.

AttributeValue (variable): This field contains the value of an extended file attribute. The value is
expressed as an array of extended ASCII (OEM) characters. This array MUST NOT be null-
terminated, and its length MUST NOT exceed 65,535 bytes.

2.2.1.2.2.1 SMB_FEA_LIST

The SMB_FEA_LIST data structure is used to send a concatenated list of SMB_FEA (section 2.2.1.2.2)

structures.

 SMB_FEA_LIST
 {
 ULONG SizeOfListInBytes;
 UCHAR FEAList[];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SizeOfListInBytes

FEAList (variable)

...

SizeOfListInBytes (4 bytes): This field MUST contain the total size of the FEAList field, plus the

size of the SizeOfListInBytes field (4 bytes).<13>

FEAList (variable): A concatenated list of SMB_FEA structures.

2.2.1.2.3 SMB_EXT_FILE_ATTR

A 32-bit field containing encoded file attribute values and file access behavior flag values. The
attribute and flag value names are for reference purposes only. If ATTR_NORMAL (see following) is set

as the requested attribute value, it MUST be the only attribute value set. Including any other attribute
value causes the ATTR_NORMAL value to be ignored. Any combination of the flag values (see
following) is acceptable.<14>

This type is declared as follows:

 typedef DWORD SMB_EXT_FILE_ATTR;

Name and bitmask Meaning

ATTR_READONLY

0x00000001

The file is read only. Applications can read the file but cannot write to it or delete it.

ATTR_HIDDEN

0x00000002

The file is hidden. It is not to be included in an ordinary directory listing.

46 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

ATTR_SYSTEM

0x00000004

The file is part of or is used exclusively by the operating system.

ATTR_DIRECTORY

0x00000010

The file is a directory.

ATTR_ARCHIVE

0x00000020

The file has not been archived since it was last modified. Applications use this attribute to
mark files for backup or removal.

ATTR_NORMAL

0x00000080

The file has no other attributes set. This attribute is valid only if used alone.

ATTR_TEMPORARY

0x00000100

The file is temporary. This is a hint to the cache manager that it does not need to flush
the file to backing storage.

ATTR_COMPRESSED

0x00000800

The file or directory is compressed. For a file, this means that all of the data in the file is

compressed. For a directory, this means that compression is the default for newly created
files and subdirectories.

POSIX_SEMANTICS

0x01000000

Indicates that the file is to be accessed according to POSIX rules. This includes allowing
multiple files with names differing only in case, for file systems that support such
naming.<15>

BACKUP_SEMANTICS

0x02000000

Indicates that the file is being opened or created for a backup or restore operation. The
server SHOULD allow the client to override normal file security checks, provided it has the
necessary permission to do so.

DELETE_ON_CLOSE

0x04000000

Requests that the server delete the file immediately after all of its handles have been
closed.

SEQUENTIAL_SCAN

0x08000000

Indicates that the file is to be accessed sequentially from beginning to end.<16>

RANDOM_ACCESS

0x10000000

Indicates that the application is designed to access the file randomly. The server can use
this flag to optimize file caching.

NO_BUFFERING

0x20000000

Requests that the server open the file with no intermediate buffering or caching; the
server might not honor the request. The application MUST meet certain requirements
when working with files opened with FILE_FLAG_NO_BUFFERING. File access MUST begin
at offsets within the file that are integer multiples of the volume's sector size and MUST
be for numbers of bytes that are integer multiples of the volume's sector size. For
example, if the sector size is 512 bytes, an application can request reads and writes of
512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

WRITE_THROUGH

0x80000000

Instructs the operating system to write through any intermediate cache and go directly to
the file. The operating system can still cache write operations, but cannot lazily flush
them.

2.2.1.2.4 SMB_FILE_ATTRIBUTES

An unsigned 16-bit field that defines the basic file attributes supported by the SMB Protocol. In
addition, exclusive search attributes (those Names prefixed with SMB_SEARCH_ATTRIBUTE) are
defined for use when searching for files within a directory.

47 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description

SMB_FILE_ATTRIBUTE_NORMAL

0x0000

Normal file.

SMB_FILE_ATTRIBUTE_READONLY

0x0001

Read-only file.

SMB_FILE_ATTRIBUTE_HIDDEN

0x0002

Hidden file.

SMB_FILE_ATTRIBUTE_SYSTEM

0x0004

System file.

SMB_FILE_ATTRIBUTE_VOLUME

0x0008

Volume Label.

SMB_FILE_ATTRIBUTE_DIRECTORY

0x0010

Directory file.

SMB_FILE_ATTRIBUTE_ARCHIVE

0x0020

File changed since last archive.

SMB_SEARCH_ATTRIBUTE_READONLY

0x0100

Search for Read-only files.

SMB_SEARCH_ATTRIBUTE_HIDDEN

0x0200

Search for Hidden files.

SMB_SEARCH_ATTRIBUTE_SYSTEM

0x0400

Search for System files.

SMB_SEARCH_ATTRIBUTE_DIRECTORY

0x1000

Search for Directory files.

SMB_SEARCH_ATTRIBUTE_ARCHIVE

0x2000

Search for files that have changed since they were last archived.

Other

0xC8C0

Reserved.

2.2.1.3 Named Pipe Status (SMB_NMPIPE_STATUS)

The SMB_NMPIPE_STATUS data type is a 16-bit field that encodes the status of a named pipe. Any
combination of the following flags MUST be valid. The ReadMode and NamedPipeType bit fields are
defined as 2-bit integers. Subfields marked Reserved SHOULD be set to zero by the server and MUST

be ignored by the client.

This type is declared as follows:

 typedef unsigned SHORT SMB_NMPIPE_STATUS;

48 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Meaning

ICount

0x000FF

An 8-bit unsigned integer that gives the maximum number of instances the named pipe can
have.

ReadMode

0x0300

0

This bit field indicates the client read mode for the named pipe. This bit field has no effect on
writes to the named pipe. A value of zero indicates that the named pipe was opened in or set
to byte mode by the client.

1

A value of 1 indicates that the client opened or set the named pipe to message mode.

2,3

Reserved. Bit 0x0200 MUST be ignored.

NamedPipeType

0x0C00

0

This bit field indicates the type of the named pipe when the named pipe was created by the
server. A value of zero indicates that the named pipe was created as a byte mode pipe.

1

The named pipe was created by the server as a message mode pipe.

2,3

Reserved. Bit 0x0800 MUST be ignored.

0x3000 Reserved. MUST be ignored.

Endpoint

0x4000

0

Client-side end of the named pipe. The SMB server MUST clear the Endpoint bit (set it to
zero) when responding to the client request because the CIFS client is a consumer requesting
service from the named pipe. When this bit is clear, it indicates that the client is accessing
the consumer endpoint.

1

Indicates the server end of the pipe.

Nonblocking

0x8000

0

A named pipe read or raw read request will wait (block) until sufficient data to satisfy the
read request becomes available, or until the request is canceled.

A named pipe write or raw write request blocks until its data is consumed, if the write request
length is greater than zero.

1

A read or a raw read request returns all data available to be read from the named pipe, up to
the maximum read size set in the request.

Write operations return after writing data to named pipes without waiting for the data to be
consumed.

Named pipe non-blocking raw writes are not allowed. Raw writes MUST be performed in
blocking mode.

2.2.1.4 Time

In addition to making use of the FILETIME data type, CIFS defines three more data types for encoding
time:

49 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_DATE (section 2.2.1.4.1)

 SMB_TIME (section 2.2.1.4.2)

 UTIME (section 2.2.1.4.3)

2.2.1.4.1 SMB_DATE

This is a 16-bit value in little-endian byte order used to encode a date. An SMB_DATE value SHOULD
be interpreted as follows. The date is represented in the local time zone of the server. The following
field names are provided for reference only.

Field name and bitmask Description

YEAR

0xFE00

The year. Add 1980 to the resulting value to return the actual year.<17>

MONTH

0x01E0

The month. Values range from 1 to 12.

DAY

0x001F

The date. Values range from 1 to 31.

2.2.1.4.2 SMB_TIME

This is a 16-bit value in little-endian byte order used to encode a time of day. The SMB_TIME value is
usually accompanied by an SMB_DATE (section 2.2.1.4.1) value that indicates what date corresponds

with the specified time. An SMB_TIME value SHOULD be interpreted as follows. The field names below
are provided for reference only. The time is represented in the local time zone of the server.

Field name and bitmask Description

HOUR

0xF800

The hours. Values range from 0 to 23.

MINUTES

0x07E0

The minutes. Values range from 0 to 59.

SECONDS

0x001F

The seconds. Values MUST represent two-second increments.

2.2.1.4.3 UTIME

This is a 32-bit unsigned integer in little-endian byte order indicating the number of seconds since Jan

1, 1970, 00:00:00.0.

This type is declared as follows:

 typedef unsigned int UTIME;

50 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.1.5 Status Codes (SMB_ERROR)

An SMB_ERROR MUST be interpreted in one of two ways, depending on the capabilities negotiated
between client and server: either as an NTSTATUS value (a 32-bit value in little-endian byte order

used to encode an error message, as defined in [MS-ERREF] section 2.3), or as an SMBSTATUS value
(as defined following).

 SMBSTATUS
 {
 UCHAR ErrorClass;
 UCHAR Reserved;
 USHORT ErrorCode;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ErrorClass Reserved ErrorCode

ErrorClass (1 byte): An SMB error class code.

Reserved (1 byte): This field is reserved and MUST be ignored by both server and client.

ErrorCode (2 bytes): An SMB error code.

The set of NTSTATUS values defined in [MS-ERREF] is extended in this document to include 32-bit
CIFS-specific error codes. Each CIFS-specific error code is wire-identical to the equivalent
SMBSTATUS ErrorClass/ErrorCode pair, as listed in section 2.2.2.4. CIFS-specific error codes can be
interpreted by the client either as 32-bit values or as SMBSTATUS values.<18>

2.2.1.6 Unique Identifiers

CIFS unique identifiers are used in to represent open files, authenticated users, SMB sessions, and so
on within the protocol. To be a "unique identifier", an identifier MUST be unique with respect to other
identifiers of the same type within the same context. The following is a list of unique identifiers used in
CIFS and their relevant contexts:

 FID (File ID): A file handle, representing an open file on the server. A FID returned from an

Open or Create operation MUST be unique within an SMB connection.

 MID (Multiplex ID): The MID is assigned by the client. All messages include a MID along with a
PID (process ID, see below) to uniquely identify groups of commands belonging to the same
logical thread of operation on the client node. The client MAY use the PID/MID pair to demultiplex
command responses and to identify outstanding requests that are pending on the server (see
SMB_COM_NT_CANCEL). In earlier SMB Protocol dialects, the MID was defined as a number that
uniquely identified a protocol request and response within a process (see [SMB-LM1X], section 1).

In CIFS, except where noted, a client MAY have multiple outstanding requests (within the limit set
by the MaxMPXCount connection value) with the same PID and MID values. Clients inform

servers of the creation of a new thread simply by introducing a new MID into the dialog.

 PID (Process ID): The PID is assigned by the client. The client SHOULD <19> set this to a value
that identifies the process on the client node that initiated the request. The server MUST return
both the PID and the MID to the client in any response to a client request. Clients inform servers

of the creation of a new process simply by introducing a new PID into the dialog. In CIFS, the PID
is a 32-bit value constructed by combining two 16-bit fields (PIDLow and PIDHigh) in the SMB
Header (section 2.2.3.1).

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=164302

51 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SessionKey: A Session Key is returned in the SMB_COM_NEGOTIATE response received during
establishment of the SMB connection. This Session Key is used to logically bind separate virtual

circuits (VCs) together. This Session Key is not used in any authentication or message signing. It
is returned to the server in the SMB_COM_SESSION_SETUP_ANDX request messages that are

used to create SMB sessions.

 SessionKey: The term "Session Key" also refers to a cryptographic secret key used to perform
challenge/response authentication and is also used in the message signing algorithm. For each
SMB session, the Session Key is the LM or NTLM password hash used in the generation of the
response from the server-supplied challenge. The Session Key used in the first successful user
authentication (non-anonymous, non-guest) becomes the signing Session Key for the SMB
connection.

 CID (Connection ID): If a connectionless transport is in use, the Connection ID (CID) is
generated by the server and passed in the SMB Header of every subsequent SMB message to
identify the SMB connection to which the message belongs.

 SID (Search ID): A search ID (also known as a SID) is similar to a FID. It identifies an open

directory search, the state of which is maintained on the server. Open SIDs MUST be unique to the
SMB connection.

 TID (Tree ID): A TID represents an open connection to a share, otherwise known as a tree
connect. An open TID MUST be unique within an SMB connection.

 UID (User ID): A UID represents an authenticated SMB session (including those created using
anonymous or guest authentication). Some implementations refer to this value as a Virtual User
ID (VUID) to distinguish it from the user IDs used by the underlying account management system.

2.2.1.6.1 FID Generation

File IDs (FIDs) are generated on CIFS servers. The generation of FIDs MUST satisfy the following
constraints:

 The FID MUST be a 16-bit opaque value.

 The FID MUST be unique within a specified client/server SMB connection.

 The FID MUST remain valid for the lifetime of the SMB connection on which the open request is
performed, or until the client sends a request to the server to close the FID.

 Once a FID has been closed, the value can be reused for another create or open request.

 The value 0xFFFF MUST NOT be used as a valid FID. All other possible values for FID, including
zero (0x0000) are valid. The value 0xFFFF is used to specify all FIDs or no FID, depending upon
the context in which it is used.

2.2.1.6.2 MID Generation

Multiplex IDs (MIDs) are generated on CIFS clients. The generation of MIDs MUST satisfy the

following constraints:

 The MID MUST be a 16-bit opaque value.

 The MID MUST be unique with respect to a valid client PID over a single SMB connection.

 The PID/MID pair MUST remain valid as long as there are outstanding requests on the server
identified by that PID/MID pair.

52 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The value 0xFFFF MUST NOT be used as a valid MID. All other possible values for MID, including
zero (0x0000), are valid. The value 0xFFFF is used in an OpLock Break Notification request, which

is an SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1) sent from the server.

2.2.1.6.3 PID Generation

Process IDs (PIDs) are generated on the CIFS client. The generation of PIDs MUST satisfy the
following constraints:

 The PID MUST be a 32-bit opaque value. The PID value is transferred in two fields (PIDHigh and
PIDLow) in the SMB Header (section 2.2.3.1).

 The PID MUST be unique within a specified client/server SMB connection.

 The PID MUST remain valid as long as there are outstanding client requests at the server.

 The value 0xFFFF MUST NOT be used as a valid PIDLow. All other possible values for PID,
including zero (0x0000), are valid. The PIDLow value 0xFFFF is used in an OpLock Break

Notification request, which is an SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1) sent
from the server.

In earlier dialects of the SMB Protocol, the PID value was a 16-bit unsigned value. The NT LAN
Manager dialect introduced the use of the PIDHigh header field to extend the PID value to 32 bits.

2.2.1.6.4 Connection ID (CID) Generation

In order to support CIFS over connectionless transport, such as Direct IPX, CIFS servers MUST support
the generation of Connection IDs (CIDs). The generation of CIDs MUST satisfy the following
constraints:

 The CID MUST be a 16-bit opaque value.

 The CID MUST be unique across all SMB connections carried over connectionless transports.

 The CID MUST remain valid for the lifetime of the SMB connection.

 Once the connection has been closed, the CID value can be reused for another SMB connection.

 The values 0x0000 and 0xFFFF MUST NOT be used as valid CIDs. All other possible values for CID
are valid.

2.2.1.6.5 Search ID (SID) Generation

Search IDs (SIDs) are generated on CIFS servers. The generation of SIDs MUST satisfy the following

constraints:

 The SID MUST be a 16-bit opaque value for a specific TRANS2_FIND_FIRST2
Request (section 2.2.6.2.1).

 The SID MUST be unique for a specified client/server SMB connection.

 The SID MUST remain valid for the lifetime of the SMB connection while the search operation is
being performed, or until the client sends a request to the server to close the SID.

 Once a SID has been closed, the value can be reused by another TRANS2_FIND_FIRST2 Request.

 The value 0xFFFF MUST NOT be used as a valid SID. All other possible values for SID, including
zero (0x0000), are valid. The value 0xFFFF is reserved.

53 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The acronym SID is also used to indicate a session ID. The two usages appear in completely different
contexts.

2.2.1.6.6 SessionKey Generation

The term session key, in this context, does not refer to the cryptographic session keys used in
authentication and message signing. Rather, it refers to the SessionKey unique identifier sent by the
server in the SMB_COM_NEGOTIATE Response (section 2.2.4.52.2).

Virtual circuit session keys (SessionKeys) are generated on CIFS servers. The generation of
SessionKeys SHOULD satisfy the following constraints:<20>

 The SessionKey MUST be a 32-bit opaque value generated by the CIFS server for a particular
SMB connection, and returned in the SMB_COM_NEGOTIATE Response for that connection.

 The SessionKey MUST be unique for a specified client/server SMB connection.

 The SessionKey MUST remain valid for the lifetime of the SMB connection.

 Once the SMB connection has been closed, the SessionKey value can be reused.

 There are no restrictions on the permitted values of SessionKey. A value of 0x00000000
suggests, but does not require, that the server ignore the SessionKey.

2.2.1.6.7 TID Generation

Tree IDs (TIDs) are generated on CIFS servers. The generation of TIDs MUST satisfy the following
constraints:

 The TID MUST be a 16-bit opaque value.

 The TID MUST be unique within a specified client/server SMB connection.

 The TID MUST remain valid for the lifetime of the SMB connection on which the tree connect
request is performed, or until the client sends a request to the server to close the TID.

 Once a TID has been closed, the value can be reused in the response to another tree connect
request.

 The value 0xFFFF MUST NOT be used as a valid TID. All other possible values for TID, including
zero (0x0000), are valid. The value 0xFFFF is used to specify all TIDs or no TID, depending upon
the context in which it is used.

2.2.1.6.8 UID Generation

User IDs (UIDs) are generated on CIFS servers. The generation of UIDs MUST satisfy the following
constraints:

 The UID MUST be a 16-bit opaque value.

 The UID MUST be unique for a specified client/server SMB connection.

 The UID MUST remain valid for the lifetime of the SMB connection on which the authentication is
performed, or until the client sends a request to the server to close the UID (to log off the user).

 Once a UID has been closed, the value can be reused in the response to another authentication

request.

54 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The value 0xFFFE was declared reserved in the LAN Manager 1.0 documentation, so a value of
0xFFFE SHOULD NOT be used as a valid UID.<21> All other possible values for a UID, excluding

zero (0x0000), are valid.

2.2.2 Defined Constants

2.2.2.1 SMB_COM Command Codes

Following is a listing of all SMB commands used in CIFS and their associated command codes, as well
as additional useful information. The table reads as follows:

NT LAN Manager name and pre-NT LAN Manager name: Current name of command and
alternate name used in older documentation, if available. If a code or code range is marked
Unused, it is undefined and reserved for future use. If a code or code range is marked Reserved,
it is or was reserved for a specific purpose. Both of these indicate that client implementations

SHOULD NOT send messages using any of those command codes.

Code: An SMB command code.

Description: A short description of the command. If a code or code range is marked as Reserved, this
field lists its intended use.

Status: Current status of the command's usage (Deprecated, Obsolescent, or Obsolete) as used in
this context.

 C = Currently used

 D = Deprecated

 O = Obsolescent

 X = Obsolete

 N = Not implemented - The command code was reserved and in some cases documented, but the

command was never implemented.

Earliest dialect: Earliest known dialect in which this command appears.

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

SMB_COM_CREATE_DIRECTORY (section 2.2.4
.1)

SMBmkdir

0x0
0

Create a new directory. D CORE

SMB_COM_DELETE_DIRECTORY (section 2.2.4.
2)

SMBrmdir

0x0
1

Delete an empty directory. C CORE

SMB_COM_OPEN (section 2.2.4.3)

SMBopen

0x0
2

Open a file. D CORE

SMB_COM_CREATE (section 2.2.4.4)

SMBcreate

0x0
3

Create or open a file. D CORE

SMB_COM_CLOSE (section 2.2.4.5)

SMBclose

0x0
4

Close a file. C CORE

SMB_COM_FLUSH (section 2.2.4.6) 0x0 Flush data for a file, or all files C CORE

55 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

SMBflush 5 associated with a client, PID
pair.

SMB_COM_DELETE (section 2.2.4.7)

SMBunlink

0x0
6

Delete a file. C CORE

SMB_COM_RENAME (section 2.2.4.8)

SMBmv

0x0
7

Rename a file or set of files. C CORE

SMB_COM_QUERY_INFORMATION (section 2.2.
4.9)

SMBgetattr

0x0
8

Get file attributes. D CORE

SMB_COM_SET_INFORMATION (section 2.2.4.
10)

SMBsetattr

0x0
9

Set file attributes. D CORE

SMB_COM_READ (section 2.2.4.11)

SMBread

0x0
A

Read from a file. D CORE

SMB_COM_WRITE (section 2.2.4.12)

SMBwrite

0x0
B

Write to a file. D CORE

SMB_COM_LOCK_BYTE_RANGE (section 2.2.4.
13)

SMBlock

0x0
C

Request a byte-range lock on a
file.

D CORE

SMB_COM_UNLOCK_BYTE_RANGE (section 2.2
.4.14)

SMBunlock

0x0
D

Release a byte-range lock on a
file.

D CORE

SMB_COM_CREATE_TEMPORARY (section 2.2.4
.15)

SMBctemp

0x0
E

Create a temporary file. O CORE

SMB_COM_CREATE_NEW (section 2.2.4.16)

SMBmknew

0x0
F

Create and open a new file. D CORE

SMB_COM_CHECK_DIRECTORY (section 2.2.4.
17)

SMBchkpth

0x1
0

Verify that the specified
pathname resolves to a
directory.

Listed as SMBchkpath in some
documentation.

C CORE

SMB_COM_PROCESS_EXIT (section 2.2.4.18)

SMBexit

0x1
1

Indicate process exit. O CORE

SMB_COM_SEEK (section 2.2.4.19)

SMBlseek

0x1
2

Set the current file pointer
within a file.

O CORE

SMB_COM_LOCK_AND_READ (section 2.2.4.20
)

SMBlockread

0x1
3

Lock and read a byte-range
within a file.

D CorePlus

SMB_COM_WRITE_AND_UNLOCK (section 2.2.
4.21)

SMBwriteunlock

0x1
4

Write and unlock a byte-range
within a file.

D CorePlus

56 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

Unused 0x1
5

...

0x1
9

SMB_COM_READ_RAW (section 2.2.4.22)

SMBreadBraw

0x1
A

Read a block in raw mode. D CorePlus

SMB_COM_READ_MPX (section 2.2.4.23)

SMBreadBmpx

0x1
B

Multiplexed block read.

Listed as SMBreadmpx in some
documentation.

O LANMAN
1.0

SMB_COM_READ_MPX_SECONDARY (section 2
.2.4.24)

SMBreadBs

0x1
C

Multiplexed block read,
secondary request.

X LANMAN
1.0

SMB_COM_WRITE_RAW (section 2.2.4.25)

SMBwriteBraw

0x1
D

Write a block in raw mode. D CorePlus

SMB_COM_WRITE_MPX (section 2.2.4.26)

SMBwriteBmpx

0x1
E

Multiplexed block write. O LANMAN
1.0

SMB_COM_WRITE_MPX_SECONDARY (section
2.2.4.27)

SMBwriteBs

0x1
F

Multiplexed block write,
secondary request.

X LANMAN
1.0

SMB_COM_WRITE_COMPLETE (section 2.2.4.2
8)

SMBwriteC

0x2
0

Raw block write, final response. D LANMAN
1.0

SMB_COM_QUERY_SERVER (section 2.2.4.29) 0x2
1

Reserved, but not
implemented.

Also known as
SMB_COM_QUERY_INFORMATI
ON_SRV.

N

SMB_COM_SET_INFORMATION2 (section 2.2.4
.30)

SMBsetattrE

0x2
2

Set an extended set of file
attributes.

D LANMAN
1.0

SMB_COM_QUERY_INFORMATION2 (section 2.
2.4.31)

SMBgetattrE

0x2
3

Get an extended set of file
attributes.

D LANMAN
1.0

SMB_COM_LOCKING_ANDX (section 2.2.4.32)

SMBlockingX

0x2
4

Lock multiple byte ranges;
AndX chaining.

C LANMAN
1.0

SMB_COM_TRANSACTION (section 2.2.4.33)

SMBtrans

0x2
5

Transaction. C LANMAN
1.0

SMB_COM_TRANSACTION_SECONDARY (sectio
n 2.2.4.34)

SMBtranss

0x2
6

Transaction secondary request. C LANMAN
1.0

SMB_COM_IOCTL (section 2.2.4.35)

SMBioctl

0x2
7

Pass an I/O Control function
request to the server.

O LANMAN
1.0

57 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

SMB_COM_IOCTL_SECONDARY (section 2.2.4.
36)

SMBioctls

0x2
8

IOCTL secondary request. N LANMAN
1.0

SMB_COM_COPY (section 2.2.4.37)

SMBcopy

0x2
9

Copy a file or directory. X LANMAN
1.0

SMB_COM_MOVE (section 2.2.4.38)

SMBmove

0x2
A

Move a file or directory. X LANMAN
1.0

SMB_COM_ECHO (section 2.2.4.39)

SMBecho

0x2
B

Echo request (ping). C LANMAN
1.0

SMB_COM_WRITE_AND_CLOSE (section 2.2.4.
40)

SMBwriteclose

0x2
C

Write to and close a file. D LANMAN
1.0

SMB_COM_OPEN_ANDX (section 2.2.4.41)

SMBopenX

0x2
D

Extended file open with AndX
chaining.

D LANMAN
1.0

SMB_COM_READ_ANDX (section 2.2.4.42)

SMBreadX

0x2
E

Extended file read with AndX
chaining.

C LANMAN
1.0

SMB_COM_WRITE_ANDX (section 2.2.4.43)

SMBwriteX

0x2
F

Extended file write with AndX
chaining.

C LANMAN
1.0

SMB_COM_NEW_FILE_SIZE (section 2.2.4.44) 0x3
0

Reserved, but not
implemented.

Also known as
SMB_COM_SET_NEW_SIZE.

N

SMB_COM_CLOSE_AND_TREE_DISC (section 2
.2.4.45)

0x3
1

Close an open file and tree
disconnect.

N NT
LANMAN

SMB_COM_TRANSACTION2 (section 2.2.4.46)

SMBtrans2

0x3

2

Transaction 2 format

request/response.

C LANMAN

1.2

SMB_COM_TRANSACTION2_SECONDARY (secti
on 2.2.4.47)

SMBtranss2

0x3
3

Transaction 2 secondary
request.

C LANMAN
1.2

SMB_COM_FIND_CLOSE2 (section 2.2.4.48)

SMBfindclose

0x3
4

Close an active search. C LANMAN
1.2

SMB_COM_FIND_NOTIFY_CLOSE (section 2.2.
4.49)

SMBfindnclose

0x3
5

Notification of the closure of an
active search.

N LANMAN
1.2

Unused 0x3
6

...

0x5
F

Reserved 0x6
0

...

This range of codes was
reserved for use by the

"xenix1.1" dialect of SMB. See

X XENIX

58 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

0x6
F

[MSFT-XEXTNP]. [XOPEN-SMB]
page 41 lists this range as
"Reserved for proprietary
dialects."

SMB_COM_TREE_CONNECT (section 2.2.4.50)

SMBtcon

0x7
0

Tree connect. D CORE

SMB_COM_TREE_DISCONNECT (section 2.2.4.
51)

SMBtdis

0x7
1

Tree disconnect. C CORE

SMB_COM_NEGOTIATE (section 2.2.4.52)

SMBnegprot

0x7
2

Negotiate protocol dialect. C CORE

SMB_COM_SESSION_SETUP_ANDX (section 2.
2.4.53)

SMBsesssetupX

0x7
3

Session Setup with AndX
chaining.

C LANMAN
1.0

SMB_COM_LOGOFF_ANDX (section 2.2.4.54)

SMBulogoffX

0x7
4

User logoff with AndX chaining. C LANMAN
1.2

SMB_COM_TREE_CONNECT_ANDX (section 2.2
.4.55)

SMBtconX

0x7
5

Tree connect with AndX
chaining.

C LANMAN
1.0

Unused 0x7
6

...

0x7
D

SMB_COM_SECURITY_PACKAGE_ANDX (sectio
n 2.2.4.56)

SMBsecpkgX

0x7
E

Negotiate security packages
with AndX chaining.

X LANMAN
1.0

Unused 0x7
F

SMB_COM_QUERY_INFORMATION_DISK (secti
on 2.2.4.57)

SMBdskattr

0x8
0

Retrieve file system information
from the server.

D CORE

SMB_COM_SEARCH (section 2.2.4.58)

SMBsearch

0x8
1

Directory wildcard search. D CORE

SMB_COM_FIND (section 2.2.4.59)

SMBffirst

0x8
2

Start or continue an extended
wildcard directory search.

D LANMAN
1.0

SMB_COM_FIND_UNIQUE (section 2.2.4.60)

SMBfunique

0x8
3

Perform a one-time extended
wildcard directory search.

D LANMAN
1.0

SMB_COM_FIND_CLOSE (section 2.2.4.61)

SMBfclose

0x8
4

End an extended wildcard
directory search.

D LANMAN
1.0

Unused 0x8

5

http://go.microsoft.com/fwlink/?LinkId=162042

59 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

...

0x9
F

SMB_COM_NT_TRANSACT (section 2.2.4.62) 0xA
0

NT format transaction
request/response.

C NT
LANMAN

SMB_COM_NT_TRANSACT_SECONDARY (sectio
n 2.2.4.63)

0xA
1

NT format transaction
secondary request.

C NT
LANMAN

SMB_COM_NT_CREATE_ANDX (section 2.2.4.6
4)

0xA
2

Create or open a file or a
directory.

C NT
LANMAN

Unused 0xA
3

SMB_COM_NT_CANCEL (section 2.2.4.65) 0xA
4

Cancel a request currently
pending at the server.

C NT
LANMAN

SMB_COM_NT_RENAME (section 2.2.4.66) 0xA
5

File rename with extended
semantics.

O NT
LANMAN

Unused 0xA
6

...

0xB
F

SMB_COM_OPEN_PRINT_FILE (section 2.2.4.6
7)

SMBsplopen

0xC
0

Create a print queue spool file. C CORE

SMB_COM_WRITE_PRINT_FILE (section 2.2.4.
68)

SMBsplwr

0xC
1

Write to a print queue spool
file.

D CORE

SMB_COM_CLOSE_PRINT_FILE (section 2.2.4.
69)

SMBsplclose

0xC
2

Close a print queue spool file. D CORE

SMB_COM_GET_PRINT_QUEUE (section 2.2.4.
70)

SMBsplretq

0xC
3

Request print queue
information.

X CORE

Unused 0xC
4

...

0xC
F

Reserved 0xD
0

...

0xD
7

Messenger Service command
codes.

This range is reserved for use
by the SMB Messenger Service.
See [MS-MSRP], and section 6
of [SMB-CORE].

O CORE

SMB_COM_READ_BULK (section 2.2.4.71) 0xD
8

Reserved, but not
implemented.

N

%5bMS-MSRP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=164301

60 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT LAN Manager name and pre-NT LAN
Manager name

Cod
e Description

Stat
us

Earliest
dialect

SMB_COM_WRITE_BULK (section 2.2.4.72) 0xD
9

Reserved, but not
implemented.

N

SMB_COM_WRITE_BULK_DATA (section 2.2.4.
73)

0xD
A

Reserved, but not
implemented.

N

Unused 0xD
B

...

0xF
D

SMB_COM_INVALID (section 2.2.4.74)

SMBinvalid

0xF
E

As the name suggests, this
command code is a designated
invalid command and SHOULD
NOT be used.

C LANMAN
1.0

SMB_COM_NO_ANDX_COMMAND (section 2.2.
4.75)

0xF
F

Also known as the "NIL"
command. It identifies the end
of an AndX Chain, and is only
valid in that context. See
section 2.2.3.4.

C LANMAN
1.0

2.2.2.2 Transaction Subcommand Codes

Transaction Codes used with SMB_COM_TRANSACTION (section 2.2.4.46):

Name Code Description Status
Earliest
dialect

TRANS_MAILSLOT_WRITE (section 2.2.5.12) 0x0001 Allows a client to write
data to a specific mailslot
on the server.

C LANMAN1.0

TRANS_SET_NMPIPE_STATE (section 2.2.5.1) 0x0001 Used to set the read mode
and non-blocking mode
of a specified named pipe.

C LANMAN1.0

TRANS_RAW_READ_NMPIPE (section 2.2.5.2) 0x0011 Allows for a raw read of
data from a named pipe.
This method of reading
data from a named pipe
ignores message
boundaries even if the pipe
was set up as a message
mode pipe.

D LANMAN1.0

TRANS_QUERY_NMPIPE_STATE (section 2.2.5.3) 0x0021 Allows for a client to
retrieve information about
a specified named pipe.

C LANMAN1.0

TRANS_QUERY_NMPIPE_INFO (section 2.2.5.4) 0x0022 Used to retrieve pipe
information about a named
pipe.

C LANMAN1.0

TRANS_PEEK_NMPIPE (section 2.2.5.5) 0x0023 Used to copy data out of a
named pipe without

C LANMAN1.0

61 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Code Description Status
Earliest
dialect

removing it from the
named pipe.

TRANS_TRANSACT_NMPIPE (section 2.2.5.6) 0x0026 Used to execute a
transacted exchange
against a named pipe. This
transaction has a
constraint that it can be
used only on a duplex,
message-type pipe.

C LANMAN1.0

TRANS_RAW_WRITE_NMPIPE (section 2.2.5.7) 0x0031 Allows for a raw write of

data to a named pipe. Raw
writes to named pipes put
bytes directly into a pipe,
regardless of whether it is
a message mode pipe or
byte mode pipe.

D LANMAN1.0

TRANS_READ_NMPIPE (section 2.2.5.8) 0x0036 Allows a client to read data
from a named pipe.

C NT LANMAN

TRANS_WRITE_NMPIPE (section 2.2.5.9) 0x0037 Allows a client to write
data to a named pipe.

C NT LANMAN

TRANS_WAIT_NMPIPE (section 2.2.5.10) 0x0053 Allows a client to be
notified when the specified
named pipe is available to
be connected to.

C LANMAN1.0

TRANS_CALL_NMPIPE (section 2.2.5.11) 0x0054 Connect to a named pipe,
issue a write to the named
pipe, issue a read from the
named pipe, and close the
named pipe.

C LANMAN1.0

The meaning of the SMB_COM_TRANSACTION subcommand codes is defined by the resource being
accessed. For example, the 0x0001 subcommand code is interpreted as TRANS_MAILSLOT_WRITE if
the operation is being performed on a mailslot. The same code is interpreted as a
TRANS_SET_NMPIPE_STATE (section 2.2.5.1) if the operation is performed on a named pipe.

Transaction Codes used with SMB_COM_TRANSACTION2 (section 2.2.4.46):

Name Code Description Status
Earliest
dialect

TRANS2_OPEN2 (section 2.2.6.1) 0x0000 Open or create a
file and set
extended
attributes on the
file.

C NT LANMAN

TRANS2_FIND_FIRST2 (section 2.2.6.2) 0x0001 Begin a search
for files within a
directory or for a
directory.

C NT LANMAN

TRANS2_FIND_NEXT2 (section 2.2.6.3) 0x0002 Continue a
search for files
within a
directory or for a

C NT LANMAN

62 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Code Description Status
Earliest
dialect

directory.

TRANS2_QUERY_FS_INFORMATION (section 2.2.6.4) 0x0003 Request
information
about a file
system on the
server.

C LANMAN2.0

TRANS2_SET_FS_INFORMATION (section 2.2.6.5) 0x0004 N LANMAN2.0

TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) 0x0005 Get information
about a specific
file or directory
using a path.

C LANMAN2.0

TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) 0x0006 Set the standard
and extended
attribute
information of a
specific file or
directory using a
path.

C LANMAN2.0

TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) 0x0007 Get information
about a specific
file or directory
using a FID.

C LANMAN2.0

TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) 0x0008 Set the standard
and extended
attribute
information of a
specific file or
directory using a
FID.

C LANMAN2.0

TRANS2_FSCTL (section 2.2.6.10) 0x0009 N LANMAN2.0

TRANS2_IOCTL2 (section 2.2.6.11) 0x000a N NT LANMAN

TRANS2_FIND_NOTIFY_FIRST (section 2.2.6.12) 0x000b X LANMAN2.0

TRANS2_FIND_NOTIFY_NEXT (section 2.2.6.13) 0x000c X LANMAN2.0

TRANS2_CREATE_DIRECTORY (section 2.2.6.14) 0x000d Create a new
directory and
optionally set
the extended
attribute
information.

C LANMAN2.0

TRANS2_SESSION_SETUP (section 2.2.6.15) 0x000e N NT LANMAN

TRANS2_GET_DFS_REFERRAL (section 2.2.6.16) 0x0010 Request a DFS
referral for a
file or directory.
See [MS-DFSC]
section 2.2.2 for
details.

C NT LANMAN

TRANS2_REPORT_DFS_INCONSISTENCY (section 2.2.6.17) 0x0011 N NT LANMAN

%5bMS-DFSC%5d.pdf

63 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Transaction codes used with SMB_COM_NT_TRANSACT (section 2.2.4.62):

Name Code Description Status
Earliest
dialect

NT_TRANSACT_CREATE (section 2.2.7.1) 0x0001 Used to create or
open a file or
directory when
extended attributes
(EAs) or a security
descriptor (SD)
are to be applied.

C NT
LANMAN

NT_TRANSACT_IOCTL (section 2.2.7.2) 0x0002 Allows device and
file system control
functions to be
transferred
transparently from
client to server.

C NT
LANMAN

NT_TRANSACT_SET_SECURITY_DESC (section 2.2.7.3) 0x0003 Allows a client to
change the security
descriptor for a file.

C NT
LANMAN

NT_TRANSACT_NOTIFY_CHANGE (section 2.2.7.4) 0x0004 Notifies the client
when the directory
specified by FID is
modified. It also
returns the names of
any files that
changed.

C NT
LANMAN

NT_TRANSACT_RENAME (section 2.2.7.5) 0x0005 N

NT_TRANSACT_QUERY_SECURITY_DESC (section 2.2.7.6) 0x0006 Allows a client to
retrieve the security
descriptor for a file.

C NT
LANMAN

2.2.2.3 Information Level Codes

The SMB protocol uses information levels in several Transaction2 subcommands to allow clients to
query or set information about files, devices, and underlying object stores on servers. The following
lists of information levels are organized based on their intended purpose: finding files or devices and
related information, querying a specific file or device for information, setting file or device information,

and querying object store information.

A small number of information levels (most notably SMB_INFO_STANDARD and the other LANMAN2.0
information levels) share the same name across multiple categories. This indicates that these
information levels share similar, or at times identical, structures, but are distinct in their intended
purposes.

2.2.2.3.1 FIND Information Level Codes

FIND information levels are used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) subcommand requests to indicate the level of information that
a server MUST respond with for each file matching the request's search criteria.

64 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Code Meaning Dialect

SMB_INFO_STANDARD 0x0001 Return creation, access, and last write
timestamps, size and file attributes along
with the file name.

LANMAN2.0

SMB_INFO_QUERY_EA_SIZE 0x0002 Return the SMB_INFO_STANDARD data
along with the size of a file's extended
attributes (EAs).

LANMAN2.0

SMB_INFO_QUERY_EAS_FROM_LIST 0x0003 Return the SMB_INFO_QUERY_EA_SIZE
data along with a specific list of a file's EAs.
The requested EAs are provided in the
Trans2_Data block of the request.

LANMAN2.0

SMB_FIND_FILE_DIRECTORY_INFO 0x0101 Return 64-bit format versions of: creation,
access, last write, and last attribute change
timestamps; size. In addition, return
extended file attributes and file name.

NT
LANMAN

SMB_FIND_FILE_FULL_DIRECTORY_INFO 0x0102 Returns the
SMB_FIND_FILE_DIRECTORY_INFO data
along with the size of a file's EAs.

NT
LANMAN

SMB_FIND_FILE_NAMES_INFO 0x0103 Returns the name(s) of the file(s). NT
LANMAN

SMB_FIND_FILE_BOTH_DIRECTORY_INFO 0x0104 Returns a combination of the data from
SMB_FIND_FILE_FULL_DIRECTORY_INFO
and SMB_FIND_FILE_NAMES_INFO.

NT
LANMAN

2.2.2.3.2 QUERY_FS Information Level Codes

QUERY_FS information levels are used in TRANS2_QUERY_FS_INFORMATION (section 2.2.6.4)

subcommand requests to indicate the level of information that a server MUST respond with for the
underlying object store indicated in the request.

Name Code Meaning Dialect

SMB_INFO_ALLOCATION 0x0001 Query file system allocation unit information. LANMAN2.0

SMB_INFO_VOLUME 0x0002 Query volume name and serial number. LANMAN2.0

SMB_QUERY_FS_VOLUME_INFO 0x0102 Query the creation timestamp, serial number, and
Unicode-encoded volume label.

NT
LANMAN

SMB_QUERY_FS_SIZE_INFO 0x0103 Query 64-bit file system allocation unit
information.

NT
LANMAN

SMB_QUERY_FS_DEVICE_INFO 0x0104 Query a file system's underlying device type and
characteristics.

NT
LANMAN

SMB_QUERY_FS_ATTRIBUTE_INFO 0x0105 Query file system attributes. NT
LANMAN

2.2.2.3.3 QUERY Information Level Codes

65 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

QUERY information levels are used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) subcommand requests to indicate the level of

information that a server MUST respond with for the file or directory indicated in the request.

Name Code Description Dialect

SMB_INFO_STANDARD 0x0001 Query creation, access, and last write
timestamps, size and file attributes.

LANMAN2.0

SMB_INFO_QUERY_EA_SIZE 0x0002 Query the SMB_INFO_STANDARD data along
with the size of the file's extended attributes
(EAs).

LANMAN2.0

SMB_INFO_QUERY_EAS_FROM_LIST 0x0003 Query a file's specific EAs by attribute name. LANMAN2.0

SMB_INFO_QUERY_ALL_EAS 0x0004 Query all of a file's EAs. LANMAN2.0

SMB_INFO_IS_NAME_VALID 0x0006 Validate the syntax of the path provided in
the request. Not supported for
TRANS2_QUERY_FILE_INFORMATION.

LANMAN2.0

SMB_QUERY_FILE_BASIC_INFO 0x0101 Query 64-bit create, access, write, and
change timestamps along with extended file
attributes.

NT
LANMAN

SMB_QUERY_FILE_STANDARD_INFO 0x0102 Query size, number of links, if a delete is
pending, and if the path is a directory.

NT
LANMAN

SMB_QUERY_FILE_EA_INFO 0x0103 Query the size of the file's EAs. NT
LANMAN

SMB_QUERY_FILE_NAME_INFO 0x0104 Query the long file name in Unicode format. NT
LANMAN

SMB_QUERY_FILE_ALL_INFO 0x0107 Query the SMB_QUERY_FILE_BASIC_INFO,
SMB_FILE_QUERY_STANDARD_INFO,

SMB_FILE_EA_INFO, and
SMB_QUERY_FILE_NAME_INFO data as well
as access flags, access mode, and alignment
information in a single request.

NT
LANMAN

SMB_QUERY_FILE_ALT_NAME_INFO 0x0108 Query the 8.3 file name.<22> NT
LANMAN

SMB_QUERY_FILE_STREAM_INFO 0x0109 Query file stream information. NT
LANMAN

SMB_QUERY_FILE_COMPRESSION_INFO 0x010B Query file compression information. NT
LANMAN

2.2.2.3.4 SET Information Level Codes

SET information levels are used in TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) and

TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) subcommand requests to indicate what level of
information is being set on the file or directory in the request.

Name Code Description Dialect

SMB_INFO_STANDARD 0x000
1

Set creation, access, and last write timestamps. LANMAN2.
0

66 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Code Description Dialect

SMB_INFO_SET_EAS 0x000
2

Set a specific list of extended attributes (EAs). LANMAN2.
0

SMB_SET_FILE_BASIC_INFO 0x010
1

Set 64-bit create, access, write, and change
timestamps along with extended file attributes. Not
supported for
TRANS2_SET_PATH_INFORMATION (section 2.2.6.7
).

NT
LANMAN

SMB_SET_FILE_DISPOSITION_INF
O

0x010
2

Set whether or not the file is marked for deletion.
Not supported for
TRANS2_SET_PATH_INFORMATION (section 2.2.6.7
).

NT
LANMAN

SMB_SET_FILE_ALLOCATION_INF
O

0x010
3

Set file allocation size. Not supported for
TRANS2_SET_PATH_INFORMATION (section 2.2.6.7
).

NT
LANMAN

SMB_SET_FILE_END_OF_FILE_INF
O

0x010
4

Set file EOF offset. Not supported for
TRANS2_SET_PATH_INFORMATION (section 2.2.6.7
).

NT
LANMAN

2.2.2.4 SMB Error Classes and Codes

This section provides an overview of status codes that can be returned by the SMB commands listed in
this document, including mappings between the NTSTATUS codes used in the NT LAN Manager dialect,

the SMBSTATUS class/code pairs used in earlier SMB dialects, and common POSIX equivalents. The
POSIX error code mappings are based upon those used in the Xenix server implementation. This is not
an exhaustive listing and MUST NOT be considered normative.

Each command and subcommand description also includes a list of status codes that are returned by

CIFS-compliant servers. Individual implementations can return status codes from their underlying
operating systems; it is up to the implementer to decide how to interpret those status codes.

The listing below is organized by SMBSTATUS Error Class. It shows SMBSTATUS Error Code values and
a general description, as well as mappings from NTSTATUS values ([MS-ERREF] section 2.3.1) and
POSIX-style error codes where possible. Note that multiple NTSTATUS values can map to a single
SMBSTATUS value.

SUCCESS Class 0x00

Error code NTSTATUS values POSIX equivalent Description

SUCCESS

0x0000

STATUS_OK 0 Everything worked, no problems.

ERRDOS Class 0x01

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

ERRbadfunc

0x0001

STATUS_NOT_IMPLEMENTED

0xC0000002

STATUS_INVALID_DEVICE_REQUEST

EINVAL Invalid
Function.

%5bMS-ERREF%5d.pdf

67 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

0xC0000010

STATUS_ILLEGAL_FUNCTION

0xC00000AF

ERRbadfile

0x0002

STATUS_NO_SUCH_FILE

0xC000000F

STATUS_NO_SUCH_DEVICE

0xC000000E

STATUS_OBJECT_NAME_NOT_FOUND

0xC0000034

ENOENT File not
found.

ERRbadpath

0x0003

STATUS_OBJECT_PATH_INVALID

0xC0000039

STATUS_OBJECT_PATH_NOT_FOUND

0xC000003A

STATUS_OBJECT_PATH_SYNTAX_BAD

0xC000003B

STATUS_DFS_EXIT_PATH_FOUND

0xC000009B

STATUS_REDIRECTOR_NOT_STARTED

0xC00000FB

ENOENT A
component
in the path
prefix is not
a directory.

ERRnofids

0x0004

STATUS_TOO_MANY_OPENED_FILES

0xC000011F

EMFILE Too many
open files.
No FIDs are
available.

ERRnoaccess

0x0005

STATUS_ACCESS_DENIED

0xC0000022

STATUS_INVALID_LOCK_SEQUENCE

0xC000001E

STATUS_INVALID_VIEW_SIZE

0xC000001F

STATUS_ALREADY_COMMITTED

0xC0000021

STATUS_PORT_CONNECTION_REFUSED

0xC0000041

STATUS_THREAD_IS_TERMINATING

0xC000004B

STATUS_DELETE_PENDING

0xC0000056

STATUS_PRIVILEGE_NOT_HELD

0xC0000061

STATUS_LOGON_FAILURE

0xC000006D

STATUS_FILE_IS_A_DIRECTORY

0xC00000BA

STATUS_FILE_RENAMED

0xC00000D5

EPERM Access

denied.

68 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

STATUS_PROCESS_IS_TERMINATING

0xC000010A

STATUS_DIRECTORY_NOT_EMPTY

0xC0000101

STATUS_CANNOT_DELETE

0xC0000121

STATUS_FILE_DELETED

0xC0000123

ERRbadfid

0x0006

STATUS_SMB_BAD_FID

0x00060001

STATUS_INVALID_HANDLE

0xC0000008

STATUS_OBJECT_TYPE_MISMATCH

0xC0000024

STATUS_PORT_DISCONNECTED

0xC0000037

STATUS_INVALID_PORT_HANDLE

0xC0000042

STATUS_FILE_CLOSED

0xC0000128

STATUS_HANDLE_NOT_CLOSABLE

0xC0000235

EBADF Invalid FID.

ERRbadmcb

0x0007

 Memory
Control
Blocks were
destroyed.

ERRnomem

0x0008

STATUS_SECTION_TOO_BIG

0xC0000040

STATUS_TOO_MANY_PAGING_FILES

0xC0000097

STATUS_INSUFF_SERVER_RESOURCES

0xC0000205

ENOMEM Insufficient
server
memory to
perform the
requested
operation.

ERRbadmem

0x0009

 EFAULT The server
performed
an invalid
memory
access
(invalid
address).

ERRbadenv

0x000A

 Invalid
environmen
t.

ERRbadformat

0x000B

 Invalid
format.

ERRbadaccess STATUS_OS2_INVALID_ACCESS Invalid
open mode.

69 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

0x000C 0x000C0001

STATUS_ACCESS_DENIED

0xC00000CA

ERRbaddata

0x000D

STATUS_DATA_ERROR

0xC000009C

E2BIG Bad data.
(May be
generated
by IOCTL
calls on the
server.)

ERRbaddrive

0x000F

 ENXIO Invalid
drive
specified.

ERRremcd

0x0010

STATUS_DIRECTORY_NOT_EMPTY

0xC0000101

 Remove of
directory
failed
because it
was not
empty.

ERRdiffdevice

0x0011

STATUS_NOT_SAME_DEVICE

0xC00000D4

EXDEV A file
system
operation
(such as a
rename)
across two

devices
was
attempted.

ERRnofiles

0x0012

STATUS_NO_MORE_FILES

0x80000006

 No (more)
files found
following a
file search
command.

ERRgeneral

0x001F

STATUS_UNSUCCESSFUL

0xC0000001

 General
error.

ERRbadshare

0x0020

STATUS_SHARING_VIOLATION

0xC0000043

ETXTBSY Sharing
violation. A
requested
open mode
conflicts
with the
sharing
mode of an
existing file
handle.

ERRlock

0x0021

STATUS_FILE_LOCK_CONFLICT

0xC0000054

STATUS_LOCK_NOT_GRANTED

0xC0000055

EDEADLOC
K

A lock
request
specified an
invalid
locking
mode, or
conflicted
with an

70 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

existing file
lock.

ERReof

0x0026

STATUS_END_OF_FILE

0xC0000011

EEOF Attempted
to read
beyond the
end of the
file.

ERRunsup

0x0032

STATUS_NOT_SUPPORTED

0XC00000BB

 This
command

is not
supported
by the
server.

ERRfilexists

0x0050

STATUS_OBJECT_NAME_COLLISION

0xC0000035

EEXIST An attempt
to create a
file or
directory
failed
because an
object with
the same
pathname
already
exists.

ERRinvalidparam

0x0057

STATUS_INVALID_PARAMETER

0xC000000D

 A
parameter
supplied
with the
message is
invalid.

ERRunknownlevel

0x007C

STATUS_OS2_INVALID_LEVEL

0x007C0001

 Invalid
information
level.

ERRinvalidseek

0x0083

STATUS_OS2_NEGATIVE_SEEK

0x00830001

 An attempt
was made
to seek to a
negative
absolute
offset

within a
file.

ERROR_NOT_LOCKED

0x009E

STATUS_RANGE_NOT_LOCKED

0xC000007E

 The byte
range
specified in
an unlock
request
was not
locked.

ERROR_NO_MORE_SEARCH_HANDLE
S

0x0071

STATUS_OS2_NO_MORE_SIDS

0x00710001

 Maximum
number of
searches
has been
exhausted.

71 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

ERROR_CANCEL_VIOLATION

0x00AD

STATUS_OS2_CANCEL_VIOLATION

0x00AD0001

 No lock
request
was
outstanding
for the
supplied
cancel
region.

ERROR_ATOMIC_LOCKS_NOT_SUPPO
RTED

0x00AE

STATUS_OS2_ATOMIC_LOCKS_NOT_SUPPO
RTED

0x00AE0001

 The file
system
does not
support
atomic
changes to
the lock
type.

ERRbadpipe

0x00E6

STATUS_INVALID_INFO_CLASS

0xC0000003

STATUS_INVALID_PIPE_STATE

0xC00000AD

STATUS_INVALID_READ_MODE

0xC00000B4

 Invalid
named
pipe.

ERROR_CANNOT_COPY

0x010A

STATUS_OS2_CANNOT_COPY

0x010A0001

 The copy
functions
cannot be
used.

ERRpipebusy

0x00E7

STATUS_INSTANCE_NOT_AVAILABLE

0xC00000AB

STATUS_PIPE_NOT_AVAILABLE

0xC00000AC

STATUS_PIPE_BUSY

0xC00000AE

 All
instances of
the
designated
named pipe
are busy.

ERRpipeclosing

0x00E8

STATUS_PIPE_CLOSING

0xC00000B1

STATUS_PIPE_EMPTY

0xC00000D9

 The
designated
named pipe
is in the
process of
being
closed.

ERRnotconnected

0x00E9

STATUS_PIPE_DISCONNECTED

0xC00000B0

 The
designated
named pipe
exists, but
there is no
server
process
listening on
the server
side.

ERRmoredata STATUS_BUFFER_OVERFLOW There is
more data

72 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values

POSIX
equivalen
t

Descriptio
n

0x00EA 0x80000005

STATUS_MORE_PROCESSING_REQUIRED

0xC0000016

available to
read on the
designated
named
pipe.

ERRbadealist

0x00FF

 Inconsisten
t extended
attribute
list.

ERROR_EAS_

DIDNT_FIT

0x0113

STATUS_EA_TOO_LARGE

0xC0000050

STATUS_OS2_EAS_DIDNT_FIT

0x01130001

 Either there
are no
extended
attributes,
or the
available
extended
attributes
did not fit
into the
response.

ERROR_EAS_

NOT_SUPPORTED

0x011A

STATUS_EAS_NOT_SUPPORTED

0xC000004F

 The server
file system
does not
support
Extended
Attributes.

ERROR_EA_ACCESS_DENIED

0x03E2

STATUS_OS2_EA_ACCESS_DENIED

0x03E20001

 Access to
the
extended
attribute
was denied.

ERR_NOTIFY_ENUM_DIR

0x03FE

STATUS_NOTIFY_ENUM_DIR

0x0000010C

 More
changes
have
occurred
within the
directory
than will fit
within the
specified
Change
Notify
response
buffer.

ERRSRV Class 0x02

Error code NTSTATUS values
POSIX
equivalent Description

ERRerror

0x0001

STATUS_INVALID_SMB

0x00010002

 Unspecified server
error.<23>

ERRbadpw STATUS_WRONG_PASSWORD Invalid password.

73 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values
POSIX
equivalent Description

0x0002 0xC000006A

ERRbadpath

0x0003

STATUS_PATH_NOT_COVERED

0xC0000257

 DFS pathname not on local
server.

ERRaccess

0x0004

STATUS_NETWORK_ACCESS_DENIED

0xC00000CA

EACCES Access denied. The specified
UID does not have permission
to execute the requested
command within the current
context (TID).

ERRinvtid

0x0005

STATUS_NETWORK_NAME_DELETED

0xC00000C9

STATUS_SMB_BAD_TID

0x00050002

 The TID specified in the
command was invalid.

Earlier documentation, with
the exception of [SNIA],
refers to this error code as
ERRinvnid (Invalid Network
Path Identifier). [SNIA] uses
both names.<24>

ERRinvnetname

0x0006

STATUS_BAD_NETWORK_NAME

0xC00000CC

 Invalid server name in Tree
Connect.

ERRinvdevice

0x0007

STATUS_BAD_DEVICE_TYPE

0xC00000CB

 A printer request was made to
a non-printer device or,
conversely, a non-printer
request was made to a printer
device.

ERRinvsess

0x0010

 Invalid Connection ID (CID).
This error code is only defined
when the Direct IPX
connectionless transport is in
use.

ERRworking

0x0011

 A command with matching
MID or SequenceNumber is
currently being processed.
This error code is defined only
when the Direct IPX
connectionless transport is in
use.

ERRnotme

0x0012

 Incorrect NetBIOS Called
Name when starting an SMB
session over Direct IPX. This
error code is only defined
when the Direct IPX
connectionless transport is in
use.

ERRbadcmd

0x0016

STATUS_SMB_BAD_COMMAND

0x00160002

 An unknown SMB command
code was received by the
server.

ERRqfull

0x0031

STATUS_PRINT_QUEUE_FULL

0xC00000C6

 Print queue is full - too many
queued items.

ERRqtoobig

0x0032

STATUS_NO_SPOOL_SPACE

0xC00000C7

 Print queue is full - no space
for queued item, or queued

http://go.microsoft.com/fwlink/?LinkId=90519

74 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values
POSIX
equivalent Description

item too big.

ERRqeof

0x0033

 End Of File on print queue
dump.

ERRinvpfid

0x0034

STATUS_PRINT_CANCELLED

0xC00000C8

 Invalid FID for print file.

ERRsmbcmd

0x0040

STATUS_NOT_IMPLEMENTED

0xC0000002

 Unrecognized SMB command
code.

ERRsrverror

0x0041

STATUS_UNEXPECTED_NETWORK_ERROR

0xC00000C4

 Internal server error.

ERRfilespecs

0x0043

 The FID and pathname

contain incompatible values.

ERRbadpermits

0x0045

STATUS_NETWORK_ACCESS_DENIED

0xC00000CA

 An invalid combination of
access permissions for a file
or directory was presented.
The server cannot set the
requested attributes.

ERRsetattrmode

0x0047

 The attribute mode presented
in a set mode request was
invalid.

ERRtimeout

0x0058

STATUS_UNEXPECTED_NETWORK_ERROR

0xC00000C4

STATUS_IO_TIMEOUT

0xC00000B5

 Operation timed out.

ERRnoresource

0x0059

STATUS_REQUEST_NOT_ACCEPTED

0xC00000D0

 No resources currently
available for this SMB
request.

ERRtoomanyuids

0x005A

STATUS_TOO_MANY_SESSIONS

0xC00000CE

 Too many UIDs active for this
SMB connection.

ERRbaduid

0x005B

STATUS_SMB_BAD_UID

0x005B0002

 The UID specified is not
known as a valid ID on this
server session.

ERRnotconnected

0x00E9

STATUS_PIPE_DISCONNECTED

0xC00000B0

EPIPE Write to a named pipe with no
reader.

ERRusempx

0x00FA

STATUS_SMB_USE_MPX

0x00FA0002

 Temporarily unable to support
RAW mode transfers. Use
MPX mode.

ERRusestd

0x00FB

STATUS_SMB_USE_STANDARD

0x00FB0002

 Temporarily unable to support
RAW or MPX mode transfers.
Use standard read/write.

ERRcontmpx

0x00FC

STATUS_SMB_CONTINUE_MPX

0x00FC0002

 Continue in MPX mode.

This error code is reserved for

future use.

75 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values
POSIX
equivalent Description

ERRaccountExpired

0x08BF

STATUS_ACCOUNT_DISABLED

0xC0000072

STATUS_ACCOUNT_EXPIRED

0xC0000193

 User account on the target
machine is disabled or has
expired.

ERRbadClient

0x08C0

STATUS_INVALID_WORKSTATION

0xC0000070

 The client does not have
permission to access this
server.

ERRbadLogonTime

0x08C1

STATUS_INVALID_LOGON_HOURS

0xC000006F

 Access to the server is not
permitted at this time.

ERRpasswordExpired

0x08C2

STATUS_PASSWORD_EXPIRED

0xC0000071

STATUS_PASSWORD_MUST_CHANGE

0xC0000224

 The user's password has
expired.

ERRnosupport

0xFFFF

STATUS_SMB_NO_SUPPORT

0XFFFF0002

 Function not supported by the
server.

ERRHRD Class 0x03

Error code NTSTATUS values
POSIX
equivalent Description

ERRnowrite

0x0013

STATUS_MEDIA_WRITE_PROTECTED

0xC00000A2

EROFS Attempt to modify a read-only file
system.

ERRbadunit

0x0014

 ENODEV Unknown unit.

ERRnotready

0x0015

STATUS_NO_MEDIA_IN_DEVICE

0xC0000013

EUCLEAN Drive not ready.

ERRbadcmd

0x0016

STATUS_INVALID_DEVICE_STATE

0xC0000184

 Unknown command.

ERRdata

0x0017

STATUS_DATA_ERROR

0xC000003E

STATUS_CRC_ERROR

0xC000003F

EIO Data error (incorrect CRC).

ERRbadreq

0x0018

STATUS_DATA_ERROR

0xC000003E

ERANGE Bad request structure length.

ERRseek

0x0019

 Seek error.

ERRbadmedia

0x001A

STATUS_DISK_CORRUPT_ERROR

0xC0000032

 Unknown media type.

ERRbadsector

0x001B

STATUS_NONEXISTENT_SECTOR

0xC0000015

 Sector not found.

ERRnopaper STATUS_DEVICE_PAPER_EMPTY Printer out of paper.

76 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error code NTSTATUS values
POSIX
equivalent Description

0x001C 0x8000000E

ERRwrite

0x001D

 Write fault.

ERRread

0x001E

 Read fault.

ERRgeneral

0x001F

 General hardware failure.

ERRbadshare

0x0020

STATUS_SHARING_VIOLATION

0xC0000043

ETXTBSY An attempted open operation
conflicts with an existing open.

ERRlock

0x0021

STATUS_FILE_LOCK_CONFLICT

0xC0000054

EDEADLOCK A lock request specified an invalid

locking mode, or conflicted with an
existing file lock.

ERRwrongdisk

0x0022

STATUS_WRONG_VOLUME

0xC0000012

 The wrong disk was found in a drive.

ERRFCBUnavail

0x0023

 No server-side File Control Blocks are
available to process the request.

ERRsharebufexc

0x0024

 A sharing buffer has been exceeded.

ERRdiskfull

0x0027

STATUS_DISK_FULL

0xC000007F

ENOSPC No space on file system.

ERRCMD Class 0xFF

The ERRCMD error class is used to indicate that the server received a command that was not in the

SMB format. No error codes are defined for use with the ERRCMD (0XFF) class.<25>

2.2.2.5 Data Buffer Format Codes

Data buffer format codes are used to identify the type and format of the fields that immediately follow

them in the data block of SMB messages. See section 2.2.3.3 for a description of the data block.

In Core Protocol commands, every field in the data block (following the ByteCount field) is preceded
by a one-byte buffer format field. Commands introduced in dialects subsequent to the Core Protocol
typically do not include buffer format fields unless they are intended as an extension to an existing
command. For example, SMB_COM_FIND (section 2.2.4.59) was introduced in the LAN Manager 1.0
dialect in order to improve the semantics of the SMB_COM_SEARCH (section 2.2.4.58) Core Protocol
command. Both commands share the same request and response message structures, including the

buffer format fields.

Data block fields that are preceded by buffer format codes take one of two basic forms:

 A null-terminated string or

 A structure consisting of a two-byte length field followed by an array of bytes:

 struct
 {

77 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT Length;
 UCHAR Data[Length];
 }

Buffer
format code Name Format of the field that follows

0x01 Data Buffer A two-byte USHORT value indicating the length of the data buffer. The data buffer
follows immediately after the length field.

0x02 Dialect
String

A null-terminated OEM_STRING.

This format code is used only in the SMB_COM_NEGOTIATE (section 2.2.4.52)
command to identify SMB dialect strings.

0x03 Pathname A null-terminated string representing a file system path.

In the NT LAN Manager dialect, the string is of type SMB_STRING unless
otherwise specified.

0x04 SMB String A null-terminated string.

In the NT LAN Manager dialect, the string is of type SMB_STRING unless
otherwise specified.

0x05 Variable
Block

A two-byte USHORT value indicating the length of the variable block. The variable
block follows immediately after the length field.

2.2.3 SMB Message Structure

SMB Messages are divisible into three parts:

 A fixed-length header

 A variable length parameter block

 A variable length data block

The header identifies the message as an SMB message, specifies the command to be executed, and

provides context. In a response message, the header also includes status information that indicates
whether (and how) the command succeeded or failed.

The parameter block is a short array of two-byte values (words), while the data block is an array of up
to 64 KB in size. The structure and contents of these blocks are specific to each SMB message.

SMB messages are structured this way because the protocol was originally conceived of as a
rudimentary remote procedure call system. The parameter values were meant to represent the
parameters passed into a function. The data section would contain larger structures or data buffers,

such as the block of data to be written using an SMB_COM_WRITE command. Although the protocol
has evolved over time, this differentiation has been generally maintained.

2.2.3.1 The SMB Header

The SMB_Header structure is a fixed 32-bytes in length.

 SMB_Header
 {
 UCHAR Protocol[4];
 UCHAR Command;

78 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_ERROR Status;
 UCHAR Flags;
 USHORT Flags2;
 USHORT PIDHigh;
 UCHAR SecurityFeatures[8];
 USHORT Reserved;
 USHORT TID;
 USHORT PIDLow;
 USHORT UID;
 USHORT MID;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Protocol

Command Status

... Flags Flags2

PIDHigh SecurityFeatures

...

... Reserved

TID PIDLow

UID MID

Protocol (4 bytes): This field MUST contain the 4-byte literal string '\xFF', 'S', 'M', 'B', with the
letters represented by their respective ASCII values in the order shown. In the earliest available
SMB documentation, this field is defined as a one byte message type (0xFF) followed by a three
byte server type identifier.

Command (1 byte): A one-byte command code. Defined SMB command codes are listed in section

2.2.2.1.

Status (4 bytes): A 32-bit field used to communicate error messages from the server to the client.

Flags (1 byte): An 8-bit field of 1-bit flags describing various features in effect for the message.

Name and bitmask Description
Earliest
dialect

SMB_FLAGS_LOCK_AND_READ_OK

0x01

This bit is set (1) in the
SMB_COM_NEGOTIATE (0x72)
Response (section 2.2.4.52.2) if
the server supports
SMB_COM_LOCK_AND_READ
(0x13) (section 2.2.4.20) and
SMB_COM_WRITE_AND_UNLOCK
(0x14) (section 2.2.4.21)
commands.

LANMAN1.0

SMB_FLAGS_BUF_AVAIL Obsolete LANMAN1.0

79 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description
Earliest
dialect

0x02 When set (on an SMB request
being sent to the server), the
client guarantees that there is a
receive buffer posted such that a
send without acknowledgment
can be used by the server to
respond to the client's request.

This behavior is specific to an
obsolete transport. This bit MUST
be set to zero by the client and
MUST be ignored by the server.

Reserved

0x04

This flag MUST be set to zero by
the client and MUST be ignored
by the server.

LANMAN1.0

SMB_FLAGS_CASE_INSENSITIVE

0x08

Obsolete

If this bit is set then all
pathnames in the SMB SHOULD
be treated as case-
insensitive.<26>

LANMAN1.0

SMB_FLAGS_CANONICALIZED_PATHS

0x10

Obsolescent

When set in session setup, this
bit indicates that all paths sent
to the server are already in
canonical format. That is, all file
and directory names are
composed of valid file name
characters in all upper-case, and
that the path segments are
separated by backslash
characters ('\').

LANMAN1.0

SMB_FLAGS_OPLOCK

0x20

Obsolescent

This bit has meaning only in the
deprecated SMB_COM_OPEN
(0x02)
Request (section 2.2.4.3.1),
SMB_COM_CREATE (0x03)
Request (section 2.2.4.4.1), and
SMB_COM_CREATE_NEW (0x0F)
Request (section 2.2.4.16.1)
messages, where it is used to
indicate that the client is
requesting an Exclusive OpLock.
It SHOULD be set to zero by the
client, and ignored by the server,
in all other SMB requests. If the
server grants this OpLock
request, then this bit SHOULD
remain set in the corresponding
response SMB to indicate to the
client that the OpLock request
was granted.

LANMAN1.0

SMB_FLAGS_OPBATCH

0x40

Obsolescent

This bit has meaning only in the
deprecated SMB_COM_OPEN
(0x02)

LANMAN1.0

80 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description
Earliest
dialect

Request (section 2.2.4.3.1),
SMB_COM_CREATE (0x03)
Request (section 2.2.4.4.1), and
SMB_COM_CREATE_NEW (0x0F)
Request (section 2.2.4.16.1)
messages, where it is used to
indicate that the client is
requesting a Batch OpLock. It
SHOULD be set to zero by the
client, and ignored by the server,
in all other SMB requests. If the
server grants this OpLock
request, then this bit SHOULD
remain set in the corresponding
response SMB to indicate to the
client that the OpLock request
was granted.

If the SMB_FLAGS_OPLOCK bit is
clear (0), then the
SMB_FLAGS_OPBATCH bit is
ignored.

SMB_FLAGS_REPLY

0x80

When on, this message is being
sent from the server in response
to a client request. The
Command field usually contains

the same value in a protocol
request from the client to the
server as in the matching
response from the server to the
client. This bit unambiguously
distinguishes the message as a
server response.

LANMAN1.0

Flags2 (2 bytes): A 16-bit field of 1-bit flags that represent various features in effect for the
message. Unspecified bits are reserved and MUST be zero.

Name and bitmask Description
Earliest
dialect

SMB_FLAGS2_LONG_NAMES

0x0001

If the bit is set, the message MAY contain long file
names. If the bit is clear then file names in the
message MUST adhere to the 8.3 naming convention.

If set in a client request for directory enumeration, the
server MAY return long names (that is, names that are
not 8.3 names) in the response to this request. If not
set in a client request for directory enumeration, the
server MUST return only 8.3 names in the response to
this request. This flag indicates that in a direct
enumeration request, paths returned by the server are
not restricted to 8.3 names format. This bit field
SHOULD be set to 1 when the negotiated dialect is
LANMAN2.0 or later.

LANMAN2.0

SMB_FLAGS2_EAS

0x0002

If the bit is set, the client is aware of extended
attributes (EAs).

The client MUST set this bit if the client is aware of
extended attributes. In response to a client request
with this flag set, a server MAY include extended
attributes in the response. This bit field SHOULD be

LANMAN1.2

81 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description
Earliest
dialect

set to 1 when the negotiated dialect is LANMAN2.0 or
later.

SMB_FLAGS2_SMB_SECURITY_SIGNATURE

0x0004

If set by the client, the client is requesting signing (if
signing is not yet active) or the message being sent is
signed. This bit is used on the SMB header of an
SMB_COM_SESSION_SETUP_ANDX (section 2.2.4.53)
client request to indicate that the client supports
signing and that the server can choose to enforce
signing on the connection based on its configuration.

To turn on signing for a connection, the server MUST
set this flag and also sign the
SMB_COM_SESSION_SETUP_ANDX
Response (section 2.2.4.53), after which all of the
traffic on the connection (except for OpLock Break
notifications) MUST be signed. In the SMB header of
other CIFS client requests, the setting of this bit
indicates that the packet has been signed. This bit
field SHOULD be set to 1 when the negotiated dialect
is NT LANMAN or later.

NT LANMAN

SMB_FLAGS2_IS_LONG_NAME

0x0040

Reserved but not implemented. NT LANMAN

SMB_FLAGS2_DFS

0x1000

If the bit is set, any pathnames in this SMB SHOULD
be resolved in the Distributed File System (DFS).

NT LANMAN

SMB_FLAGS2_PAGING_IO

0x2000

This flag is useful only on a read request. If the bit is
set, then the client MAY read the file if the client does

not have read permission but does have execute
permission. This bit field SHOULD be set to 1 when the
negotiated dialect is LANMAN2.0 or later. This flag is
also known as SMB_FLAGS2_READ_IF_EXECUTE.

NT LANMAN

SMB_FLAGS2_NT_STATUS

0x4000

If this bit is set in a client request, the server MUST
return errors as 32-bit NTSTATUS codes in the
response. If it is clear, the server SHOULD<27>
return errors in SMBSTATUS format.

If this bit is set in the server response, the Status
field in the header is formatted as an NTSTATUS
code; else, it is in SMBSTATUS format.

NT LANMAN

SMB_FLAGS2_UNICODE

0x8000

If set in a client request or server response, each field
that contains a string in this SMB message MUST be
encoded as an array of 16-bit Unicode characters,
unless otherwise specified.

If this bit is clear, each of these fields MUST be
encoded as an array of OEM characters. This bit field
SHOULD be set to 1 when the negotiated dialect is NT
LANMAN.

NT LANMAN

PIDHigh (2 bytes): If set to a nonzero value, this field represents the high-order bytes of a process
identifier (PID). It is combined with the PIDLow field below to form a full PID.

SecurityFeatures (8 bytes): This 8-byte field has three possible interpretations.

In the case that security signatures are negotiated (see SMB_COM_NEGOTIATE
(0x72) (section 2.2.4.52), the following format MUST be observed.

82 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SecurityFeatures
 {
 UCHAR SecuritySignature[8];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SecuritySignature

...

SecuritySignature (8 bytes): If SMB signing has been negotiated, this field MUST contain an 8-
byte cryptographic message signature that can be used to detect whether the message was

modified while in transit. The use of message signing is mutually exclusive with connectionless
transport.

In the case that CIFS is being transported over a connectionless transport (see section
2.1.2.1), the following format MUST be observed.

 SecurityFeatures
 {
 ULONG Key;
 USHORT CID;
 USHORT SequenceNumber;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key

CID SequenceNumber

Key (4 bytes): An encryption key used for validating messages over connectionless

transports.

CID (2 bytes): A connection identifier (CID).

SequenceNumber (2 bytes): A number used to identify the sequence of a message over
connectionless transports.

Finally, if neither of the above two cases applies, the SecurityFeatures field is treated as
a reserved field, which MUST be set to zero by the client and MUST be ignored by the
server.

Reserved (2 bytes): This field is reserved and SHOULD be set to 0x0000.

TID (2 bytes): A tree identifier (TID).

PIDLow (2 bytes): The lower 16-bits of the PID.

UID (2 bytes): A user identifier (UID).

MID (2 bytes): A multiplex identifier (MID).

83 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.3.2 Parameter Block

SMB was originally designed as a rudimentary remote procedure call protocol, and the parameter
block was defined as an array of "one word (two byte) fields containing SMB command dependent

parameters". In the CIFS dialect, however, the SMB_Parameters.Words array can contain any
arbitrary structure. The format of the SMB_Parameters.Words structure is defined individually for
each command message. The size of the Words array is still measured as a count of byte pairs.

The general format of the parameter block is as follows.

 SMB_Parameters
 {
 UCHAR WordCount;
 USHORT Words[WordCount] (variable);
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The size, in two-byte words, of the Words field. This field can be zero,
indicating that the Words field is empty. Note that the size of this field is one byte and comes
after the fixed 32-byte SMB Header (section 2.2.3.1), which causes the Words field to be
unaligned.

Words (variable): The message-specific parameters structure. The size of this field MUST be (2 x
WordCount) bytes. If WordCount is 0x00, this field is not included.

2.2.3.3 Data Block

The general structure of the data block is similar to that of the Parameter block, except that the length

of the buffer portion is measured in bytes.

 SMB_Data
 {
 USHORT ByteCount;
 UCHAR Bytes[ByteCount] (variable);
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The size, in bytes, of the Bytes field. This field can be 0x0000, indicating that
the Bytes field is empty. Because the SMB_Parameters.Words field is unaligned and the
SMB_Data.ByteCount field is two bytes in size, the first byte of SMB_Data.Bytes is also
unaligned.

84 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Bytes (variable): The message-specific data structure. The size of this field MUST be ByteCount
bytes. If ByteCount is 0x0000, this field is not included.

2.2.3.4 Batched Messages ("AndX" Messages)

Batched messages using the AndX construct were introduced in the LAN Manager 1.0 dialect. Batched
messages reduce the number of messages required to complete a series of commands by sending
multiple command requests or responses in a single message. SMB commands that apply the AndX
construct are known as "AndX Commands", and are identified by the NT LAN Manager convention of

appending "_ANDX" to the command name. Messages of this type are known as AndX Messages.

In AndX Messages, only one SMB Header (section 2.2.3.1) is sent. The header is then followed by zero
or more Parameter and Data block pairs, each corresponding to an additional command
request/response. There is no limit on the number of block pairs in a message specifically, only on the
total message size. The total size of a Batched Message MUST NOT exceed the negotiated
MaxBufferSize. AndX Messages contain a construct, conceptually similar to a linked-list, that is used
to connect the batched block pairs. The resulting list is referred to as an AndX Chain. The structure of

this construct is shown below.

 AndX
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

AndXCommand (1 byte): The command code associated with the next block pair in the AndX Chain.

AndXReserved (1 byte): This field is reserved and MUST be 0x00.

AndXOffset (2 bytes): The offset in bytes, relative to the start of the SMB Header, of the next
Parameter block in the AndX Message. This offset is independent of any other size parameters or

offsets within the command. This offset can point to a location past the end of the current block
pair.

The AndX construct is located at the start of the Parameter block of an AndX command
request/response.

An AndX Chain is considered terminated when its last command is either a non-AndX SMB command
or an AndX SMB command with the AndXCommand field set to
SMB_COM_NO_ANDX_COMMAND (section 2.2.4.75) (0xFF, representing the chain terminator). The

SMB_COM_NO_ANDX_COMMAND command code is not used in any other context.

2.2.3.4.1 Follow-on Commands

Each AndX Command has a specific list of commands that can follow it in an AndX Chain. Each
command's list of permitted follow-on commands is documented in the command's corresponding
subsection of section 2.2.4, SMB Commands.

85 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4 SMB Commands

2.2.4.1 SMB_COM_CREATE_DIRECTORY (0x00)

This is an original Core Protocol command. This command is deprecated. Clients SHOULD use the
TRANS2_CREATE_DIRECTORY subcommand.

The Create Directory command creates a new directory on the server, relative to a connected share.
The client MUST provide a valid UID and TID, as well as the pathname (relative to the TID) of the
directory to be created.

Servers MUST require clients to have, at minimum, create permission within the parent directory in
order to create a new directory. The creator's access rights to the new directory are be determined by
local policy on the server.

2.2.4.1.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING DirectoryName;
 }
 }

SMB_Header:

TID (2 bytes): A valid TID MUST be provided. The TID represents the root of the directory
tree in which the new directory is created.

UID (2 bytes): A valid UID MUST be provided. At minimum, the user MUST have create
permission for the subtree that is to contain the new directory. The creator's access rights
to the new directory are determined by local policy on the server.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data:

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable): The message-specific data structure as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DirectoryName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04.

86 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DirectoryName (variable): A null-terminated string giving the full pathname, relative to
the supplied TID, of the directory to be created.

2.2.4.1.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The path syntax is invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_NAME_INVALID

(0xC0000033)

ENOENT Object Name invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The path does not exist.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-
prefix denied search
permission.

87 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 ENOSPC The parent directory is full.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 EMLINK There are too many links
to the parent directory.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

STATUS_NO_MEMORY

(0xC0000017)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The specified directory
already exists.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session, or
the user identified by the
UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a read-
only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.2 SMB_COM_DELETE_DIRECTORY (0x01)

This is an original Core Protocol command.

This command is used to delete an empty directory.

2.2.4.2.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING DirectoryName;
 }
 }

88 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DirectoryName (variable)

...

BufferFormat (1 byte): This field MUST contain the value 0x04.

DirectoryName (variable): A null-terminated string that contains the full pathname, relative
to the supplied TID, of the directory to be deleted.

2.2.4.2.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

89 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB

error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The directory was not
found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The path syntax is
invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the
path-prefix was not a
directory.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The path does not exist.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the
path-prefix denied
search permission.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_CANNOT_DELETE

(0xC0000121)

EBUSY The directory is in use.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_DIRECTORY_NOT_EMPTY

(0xC0000101)

EEXIST The directory is not
empty.

ERRDOS

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

90 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a
read-only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.3 SMB_COM_OPEN (0x02)

This is an original Core Protocol command. This command has been deprecated. Client
implementations SHOULD use SMB_COM_NT_CREATE_ANDX.

This request is used to open an existing regular file. This command MUST NOT be used to open
directories or named pipes. The command includes the pathname of the file, relative to the TID, that
the client wishes to open. If the command is successful, the server response MUST include a FID. The
client MUST supply the FID in subsequent operations on the file.

2.2.4.3.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT AccessMode;
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

SMB_Header:

Flags (1 byte):

Name and bitmask Description

SMB_FLAGS_OPLOCK If set, the client is requesting an Exclusive Opportunistic Lock

91 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description

0x20 (OpLock) on the file.

SMB_FLAGS_OPBATCH

0x40

If set, the client is requesting a Batch Exclusive OpLock on the file.
The SMB_FLAGS_OPLOCK bit MUST be set if this bit is set.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes): The message-specific parameters structure.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

AccessMode SearchAttributes

AccessMode (2 bytes): A 16-bit field for encoding the requested access mode. See section
3.2.4.5.1 for a discussion on sharing modes.

Name and bitmask Values Meaning

AccessMode

0x0007

0 Open for reading

1 Open for writing

2 Open for reading and writing

3 Open for execution

92 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Values Meaning

4-7 Reserved. For compatibility
with older dialects, the server
MUST return
STATUS_OS2_INVALID_ACCE
SS (ERRDOS/ERRbadaccess)
if these values are requested.

0x0008 Reserved. MUST be ignored by the server.

SharingMode

0x0070

0 Compatibility mode

1 Deny read/write/execute to
others (exclusive use
requested)

2 Deny write to others

3 Deny read/execute to others

4 Deny nothing to others

0x0080 Reserved

ReferenceLocality

0x0700

0 Unknown locality of reference

1 Mainly sequential access

2 Mainly random access

3 Random access with some
locality

4-7 Undefined

0x0800 Reserved

CacheMode

0x1000

0 Perform caching on file

1 Do not cache the file

93 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Values Meaning

0x2000 Reserved

WritethroughMode

0x4000

0 Write-through mode. If this
bit is set, no read ahead or
write behind is allowed on this
file or device. When the
response is returned, data is
expected to be on the disk or
device.

1

0x8000 Reserved

SearchAttributes (2 bytes): Specifies the type of file. This field is used as a search mask. Both
the FileName and the SearchAttributes of a file MUST match in order for the file to be
opened.<28>

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable): The message-specific data structure, which follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

BufferFormat (1 byte): A buffer format identifier. The value of this field MUST be 0x04.

FileName (variable): A null-terminated string containing the file name of the file to be
opened.

2.2.4.3.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 SMB_FILE_ATTRIBUTES FileAttrs;

94 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UTIME LastModified;
 ULONG FileSize;
 USHORT AccessMode;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (15 bytes)

...

...

... SMB_Data

...

SMB_Parameters (15 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (14 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x07. The length, in 2-byte words, of the remaining
SMB_Parameters.

Words (14 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID FileAttrs

LastModified

FileSize

AccessMode

95 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FID (2 bytes): The FID returned for the open file.

FileAttrs (2 bytes): The set of attributes currently assigned to the file. This field is formatted in

the same way as the SearchAttributes field in the request.

LastModified (4 bytes): The time of the last modification to the opened file.

FileSize (4 bytes): The current size of the opened file, in bytes.

AccessMode (2 bytes): A 16-bit field for encoding the granted access mode. This field is
formatted in the same way as the Request equivalent.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named file was not
found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FILES

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

ENFILE Too many open files, no
more FIDs available.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the path-

prefix was not a directory.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-
prefix denied search
permission OR the
requested access permission
is denied for the file OR an
open mode failure occurred.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_FILE_IS_A_DIRECTORY

(0xC00000BA)

EISDIR Named file is an existing
directory and requested
open mode is write or
read/write.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

ETXTBSY File is an executable binary
file that is being executed
and requested access
permission specifies write or
read/write.

ERRDOS ERRnomem STATUS_INSUFF_SERVER_RESOURCES ENOMEM The server is out of

96 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0008) (0xC0000205) resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_OS2_INVALID_ACCESS

(0x000C0001)

 The Reserved bit (0x0008)
in the
AccessMode.AccessMode
subfield was set (1) in the
request.

ERRDOS

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

EAGAIN File exists, mandatory
file/record locking is set,
and there are outstanding

record locks on the file.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EFAULT The path points outside the
allocated address space of
the process.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EINTR A signal was caught during
the open operation.

ERRSRV

(0x02)

ERRerror

(0x0001)

 ENXIO Generic server open failure.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_ACCESS_DENIED

(0xC0000022)

EROFS The named file resides on a
read-only file system and
the requested access
permission is write or
read/write.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 Permission conflict between
the requested permission
and permissions for the
shared resource; for
example, open for write of a
file in a read-only file
system subtree.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 A file creation request was
made to a share that is not
a file system subtree.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a read-

only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

97 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.4 SMB_COM_CREATE (0x03)

This is an original Core Protocol command. This command is deprecated. Implementations SHOULD
use SMB_COM_NT_CREATE_ANDX.

This command is used to create and open a new file or open and truncate an existing file to zero
length. The FID that is returned can be used in subsequent read, write, lock, unlock, and close
messages. This command MUST NOT be used to create directories or named pipes. The request
includes the pathname of the file relative to the supplied TID that the client wishes to create. If the
command is successful, the server response MUST include a FID. The client MUST supply the FID in
subsequent operations on the file. The client MUST have write permission on the file's parent directory
in order to create a new file, or write permissions on the file itself in order to truncate the file. The

client's access permissions on a newly created file MUST be read/write. Access permissions on
truncated files are not modified. The file is opened in read/write/compatibility mode.

2.2.4.4.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME CreationTime;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

SMB_Header:

TID (2 bytes): A valid Tree Identifier obtained from a previously successful message
exchange.

UID (2 bytes): A valid User Identifier that MUST be the same value as the User Identifier
associated with the current SMB Session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (7 bytes):

98 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes CreationTime

...

FileAttributes (2 bytes): A 16-bit field of 1-bit flags that represent the file attributes to
assign to the file if it is created successfully.

CreationTime (4 bytes): The time that the file was created, represented as the number of
seconds since Jan 1, 1970, 00:00:00.0.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04.

FileName (variable): A null-terminated string that represents the fully qualified name of the
file relative to the supplied TID to create or truncate on the server.

2.2.4.4.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {

99 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): The FID representing the file on the server. This value MUST be supplied in the
FID field of the SMB Header (section 2.2.3.1) in subsequent requests that manipulate the
file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_OBJECT_NAME_NOT_FOUND

(0xC0000034)

ENOENT The named file was not
found.

ERRDOS ERRbadpath STATUS_OBJECT_PATH_SYNTAX_BAD ENOENT The file path syntax is

100 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0003) (0xC000003B) invalid.

ERRDOS

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FILES

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

EMFILE Too many open files, no
more FIDs available.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the path-
prefix was not a directory.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-
prefix denied search
permission OR requested
access permission is denied
for the file OR open mode
failure.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_FILE_IS_A_DIRECTORY

(0xC00000BA)

EISDIR Named file is an existing
directory and requested
open mode is write or
read/write.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

ETXTBSY File is an executable binary
file that is being executed
and requested access
permission specifies write
or read/write.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

EAGAIN File exists, mandatory
file/record locking is set,
and there are outstanding
record locks on the file.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EFAULT Path points outside the
allocated address space of
the process.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EINTR A signal was caught during
the open operation.

ERRSRV

(0x02)

ERRerror

(0x0001)

 ENXIO Generic server open failure.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_ACCESS_DENIED

(0xC0000022)

EROFS Named file resides on read-
only file system and

requested access
permission is write or
read/write.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 Permission conflict between
requested permission and
permissions for the shared
resource; for example,

101 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

open for write of a file in a
read-only file system
subtree.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 File creation request made
to a share that is not a file
system subtree.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a read-
only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.5 SMB_COM_CLOSE (0x04)

This is an original Core Protocol command.

This command is used by the client to close an instance of an object associated with a valid FID.

2.2.4.5.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 UTIME LastTimeModified;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

...

SMB_Parameters (7 bytes):

102 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID LastTimeModified

...

FID (2 bytes): The FID of the object to be closed.

LastTimeModified (4 bytes): A time value encoded as the number of seconds since January
1, 1970 00:00:00.0. The client can request that the last modification time for the file be
updated to this time value. A value of 0x00000000 or 0xFFFFFFFF results in the server not
updating the last modification time.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.5.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

103 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x00. No data is sent by this message

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE The FID is invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 The TID specified in the command is
invalid.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the command is
invalid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Invalid attempt to close an open
spool file.

OR

Invalid device - printer request
made to a non-printer connection or
non-printer request made to a
printer connection.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not known as a
valid ID on this server session, or
the user identified by the UID does
not have sufficient privileges.

2.2.4.6 SMB_COM_FLUSH (0x05)

This is an original Core Protocol command.

This command requests that the server flush data and allocation information for a specified file or for
all open files under the session.

2.2.4.6.1 Request

104 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): The FID of the file to be flushed. If this field is set to 0xFFFF (65535), all files
opened by the same PID within the SMB connection are to be flushed.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.6.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {

105 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a
FID that the server

does not have open.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS The client does not
have write permissions.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 The TID specified in
the command is invalid.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in
the command is invalid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is
not known as a valid ID
on this server session,
or the user identified by
the UID does not have
sufficient privileges.

ERRHRD ERRnowrite STATUS_MEDIA_WRITE_PROTECTED EROFS Attempt to write to a

106 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

(0x03) (0x0013) (0xC00000A2) read-only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

ERRHRD

(0x03)

ERRdiskfull(0x0027) STATUS_DISK_FULL(0xC000007F) ENOSPC The file system is full.

2.2.4.7 SMB_COM_DELETE (0x06)

This is an original Core Protocol command.

This command is used by the client to delete one or more regular files. It supports the use of
wildcards in file names, allowing for deletion of multiple files in a single request.

2.2.4.7.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

SMB_Header:

Flags2 (2 bytes): USHORT

Name and bitmask Relevance

SMB_FLAGS2_LONG_NAMES

0x0001

Wildcard pattern matching behavior.

If this flag is not set, wildcard patterns MUST compare against
8.3 names only. If a file has a long name, the wildcard

pattern MUST be compared to that file's 8.3 name.

If this flag is set, file names can be long file names and
wildcard patterns MUST compare against the long file name of
a file if it is available.

107 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SearchAttributes

SearchAttributes (2 bytes): The file attributes of the file(s) to be deleted. If the value of
this field is 0x0000, then only normal files MUST be matched for deletion. If the System or
Hidden attributes MUST be specified, then entries with those attributes are matched in
addition to the normal files. Read-only files MUST NOT be deleted. The read-only

attribute of the file MUST be cleared before the file can be deleted.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04.

FileName (variable): The pathname of the file(s) to be deleted, relative to the supplied
TID. Wildcards MAY be used in the filename component of the path.

108 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.7.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error

class

SMB error

code NT status code

POSIX

equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named file was not
found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter
bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV ERRnomem STATUS_INSUFF_SERVER_RESOURCES ENOMEM The server is out of

109 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x02) (0x0008) (0xC0000205) resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a
read-only file system.

2.2.4.8 SMB_COM_RENAME (0x07)

This is an original Core Protocol command.

This command changes the name of one or more files or directories. It supports the use of wildcards
in file names, allowing the renaming of multiple files in a single request.

2.2.4.8.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 SMB_STRING OldFileName;
 UCHAR BufferFormat2;
 SMB_STRING NewFileName;
 }
 }

SMB_Header:

Flags2 (2 bytes): USHORT

Name and bitmask Relevance

SMB_FLAGS2_LONG_NAMES

0x0001

Wildcard pattern matching behavior.

If this flag is not set, wildcard patterns MUST compare against
8.3 names only. If a file has a long name, the wildcard pattern
MUST be compared to that file's 8.3 name.

If this flag is set, file names MAY be long file names and
wildcard patterns MUST compare against the long file name of
a file if it is available.

TID (2 bytes): This field MUST contain a valid TID.

UID (2 bytes): This field MUST contain a valid UID.

110 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SearchAttributes

SearchAttributes (2 bytes): Indicates the file attributes that the file(s) to be renamed MUST
have. If the value of this field is 0x0000, then only normal files MUST be matched to be
renamed. If the System or Hidden attributes are specified, then entries with those
attributes MAY be matched in addition to the normal files. Read-only files MUST NOT be

renamed. The read-only attribute of the file MUST be cleared before it can be renamed.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 OldFileName (variable)

...

BufferFormat2 NewFileName (variable)

...

BufferFormat1 (1 byte): This field MUST be 0x04.

111 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

OldFileName (variable): A null-terminated string that contains the name of the file or files
to be renamed. Wildcards MAY be used in the filename component of the path.

BufferFormat2 (1 byte): This field MUST be 0x04.

NewFileName (variable): A null-terminated string containing the new name(s) to be given

to the file(s) that matches OldFileName or the name of the destination directory into which
the files matching OldFileName MUST be moved.

2.2.4.8.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadfile
(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT File not found.

ERRDOS
(0x01)

ERRbadpath
(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT A component in the path
prefix is not a directory.

ERRDOS
(0x01)

ERRnoaccess
(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM The new file already
exists.

112 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess
(0x0005)

 The directory is full.

ERRDOS
(0x01)

ERRnoaccess
(0x0005)

 The old path is the
mounted point for a file
system.

ERRDOS
(0x01)

ERRnoaccess
(0x0005)

 The old path is the last
link to an executing
program.

ERRDOS
(0x01)

ERRdiffdevice
(0x0011)

STATUS_NOT_SAME_DEVICE

(0xC00000D4)

EXDEV The new path is on a
different file system.

ERRDOS
(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation. A
requested open mode
conflicts with the sharing
mode of an existing file
handle.

ERRDOS
(0x01)

ERRfilexists
(0x0051)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The new file name already
exists.

ERRSRV
(0x02)

ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. The request
contains a packaging or
value error.

ERRSRV
(0x02)

ERRaccess
(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

EACCES Access denied. The
specified UID does not
have permission to
execute the requested

command within the
current context (TID).

ERRSRV
(0x02)

ERRaccess
(0x0004)

 An attempt was made to
change a volume label.

ERRSRV
(0x02)

ERRinvtid
(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the
command was invalid.

ERRSRV
(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV
(0x02)

ERRbaduid
(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID on
this server session.

ERRHRD
(0x03)

ERRnowrite
(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0x0C00000A2)

EROFS Attempt to modify a read-
only file system.

2.2.4.9 SMB_COM_QUERY_INFORMATION (0x08)

This is an original Core Protocol command. This command is deprecated. New client implementations

SHOULD use the SMB_COM_TRANSACTION2 (section 2.2.4.46) subcommand
TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) instead.

113 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command MAY be sent by a client to obtain attribute information about a file using the name and
path to the file. No FID is required.

2.2.4.9.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

114 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

BufferFormat (1 byte): This field MUST be 0x04.

FileName (variable): A null-terminated string that represents the fully qualified name of

the file relative to the supplied TID. This is the file for which attributes are queried and
returned.

2.2.4.9.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME LastWriteTime;
 ULONG FileSize;
 USHORT Reserved[5];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (21 bytes)

...

...

... SMB_Data

SMB_Parameters (21 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (20 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0A.

Words (20 bytes):

115 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes LastWriteTime

... FileSize

... Reserved

...

...

FileAttributes (2 bytes): This field is a 16-bit unsigned bit field encoded as
SMB_FILE_ATTRIBUTES (see section 2.2.1.2.4).

LastWriteTime (4 bytes): The time of the last write to the file.

FileSize (4 bytes): This field contains the size of the file, in bytes. Because this size is
limited to 32 bits, this command is inappropriate for files whose size is too large.

Reserved (10 bytes): This field is reserved, and all entries MUST be set to 0x00.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The file does not exist.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000022)

EPERM Access denied.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 The specified UID does not
have permission to
execute the requested

116 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

command within the
context of the TID.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnotready

(0x0015)

STATUS_NO_MEDIA_IN_DEVICE

(0x0xC0000013)

 Share represents a
removable device and
there is no media present
in the device.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.10 SMB_COM_SET_INFORMATION (0x09)

This is an original Core Protocol command. This command is deprecated. New client implementations
SHOULD use the SMB_COM_TRANSACTION2 (section 2.2.4.46) subcommand

TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) instead.

This command MAY be sent by a client to change the attribute information of a regular file or
directory.

FileName MUST be the fully qualified name of the file relative to the TID. Support of all parameters is
optional. A server that does not implement one of the parameters MUST ignore that field. If the

LastWriteTime field contains 0x00000000, then the file's LastWriteTime MUST NOT be changed.

2.2.4.10.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME LastWriteTime;
 USHORT Reserved[5];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

117 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (17 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (17 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (16 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x08.

Words (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes LastWriteTime

... Reserved

...

...

FileAttributes (2 bytes): This field is a 16-bit unsigned bit field encoded as
SMB_FILE_ATTRIBUTES (section 2.2.4.10.1)

LastWriteTime (4 bytes): The time of the last write to the file.

Reserved (10 bytes): This field is reserved, and all bytes MUST be set to 0x00.

SMB_Data (variable):

118 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04.

FileName (variable): A null-terminated string that represents the fully qualified name of the
file relative to the supplied TID. This is the file for which attributes are set.

2.2.4.10.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

119 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The file was not found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR A portion of the path is
not a directory.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Read permission denied
on a portion of the path.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

STATUS_NO_MEMORY

(0xC0000017)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the attributes in

FileAttributes was
invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Error in
request format or
session has not been
established.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 Access denied. The
specified UID does not
have permission to
execute the requested
command within the
current context (TID).

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid or the tree connect
is closing.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

 Share type does not
match share type of TID
OR the null session is
not allowed to access
the TID.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

ERRHRD

(0x03)

ERRnotready

(0x0015)

STATUS_NO_MEDIA_IN_DEVICE

(0x0xC0000013)

 Share represents a
removable device and
there is no media
present in the device.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

120 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.11 SMB_COM_READ (0x0A)

This is an original Core Protocol command. This command is deprecated. Clients SHOULD use
SMB_COM_READ_ANDX (section 2.2.4.42).

This command is used to read bytes from a regular file. If the client has negotiated a protocol that
supports named pipes or directly accessible devices, this command can also be used to read from
those objects. The end of file condition is indicated by the server returning fewer bytes than the client
requested. A read request starting at or beyond the end of the file returns zero bytes. If a read
requests more data than can be placed in a message of MaxBufferSize for the SMB connection, the
server MUST abort the connection to the client. Because this client request supports 32-bit offsets
only, it is inappropriate for files that have 64-bit offsets. The client MUST have at least read access to

the file.

2.2.4.11.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SHORT FID;
 USHORT CountOfBytesToRead;
 ULONG ReadOffsetInBytes;
 USHORT EstimateOfRemainingBytesToBeRead;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header

Flags2 (2 bytes):

Name and bitmask Relevance

SMB_FLAGS2_READ_IF_EXECUTE

0x2000

If the bit is set and client has execute permission
on the file, then the client MAY read the file even if
the client does not have READ permission.

This flag is also known as
SMB_FLAGS2_PAGING_IO.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

...

SMB_Parameters (11 bytes):

121 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToRead

ReadOffsetInBytes

EstimateOfRemainingBytesToBeRead

FID (2 bytes): This field MUST be a valid 16-bit signed integer indicating the file from which
the data MUST be read.

CountOfBytesToRead (2 bytes): This field is a 16-bit unsigned integer indicating the
number of bytes to be read from the file. The client MUST ensure that the amount of data
requested will fit in the negotiated maximum buffer size.

ReadOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset, in

number of bytes, from which to begin reading from the file. The client MUST ensure that

the amount of data requested fits in the negotiated maximum buffer size. Because this
field is limited to 32 bits, this command is inappropriate for files having 64-bit offsets.

EstimateOfRemainingBytesToBeRead (2 bytes): This field is a 16-bit unsigned integer
indicating the remaining number of bytes that the client intends to read from the file. This
is an advisory field and MAY be 0x0000.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.11.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT CountOfBytesReturned;
 USHORT Reserved[4];
 }

122 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT CountOfBytesRead;
 UCHAR Bytes[CountOfBytesRead];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data (variable)

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CountOfBytesReturned Reserved

...

...

CountOfBytesReturned (2 bytes): The actual number of bytes returned to the client. This
MUST be equal to CountOfBytesToRead unless the end of file was reached before
reading CoutOfBytesToRead bytes or the ReadOffsetInBytes pointed at or beyond the
end of file.

Reserved (8 bytes): Reserved. All bytes MUST be 0x00.

SMB_Data (variable):

123 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0003 + CountOfBytesRead.

Bytes:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat CountOfBytesRead Bytes (variable)

...

BufferFormat (1 byte): This field MUST be 0x01.

CountOfBytesRead (2 bytes): The number of bytes read that are contained in the following
array of bytes.

Bytes (variable): The actual bytes read from the file.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK Attempt to read from a
portion of the file that the
server determines has been
locked or has been opened
in deny-read mode.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a FID
that the server does not

have open.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Read permission required.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

EAGAIN The requested byte range
was already locked by a
different process (PID).

ERRDOS

(0x01)

ERReof

(0x0026)

STATUS_END_OF_FILE

(0xC0000011)

 Attempted to read beyond
the end of the file.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The message on a message
mode named pipe exceeds
the requested number of

bytes. The server MUST

124 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

send a full
SMB_COM_READ response
with this error code. The
requested number of bytes
are read and returned to
the client.

ERRSRV

(0x02)

ERRerror
(0x0001)

 EBADF The FID was validated by
the server but unacceptable
to the system.

ERRSRV

(0x02)

ERRerror
(0x0001)

 EDEADLK The read would block and
deadlock would result.

ERRSRV

(0x02)

 ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt request has been
encountered.

ERRSRV

(0x02)

ERRinvdevice
(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to read from an
open spool file.

ERRSRV

(0x02)

ERRinvtid
(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV

(0x02)

ERRbaduid
(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID for this
session, or the user
identified by the UID does
not have sufficient
privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in

the physical I/O.

ERRHRD

(0x03)

ERRread

(0x001E)

 ENXIO The device associated with
the file descriptor is a
block-special or character-
special file and the value of
the file pointer is out of
range.

2.2.4.12 SMB_COM_WRITE (0x0B)

This is an original Core Protocol command. This command is deprecated. Clients SHOULD use the
SMB_COM_WRITE_ANDX command. Support for named pipes and I/O devices was introduced in the

LAN Manager 1.0 dialect.

This command is used to write bytes to a regular file. If the client has negotiated a protocol dialect

that supports named pipes, mailslots, or directly accessible devices, this command MAY also be used
to write to those object. This command MAY also be used to truncate a file to a specified point or to
extend a file beyond its current size. The command MUST include a valid TID and FID in the request.
This command supports 32-bit offsets only and is inappropriate for files having 64-bit offsets. The
client SHOULD use SMB_COM_WRITE_ANDX to write to files requiring a 64-bit file offset.

125 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

When FID represents a disk file and the request specifies a byte range (WriteOffsetInBytes) beyond
the current end of file, the file MUST be extended. Any bytes between the previous end of file and the

requested offset are initialized to 0x00. When a write specifies a length (CountOfBytesToWrite) of
0x0000, the file is truncated (or extended) to the length specified by the offset.

The client MUST have at least write access to the file.

2.2.4.12.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT CountOfBytesToWrite;
 ULONG WriteOffsetInBytes;
 USHORT EstimateOfRemainingBytesToBeWritten;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT DataLength;
 UCHAR Data[CountOfBytesToWrite];
 }
 }

SMB_Header:

TID (2 bytes): This field MUST contain a valid TID.

UID (2 bytes): This field MUST contain a valid UID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data (variable)

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

126 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToWrite

WriteOffsetInBytes

EstimateOfRemainingBytesToBeWritten

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file to which

the data MUST be written.

CountOfBytesToWrite (2 bytes): This field is a 16-bit unsigned integer indicating the

number of bytes to be written to the file. The client MUST ensure that the amount of data
sent can fit in the negotiated maximum buffer size.

WriteOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset, in
number of bytes, from the beginning of the file at which to begin writing to the file. The

client MUST ensure that the amount of data sent fits in the negotiated maximum buffer
size. Because this field is limited to 32 bits, this command is inappropriate for files that
have 64-bit offsets.

EstimateOfRemainingBytesToBeWritten (2 bytes): This field is a 16-bit unsigned integer
indicating the remaining number of bytes that the client anticipates to write to the file.
This is an advisory field and can be 0x0000. This information can be used by the server to
optimize cache behavior.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003. The total value
represents the size of the BufferFormat field in bytes plus the size of the DataLength field
in bytes plus the value of the CountOfBytesToWrite field. See Data Buffer Format Codes
(section 2.2.2.5) for a complete description of data buffer format codes and their usages.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength Data (variable)

...

BufferFormat (1 byte): This field MUST be 0x01.

127 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DataLength (2 bytes): This field MUST match SMB_Parameters.CountOfBytesToWrite.

Data (variable): The raw bytes to be written to the file.

2.2.4.12.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT CountOfBytesWritten;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CountOfBytesWritten

CountOfBytesWritten (2 bytes): Indicates the actual number of bytes written to the file. For
successful writes, this MUST equal the CountOfBytesToWrite in the client Request. If the
number of bytes written differs from the number requested and no error is indicated, then
the server has no resources available to satisfy the complete write.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

128 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

SUCCESS
(0x00)

SUCCESS

(0x0000)

 EFBIG The file has grown too
large and no more data
can be written to the
file. A Count of zero
(0x0000) MUST be
returned to the client in
the server response.
This indicates to the
client that the file
system is full.

SUCCESS
(0x00)

SUCCESS

(0x0000)

 NOSPC No space on the file
system. The server
MUST return a zero
(0x0000) in the Count
field of the response.
This indicates that the
file system is full.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on
the server are
temporarily exhausted.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK A record lock has been
taken on the file or the
client has attempted to
write to a portion of the
file that the server
determines has been
locked, opened in deny-
write mode, or opened
in read-only mode.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid
server FID but it was
not acceptable to the
operating system.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

STATUS_NO_MEMORY

(0xC0000017)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission

required.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

 The requested byte
range was already
locked by a different
process (PID).

ERRDOS
(0x01)

ERRnotconnected

(0x00E9)

STATUS_PIPE_DISCONNECTED

(0xC00000B0)

EPIPE Write to a named pipe
with no reader.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block
due to locking and
deadlock would result.

129 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRSRV
(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the minimum
or maximum ranges
that can be written to
the supplied FID.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt or invalid
SMB request was
received.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is
not a valid ID on this
server session, or the
user identified by the
UID does not have
sufficient privileges.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred
in the physical I/O.

ERRHRD
(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated
with the file descriptor

is a block-special or
character-special file,
and the value of the file
pointer is out of range.

ERRHRD
(0x03)

ERRdiskfull

(0x0027)

STATUS_DISK_FULL

(0xC000007F)

ENOSPC The file system is full.

2.2.4.13 SMB_COM_LOCK_BYTE_RANGE (0x0C)

This is an original Core Protocol command. This command is deprecated. Clients SHOULD use the
SMB_COM_LOCKING_ANDX (section 2.2.4.32) command.

This command is not compatible with files having greater than 32-bit offsets. The

SMB_COM_LOCKING_ANDX command introduced in the LAN Manager 1.0 dialect was modified in the

NT LAN Manager dialect to support files that have 64-bit offsets. SMB_COM_LOCKING_ANDX is the
preferred method of locking and unlocking byte ranges for clients that negotiate the LAN Manager
1.0 dialect or later. The client MUST negotiate NT LAN Manager or later dialect to access the support
for 64-bit file offsets.

This command is used to explicitly lock a contiguous range of bytes in an open regular file. More than
one non-overlapping byte range can be locked in any specified file. Locks prevent attempts to lock,
read, or write the locked portion of the file by other clients or PIDs. Overlapping locks MUST be failed

with STATUS_LOCK_NOT_GRANTED (ERRDOS/ERRlock). Offsets beyond the current end of file are

130 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

allowed to be locked. Such locks MUST NOT cause allocation of additional file space. Locks MUST be
unlocked only by the client PID that performed the lock.

Because this client request supports 32-bit offsets only, it is inappropriate for files that have 64-bit
offsets. The client MUST have at least read access to the file.

2.2.4.13.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 ULONG CountOfBytesToLock;
 ULONG LockOffsetInBytes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToLock

... LockOffsetInBytes

131 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file from
which the data MUST be read.

CountOfBytesToLock (4 bytes): This field is a 32-bit unsigned integer indicating the

number of contiguous bytes to be locked.

LockOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset, in
number of bytes, from which to begin the lock. Because this field is limited to 32 bits, this
command is inappropriate for files that have 64-bit offsets.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.13.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

132 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED EACCESS File access rights do not
match requested locks.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a
FID that the server does
not have open.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM Insufficient server
resources to place the
lock.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

EACCESS The intended byte range
has already been locked.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EBADF A valid FID was rejected
by the underlying system.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The lock request would
block and cause a
deadlock with another
process.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB.

ERRSRV
(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to lock a non-
regular file such as a
named pipe.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRbaduid
(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not a
valid ID for this session, or
the user identified by the
UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.14 SMB_COM_UNLOCK_BYTE_RANGE (0x0D)

This is an original Core Protocol command. This command is deprecated. Clients SHOULD use the
SMB_COM_LOCKING_ANDX (section 2.2.4.32) command.

This command is not compatible with files having greater than 32-bit offsets. The
SMB_COM_LOCKING_ANDX command introduced in the LAN Manager 1.0 dialect was modified in the
NT LAN Manager dialect to support files having 64-bit offsets. SMB_COM_LOCKING_ANDX is the

preferred method of locking and unlocking byte ranges for clients that negotiate the LAN Manager

133 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1.0 dialect or later. The client MUST negotiate the NT LAN Manager or later dialect to access the
support for 64-bit file offsets.

This command is used to explicitly unlock a contiguous range of bytes in an open regular file. The byte
range specified MUST be exactly the same as that specified in a previous successful lock request from

the same CIFS client and process; the FID and PID MUST be the same as the lock request. An unlock
request for a range that was not locked is treated as an error.

If the server cannot immediately (within 200-300 milliseconds) grant the unlock on the byte range, an
error MUST be returned to the client. Because this client request supports 32-bit offsets only, it is
inappropriate for files that have 64-bit offsets. The client MUST have at least read access to the file.

2.2.4.14.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SHORT FID;
 ULONG CountOfBytesToUnlock;
 ULONG UnlockOffsetInBytes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

TID (2 bytes): This field MUST contain a valid TID, and the TID MUST be the same TID
used in the SMB Header (section 2.2.3.1) when the block range was locked.

UID (2 bytes): This field MUST contain a valid UID, and the UID MUST be the same UID

used in the SMB Header when the block range was locked.

PID (2 bytes): This field MUST contain a valid PID, and the PID MUST be the same PID
used in the SMB Header when the block range was locked.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

134 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToUnlock

... UnlockOffsetInBytes

...

FID (2 bytes): This field MUST be a valid 16-bit signed integer indicating the file from which
the data MUST be read.

CountOfBytesToUnlock (4 bytes): This field is a 32-bit unsigned integer indicating the
number of contiguous bytes to be unlocked.

UnlockOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset,
in number of bytes, from which to begin the unlock. Because this field is limited to 32-

bits, this command is inappropriate for files that have 64-bit offsets.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.14.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

135 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS File access rights
do not match
requested locks.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read
from a FID that
the server does not
have open.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOLOCK Insufficient server
resources to place
the lock.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

EACCESS The intended byte
range has already
been locked by
another process.

ERRDOS
(0x01)

ERROR_NOT_LOCKED

(0x009E)

STATUS_RANGE_NOT_LOCKED

(0xC000007E)

 The byte range
specified in an
unlock request was
not locked.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EBADF A valid FID was
rejected by the
underlying system.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The lock request
would block and
cause a deadlock
with another
process.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB.

ERRSRV
(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to lock a
non-regular file

136 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

such as a named
pipe.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in
request.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified
is not defined as a
valid ID for this
session

2.2.4.15 SMB_COM_CREATE_TEMPORARY (0x0E)

This is an original Core Protocol command. This command is obsolescent.

This command is used to create a file for temporary use by the client. The message includes the
directory (see DirectoryName following) in which the client requests to create the temporary file.
The server generates a file name that is unique within the supplied directory. The supplied directory
MUST be relative to the supplied valid TID in the SMB Header (section 2.2.3.1). The client MUST have
write permission on the directory in order to create the temporary file. If successful, the FID returned
by the server MAY be used in subsequent file operation messages. The client MUST supply this FID in

subsequent operations on the temporary file. The file is opened in compatibility mode with read and
write permissions for the client. The server does not automatically delete the temporary file after the
client closes the file. The client MUST delete the file when it is no longer needed.

2.2.4.15.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME CreationTime;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING DirectoryName;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

137 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

SMB_Parameters (7 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes CreationTime

...

FileAttributes (2 bytes): This field SHOULD be ignored by the server.

CreationTime (4 bytes): The time that the file was created, represented as the number of
seconds since Jan 1, 1970, 00:00:00.0.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DirectoryName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04.

DirectoryName (variable): A null-terminated string that represents the fully qualified name
of the directory relative to the supplied TID in which to create the temporary file.

2.2.4.15.2 Response

138 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The response format is different from the original Core Protocol. For the original response format,
refer to [SNIA] or [XOPEN-SMB].

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR TemporaryFileName[ByteCount];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): The FID representing the file on the server. This value MUST be supplied in
the FID field of the SMB Header (section 2.2.3.1) in subsequent requests that manipulate
the file.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90519

139 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TemporaryFileName (variable)

...

TemporaryFileName (variable): A null-terminated string that contains the temporary file

name generated by the server.<29> The string SHOULD be a null-terminated array of
ASCII characters.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named directory was
not found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the
path-prefix was not a

directory.

ERRDOS

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FILES

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

EMFILE Too many open files. No
more FIDs available.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the
path-prefix denied search
permission OR requested
access permission is
denied for the directory.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205) DOS

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRinvalidname

(0x007B)

STATUS_OBJECT_NAME_COLLISION

(0xC00000BA)

 Temporary file could not
be created because a
unique name could not
be generated.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. The wrong
number of parameter
bytes was sent.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EFAULT Path points outside the
allocated address space
of the process.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EINTR A signal was caught
during the open

140 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

operation.

ERRSRV

(0x02)

ERRerror

(0x0001)

 ENXIO Generic server open
failure.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 Permission conflict
between requested
permission and
permissions for the
shared resource: for
example, open for write

of a file in a read-only
file system subtree.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 File creation request
made to a share that is
not a file system subtree.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0X005B0002)

 The UID supplied is not
defined for the session,
or the user identified by
the UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a
read-only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.16 SMB_COM_CREATE_NEW (0x0F)

This is an original Core Protocol command. This command is deprecated. Implementations SHOULD
use SMB_COM_NT_CREATE_ANDX.

This command is used to create a new file. It MUST NOT truncate or overwrite an existing file. If a file
with the requested pathname already exits, the command MUST fail. This command MUST NOT be
used to create directories or named pipes.

The request message includes the pathname of the file relative to the supplied TID that the client
requests to create. If the command is successful, the server response MUST include a valid FID. The

client MUST supply the FID in subsequent operations on the file, such as read, write, lock, unlock, and

close. The client MUST have write permission on the file's parent directory in order to create a new
file. The client's access permissions on a newly created file MUST be read/write. The file is opened in
read/write/compatibility mode. Server support of the client-supplied CreationTime(see section
2.2.4.16.1) is optional.

2.2.4.16.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;

141 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Words
 {
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME CreationTime;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING FileName;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (7 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileAttributes CreationTime

...

FileAttributes (2 bytes): A 16-bit field of 1-bit flags that represent the file attributes to

assign to the file if it is created successfully.

CreationTime (4 bytes): The time that the file was created on the client, represented as the
number of seconds since Jan 1, 1970, 00:00:00.0.

SMB_Data (variable):

142 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat FileName (variable)

...

BufferFormat (1 byte): MUST be 0x04, the format code for an SMB_STRING.

FileName (variable): A null-terminated string that contains the fully qualified name of the
file, relative to the supplied TID, to create on the server.

2.2.4.16.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

143 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): The FID representing the file on the server. This value MUST be supplied in
subsequent requests that manipulate the file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the path-
prefix was not a directory.

ERRDOS

(0x01)

ERRnofids

(0x0004)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

EMFILE Too many open files; no

more FIDs available.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-
prefix denied search
permission OR requested
access permission is denied
for the file OR open mode
failure.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The specified file already
exists.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EFAULT Path points outside the
allocated address space of

the process.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EINTR A signal was caught during
the open operation.

ERRSRV

(0x02)

ERRerror

(0x0001)

 ENXIO Generic server open failure.

ERRSRV ERRerror STATUS_ACCESS_DENIED EROFS Named file resides on read-

144 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x02) (0x0001) (0xC0000022) only file system and
requested access
permission is write or
read/write.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

 Permission conflict between
requested permission and
permissions for the shared
resource: for example,
open for write of a file in a
read-only file system
subtree.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 File creation request made
to a share that is not a file
system subtree.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined for the session, or
the user identified by the
UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a read-
only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.17 SMB_COM_CHECK_DIRECTORY (0x10)

This is an original Core Protocol command.

This command is used to verify that a specified path resolves to a valid directory on the server.

2.2.4.17.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING DirectoryName;
 }
 }

145 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DirectoryName (variable)

...

BufferFormat (1 byte): This field MUST be 0x04. This is a buffer type indicator that

identifies the next field as an SMB_STRING.

DirectoryName (variable): A null-terminated character string giving the pathname to be
tested.

2.2.4.17.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

146 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB

error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The directory was not
found.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The path does not exist or
a component of the path is
not a directory.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The directory path syntax
is invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-
prefix denied search
permission.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session, or
the user identified by the
UID does not have
sufficient privileges.

147 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.18 SMB_COM_PROCESS_EXIT (0x11)

This is an original Core Protocol command. This command is obsolescent. It was declared obsolete in
the LAN Manager 1.0 dialect (see [SMB-LM1X]) but continues to be included in later documentation.
[CIFS] lists this command as obsolescent, and that designation is retained here.

An SMB_COM_PROCESS_EXIT request is sent by the client to indicate the catastrophic failure of a
client process. Upon receiving an SMB_COM_PROCESS_EXIT request, the server MUST close any

resources owned by the Process ID (PID) listed in the request header.

2.2.4.18.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

PIDLow (2 bytes): The lowest-order two bytes of the process ID, as an unsigned short.

PIDHigh (2 bytes): If 32-bit PID values are in use, this field MUST contain the two highest-
order bytes. If the client is using 16-bit PIDs, then this field MUST be zero.

The server MUST calculate the actual PID by multiplying the value of SMB_Header.PIDHigh by
2^16 and adding the result to the value of SMB_Header.PIDLow.

In Core Protocol, open files (identified by FIDs) and any locks on those files were considered

"owned" by the client process. Starting with the LAN Manager 1.0 dialect, FIDs are no longer
associated with PIDs. The client MAY allow open file handles to be shared between multiple
processes. CIFS clients SHOULD NOT send SMB_COM_PROCESS_EXIT requests. Instead, CIFS
clients SHOULD perform all process cleanup operations, sending individual file close operations as
needed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=89836

148 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): MUST be 0x00. No parameters are sent.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): MUST be 0x0000. No data bytes are sent.

2.2.4.18.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): MUST be 0x00. No parameters are returned.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): MUST be 0x0000. No data bytes are returned.

Error Codes

SMB error class SMB error code NT status code Description

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

Invalid SMB. There is no session established.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

The UID supplied is not defined to the session.

149 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.19 SMB_COM_SEEK (0x12)

This is an original Core Protocol command. This command is obsolescent.

SMB_COM_SEEK is used to position a file pointer associated with an open FID within a regular file.

SMB_COM_SEEK can also be used to retrieve the current value of the file pointer, which is maintained
by the server. The file pointer value returned in the SMB_COM_SEEK response is an unsigned 32-bit
value, representing the absolute offset (in bytes) from the start of the file. It is possible to seek
beyond the end of the file, but an attempt to seek to a negative offset (a position before the start of
the file) sets the offset to zero (0). An offset of zero represents the start of the file.

It is not necessary to use SMB_COM_SEEK to position the file pointer before sending a read or write
request. CIFS read and write command requests contain an offset field. Read and write operations

also change the value of the file pointer, setting it equal to the requested offset plus the number of
bytes read or written.

Since SMB_COM_SEEK is not required in order to set the file pointer before a read or write operation,
its utility is fairly limited. It MAY be used to retrieve the current file pointer or, by seeking to the

current end-of-file, to retrieve the file size. It is not appropriate for use with very large files (those
that are near or above 4 gigabytes in size).

2.2.4.19.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT Mode;
 LONG Offset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

SMB_Parameters (9 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

150 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

WordCount (1 byte): This field MUST be 0x0004.

Words (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Mode

Offset

FID (2 bytes): The File ID of the open file within which to seek.

Mode (2 bytes): The seek mode. Possible values are as follows.

Value Meaning

0x0000 Seek from the start of the file.

0x0001 Seek from the current position.

0x0002 Seek from the end of the file.

The "current position" is the offset specified in a previous seek request, or the offset plus
data length specified in a previous read or write request, whichever is most recent. The
next successful read, write, or seek command changes the position of the file pointer.

Offset (4 bytes): A 32-bit signed long value indicating the file position, relative to the
position indicated in Mode, to which to set the updated file pointer. The value of Offset
ranges from -2 gigabytes to +2 gigabytes ((-2**31) to (2**31 -1) bytes).<30>

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.19.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 ULONG Offset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

151 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x0002.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset

Offset (4 bytes): A 32-bit unsigned value indicating the absolute file position relative to the start
of the file at which the file pointer is currently set. The value of Offset ranges from 0 to 4
gigabytes (0 to 2**32 - 1 bytes).

A seek that results in a file position value that cannot be expressed in 32 bits MUST set Offset

to the least significant 32 bits.<31>

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

The response returns the new file pointer in Offset, expressed as the number of bytes from the
start of the file. The Offset MAY be beyond the current end of file. An attempt to seek to before
the start of file sets the current file pointer to the start of the file (0x00000000).

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid
server FID, but it was
not acceptable to the
operating system.

152 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS
(0x01)

ERReof

(0x0026)

STATUS_END_OF_FILE

(0xC0000011)

EEOF The end of the file is
beyond where the client
can read; file is larger
than 4GB.

ERRDOS
(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

EEOF The Mode field value is
out of range.

ERRDOS
(0x01)

ERRinvalidseek

(0x0083)

STATUS_OS2_NEGATIVE_SEEK

(0x00830001)

 An attempt was made
to seek to a negative
absolute offset within a
file.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt SMB request
was received.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRinvdevice
(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Invalid file type.
Attempt to seek in a
non-regular file.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
defined as a valid ID on
this server session, or
the user identified by
the UID does not have

sufficient privileges.

2.2.4.20 SMB_COM_LOCK_AND_READ (0x13)

This command was introduced in the CorePlus dialect, but is often listed as part of the LAN Manager
1.0 dialect. This command is deprecated. Clients SHOULD use the
SMB_COM_LOCKING_ANDX (section 2.2.4.32) command.

This command is used to explicitly lock and read bytes from a regular file. The byte range requested is
first locked and then read. The lock type is an exclusive read/write lock. If the server cannot
immediately grant the lock on the byte range an error MUST be returned to the client. If the lock
cannot be obtained the server SHOULD NOT read the bytes.

The end of file condition is indicated by the server returning fewer bytes than the client has requested.

A read request starting at or beyond the end of the file returns zero bytes. If a read requests more
data than can be placed in a message of MaxBufferSize for the SMB connection, the server will abort
the connection to the client. This client request is inappropriate for files having 64-bit offsets since it
supports 32-bit offsets only. The client MUST have at least read access to the file.

2.2.4.20.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;

153 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Words
 {
 USHORT FID;
 USHORT CountOfBytesToRead;
 ULONG ReadOffsetInBytes;
 USHORT EstimateOfRemainingBytesToBeRead;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToRead

ReadOffsetInBytes

EstimateOfRemainingBytesToBeRead

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file from
which the data MUST be read.

CountOfBytesToRead (2 bytes): This field is a 16-bit unsigned integer indicating the
number of bytes to be read from the file. The client MUST ensure that the amount of data
requested will fit in the negotiated maximum buffer size.

154 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ReadOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset in
number of bytes from which to begin reading from the file. The client MUST ensure that

the amount of data requested fits in the negotiated maximum buffer size. Because this
field is limited to 32 bits, this command is inappropriate for files that have 64-bit offsets.

EstimateOfRemainingBytesToBeRead (2 bytes): This field is a 16-bit unsigned integer
indicating the remaining number of bytes that the client has designated to be read from
the file. This is an advisory field and can be zero.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.20.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT CountOfBytesReturned;
 USHORT Reserved[4];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferType;
 USHORT CountOfBytesRead;
 UCHAR Bytes[CountOfBytesRead];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data (variable)

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

155 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CountOfBytesReturned Reserved

...

...

CountOfBytesReturned (2 bytes): The actual number of bytes returned to the client. This
MUST be equal to CountOfBytesToRead unless the end of file was reached before
reading CountOfBytesToRead bytes or the ReadOffsetInBytes pointed at or beyond
the end of file.

Reserved (8 bytes): Reserved. All bytes MUST be 0x00.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be 0x0003 + CountOfBytesRead.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferType CountOfBytesRead Bytes (variable)

...

BufferType (1 byte): This field MUST be 0x01.

CountOfBytesRead (2 bytes): The number of bytes read that are contained in the following
array of bytes.

Bytes (variable): The array of bytes read from the file. The array is not null-terminated.

Error Codes

156 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0001)

STATUS_INVALID_DEVICE_REQUEST

(0xC0000010)

EINVAL Attempt to lock a non-
regular file such as a
named pipe.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS File access rights do not
match requested locks.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK Attempt to read from a
portion of the file that the
server determines has
been locked or has been

opened in deny-read
mode.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a
FID that the server does
not have open.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Read permission required.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

EACCESS The intended byte range
has already been locked.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

EAGAIN The requested byte range
was already locked by a
different process (PID).

ERRDOS

(0x01)

ERReof

(0x0026)

STATUS_END_OF_FILE

(0xC0000011)

 Attempted to read beyond
the end of the file.

ERRSRV

(0x02)

ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt or invalid
request has been
encountered.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EBADF A valid FID was rejected
by the underlying system.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EDEADLK The lock request would
block and cause a
deadlock with another
process.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to lock a non-
regular file such as a
named pipe.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV ERRbaduid
(0x005B)

STATUS_SMB_BAD_UID The UID specified is not
defined as a valid ID for

157 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x02) (0x005B0002) this session, or the user
identified by the UID does
not have sufficient
privileges.

ERRSRV

(0x02)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The number of bytes read
from the named pipe
exceeds the requested
number of bytes. The data
was returned to the client
in the response.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in
the physical I/O.

ERRHRD

(0x03)

ERRread

(0x001E)

 ENXIO The device associated with
the file descriptor is a
block-special or character-
special file and the value
of the file pointer is out of
range.

2.2.4.21 SMB_COM_WRITE_AND_UNLOCK (0x14)

This command was introduced in the CorePlus dialect, but is often listed as part of the LAN Manager
1.0 dialect. This command is deprecated. Clients SHOULD use the
SMB_COM_LOCKING_ANDX (section 2.2.4.32) command.

The write and unlock command has the effect of writing to a range of bytes and then unlocking them.

This command is usually associated with an earlier usage of
SMB_COM_LOCK_AND_READ (section 2.2.4.20) on the same range of bytes. The server's response
field ByteCountWritten indicates the number of bytes actually written.

Aside from the lack of special handling of zero-length writes, this request behaves in an identical
fashion to the SMB_COM_WRITE (section 2.2.4.12) command followed by a core protocol
SMB_COM_UNLOCK_BYTE_RANGE command. Support for this SMB command is optional. A server

SHOULD set bit 0 in the SMB Header (section 2.2.3.1) Flags field of the
SMB_COM_NEGOTIATE (section 2.2.4.52) response to indicate to the client that the command is
supported. If the command sends a message of length greater than the MaxBufferSize for the TID
specified, the server MAY abort the connection to the client. If an error occurs on the write, the bytes
remain locked.

This command supports only 32-bit offsets and is inappropriate for files having 64-bit offsets. The
client SHOULD use SMB_COM_WRITE_ANDX (section 2.2.4.43) to write to files requiring 64-bit file

offsets.

When FID represents a disk file and the request specifies a byte range beyond the current end of file,
the file MUST be extended. Any bytes between the previous end of file and the requested offset are
initialized to zero (0x00). When a write specifies a count of zero, the file is not truncated or extended
to the length specified by the offset.

The client MUST have at least write access to the file.

2.2.4.21.1 Request

158 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT CountOfBytesToWrite;
 ULONG WriteOffsetInBytes;
 USHORT EstimateOfRemainingBytesToBeWritten;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {

 UCHAR BufferFormat;
 USHORT DataLength;
 UCHAR Data[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data (variable)

...

SMB_Parameters (11 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToWrite

WriteOffsetInBytes

159 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

EstimateOfRemainingBytesToBeWritten

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file to which
the data MUST be written.

CountOfBytesToWrite (2 bytes): This field is a 16-bit unsigned integer indicating the

number of bytes to be written to the file. The client MUST ensure that the amount of data
sent can fit in the negotiated maximum buffer size.

WriteOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset, in
number of bytes, from the beginning of the file at which to begin writing to the file. The
client MUST ensure that the amount of data sent can fit in the negotiated maximum buffer
size. Because this field is limited to 32 bits, this command is inappropriate for files that

have 64-bit offsets.

EstimateOfRemainingBytesToBeWritten (2 bytes): This field is a 16-bit unsigned integer
indicating the remaining number of bytes that the client designates to write to the file.

This is an advisory field and MAY be zero. This information can be used by the server to
optimize cache behavior.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003. The total value
represents the size of the BufferFormat field in bytes plus the size of the DataLength field
in bytes plus the value of the CountOfBytesToWrite field. See Data Buffer Format Codes

(section 2.2.2.5) for a complete description of data buffer format codes and their usages.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength Data (variable)

...

BufferFormat (1 byte): This field MUST be 0x01.

DataLength (2 bytes): This field MUST be CountOfBytesToWrite.

Data (variable): The raw bytes to be written to the file.

2.2.4.21.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT CountOfBytesWritten;

160 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CountOfBytesWritten

CountOfBytesWritten (2 bytes): Indicates the actual number of bytes written to the file. For
successful writes, this MUST equal the CountOfBytesToWrite in the client Request. If the
number of bytes written differs from the number requested and no error is indicated, then
the server has no resources available to satisfy the complete write.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalen
t Description

SUCCES
S (0x00)

SUCCESS

(0x0000)

 EFBIG The file has grown too
large and no more

data can be written to
the file. A
CountOfBytesWritte

161 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalen
t Description

n of zero (0x0000)
MUST be returned to
the client in the server
response. This
indicates to the client
that the file system is
full.

SUCCES
S (0x00)

SUCCESS

(0x0000)

 NOSPC No space on the file
system. The server
MUST return a zero
(0x0000) in the
CountOfBytesWritte
n field of the
response. This
indicates that the file
system is full.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on
the server are
temporarily
exhausted.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)/td>

EACCESS File access rights do
not match requested
locks.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK A record lock has been

taken on the file or
the client has
attempted to write to
a portion of the file
that the server detects
has been locked,
opened in deny-write
mode, or opened in
read-only mode.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid
server FID, but it was
not acceptable to the
operating system.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCE

S

(0xC0000205)

STATUS_NO_MEMORY

(0xC0000017)

ENOMEM The server is out of

resources.

ERRDOS
(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission
required.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

 The requested byte
range was already
locked by a different
process (PID).

ERRDOS ERROR_NOT_LOCKE STATUS_RANGE_NOT_LOCKED The byte range

162 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalen
t Description

(0x01) D

(0x009E)

(0xC000007E) specified in an unlock
request was not
locked.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block
due to locking and
deadlock would result.

ERRSRV
(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the
minimum or maximum

ranges that can be
written to the supplied
FID.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt or invalid
SMB request was
received.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in
request.

ERRSRV
(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to unlock a
non-regular file such
as a named pipe.

ERRSRV
(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is
not defined as a valid
ID on this server
session, or the user
identified by the UID
does not have
sufficient privileges.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has
occurred in the
physical I/O.

ERRHRD
(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated
with the file descriptor
is a block-special or
character-special file
and the value of the
file pointer is out of
range.

ERRHRD
(0x03)

ERRdiskfull

(0x0027)

STATUS_DISK_FULL

(0xC000007F)

ENOSPC The file system is full.

163 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.22 SMB_COM_READ_RAW (0x1A)

This command was introduced in the CorePlus dialect, but is often listed as part of the LAN Manager
1.0 dialect. This command is deprecated. Clients SHOULD use the SMB_COM_READ_ANDX command.

The server indicates support by setting the CAP_RAW_MODE capabilities bit in the
SMB_COM_NEGOTIATE response.

2.2.4.22.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 ULONG Offset;
 USHORT MaxCountOfBytesToReturn;
 USHORT MinCountOfBytesToReturn;
 ULONG Timeout;
 USHORT Reserved;
 ULONG OffsetHigh (optional);
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): This field MUST be either 0x08 or 0x0A.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Offset

164 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... MaxCountOfBytesToReturn

MinCountOfBytesToReturn Timeout

... Reserved

OffsetHigh

FID (2 bytes): This field MUST be a valid 16-bit signed integer indicating the file from which
the data MUST be read.

Offset (4 bytes): The offset, in bytes, from the start of the file at which the read MUST begin.

This is the lower 32 bits of a 64-bit value if the WordCount is 0x0A.

MaxCountOfBytesToReturn (2 bytes): The requested maximum number of bytes to read
from the file and return to the client. The value MAY exceed the negotiated buffer size.

MinCountOfBytesToReturn (2 bytes): The requested minimum number of bytes to read
from the file and return to the client. This field is used only when reading from a named
pipe or a device. It is ignored when reading from a standard file.

Timeout (4 bytes): The number of milliseconds that the server is requested to wait while
processing this command. This field is optionally honored only when reading from a named
pipe or I/O device. It does not apply when reading from a regular file.

Reserved (2 bytes): This field SHOULD be set to 0x0000.

OffsetHigh (4 bytes): This field is optional, and is included only when WordCount is 0x0A.
This field is the upper 32 bits of the offset, in bytes, from the start of the file at which the
read MUST start. This field allows the client request to specify 64-bit file offsets.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): The length in bytes of the remaining SMB_Data. This field MUST be
0x0000.

2.2.4.22.2 Response

The server MUST not return the typical response data when responding to this request. The server

MUST respond with one message containing the raw data being read from the file or named pipe. The
server relies on the transport layer to provide the client with the length, in bytes, of the received
message. This enables the client to request up to 65,535 bytes of data and receive it directly into an

arbitrary buffer space. The amount of data requested is expected to be larger than the negotiated
buffer size for this session. If the client request is to read more bytes than the file or named pipe
contains, the size of the returned server message MUST be the number of bytes actually read from the

file or named pipe. When the number of bytes returned to the client in the unformatted raw message
is less than the bytes requested, this outcome indicates to the client that the end of file (EOF) has
been reached.

Because the server does not return the typical response data, the SMB Protocol cannot guarantee that
the client can associate the server response data (message) with the correct corresponding client

165 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

request. Therefore, the client MUST guarantee that there are and will be no other requests from the
client to the server for the duration of the SMB_COM_READ_RAW (section 2.2.4.22) command's

processing.

Because the server does not provide the typical response data, it cannot provide error information

when an error occurs. In the event of an error, the server MUST return zero bytes to the client. The
client is then responsible for issuing an alternative file I/O command request that provides the typical
server response data. The client SHOULD send SMB_COM_READ_ANDX (section 2.2.4.42) to
determine the cause of the error. The server MUST then respond with the appropriate status and error
information. It is up to the client to take appropriate action to recover from the error. Care needs to
be taken when interpreting the server returning 0 bytes to the client, because this condition is also
used to indicate that the EOF has been reached.

2.2.4.23 SMB_COM_READ_MPX (0x1B)

This is command was introduced in the LAN Manager 1.0 dialect. This command is obsolescent. The
command was redesigned for NT LAN Manager. This document describes only the NT LAN Manager

behavior. See section 2.1.2.1 for more information.

This is a specialized read command intended to maximize the performance of reading large blocks of
data from a regular file while allowing for other operations to take place between the client and the
server. This command is valid only when using a multiplexed session (see section 2.1.3). The server
MUST respond to the command request with one or more response messages until the requested
amount of data has been returned or an error occurs. Each server response MUST contain the TID,
UID, PID, MID and CID of the original client request and the Offset and Count describing the

returned data (see the Response format following).

The client has received all of the data bytes when the sum of the DataLength fields received in each
response equals the total amount of data bytes expected (the smallest Count received). This allows
the protocol to work even if the responses are received out of sequence.

As is true in SMB_COM_READ, the total number of bytes returned can be less than the number
requested only if a read specifies bytes beyond the current file size and FID refers to a disk file. In this

case, only the bytes that exist MUST be returned. A read completely beyond the end of file MUST
result in a single response with a Count value of 0x0000. If the total number of bytes returned is less
than the number of bytes requested, this indicates end of file (if reading other than a standard blocked
disk file, only zero bytes returned indicates end of file).

Once started, the Read Block Multiplexed operation is expected to go to completion. The client is
expected to receive all the responses generated by the server. Conflicting commands (such as file
close) MUST NOT be sent to the server while a multiplexed operation is in progress.

This command supports 32-bit file offsets only. Servers MAY<32> support this command. If the server
supports this command, it MUST set the CAP_MPX_MODE (0x00000002) bit in the Capabilities field
of the response to SMB Protocol negotiation on connectionless transports.

2.2.4.23.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 ULONG Offset;
 USHORT MaxCountOfBytesToReturn;
 USHORT MinCountOfBytesToReturn;
 ULONG Timeout;
 USHORT Reserved;
 }
 }

166 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

CID (2 bytes): This field MUST contain the Connection ID (CID) of the connectionless
transport session.

MID (2 bytes): This field MUST contain a valid MID that MUST be unique to this request
within the client's session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (17 bytes)

...

...

... SMB_Data

SMB_Parameters (17 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (16 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x08. The length, in two-byte words, of the remaining
SMB_Parameters.

Words (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Offset

... MaxCountOfBytesToReturn

MinCountOfBytesToReturn Timeout

... Reserved

167 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file from
which the data MUST be read.

Offset (4 bytes): The offset, in bytes, from the start of the file at which the read begins.

MaxCountOfBytesToReturn (2 bytes): The requested maximum number of bytes to read

from the file and return to the client. The value MAY exceed the negotiated buffer size.

MinCountOfBytesToReturn (2 bytes): The requested minimum number of bytes to read
from the file and return to the client. This field is used only when reading from a named
pipe or a device. It MUST be ignored when reading from a standard file.

Timeout (4 bytes): The number of milliseconds that the server is requested to wait while
processing this command. This field is optionally honored only when reading from a named
pipe or I/O device. It does not apply when reading from a regular file.

Reserved (2 bytes): This field SHOULD be set to 0x0000.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.23.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 ULONG Offset;
 USHORT Count;
 USHORT Remaining;
 USHORT DataCompactionMode;
 USHORT Reserved;
 USHORT DataLength;
 USHORT DataOffset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad[];
 UCHAR Data[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (17 bytes)

...

168 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

... SMB_Data (variable)

...

SMB_Parameters (17 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (16 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x08. The length, in two-byte words, of the remaining

SMB_Parameters.

Words (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset

Count Remaining

DataCompactionMode Reserved

DataLength DataOffset

Offset (4 bytes): The offset, in bytes, from the start of the file at which the read occurred.

Count (2 bytes): The total number of bytes designated to be returned in all responses to this
request. This value usually starts at MaxCountOfBytesToReturn, but can be an

overestimate. The overestimate can be reduced while the read is in progress. The last
response generated by the server MUST contain the actual total number of bytes read and
sent to the client in all of the responses. If the value in the last response is less than
MaxCountOfBytesToReturn, the end of file was encountered during the read. If this
value is exactly zero (0x0000), the original Offset into the file began at or after the end of

file; in this case, only one response MUST be generated. The value of the field can (and
usually does) exceed the negotiated buffer size.

Remaining (2 bytes): This integer MUST be -1 for regular files. For I/O devices or named
pipes, this indicates the number of bytes remaining to be read from the file after the bytes
returned in the response were de-queued. Servers SHOULD return 0xFFFF if they do not
support this function on I/O devices or named pipes.

DataCompactionMode (2 bytes): Not used and MUST be 0x0000.

169 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved (2 bytes): This field MUST be set to 0x0000.

DataLength (2 bytes): This field is the number of bytes read and included in the response.

The value of this field MUST NOT cause the message to exceed the client's maximum buffer
size as specified in MaxBufferSize of the SMB_COM_SESSION_SETUP_AND_X (section

2.2.4.53) client request.

DataOffset (2 bytes): The offset, in bytes, from the beginning of the SMB Header (section
2.2.3.1) to the start of the Buffer field in the SMB_Data.block.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The length, in bytes, of the remaining SMB_Data. The length MUST be

between DataLength and DataLength + 0x0003.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad (variable)

...

Buffer (variable)

...

Pad (variable): Padding bytes to align data on a proper address boundary. The DataOffset
field points to the first byte after this field.

Buffer (variable): The bytes read from the file.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK Attempt to read from a
portion of the file that the
server detects has been
locked or has been opened
in deny-read.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a
FID that the server does
not have open.

170 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Read permission required.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

EAGAIN The requested byte range
was already locked by a
different process (PID).

ERRDOS

(0x01)

ERReof

(0x0026)

STATUS_END_OF_FILE

(0xC0000011)

 Attempted to read beyond
the end of the file.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EBADF The FID was validated by
the server but
unacceptable to the
system.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EDEADLK The read would block and
deadlock would result.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt request has
been encountered.

ERRSRV

(0x02)

ERRinvdevice

 (0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to read from an
open spool file.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
defined as a valid ID for
this session, or the user
identified by the UID does
not have sufficient
privileges.

ERRSRV

(0x02)

ERRuseSTD

(0x00FB)

STATUS_SMB_USE_STD

(0x00FB0002)

 This command is not
supported for the FID at
this time. Use a standard
read command.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in
the physical I/O.

ERRHRD

(0x03)

ERRread

(0x001E)

 ENXIO The device associated with
the file descriptor is a
block-special or character-
special file and the value
of the file pointer is out of

range.

171 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.24 SMB_COM_READ_MPX_SECONDARY (0x1C)

This command was introduced in the LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.13). It
was rendered obsolete in the NT LAN Manager dialect.

This command is no longer used in conjunction with the SMB_COM_READ_MPX command. Clients
SHOULD NOT send requests using this command code. Servers receiving requests with this command
code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).<33>

2.2.4.25 SMB_COM_WRITE_RAW (0x1D)

This command was introduced in the CorePlus dialect, but is often listed as part of the LAN Manager
1.0 dialect. This command is deprecated. Clients SHOULD use the
SMB_COM_WRITE_ANDX (section 2.2.4.43) command.

Server support of this command is optional. The server MUST indicate support for Raw Read/Write
using the CAP_RAW_MODE Capabilities bit during protocol negotiation.

SMB_COM_WRITE_RAW is a specialized write command intended to maximize performance when

writing large blocks of data to an open regular file, a named pipe, a device, or spooled output. The
command permits a client to send a large unformatted data (raw byte) message over the SMB
transport without requiring the usual SMB request format. It also permits a client to send messages
in excess of the maximum buffer size established during session setup.

The server MUST accept an unformatted data message of up to 65,535 bytes in length. The server
MUST allow the client SMB_COM_WRITE_RAW Request (section 2.2.4.25.1) to include an unformatted
message. The client MAY send part of the data to be written along with the SMB_COM_WRITE_RAW

Request.

2.2.4.25.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT CountOfBytes;
 USHORT Reserved1;
 ULONG Offset;
 ULONG Timeout;
 USHORT WriteMode;
 ULONG Reserved2;
 USHORT DataLength;
 USHORT DataOffset;
 ULONG OffsetHigh (optional);
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Words
 {
 UCHAR Pad[];
 UCHAR Data[DataLength];
 }
 }

http://go.microsoft.com/fwlink/?LinkId=164302

172 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): This field MUST be 0x0C or 0x0E

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytes

Reserved1 Offset

... Timeout

... WriteMode

Reserved2

DataLength DataOffset

OffsetHigh

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file, named
pipe, or device to which the data MUST be written.

CountOfBytes (2 bytes): The total number of bytes to be written to the file during the entire
dialog. The value MAY exceed the maximum buffer size (MaxBufferSize) established for

the session.

Reserved1 (2 bytes): This field is reserved and MUST be ignored by the server.

Offset (4 bytes): The offset, in bytes, from the start of the file at which the write SHOULD
begin. If WordCount is 0x0E, this is the lower 32 bits of a 64-bit value.

173 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Timeout (4 bytes): This field is the time-out, in milliseconds, to wait for the write to
complete. This field is optionally honored only when writing to a named pipe or I/O device.

It does not apply and MUST be 0x00000000 when writing to a regular file.

WriteMode (2 bytes): A 16-bit field containing flags defined as follows. The flag names below

are provided for reference only.

Name and
bitmask Meaning

WritethroughMode

0x0001

If set, the server MUST NOT respond to the client before the data
is written to disk (write-through).

ReadBytesAvailable

0x0002

If set, the server SHOULD set the Interim Response
Response.SMB_Parameters.Available field correctly for writes
to named pipes or I/O devices.

NamedPipeRaw

0x0004

Applicable to named pipes only. If set, the named pipe MUST be
written to in raw mode (no translation; the opposite of message
mode).

NamedPipeStart

0x0008

Applicable to named pipes only. If set, this data is the start of a
message.

If WritethroughMode is not set, this SMB is assumed to be a form of write behind
(cached write). The SMB transport layer guarantees delivery of raw data from the client. If
an error occurs at the server end, all bytes MUST be received and discarded. If an error
occurs while writing data to disk (such as disk full) the next access to the file handle
(another write, close, read, etc.) MUST result in an error, reporting this situation.

If WritethroughMode is set, the server MUST receive the data, write it to disk and then
send a Final Server Response (section 2.2.4.25.3) indicating the result of the write. The
total number of bytes successfully written MUST also be returned in the
SMB_Parameters.Count field of the response.

Reserved2 (4 bytes): This field MUST be 0x00000000.

DataLength (2 bytes): This field is the number of bytes included in the SMB_Data block that are
to be written to the file.

DataOffset (2 bytes): This field is the offset, in bytes, from the start of the SMB Header (section
2.2.3.1) to the start of the data to be written to the file from the Data[] field. Specifying this
offset allows the client to efficiently align the data buffer.

OffsetHigh (4 bytes): If WordCount is 0x0E, this is the upper 32 bits of the 64-bit offset in
bytes from the start of the file at which the write MUST start. Support of this field is optional.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0000.

Bytes (variable):

174 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad (variable)

...

Data (variable)

...

Pad (variable): Padding bytes for the client to align the data on an appropriate boundary for
transfer of the SMB transport. The server MUST ignore these bytes.

Data (variable): The bytes to be written to the file.

2.2.4.25.2 Interim Server Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Available;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Available

175 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Available (2 bytes): This field is valid when writing to named pipe or I/O devices. This field
indicates the number of bytes remaining to be written after the requested write was

completed. If the client writes to a disk file, this field MUST be set to 0xFFFF.<34>

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.25.3 Final Server Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Count;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

Command (1 byte): This field MUST contain the
SMB_COM_WRITE_COMPLETE (section 2.2.4.28) command code of 0x20.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

176 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Count (2 bytes): This field contains the total number of bytes written to the file by the
server.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

SUCCESS
(0x00)

SUCCESS

(0x0)

STATUS_SUCCESS

(0x00000000)

EFBIG The file has grown too
large and no more data
can be written to the
file. A Count of zero
(0x0000) MUST be
returned to the client in
the server response.
This indicates to the
client that the file
system is full.

SUCCESS
(0x00)

SUCCESS

(0x0)

STATUS_SUCCESS

(0x00000000)

NOSPC No space on the file
system. The server
MUST return a zero
(0x0000) in the Count
field of the response.
This indicates that the
file system is full.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on the
server are temporarily
exhausted.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK A record lock has been
taken on the file or the
client has attempted to
write to a portion of the
file that the server
knows has been locked,
opened in deny-write
mode, or opened in
read-only mode.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid server
FID but it was not
acceptable to the
operating system.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS
(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission
required. The UID

177 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

provided does not have
write permission on the
specified FID.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

 The requested byte
range was already
locked by a different
process (PID).

ERRDOS
(0x01)

ERRnotconnected

(0x00E9)

STATUS_PIPE_DISCONNECTED

(0xC00000B0)

EPIPE Write to a named pipe
with no reader.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block
due to locking and
deadlock would result.

ERRSRV
(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the minimum
or maximum ranges that
can be written to the
supplied FID.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt SMB request
was received. In
addition to other causes,
this status is sent if the
value of the
DataLength field is
invalid with respect to
either the
CountOfBytes field or
the number of bytes in
the
SMB_Data_Bytes.Data
field.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID on
this server session, or

the user identified by
the UID does not have
sufficient privileges.

ERRSRV
(0x02)

ERRusestd

(0x00FB)

STATUS_SMB_USE_STANDARD

(0x00FB0002)

 Write MPX support is not
available. Use a
standard write request.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred
in the physical I/O.

178 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRHRD
(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated
with the file descriptor is
a block-special or
character-special file
and the value of the file
pointer is out of range.

ERRHRD
(0x03)

ERRdiskfull

(0x0027)

STATUS_DISK_FULL

(0xC000007F)

ENOSPC The file system is full.

2.2.4.26 SMB_COM_WRITE_MPX (0x1E)

This command was introduced in the LAN Manager 1.0 dialect and is obsolescent. The command was
redesigned for NT LAN Manager. This document describes only the NT LAN Manager behavior. See
section 2.1.2.1 for more information.

SMB_COM_WRITE_MPX is used to maximize performance when writing a large block of data from the
client to the server. This command is valid only when using a multiplexed session over a
connectionless transport; see section 2.1.3. The TID, PID, UID, MID, and CID MUST be identical in
all requests and responses in a given SMB_COM_WRITE_MPX exchange.

This command supports 32-bit file offsets only. Server support of this command is optional. If the
server supports this command, it MUST set the CAP_MPX_MODE bit in the Capabilities field of the

response to SMB Protocol negotiation.<35>

2.2.4.26.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT TotalByteCount;
 USHORT Reserved;
 ULONG ByteOffsetToBeginWrite;
 ULONG Timeout;
 USHORT WriteMode;
 ULONG RequestMask;
 USHORT DataLength;
 USHORT DataOffset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad[];
 UCHAR Buffer[DataLength];
 }
 }

SMB_Header:

179 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SequenceNumber (2 bytes): This field MUST be zero (0x0000) unless the request is the
last request in the multiplexed write sequence, in which case it MUST be a nonzero value.

The nonzero value indicates to the server that this is the last request of the sequence and
the server MUST respond by sending an SMB_COM_WRITE_MPX

Response (section 3.2.5.19).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (25 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (25 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (24 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0C. The length, in two-byte words, of the remaining
SMB_Parameters.

Words (24 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID TotalByteCount

Reserved ByteOffsetToBeginWrite

... Timeout

... WriteMode

RequestMask

DataLength DataOffset

180 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file to which
the data should be written.

TotalByteCount (2 bytes): The requested total number of bytes to write to the file. The
value MAY exceed the negotiated buffer size.

Reserved (2 bytes): The server MUST ignore this value.

ByteOffsetToBeginWrite (4 bytes): The offset, in bytes, from the start of the file at which
the write should begin. This value indicates the offset at which to write the data contained
in the SMB_Data.Bytes.Buffer field of the same message.

Timeout (4 bytes): This field MUST be ignored by the server.<36>

WriteMode (2 bytes): A 16-bit field containing flags defined as follows.

Name and
bitmask Meaning

WritethroughMo
de

0x0001

If set, the server MUST NOT respond to
the client before the data is written to
disk.

Connectionless
Mode

0x0080

If set, this flag indicates that messages
are being sent over a connectionless
transport. This flag MUST be set.

If WritethroughMode is not set, the server is assumed to be performing a form of write
behind (cached writing). The SMB transport layer guarantees delivery of all secondary
requests from the client. If an error occurs at the server end, all bytes received MUST be
ignored and discarded. If an error such as disk full occurs while writing data to disk, the
next access of the file handle (another write, close, read, and so on). MUST return the fact

that the error occurred. The value of this error status MUST be the same for all requests
that are part of the same write operation.

If WritethroughMode is set, the server MUST receive the data, write it to disk, and then
send a final response indicating the result of the write.

RequestMask (4 bytes): This field is a bit mask indicating this SMB request's identity to the
server. The server's response MUST contain the logical OR of all of the RequestMask
values received. This response MUST be generated.

DataLength (2 bytes): This field value is the number of data bytes included in this request.

DataOffset (2 bytes): This field value is the offset, in bytes, from the start of the SMB
Header (section 2.2.3.1) to the start of the data buffer.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0001.

Bytes (variable):

181 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad (variable)

...

Buffer (variable)

...

Pad (variable): Null padding bytes to align Buffer to a 16- or 32-bit boundary.

Buffer (variable): The raw data, in bytes, that is to be written to the file.

2.2.4.26.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 ULONG ResponseMask;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ResponseMask

182 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ResponseMask (4 bytes): This field is the logical OR-ing of the RequestMask value
contained in each SMB_COM_WRITE_MPX (section 2.2.4.26) received since the last

sequenced SMB_COM_WRITE_MPX. The server responds only to the final (sequenced)
command. This response contains the accumulated ResponseMask from all successfully

received requests. The client uses the ResponseMask received to determine which
packets, if any, MUST be retransmitted.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

If the WritethroughMode flag is clear in the client requests (particularly the sequenced request), the
server SHOULD return a response upon receiving the sequenced request. Any data not yet written
MUST be written after the response has been sent. Any errors generated after the server has sent the
SMB_COM_WRITE_MPX response MUST be saved and returned the next time that the FID is
referenced.

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

SUCCESS
(0x00)

SUCCESS

(0x0)

STATUS_SUCCESS

(0x00000000)

EFBIG The file has grown too
large and no more data
can be written to the file.
A Count of zero (0x0000)
MUST be returned to the
client in the server
response. This indicates to
the client that the file
system is full.

SUCCESS
(0x00)

SUCCESS

(0x0)

STATUS_SUCCESS

(0x00000000)

NOSPC No space on the file
system. The server MUST
return a zero (0x0000) in

the Count field of the
response. This indicates
that the file system is full.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on the
server are temporarily
exhausted.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

 The client does not have
write permission.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid server
FID but it was not
acceptable to the
operating system.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

183 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission required.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

 The requested byte range
was already locked by a
different process (PID).

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block due
to locking and deadlock
would result.

ERRSRV
(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the minimum or
maximum ranges that can
be written to the supplied
FID.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt or invalid SMB
request was received.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID on
this server session, or the
user identified by the UID
does not have sufficient
privileges.

ERRSRV
(0x02)

ERRuseSTD

(0x00FB)

STATUS_SMB_USE_STANDARD

(0x00FB0002)

 Not a datagram or
connectionless transport
OR the FID is not a disk
file OR print queue client
MUST use standard write
commands.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in
the physical I/O.

ERRHRD
(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated with
the file descriptor is a
block-special or character-
special file and the value
of the file pointer is out of
range.

ERRHRD
(0x03)

ERRgeneral

(0x001F)

STATUS_CANCELLED

(0xC0000120)

 A transport error occurred
and the request was
canceled.

ERRHRD
(0x03)

ERRdiskfull STATUS_DISK_FULL ENOSPC The file system is full.

184 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x0027) (0xC000007F)

2.2.4.27 SMB_COM_WRITE_MPX_SECONDARY (0x1F)

This command was introduced in the LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.22). It
was rendered obsolete in the NT LAN Manager dialect.

This command is no longer used in conjunction with the SMB_COM_WRITE_MPX (section 2.2.4.26)
command. Clients SHOULD NOT send requests using this command code, and servers receiving
requests with this command code SHOULD return STATUS_NOT_IMPLEMENTED
(ERRDOS/ERRbadfunc).<37>

2.2.4.28 SMB_COM_WRITE_COMPLETE (0x20)

This command was introduced in LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.22). This
command is deprecated. This command is sent by the server as the final response of an
SMB_COM_WRITE_RAW (section 2.2.4.25) command sequence.

2.2.4.29 SMB_COM_QUERY_SERVER (0x21)

This command was introduced in the NT LAN Manager dialect, and was reserved but not
implemented.

Clients SHOULD NOT send requests using this command code, and servers receiving requests with this
command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).<38>

2.2.4.30 SMB_COM_SET_INFORMATION2 (0x22)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. New

client implementations SHOULD use the SMB_COM_TRANSACTION2 (section 2.2.4.46) subcommand
TRANS2_SET_FILE_INFORMATION (section 2.2.6.9).

This command MAY be sent by a client to set attribute information about an open file. The client MUST
provide a valid FID in the SMB Header (section 2.2.3.1). The FID SHOULD have been acquired
through a previously successful use of one of the SMB commands for opening a file. The client MUST
have at least write permission on the file. The target file is updated from the values specified in the

request. This command allows the client to set more attribute information for the file than the
SMB_COM_SET_INFORMATION (section 2.2.4.10) command.

2.2.4.30.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 SMB_DATE CreateDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;

http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=164302

185 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (15 bytes)

...

...

... SMB_Data

...

SMB_Parameters (15 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (14 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x07.

Words (14 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CreateDate

CreateTime LastAccessDate

LastAccessTime LastWriteDate

LastWriteTime

FID (2 bytes): This is the FID representing the file for which attributes are to be set.

CreateDate (2 bytes): This is the date when the file was created.

CreateTime (2 bytes): This is the time on CreateDate when the file was created.

186 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

LastAccessDate (2 bytes): This is the date when the file was last accessed.

LastAccessTime (2 bytes): This is the time on LastAccessDate when the file was last

accessed.

LastWriteDate (2 bytes): This is the date when data was last written to the file.

LastWriteTime (2 bytes): This is the time on LastWriteDate when data was last written to
the file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.30.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

187 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS Access denied, no write
access.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE The FID supplied is invalid.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRerror
(0x0001)

 EINTR The operation was
interrupted by the system.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

EACCESS Write access denied on a
portion of the shared path.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 The FID does not specify a
disk resource; printer or
other.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session, or
the user identified by the
UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS The FID supplied is on
write-protected media.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.31 SMB_COM_QUERY_INFORMATION2 (0x23)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. New
client implementations SHOULD use the SMB_COM_TRANSACTION2 subcommand

TRANS2_QUERY_FILE_INFORMATION.

This command MAY be sent by a client to obtain attribute information about an open file. The client
MUST provide a valid FID in the SMB Request. The FID SHOULD have been acquired through a
previously successful use of one of the SMB commands for opening a file. This command provides

more information about the file than the SMB_COM_QUERY_INFORMATION command. The server
response is limited to providing a 32-bit file size in bytes and is inappropriate for files exceeding that
size.

188 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.31.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): This field MUST be a valid FID that the client has obtained through a previous
SMB command that successfully opened the file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.31.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words

189 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 SMB_DATE CreateDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG FileAllocationSize;
 SMB_FILE_ATTRIBUTES FileAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (23 bytes)

...

...

... SMB_Data

...

SMB_Parameters (23 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (22 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0B.

Words (22 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CreateDate CreateTime

LastAccessDate LastAccessTime

190 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

LastWriteDate LastWriteTime

FileDataSize

FileAllocationSize

FileAttributes

CreateDate (2 bytes): This field is the date when the file was created.

CreateTime (2 bytes): This field is the time on CreateDate when the file was created.

LastAccessDate (2 bytes): This field is the date when the file was last accessed.

LastAccessTime (2 bytes): This field is the time on LastAccessDate when the file was last
accessed.

LastWriteDate (2 bytes): This field is the date when data was last written to the file.

LastWriteTime (2 bytes): This field is the time on LastWriteDate when data was last
written to the file.

FileDataSize (4 bytes): This field contains the number of bytes in the file, in bytes. Because

this size is limited to 32 bits, this command is inappropriate for files whose size is too
large.

FileAllocationSize (4 bytes): This field contains the allocation size of the file, in bytes.
Because this size is limited to 32 bits, this command is inappropriate for files whose size
is too large.

FileAttributes (2 bytes): This field is a 16-bit unsigned bit field encoding the attributes of
the file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied, no read
permission on FID.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE The FID supplied is not
valid.

ERRDOS ERRnomem STATUS_INSUFF_SERVER_RESOURCES ENOMEM The server is out of

191 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0008) (0xC0000205) resources.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

EACCESS A component in the path
denied the required
permission.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session, or
the user identified by the
UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.32 SMB_COM_LOCKING_ANDX (0x24)

This is command was introduced in the LAN Manager 1.0 dialect. The LAN Manager 1.0 version of
this command is not compatible with files that have greater than 32-bit offsets. The support for files
that have 64-bit offsets was introduced into this command in the NT LAN Manager dialect.

This command is used to explicitly lock and/or unlock a contiguous range of bytes in a regular file.

More than one non-overlapping byte range can be locked and/or unlocked on an open file. Locks
prevent attempts to lock, read, or write the locked portion of the file by other processes using a

separate file handle (FID). Any process using the same FID specified in the request that obtained the
lock has access to the locked bytes.

SMB_COM_LOCKING_ANDX (section 2.2.4.32) is also used by the server to send OpLock break
notification messages to the client, and by the client to acknowledge the OpLock break. This is the one
instance in the CIFS Protocol in which the server sends a request.

The following are the commands that can follow an SMB_COM_LOCKING_ANDX (section 2.2.4.32) in
an AndX chain:

 SMB_COM_CLOSE (section 2.2.4.5)

 SMB_COM_FLUSH (section 2.2.4.6)

 SMB_COM_LOCKING_ANDX

 SMB_COM_READ (section 2.2.4.11)

 SMB_COM_READ_ANDX (section 2.2.4.42)

 SMB_COM_WRITE (section 2.2.4.12)

 SMB_COM_WRITE_ANDX (section 2.2.4.43)

192 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.32.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT FID;
 UCHAR TypeOfLock;
 UCHAR NewOpLockLevel;
 ULONG Timeout;
 USHORT NumberOfRequestedUnlocks;
 USHORT NumberOfRequestedLocks;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 LOCKING_ANDX_RANGE Unlocks[NumberOfRequestedUnlocks];
 LOCKING_ANDX_RANGE Locks[NumberOfRequestedLocks];
 }
 }

SMB_Header: Flags (1 byte): If the server sends an OpLock Break Notification to a client holding an
OpLock, the SMB_FLAGS_REPLY bit (0x80) MUST be clear (0) to indicate that the message is a
request. This is the only instance in the protocol in which the server sends a request message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (17 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (17 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (16 bytes)

...

193 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

WordCount (1 byte): This field MUST be 0x08.

Words (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

FID TypeOfLock NewOpLockLevel

Timeout

NumberOfRequestedUnlocks NumberOfRequestedLocks

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB commands in the client request
packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is
sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset, in bytes, from the start of the
SMB_Header (section 2.2.3.1) to the start of the WordCount field in the next SMB

command in this packet. This field is valid only if the AndXCommand field is not set to
0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the server.

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file from
which the data SHOULD be read.

TypeOfLock (1 byte): This field is an 8-bit unsigned integer bit mask indicating the
nature of the lock request and the format of the LOCKING_ANDX_RANGE data. If the
negotiated protocol is NT LAN Manager or later, CAP_LARGE_FILES was negotiated and
LARGE_FILES bit is set, then the Locks and Unlocks arrays are in the large file 64-bit
offset LOCKING_ANDX_RANGE format. This allows specification of 64-bit offsets for
very large files.

If TypeOfLock has the SHARED_LOCK bit set, the lock is specified as a shared read-only

lock. If shared read-only locks cannot be supported by a server, the server SHOULD map
the lock to an exclusive lock for both read and write. Locks for both read and write

messages in which TypeOfLock bit READ_WRITE_LOCK is set SHOULD be prohibited by
the server, and the server SHOULD return an implementation-specific error to the client. If
TypeOfLock has the CHANGE_LOCKTYPE bit set, the client is requesting that the server
atomically change the lock type from a shared lock to an exclusive lock, or vice versa. If
the server cannot do this in an atomic fashion, the server MUST reject this request and

return an implementation-specific error to the client. Closing a file with locks still in force
causes the locks to be released in a nondeterministic order.

If the Locks vector contains one and only one entry (NumberOfRequestedLocks == 1)
and TypeOfLock has the CANCEL_LOCK bit set, the client is requesting that the server

194 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

cancel a previously requested but unacknowledged lock. This allows the client to cancel
lock requests that can wait forever to complete (see Timeout below).

Lock type and
bitmask Meaning

READ_WRITE_LOCK

0x00

Request for an exclusive read and write lock.

SHARED_LOCK

0x01

Request for a shared read-only lock.

OPLOCK_RELEASE

0x02

When sent from the server to the client in an OpLock Break
Notification, this bit indicates to the client that an
OpLock change has occurred on the FID supplied
in the request. The client MUST set this bit when
sending the OpLock Break Request message
acknowledging the OpLock Break.

CHANGE_LOCKTYPE

0x04

Request to atomically change the lock type from a shared
lock to an exclusive lock or vice versa for the
specified Locks.<39>

CANCEL_LOCK

0x08

Request to cancel all outstanding lock requests for the
specified FID and PID.<40>

LARGE_FILES

0x10

Indicates that the LOCKING_ANDX_RANGE format is the
64-bit file offset version. If this flag is not set, then
the LOCKING_ANDX_RANGE format is the 32-
bit file offset version.

NewOpLockLevel (1 byte): This field is valid only in SMB_COM_LOCKING_ANDX (0x24)
(section 2.2.4.32) SMB requests sent from the server to the client in response to a change

in an existing OpLock's state. This field is an 8-bit unsigned integer indicating the OpLock
level now in effect for the FID in the request. If NewOpLockLevel is 0x00, the client

possesses no OpLocks on the file at all. If NewOpLockLevel is 0x01, then the client
possesses a Level II OpLock.

Timeout (4 bytes): This field is a 32-bit unsigned integer value. Timeout is the maximum
amount of time to wait, in milliseconds, for the byte range(s) specified in Locks to
become locked. A Timeout value of 0x00000000 indicates that the server fails

immediately if any lock range specified is already locked and cannot be locked by this
request. A Timeout value of -1 (0xFFFFFFFF) indicates that the server waits as long as it
takes (wait forever) for each byte range specified to become unlocked so that it can be
locked by this request. Any other value of Timeout specifies the maximum number of
milliseconds to wait for all lock ranges specified in Locks to become available and to be
locked by this request.

NumberOfRequestedUnlocks (2 bytes): This field is a 16-bit unsigned integer value
containing the number of entries in the Unlocks array.

NumberOfRequestedLocks (2 bytes): This field is a 16-bit unsigned integer value
containing the number of entries in the Locks array.

SMB_Data (variable):

195 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0000.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Unlocks (variable)

...

Locks (variable)

...

Unlocks (variable): An array of byte ranges to be unlocked. If 32-bit offsets are being
used, this field uses LOCKING_ANDX_RANGE32 (see below) and is (10 *
NumberOfRequestedUnlocks) bytes in length. If 64-bit offsets are being used, this
field uses LOCKING_ANDX_RANGE64 (see below) and is (20 *
NumberOfRequestedUnlocks) bytes in length.

Locks (variable): An array of byte ranges to be locked. If 32-bit offsets are being used, this

field uses LOCKING_ANDX_RANGE32 (see following) and is (10 *
NumberOfRequestedLocks) bytes in length. If 64-bit offsets are being used, this field
uses LOCKING_ANDX_RANGE64 (see following) and is (20 *
NumberOfRequestedLocks) bytes in length.

The LOCKING_ANDX_RANGE32 data type has the following structure.

 LOCKING_ANDX_RANGE32
 {
 USHORT PID;
 ULONG ByteOffset;
 ULONG LengthInBytes;
 }

PID (2 bytes): The PID of the process requesting the locking change.

ByteOffset (4 bytes): The 32-bit unsigned integer value that is the offset into the file
at which the locking change MUST begin.

LengthInBytes (4 bytes): The 32-bit unsigned integer value that is the number of

bytes, beginning at OffsetInBytes, that MUST be locked or unlocked.

The LOCKING_ANDX_RANGE64 data type has the following structure.

196 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 LOCKING_ANDX_RANGE64
 {
 USHORT PID;
 USHORT Pad;
 ULONG ByteOffsetHigh;
 ULONG ByteOffsetLow;
 ULONG LengthInBytesHigh;
 ULONG LengthInBytesLow;
 }

PID (2 bytes): The PID of the process requesting the locking change.

Pad (2 bytes): This field pads the structure to DWORD alignment and MUST be zero

(0x0000).

OffsetInBytesHigh (4 bytes): The 32-bit unsigned integer value that is the high 32
bits of a 64-bit offset into the file at which the locking change MUST begin.

OffsetInBytesLow (4 bytes): The 32-bit unsigned integer value that is the low 32 bits
of a 64-bit offset into the file at which the locking change MUST begin.

LengthInBytesHigh (4 bytes): The 32-bit unsigned integer value that is the high 32
bits of a 64-bit value specifying the number of bytes that MUST be locked or unlocked.

LengthInBytesLow (4 bytes): The 32-bit unsigned integer value that is the low 32
bits of a 64-bit value specifying the number of bytes that MUST be locked or unlocked.

2.2.4.32.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 UCHAR AndXOffset;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

197 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

AndXCommand (1 byte): The command code for the next SMB command in the packet. This

value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is
sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset, in bytes, from the start of the
SMB Header (section 2.2.3.1) to the start of the WordCount field in the next SMB

command response in this packet. This field is valid only if the AndXCommand field is not
set to 0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS File access
rights do not
match
requested
locks.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to
read from a
FID that the
server does
not have
open.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM Insufficient
server
resources to
place the lock.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

EACCESS The intended
byte range
has already
been locked.

ERRDOS ERRlock ENOLOCK Insufficient

198 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

(0x01) (0x0021) server
resources to
place the lock.

ERRDOS
(0x01)

ERROR_NOT_LOCKED

(0x009E)

STATUS_RANGE_NOT_LOCKED

(0xC000007E)

 The byte
range
specified in an
unlock
request was
not locked.

ERRDOS
(0x01)

ERROR_CANCEL_VIOLATION

0x00AD

STATUS_OS2_CANCEL_VIOLATION

0x00AD0001

 No lock
request was
outstanding
for the
supplied
cancel region.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EBADF A valid FID
was rejected
by the
underlying
system.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The lock
request would
block and
cause a

deadlock with
another
process.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB.
Not enough
parameter
bytes were
sent or the
ANDX
command is
invalid.

ERRSRV
(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to
lock a non-
regular file
such as a

named pipe.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in
request.

ERRSRV
(0x02)

ERRbaduid (0x005B) STATUS_SMB_BAD_UID

(0x005B0002)

 The UID
specified is
not defined as
a valid ID for
this session,
or the user
identified by
the UID does
not have
sufficient

199 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O
error.

2.2.4.33 SMB_COM_TRANSACTION (0x25)

This command was introduced in the LAN Manager 1.0 dialect.

This command serves as the transport for the Transaction Subprotocol Commands. These commands
operate on mailslots and named pipes, which are interprocess communication endpoints within the

CIFS file system. If the size in bytes of the request exceeds the MaxBufferSize established during

session setup, then the transaction MUST use the
SMB_COM_TRANSACTION_SECONDARY (section 2.2.4.34) SMB to send the additional command data.

Transaction Subprotocol Command messages can exceed the maximum size of a single SMB message
as determined by the value of the MaxBufferSize session parameter. If this is the case, then the
client MUST use one or more SMB_COM_TRANSACTION_SECONDARY Requests (section 2.2.4.34.1) to
transfer the transaction SMB_Data.Trans_Data and SMB_Data.Trans_Parameter bytes that did

not fit in the initial message.

The client indicates that it has not sent all of the SMB_Data.Trans_Data bytes by setting
DataCount to a value less than TotalDataCount. Similarly, if ParameterCount is less than
TotalParameterCount, the client has more SMB_Data.Trans_Parameters bytes to send.
Parameter bytes SHOULD take precedence over Data bytes, and clients SHOULD attempt to send as
many bytes as possible in each message. Servers SHOULD be prepared, however, to accept
SMB_Data.Trans_Parameters and SMB_Data.Trans_Data bytes in any order, in large or small

amounts.

For both the request and the response, the position and length of the SMB_Data.Trans_Parameters
and SMB_Data.Trans_Data fields is determined by the values of the
SMB_Parameters.ParameterOffset, SMB_Parameters.ParameterCount,
SMB_Parameters.DataOffset, and SMB_Parameters.DataCount fields. In addition, the
SMB_Parameters.ParameterDisplacement and SMB_Parameters.DataDisplacement fields can

be used to change the order in which subranges of bytes are transferred. Servers SHOULD transfer
bytes in order and give precedence to SMB_Data.Trans_Parameters bytes. Clients SHOULD be
prepared to reconstruct transaction SMB_Data.Trans_Parameters and SMB_Data.Trans_Data,
regardless of the order or locations in which they are delivered.

2.2.4.33.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT MaxParameterCount;
 USHORT MaxDataCount;
 UCHAR MaxSetupCount;
 UCHAR Reserved1;
 USHORT Flags;
 ULONG Timeout;

200 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT Reserved2;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT DataCount;
 USHORT DataOffset;
 UCHAR SetupCount;
 UCHAR Reserved3;
 USHORT Setup[SetupCount];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 SMB_STRING Name;
 UCHAR Pad1[];
 UCHAR Trans_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans_Data[DataCount];
 }
 }

SMB_Header:

The PID, MID, TID, and UID MUST be the same for all requests and responses that are part of
the same transaction.

TID (2 bytes): If the transaction request is being sent as a class 2 mailslot message, this

field MUST have a value of 0xFFFF. The mailslot receiver MAY ignore the TID in the
request. In all other cases, this field MUST contain a valid TID. The TID MUST refer to the
IPC$ share.

UID (2 bytes): If the transaction request is being sent as a class 2 mailslot message, this
field MUST have a value of 0xFFFF. The mailslot receiver MAY ignore the UID in the

request. In all other cases, this field MUST contain a valid UID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_TRANSACTION request contains the information to
manage the transaction along with flags and setup information that provide the context for the
execution of the operation on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

201 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

WordCount (1 byte): This field MUST be Words.SetupCount (see below) plus 14 (0x0E). This
value represents the total number of parameter words and MUST be greater than or equal to
14 (0x0E).

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

MaxParameterCount MaxDataCount

MaxSetupCount Reserved1 Flags

Timeout

Reserved2 ParameterCount

ParameterOffset DataCount

DataOffset SetupCount Reserved3

Setup (variable)

...

TotalParameterCount (2 bytes): The total number of transaction parameter bytes the client
expects to send to the server for this request. Parameter bytes for a transaction are
carried within the SMB_Data.Trans_Parameters field of the SMB_COM_TRANSACTION
request. If the size of all of the required SMB_Data.Trans_Parameters for a given

transaction causes the request to exceed the MaxBufferSize established during session
setup, then the client MUST NOT send all of the parameters in one request. The client
MUST break up the parameters and send additional requests using the
SMB_COM_TRANSACTION_SECONDARY command to send the additional parameters. Any
single request MUST NOT exceed the MaxBufferSize established during session setup.
The client indicates to the server to expect additional parameters, and thus at least one
SMB_COM_TRANSACTION_SECONDARY, by setting ParameterCount (see following) to

be less than TotalParameterCount. See SMB_COM_TRANSACTION_SECONDARY for
more information.

TotalDataCount (2 bytes): The total number of transaction data bytes that the client

attempts to send to the server for this request. Data bytes of a transaction are carried
within the SMB_Data.Trans_Data field of the SMB_COM_TRANSACTION request. If the
size of all of the required SMB_Data.Trans_Data for a given transaction causes the
request to exceed the MaxBufferSize established during session setup, then the client

MUST NOT send all of the data in one request. The client MUST break up the data and
send additional requests using the SMB_COM_TRANSACTION_SECONDARY command to
send the additional data. Any single request MUST NOT exceed the MaxBufferSize
established during session setup. The client indicates to the server to expect additional
data, and thus at least one SMB_COM_TRANSACTION_SECONDARY, by setting

202 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DataCount (see following) to be less than TotalDataCount. See
SMB_COM_TRANSACTION_SECONDARY for more information.

MaxParameterCount (2 bytes): The maximum number of SMB_Data.Trans_Parameters
bytes that the client accepts in the transaction response. The server MUST NOT return

more than this number of bytes in the SMB_Data.Trans_Parameters field of the
response.

MaxDataCount (2 bytes): The maximum number of SMB_Data.Trans_Data bytes that the
client accepts in the transaction response. The server MUST NOT return more than this
number of bytes in the SMB_Data.Trans_Data field.

MaxSetupCount (1 byte): The maximum number of bytes that the client accepts in the
Setup field of the transaction response. The server MUST NOT return more than this

number of bytes in the Setup field.

Reserved1 (1 byte): A padding byte. This field MUST be 0x00. Existing CIFS
implementations MAY combine this field with MaxSetupCount to form a USHORT. If

MaxSetupCount is defined as a USHORT, the high order byte MUST be 0x00.

Flags (2 bytes): A set of bit flags that alter the behavior of the requested operation. Unused
bit fields MUST be set to zero by the client sending the request, and MUST be ignored by

the server receiving the request. The client can set either or both of the following bit flags.

Name and
bitmask Meaning

DISCONNECT_TID

 0x0001

If set, following the completion of the
operation the server MUST disconnect
the tree connect associated with the
tree identifier (TID) field received in the
SMB Header (section 2.2.3.1) of this
request. The client SHOULD NOT send a
subsequent
SMB_COM_TREE_DISCONNECT for this

tree connect.

NO_RESPONSE

 0x0002

This is a one-way transaction. The
server MUST attempt to complete the
transaction, but MUST NOT send a
response to the client.<41>

Timeout (4 bytes): The value of this field MUST be the maximum number of milliseconds
that the server SHOULD wait for completion of the transaction before generating a time-
out and returning a response to the client. The client SHOULD set this field to 0x00000000

to indicate that no time-out is expected. A value of 0x00000000 indicates that the server
returns an error if the resource is not immediately available. If the operation does not
complete within the specified time, the server MAY abort the request and send a failure
response.<42>

Reserved2 (2 bytes): Reserved. This field MUST be 0x0000 in the client request. The server

MUST ignore the contents of this field.

ParameterCount (2 bytes): The number of transaction parameter bytes that the client
attempts to send to the server in this request. Parameter bytes for a transaction are
carried within the SMB_Data.Trans_Parameters field of the SMB_COM_TRANSACTION
request. If the transaction request fits within a single SMB_COM_TRANSACTION request
(the request size does not exceed MaxBufferSize), then this value SHOULD be equal to
TotalParameterCount. Otherwise, the sum of the ParameterCount values in the
primary and secondary transaction request messages MUST be equal to the smallest

203 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

TotalParameterCount value reported to the server. If the value of this field is less than
the value of TotalParameterCount, then at least one

SMB_COM_TRANSACTION_SECONDARY message MUST be used to transfer the remaining
transaction SMB_Data.Trans_Parameters bytes. The ParameterCount field MUST be

used to determine the number of transaction SMB_Data.Trans_Parameters bytes that
are contained within the SMB_COM_TRANSACTION message.

ParameterOffset (2 bytes): This field MUST contain the number of bytes from the start of
the SMB Header to the start of the SMB_Data.Trans_Parameters field. Server
implementations MUST use this value to locate the transaction parameter block within the
request. If ParameterCount is zero, the client/server MAY set this field to zero.<43>

DataCount (2 bytes): The number of transaction data bytes that the client sends to the

server in this request. Data bytes for a transaction are carried within the
SMB_Data.Trans_Data field of the SMB_COM_TRANSACTION request. If the transaction
request fits within a single SMB_COM_TRANSACTION request (the request size does not
exceed MaxBufferSize), then this value SHOULD be equal to TotalDataCount.
Otherwise, the sum of the DataCount values in the primary and secondary transaction

request messages MUST be equal to the smallest TotalDataCount value reported to the

server. If the value of this field is less than the value of TotalDataCount, then at least
one SMB_COM_TRANSACTION_SECONDARY message MUST be used to transfer the
remaining transaction SMB_Data.Trans_Data bytes. The DataCount field MUST be used
to determine the number of transaction SMB_Data.Trans_Data bytes contained within
the SMB_COM_TRANSACTION message.

DataOffset (2 bytes): This field MUST be the number of bytes from the start of the SMB
Header of the request to the start of the SMB_Data.Trans_Data field. Server

implementations MUST use this value to locate the transaction data block within the
request. If DataCount is zero, the client/server MAY<44> set this field to zero.

SetupCount (1 byte): This field MUST be the number of setup words that are included in the
transaction request.

Reserved3 (1 byte): A padding byte. This field MUST be 0x00. Existing CIFS

implementations MAY combine this field with SetupCount to form a USHORT. If
SetupCount is defined as a USHORT, the high order byte MUST be 0x00.

Setup (variable): An array of two-byte words that provides transaction context to the server.
The size and content of the array are specific to individual subcommands.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION request contains the parameters and data
that are the input to the transaction operation on the server. SMB_COM_TRANSACTION also includes a
Name string that MAY identify the resource (a specific Mailslot or Named Pipe) against which the

operation is performed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the Bytes array that follows.

Bytes (variable):

204 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name (variable)

...

Pad1 (variable)

...

Trans_Parameters (variable)

...

Pad2 (variable)

...

Data (variable)

...

Name (variable): The pathname of the mailslot or named pipe to which the transaction
subcommand applies, or a client-supplied identifier that provides a name for the
transaction. See the individual SMB_COM_TRANSACTION subprotocol subcommand

descriptions for information about the value set for each subcommand. If the field is not
specified in the section for the subcommands, the field SHOULD be set to \pipe\. If
SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB Header (section 2.2.3.1) of

the request, this field MUST be a null-terminated array of 16-bit Unicode characters which
MUST be aligned to start on a 2-byte boundary from the start of the SMB header.
Otherwise, this field MUST be a null-terminated array of OEM characters. The Name field

MUST be the first field in this section.

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary. relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server, and MUST be ignored by the server/client.

Trans_Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_TRANSACTION subprotocol subcommands descriptions for information on the

parameters sent for each subcommand.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary. relative to the start of the SMB Header. This can

cause this field to be a zero-length field. This field SHOULD be set to zero by the
client/server, and MUST be ignored by the server/client.

Data (variable): Transaction data bytes. See the individual SMB_COM_TRANSACTION
subprotocol subcommands descriptions for information on the data sent for each

subcommand.

2.2.4.33.2 Response

205 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SMB_COM_TRANSACTON response has two possible formats. The standard format is used to
return the results of the completed transaction. A shortened interim response message is sent

following the initial SMB_COM_TRANSACTION request if the server determines that at least one
SMB_COM_TRANSACTION_SECONDARY request message is expected from the client.

Whenever a transaction request is split across multiple SMB requests, the server MUST evaluate the
initial SMB_COM_TRANSACTION request to determine whether or not it has the resources necessary
to process the transaction. It MUST also check for any other errors that it can detect and then send
back an interim response. If the interim response returns SUCCESS, then the client MUST send the
next request of the transaction to the server. If the interim response reports an error, the client MUST
NOT send the next request of the transaction to the server and SHOULD take appropriate action based
on the error information included in the interim response.

The format of the SMB_COM_TRANSACTION Interim Server Response message is an SMB
Header (section 2.2.3.1) with an empty SMB_Parameters and SMB_Data section.
SMB_Parameters.WordCount and SMB_Data.ByteCount MUST be 0x00 and 0x0000, respectively.
Error codes are returned in the SMB_Header.Status field.

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

If no error is returned in the SMB_COM_TRANSACTION Interim Server Response, the transaction can
proceed. The client sends as many SMB_COM_TRANSACTION_SECONDARY requests as required in
order to transfer the remainder of the transaction subcommand SMB_Data.Trans_Parameters and
SMB_Data.Trans_Data. The server processes the transaction and replies with one or more

SMB_COM_TRANSACTION response messages.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT Reserved1;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT ParameterDisplacement;
 USHORT DataCount;
 USHORT DataOffset;
 USHORT DataDisplacement;
 UCHAR SetupCount;
 UCHAR Reserved2;
 USHORT Setup[SetupCount];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Trans_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans_Data[DataCount];
 }

206 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_TRANSACTION response contains information used to

manage the transfer of the transaction response. It can also contain additional information that can
include subcommand return codes or state information returned by the server. See the individual
subprotocol subcommands for details.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The value of Words.SetupCount plus 10 (0x0A). This value represents

the total number of SMB parameter words and MUST be greater than or equal to 10 (0x0A).

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

Reserved1 ParameterCount

ParameterOffset ParameterDisplacement

DataCount DataOffset

DataDisplacement SetupCount Reserved2

Setup (variable)

...

TotalParameterCount (2 bytes): The total number of transaction parameter bytes that the
server expects to send to the client for this response. Parameter bytes for a transaction

207 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

are carried within the SMB_Data.Trans_Parameters field of the
SMB_COM_TRANSACTION response. If the size of all of the required

SMB_Data.Trans_Parameters for a given transaction causes the response to exceed the
MaxBufferSize established during session setup, then the server MUST NOT send all of

the parameters in one response. The server MUST break up the parameters and send
additional responses using the SMB_COM_TRANSACTION command to send the additional
parameters. Any single response MUST NOT exceed the MaxBufferSize established
during session setup. The server indicates to the client to expect additional parameters in
at least one more SMB_COM_TRANSACTION response by setting ParameterCount (see
following) to be less than TotalParameterCount.

TotalDataCount (2 bytes): The total number of transaction data bytes that the server

expects to send to the client for this response. Data bytes of a transaction are carried
within the SMB_Data.Trans_Data field of the SMB_COM_TRANSACTION response. If the
size of all of the required SMB_Data.Trans_Data for a given transaction causes the
response to exceed the MaxBufferSize established during session setup, then the server
MUST NOT send all of the data in one response. The server MUST break up the data and
send additional responses using the SMB_COM_TRANSACTION command to send the

additional data. Any single response MUST NOT exceed the MaxBufferSize established
during session setup. The server indicates to the client to expect additional data in at least
one more SMB_COM_TRANSACTION response by setting DataCount (see following) to be
less than TotalDataCount.

Reserved1 (2 bytes): Reserved. This field MUST be 0x0000 in the client request. The server
MUST ignore the contents of this field.

ParameterCount (2 bytes): The number of transaction parameter bytes being sent in this

response. If the transaction fits within a single SMB_COM_TRANSACTION response, then
this value MUST be equal to TotalParameterCount. Otherwise, the sum of the
ParameterCount values in the transaction response messages MUST be equal to the
smallest TotalParameterCount value reported by the server. The ParameterCount field
MUST be used to determine the number of transaction parameter bytes contained within
the response.

ParameterOffset (2 bytes): This field MUST contain the number of bytes from the start of

the SMB Header to the start of the SMB_Data.Trans_Parameters field. Client
implementations MUST use this value to locate the transaction parameter block within the
response. If ParameterCount is zero, the client/server MAY set this field to zero.<45>

ParameterDisplacement (2 bytes): The offset, in bytes, relative to all of the transaction
parameter bytes in this transaction response at which this block of parameter bytes
SHOULD be placed. This value MUST be used by the client to correctly reassemble the

transaction response parameters when the response messages are received out of order.

DataCount (2 bytes): The number of transaction data bytes being sent in this response. If
the transaction response fits within a single SMB_COM_TRANSACTION, then this value
MUST be equal to TotalDataCount. Otherwise, the sum of the DataCount values in the
primary and secondary transaction responses MUST be equal to the smallest
TotalDataCount value reported to the client. If the value of this field is less than the

value of TotalDataCount, then at least one additional SMB_COM_TRANSACTION

response MUST be used to transfer the remaining data bytes.

DataOffset (2 bytes): This field MUST be the number of bytes from the start of the SMB
Header of the response to the start of the SMB_Data.Trans_Data field. Client
implementations MUST use this value to locate the transaction data block within the
response. If DataCount is zero, the client/server MAY set this field to zero.<46>

DataDisplacement (2 bytes): The offset, in bytes, relative to all of the transaction data
bytes in this transaction response at which this block of data bytes SHOULD be placed.

208 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This value MUST be used by the client to correctly reassemble the transaction data when
the response messages are received out of order.

SetupCount (1 byte): The number of setup words that are included in the transaction
response.

Reserved2 (1 byte): A padding byte. This field MUST be 0x00. Existing CIFS
implementations can combine this field with SetupCount to form a USHORT. If
SetupCount is defined as a USHORT, the high order byte MUST be zero.

Setup (variable): An array of two-byte words that provides transaction results from the
server. The size and content of the array are specific to individual subprotocol
subcommands.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION response contains the parameters and data
generated by the transaction subcommand.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array that follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Trans_Parameters (variable)

...

Pad2 (variable)

...

Trans_Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1), This can cause this field to be a zero-length field. This field SHOULD be set to
zero by the client/server, and MUST be ignored by the server/client.

209 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Trans_Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_TRANSACTION subcommand descriptions for information on parameters

returned by the server for each subcommand.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the

following field to a 4-byte boundary relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

Trans_Data (variable): Transaction data bytes. See the individual SMB_COM_TRANSACTION
subcommand descriptions for information on data returned by the server for each
subcommand.

Error Codes

The errors returned from calls to SMB_COM_TRANSACTION are specific to the subcommand being
executed. See the documentation for the individual subcommands for more detailed information.

2.2.4.34 SMB_COM_TRANSACTION_SECONDARY (0x26)

This command was introduced in the LAN Manager 1.0 dialect.

The SMB_COM_TRANSACTION_SECONDARY command is used to complete a data transfer initiated by
an SMB_COM_TRANSACTION Request.

For both the request and the response, the positions and lengths of the
SMB_Data.Trans_Parameters and SMB_Data.Trans_Data fields are determined by the values of
the SMB_Parameters.ParameterOffset, SMB_Parameters.ParameterCount,
SMB_Parameters.DataOffset, and SMB_Parameters.DataCount fields. In addition, the

SMB_Parameters.ParameterDisplacement and SMB_Parameters.DataDisplacement fields can
be used to change the order in which subranges of bytes are transferred. Servers SHOULD transfer
bytes in order and give precedence to SMB_Data.Trans_Parameters bytes. Clients SHOULD be
prepared to reconstruct transaction SMB_Data.Trans_Parameters and SMB_Data.Trans_Data,
regardless of the order or locations in which they are delivered.

2.2.4.34.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT ParameterDisplacement;
 USHORT DataCount;
 USHORT DataOffset;
 USHORT DataDisplacement;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Trans_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans_Data[DataCount];
 }
 }

210 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_Header:

This command MUST be sent following a successful SMB_COM_TRANSACTION (section 2.2.4.33)
Intermediate Response from the server. The PID, MID, TID, and UID MUST be the same for all
requests and responses that are part of the same transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (17 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (17 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (16 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x08.

Words (16 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

ParameterCount ParameterOffset

ParameterDisplacement DataCount

DataOffset DataDisplacement

TotalParameterCount (2 bytes): The total number of transaction parameter bytes to be
sent to the server over the course of this transaction. This value MAY be less than or equal

211 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

to the TotalParameterCount in preceding request messages that are part of the same
transaction. This value represents transaction parameter bytes, not SMB parameter words.

TotalDataCount (2 bytes): The total number of transaction data bytes to be sent to the
server over the course of this transaction. This value MAY be less than or equal to the

TotalDataCount in preceding request messages that are part of the same transaction.
This value represents transaction data bytes, not SMB data bytes.

ParameterCount (2 bytes): The number of transaction parameter bytes being sent in the
SMB message. This value MUST be less than TotalParameterCount. The sum of the
ParameterCount values across all of the request messages in a transaction MUST be
equal to the TotalParameterCount reported in the last request message of the
transaction.

ParameterOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes contained in this SMB message. This MUST be the number of
bytes from the start of the SMB message to the start of the
SMB_Data.Bytes.Trans_Parameters field. Server implementations MUST use this value

to locate the transaction parameter block within the SMB message. If ParameterCount is
zero, the client/server MAY set this field to zero.<47>

ParameterDisplacement (2 bytes): The offset, relative to all of the transaction parameter
bytes sent to the server in this transaction, at which this block of parameter bytes MUST
be placed. This value can be used by the server to correctly reassemble the transaction
parameters even if the SMB request messages are received out of order.

DataCount (2 bytes): The number of transaction data bytes being sent in this SMB message.
This value MUST be less than the value of TotalDataCount. The sum of the DataCount
values across all of the request messages in a transaction MUST be equal to the smallest

TotalDataCount value reported to the server.

DataOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction data bytes contained in this SMB message. This MUST be the number of bytes
from the start of the SMB message to the start of the SMB_Data.Bytes.Trans_Data

field. Server implementations MUST use this value to locate the transaction data block
within the SMB message. If DataCount is zero, the client/server MAY set this field to
zero.<48>

DataDisplacement (2 bytes): The offset, relative to all of the transaction data bytes sent to
the server in this transaction, at which this block of parameter bytes MUST be placed. This
value can be used by the server to correctly reassemble the transaction data block even if
the SMB request messages are received out of order.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION_SECONDARY request contains parameters

and data bytes being sent to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

212 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Trans_Parameters (variable)

...

Pad2 (variable)

...

Trans_Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1). This constraint can cause this field to be a zero-length field. This field SHOULD

be set to zero by the client/server and MUST be ignored by the server/client.

Trans_Parameters (variable): Transaction parameter bytes.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

Trans_Data (variable): Transaction data bytes.

2.2.4.34.2 Response

There is no response message defined for the SMB_COM_TRANSACTION_SECONDARY request.

Error Codes

Since there is no response to an SMB_COM_TRANSACTION_SECONDARY request, there are no error
codes defined.

2.2.4.35 SMB_COM_IOCTL (0x27)

This command was introduced in the LAN Manager 1.0 dialect. It was rendered obsolescent in the NT
LAN Manager dialect. NT LAN Manager also removed the transaction-like behavior that supported

multiple request and response messages to complete an IOCTL. The command now supports a single

request followed by a single response.

This command delivers a device- or file-specific IOCTL request to a server, and a device- or file-
specific IOCTL response to the requester. The target file or device is identified by the FID in the
request. The request defines a function that is specific to a particular device type on a particular
server type. Therefore, the functions supported are not defined by the protocol, but by the systems on
which the CIFS implementations execute. The protocol simply provides a means of delivering the
requests and accepting the responses.<49>

213 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.35.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT Category;
 USHORT Function;
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT MaxParameterCount;
 USHORT MaxDataCount;
 ULONG Timeout;
 USHORT Reserved;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT DataCount;
 USHORT DataOffset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Data[DataCount];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (29 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (29 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (28 bytes)

...

...

214 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

WordCount (1 byte): This value of this field MUST be set to 0x0E.

Words (28 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Category

Function TotalParameterCount

TotalDataCount MaxParameterCount

MaxDataCount Timeout

... Reserved2

ParameterCount ParameterOffset

DataCount DataOffset

FID (2 bytes): The FID of the device or file to which the IOCTL is to be sent.

Category (2 bytes): The implementation-dependent device category for the request.

Function (2 bytes): The implementation-dependent device function for the request.

TotalParameterCount (2 bytes): The total number of IOCTL parameter bytes that the client

sends to the server in this request. Parameter bytes for an IOCTL are carried within the
SMB_Data.Parameters field of the SMB_COM_IOCTL request. This value MUST be the

same as ParameterCount.

TotalDataCount (2 bytes): The total number of IOCTL data bytes that the client sends to
the server in this request. Data bytes for an IOCTL are carried within the SMB_Data.Data
field of the SMB_COM_IOCTL request. This value MUST be the same as DataCount.

MaxParameterCount (2 bytes): The maximum number of SMB_Data.Parameters bytes
that the client accepts in the IOCTL response. The server MUST NOT return more than this
number of bytes in the SMB_Data.Parameters field of the response.

MaxDataCount (2 bytes): The maximum number of SMB_Data.Data bytes that the client
accepts in the IOCTL response. The server MUST NOT return more than this number of
bytes in the SMB_Data.Data field.

Timeout (4 bytes): The value of this field MUST be the maximum number of milliseconds
that the server SHOULD wait for completion of the transaction before generating a time-
out and returning a response to the client. The client SHOULD set this to 0x00000000 to
indicate that no time-out is expected. A value of 0x00000000 indicates that the server

returns an error if the resource is not immediately available. If the operation does not
complete within the specified time, the server aborts the request and sends a failure
response.

Reserved2 (2 bytes): Reserved. This field MUST be 0x0000 in the client request. The server
MUST ignore the contents of this field.

215 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ParameterCount (2 bytes): The number of IOCTL parameter bytes that the client sends to
the server in this request. Parameter bytes for an IOCTL are carried within the

SMB_Data.Parameters field of the SMB_COM_IOCTL request. This value MUST be the
same as TotalParameterCount.

ParameterOffset (2 bytes): The client SHOULD set the value of this field to 0x0000. The
server MUST ignore the value of this field.

DataCount (2 bytes): The total number of IOCTL data bytes that the client sends to the
server in this request. Data bytes for an IOCTL are carried within the SMB_Data.Data
field of the SMB_COM_IOCTL request. This value MUST be the same as TotalDataCount.

DataOffset (2 bytes): The client SHOULD set the value of this field to 0x0000. The server
MUST ignore the value of this field.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_IOCTL Request (section 2.2.4.35.1) contains the parameters
and data that are the input to the IOCTL operation on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the Bytes array that follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Parameters (variable)

...

Pad2 (variable)

...

Data (variable)

...

Pad1 (variable): An array of padding bytes used to align the next field to a 2-byte or 4-byte
boundary.

Parameters (variable): IOCTL parameter bytes. The contents are implementation-
dependent.

216 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Pad2 (variable): An array of padding bytes, used to align the next field to a 2-byte or 4-
byte boundary.

Data (variable): Transaction data bytes. The contents are implementation-dependent.

2.2.4.35.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT ParameterDisplacement;
 USHORT DataCount;
 USHORT DataOffset;
 USHORT DataDisplacement;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Data[DataCount];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_IOCTL response contains information that is used to
manage the transfer of the IOCTL response. It can also contain additional information that can include
IOCTL return codes or state information returned by the server. Such information is CIFS

implementation-dependent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

217 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): The value of this field MUST be set to 0x08.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

ParameterCount ParameterOffset

ParameterDisplacement DataCount

DataOffset DataDisplacement

TotalParameterCount (2 bytes): The total number of IOCTL parameter bytes that the

server sends to the client in this response. Parameter bytes for an IOCTL are carried
within the SMB_Data.Parameters field of the SMB_COM_IOCTL request. This value
MUST be the same as ParameterCount, and this value MUST be less than or equal to
the MaxParameterCount field value in the client's request.

TotalDataCount (2 bytes): The total number of IOCTL data bytes that the server sends to
the client in this response. Data bytes for an IOCTL are carried within the

SMB_Data.Data field of the SMB_COM_IOCTL request. This value MUST be the same as
DataCount, and this value MUST be less than or equal to the MaxDataCount field value
in the client's request.

ParameterCount (2 bytes): The total number of IOCTL parameter bytes that the server
sends to the client in this response. Parameter bytes for an IOCTL are carried within the
SMB_Data.Parameters field of the SMB_COM_IOCTL request. This value MUST be the
same as TotalParameterCount and this value MUST be less than or equal to the

MaxParameterCount field value in the client's request.

ParameterOffset (2 bytes): This field MUST contain the number of bytes from the start of
the SMB Header (section 2.2.3.1) to the start of the SMB_Data.Parameters field. Client
implementations MUST use this value to locate the IOCTL parameter block within the
response.

ParameterDisplacement (2 bytes): The server SHOULD set the value of this field to
0x0000. The client MUST ignore the value of this field.

DataCount (2 bytes): The total number of IOCTL data bytes that the server sends to the
client in this response. Data bytes for an IOCTL are carried within the SMB_Data.Data
field of the SMB_COM_IOCTL request. This value MUST be the same as TotalDataCount,
and this value MUST be less than or equal to the MaxDataCount field value of the
client's request.

DataOffset (2 bytes): This field MUST be the number of bytes from the start of the SMB

Header of the response to the start of the SMB_Data.Data field. Client implementations
MUST use this value to locate the IOCTL data block within the response.

DataDisplacement (2 bytes): The server SHOULD set the value of this field to 0x0000. The
client MUST ignore the value of this field.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_IOCTL response contains the parameters and data generated
by the IOCTL command.

218 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Parameters (variable)

...

Pad2 (variable)

...

Data (variable)

...

Pad1 (variable): An array of padding bytes used to align the next field to a 16- or 32-bit
boundary.

Parameters (variable): IOCTL parameter bytes. The contents are implementation-
dependent.

Pad2 (variable): An array of padding bytes used to align the next field to a 16- or 32-bit
boundary.

Data (variable): IOCTL data bytes. The contents are implementation-dependent.

Error Codes

The errors returned from calls to SMB_COM_IOCTL are implementation-dependent. The list below
provides a summary of error codes returned by the IOCTL mechanism.

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfunc

(0x0001)

STATUS_NOT_IMPLEMENTED

(0xC0000002)

 Requested category and
function are not
implemented by the
server.

ERRDOS ERRnoaccess STATUS_ACCESS_DENIED EACCESS File access rights do not

219 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0005) (0xC0000022) match requested locks.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a
FID that the server does
not have open.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM Insufficient server
resources to place the
lock.

ERRDOS

(0x01)

ERRunsup

(0x0032)

STATUS_NOT_SUPPORTED

(0xC00000BB)

 Requested category and
function are not supported
by the server.

ERRSRV

(0x02)

ERRerror

(0x0001)

 Unspecified error.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB.

ERRSRV

(0x02)

ERRerror

(0x0004)

 EACCES Access denied.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID for
this session, or the user
identified by the UID does
not have sufficient
privileges.

ERRSRV

(0x02)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0xC0000005)

 There is more data
available (on the specified
named pipe) than can be
returned in this
transaction.

ERRSRV

(0x02)

ERRnosupport

(0xFFFF)

STATUS_SMB_NO_SUPPORT

(0xFFFF0002)

 The command is not
supported by the
server.<50>

2.2.4.36 SMB_COM_IOCTL_SECONDARY (0x28)

This command was introduced in the LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.7). It
was rendered obsolete in the NT LAN Manager dialect and is considered reserved but not
implemented. Clients SHOULD NOT send requests using this command code, and servers receiving
requests with this command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

This command is a companion to SMB_COM_IOCTL, which has been deprecated. Please see
SMB_COM_IOCTL (section 2.2.4.35) for more information.

http://go.microsoft.com/fwlink/?LinkId=164302

220 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.37 SMB_COM_COPY (0x29)

This command was introduced in the LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.1 and
[XOPEN-SMB] sections 14.1 and 15.2). It was rendered obsolete in the NT LAN Manager dialect.

This command was used to perform server-side file copies, but is no longer used. Clients SHOULD NOT
send requests using this command code. Servers receiving requests with this command code SHOULD
return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).<51>

2.2.4.38 SMB_COM_MOVE (0x2A)

This command was introduced in the LAN Manager 1.0 dialect (see [SMB-LM1X] section 9.2.10 and
[XOPEN-SMB] section 14.4). It was rendered obsolete in the NT LAN Manager dialect.

This command was used to move files on the server, but is no longer in use. Clients SHOULD NOT
send requests using this command code. Servers receiving requests with this command code
SHOULD<52> return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.4.39 SMB_COM_ECHO (0x2B)

This command was introduced in the LAN Manager 1.0 dialect.

The SMB_COM_ECHO command is sent by the client to test the transport layer connection with the
server.

2.2.4.39.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT EchoCount;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Data[ByteCount];
 }
 }

SMB_Header:

TID (2 bytes): This field MUST contain a valid TID or 0xFFFF.<53>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

http://go.microsoft.com/fwlink/?LinkId=164302
http://go.microsoft.com/fwlink/?LinkId=164302

221 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EchoCount

EchoCount (2 bytes): USHORT The number of times that the server SHOULD echo the
contents of the SMB_Data.Data field.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0000, indicating the number
of bytes of data.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): Data to echo.

2.2.4.39.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT SequenceNumber;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Data[ByteCount];
 }

222 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SequenceNumber

SequenceNumber (2 bytes): The sequence number of this echo response message.<54>

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (1 byte): This field MUST be the same as it was in the request.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): This field MUST be the same as it was in the request.

Error Codes

223 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the command
was invalid.

2.2.4.40 SMB_COM_WRITE_AND_CLOSE (0x2C)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. Clients
SHOULD<55> use the SMB_COM_WRITE_ANDX (section 2.2.4.43) command.

This write and close command has the effect of writing to a range of bytes and then closing the file
associated with the supplied FID. This command behaves identically to an
SMB_COM_WRITE (section 2.2.4.12) command followed by an SMB_COM_CLOSE (section 2.2.4.5)
command. See SMB_COM_WRITE and SMB_COM_CLOSE for more details. This command supports

two request formats: one with six parameter words and one with 12 parameter words.

This command supports 32-bit offsets only and is inappropriate for files having 64-bit offsets. The
client SHOULD use SMB_COM_WRITE_ANDX to write to files requiring 64-bit file offsets.

The client MUST have at least write access to the file. If an error is returned by the underlying object
store, the server SHOULD still close the file.

2.2.4.40.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 USHORT CountOfBytesToWrite;
 ULONG WriteOffsetInBytes;
 UTIME LastWriteTime;
 ULONG Reserved[3] (optional);
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad;
 UCHAR Data[CountOfBytesToWrite];
 }
 }

SMB_Header:

TID (2 bytes): This field MUST contain a valid TID.

UID (2 bytes): This field MUST contain a valid UID.

224 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): This field MUST be either 0x06 or 0x0C.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID CountOfBytesToWrite

WriteOffsetInBytes

LastWriteTime

Reserved

...

...

FID (2 bytes): This field MUST be a valid 16-bit unsigned integer indicating the file to which
the data SHOULD be written.

CountOfBytesToWrite (2 bytes): This field is a 16-bit unsigned integer indicating the
number of bytes to be written to the file. The client MUST ensure that the amount of data

sent can fit in the negotiated maximum buffer size. If the value of this field is zero
(0x0000), the server MUST truncate or extend the file to match the WriteOffsetInBytes.

WriteOffsetInBytes (4 bytes): This field is a 32-bit unsigned integer indicating the offset,
in number of bytes, from the beginning of the file at which to begin writing to the file. The
client MUST ensure that the amount of data sent can fit in the negotiated maximum buffer
size. Because this field is limited to 32-bits, this command is inappropriate for files that
have 64-bit offsets.

225 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

LastWriteTime (4 bytes): This field is a 32-bit unsigned integer indicating the number of
seconds since Jan 1, 1970, 00:00:00.0. The server SHOULD set the last write time of the

file represented by the FID to this value. If the value is zero (0x00000000), the server
SHOULD use the current local time of the server to set the value. Failure to set the time

MUST NOT result in an error response from the server.

Reserved (12 bytes): This field is optional. This field is reserved, and all entries MUST be
zero (0x00000000). This field is used only in the 12-word version of the request.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Buffer (variable)

...

ByteCount (2 bytes): This field MUST be 0x0001 + CountOfBytesToWrite.

Buffer (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad Data (variable)

...

Pad (1 byte): The value of this field SHOULD be ignored. This is padding to force the byte
alignment to a double word boundary.

Data (variable): The raw bytes to be written to the file.

2.2.4.40.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT CountOfBytesWritten;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

226 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CountOfBytesWritten

CountOfBytesWritten (2 bytes): Indicates the actual number of bytes written to the file.

For successful writes, this MUST equal the CountOfBytesToWrite in the client's request.
If the number of bytes written differs from the number requested and no error is
indicated, then the server has no resources available with which to satisfy the complete
write.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.<56>

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on the
server are temporarily
exhausted.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK A record lock has been
taken on the file or the
client has attempted to
write to a portion of the
file that the server
detects has been locked,
opened in deny-write
mode, or opened in
read-only mode.

ERRDOS
(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid server
FID but it was not
acceptable to the
operating system.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

227 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

STATUS_NO_MEMORY

(0xC0000017)

ERRDOS
(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission
required.

ERRDOS
(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

 The requested byte
range was already
locked by a different
process (PID).

ERRDOS
(0x01)

ERRnotconnected

(0x00E9)

STATUS_PIPE_DISCONNECTED

(0xC00000B0)

EPIPE Write to a named pipe
with no reader.

ERRSRV
(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block
due to locking and
deadlock would result.

ERRSRV
(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the minimum
or maximum ranges that
can be written to the
supplied FID.

ERRSRV
(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt SMB request
was received.

ERRSRV
(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV
(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full - too
many queued items.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
known as a valid ID on
this server session, or
the user identified by
the UID does not have
sufficient privileges.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred
in the physical I/O.

ERRHRD
(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated
with the file descriptor is
a block-special or
character-special file,
and the value of the file

pointer is out of range.

ERRHRD
(0x03)

ERRdiskfull

(0x0027)

STATUS_DISK_FULL

(0xC000007F)

ENOSPC

EFBIG

The file system is full, or
the file has grown too
large and no more data
can be written to the
file.

228 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.41 SMB_COM_OPEN_ANDX (0x2D)

This command was introduced in the LAN Manager 1.0 dialect.

This command is used to create and open a new file or open an existing regular file and chain
additional messages along with the request. See section 3.2.4.1.1 for details on chaining commands.
The command includes the pathname relative to the TID of the file, named pipe, or device that the
client attempts to open. If the command is successful, the server response MUST include a valid FID.

The client MUST supply the FID in subsequent operations on the object.

The following are the commands that can follow an SMB_COM_OPEN_ANDX in an AndX chain:

 SMB_COM_READ (section 2.2.4.11)

 SMB_COM_READ_ANDX (section 2.2.4.42)

 SMB_COM_IOCTL (section 2.2.4.35)

 SMB_COM_NO_ANDX_COMMAND (section 2.2.4.75)

2.2.4.41.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT Flags;
 USHORT AccessMode;
 SMB_FILE_ATTRIBUTES SearchAttrs;
 SMB_FILE_ATTRIBUTES FileAttrs;
 UTIME CreationTime;
 USHORT OpenMode;
 ULONG AllocationSize;
 ULONG Timeout;
 USHORT Reserved[2];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 SMB_STRING FileName;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (31 bytes)

...

...

229 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... SMB_Data (variable)

...

SMB_Parameters (31 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (30 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

Flags AccessMode

SearchAttrs FileAttrs

CreationTime

OpenMode AllocationSize

... Timeout

... Reserved

...

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB commands in the client request
packet.

AndXReserved (1 byte): A reserved field. This field MUST be 0x00 when the message is

sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset, in bytes, from the start of the
SMB Header (section 2.2.3.1) to the start of the WordCount field in the next SMB
command in this packet. This field is valid only if the AndXCommand field is not set to
0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the server.

Flags (2 bytes): A 16-bit field of flags for requesting attribute data and locking.

230 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Description

REQ_ATTRIB

0x0001

If this bit is set, the client requests that the file attribute
data in the response be populated. All fields after the FID
in the response are also populated. If this bit is not set, all
fields after the FID in the response are zero.

REQ_OPLOCK

0x0002

Client requests an exclusive OpLock on the file.

REQ
_OPLOCK_BATCH

0x0004

Client requests a Batch OpLock on the file.

AccessMode (2 bytes): A 16-bit field for encoding the requested access mode. See section
3.2.4.5.1 for a discussion on sharing modes.

Name and
bitmask Values Meaning

AccessMode

0x0007

0 Open for reading

1 Open for writing

2 Open for reading and writing

3 Open for execution

0x0008 Reserved

SharingMode

0x0070

0 Compatibility mode

1 Deny read/write/execute to others (exclusive use
requested)

2 Deny write to others

3 Deny read/execute to others

4 Deny nothing to others

0x0080 Reserved

ReferenceLocality

0x0700

0 Unknown locality of reference

1 Mainly sequential access

2 Mainly random access

3 Random access with some locality

4 - 7 Undefined

0x0800 Reserved

CacheMode

0x1000

0 Perform caching on file

1 Do not cache the file

0x2000 Reserved

WritethroughMode 0 Write-through mode. If this flag is set, no read

231 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Values Meaning

0x4000 1 ahead or write behind allowed on this file or
device. When the response is returned, data is
expected to be on the target disk or device.

0x8000 Reserved

SearchAttrs (2 bytes): The set of attributes that the file MUST have in order to be found. If
none of the attribute bytes is set, the file attributes MUST refer to a regular file.<57>

FileAttrs (2 bytes): The set of attributes that the file is to have if the file needs to be
created. If none of the attribute bytes is set, the file attributes MUST refer to a regular file.

CreationTime (4 bytes): A 32-bit integer time value to be assigned to the file as the time of
creation if the file is created.

OpenMode (2 bytes): A 16-bit field that controls the way a file SHOULD be treated when it is

opened for use by certain extended SMB requests.

Name and
bitmask Values Meaning

FileExistsOpts

0x0003

0 The request SHOULD fail and an error returned
indicating the prior existence of the file.

1 The file is to be appended.

2 The file is to be truncated to zero (0) length.

3 Reserved

CreateFile

0x0010

0 If the file does not exist, return an error.

1 If the file does not exist, create it.

All other bits are reserved, SHOULD NOT be used by the client, and MUST be ignored by
the server.

AllocationSize (4 bytes): The number of bytes to reserve on file creation or truncation. This

field MAY be ignored by the server.

Timeout (4 bytes): This field is a 32-bit unsigned integer value containing the number of
milliseconds to wait on a blocked open request before returning without successfully
opening the file.

Reserved (4 bytes): This field is reserved and MUST be 0x00000000.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

232 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileName (variable)

...

FileName (variable): A buffer containing the name of the file to be opened.

2.2.4.41.2 Response

The server MUST populate the FID field only, unless the client has requested file attribute data by
setting bit 0 of the Flags field in the request. If file attribute data is not requested, all fields following
the FID in the response MUST be set to zero.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT FID;
 SMB_FILE_ATTRIBUTES FileAttrs;
 UTIME LastWriteTime;
 ULONG FileDataSize;
 USHORT AccessRights;
 USHORT ResourceType;
 SMB_NMPIPE_STATUS NMPipeStatus;
 USHORT OpenResults;
 USHORT Reserved[3];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (31 bytes)

...

...

... SMB_Data

...

SMB_Parameters (31 bytes):

233 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (30 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

FID FileAttrs

LastWriteTime

FileDataSize

AccessRights ResourceType

NMPipeStatus OpenResults

Reserved

...

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is
sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset, in bytes, from the start of the

SMB Header (section 2.2.3.1) to the start of the WordCount field in the next SMB
command response in this packet. This field is valid only if the AndXCommand field is not

set to 0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

FID (2 bytes): A valid FID representing the open instance of the file.

FileAttrs (2 bytes): The actual file system attributes of the file. If none of the attribute bytes
is set, the file attributes refer to a regular file.

LastWriteTime (4 bytes): A 32-bit integer time value of the last modification to the file.

FileDataSize (4 bytes): The number of bytes in the file. This field is advisory and MAY be
used.

234 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AccessRights (2 bytes): A 16-bit field that shows granted access rights to the file.

Name andvalue Meaning

SMB_DA_ACCESS_READ

0x0000

Read-only Access

SMB_DA_ACCESS_WRITE

0x0001

Write-only Access

SMB_DA_ACCESS_READ_WRITE

0x0002

Read/Write Access

All other values are reserved and MUST NOT be used.

ResourceType (2 bytes): A 16-bit field that shows the resource type opened.

Name and value Meaning

FileTypeDisk

0x0000

Disk file or directory.

FileTypeByteModePipe

0x0001

Byte mode named pipe.

FileTypeMessageModePipe

0x0002

Message-mode named pipe.

FileTypePrinter

0x0003

Printer device.

FileTypeCommDevice

0x0004

Character-mode device. When
an extended protocol has been
negotiated, this value allows a
device to be opened for driver-
level I/O. This provides direct
access to real-time and
interactive devices such as
modems, scanners, and so on.

FileTypeUnknown

0xFFFF

Unknown file type.

All other values are reserved and MUST NOT be used.

NMPipeStatus (2 bytes): A 16-bit field that contains the status of the named pipe if the
resource type opened is a named pipe.

This field is formatted as an SMB_NMPIPE_STATUS (section 2.2.1.3).

OpenResults (2 bytes): A 16-bit field that shows the results of the open operation.

Name and

bitmask

Values Meaning

OpenResult

0x0003

1 The file existed and was opened.

2 The file did not exist and was therefore created.

235 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and

bitmask

Values Meaning

3 The file existed and was truncated.

Other Reserved

LockStatus

0x8000

0 No OpLock was requested, the OpLock could not be granted, or
the server does not support OpLocks.

1 An OpLock was requested by the client and was granted by the
server.

Reserved (6 bytes): All entries MUST be 0x0000.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

ERRDO
S

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named file was not found.

ERRDO
S

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BA
D

(0xC000003B)

ENOENT The file path syntax is invalid.

ERRDO
S

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the path-prefix
was not a directory.

ERRDO
S

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FIL
ES

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

ENFILE Too many open files, no more
FIDs available.

ERRDO
S

(0x01)

ERRnoacces
s

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the path-prefix
denied search permission OR
requested access permission is
denied for the file OR open mode
failure.

ERRDO
S

(0x01)

ERRnoacces
s

(0x0005)

STATUS_FILE_IS_A_DIRECTORY

(0xC00000BA)

EISDIR Named file is an existing directory
and requested open mode is write
or read/write.

ERRDO ERRnomem STATUS_INSUFF_SERVER_RESOURC ENOMEM The server is out of resources.

236 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

S

(0x01)

(0x0008) ES

(0xC0000205)

ERRDO
S

(0x01)

ERRbadshar
e

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

EAGAIN File exists, mandatory file/record
locking is set, and there are
outstanding record locks on the
file.

ERRSR
V

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent or the
ANDX command is invalid.

ERRSR
V

(0x02)

ERRerror

(0x0001)

 EFAULT Path points outside the allocated
address space of the process.

ERRSR
V

(0x02)

ERRerror

(0x0001)

 EINTR A signal was caught during the
open operation.

ERRSR
V

(0x02)

ERRerror

(0x0001)

 ENXIO Generic server open failure

ERRSR
V

(0x02)

ERRerror
(0x0001)

 EEXIST The file could not be created
because another file with
attributes that do not match those
specified in the
SMB_Parameters.Words.FileAt
trs field already exists and has a
conflicting name.

ERRSR
V

(0x02)

ERRerror
(0x0001)

 EMFILE The maximum number of file
descriptors available on the server
for this session are currently
open.

ERRSR
V

(0x02)

ERRerror
(0x0001)

 ENOSPC No space left on device. The
system is out of resources
required to create the file.

ERRSR
V

(0x02)

ERRerror
(0x0001)

 EROFS Read-Only File System. Write or
read/write access was requested
on a file existing within a read-
only file system.

ERRSR
V

(0x02)

ERRerror
(0x0001)

 ETXTBSY Text file is busy. Write or
read/write access was requested
on a batch script that is currently
being executed.

ERRSR
V

(0x02)

ERRerror

(0x0001)

STATUS_ACCESS_DENIED

(0xC0000022)

EROFS Named file resides on read-only
file system, and requested access
permission is write or read/write.

ERRSR
V

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIE
D

(0xC00000CA)

 Permission conflict between
requested permission and
permissions for the shared
resource: for example, open for

237 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

write of a file in a read-only file
system subtree.

ERRSR
V

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSR
V

(0x02)

ERRinvdevic
e

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Server does not support the
requested device type.

ERRSR
V

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not defined to
the session, or the user identified
by the UID does not have
sufficient privileges.

ERRHR
D

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a read-only
file system.

ERRHR
D

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.4.42 SMB_COM_READ_ANDX (0x2E)

This command was introduced in the LAN Manager 1.0 dialect. Extensions to this command were
added with the introduction of the NT LAN Manager dialect.

This command is used to read bytes from a regular file, a named pipe, or a directly accessible device
such as a serial port (COM) or printer port (LPT). If the client negotiates the NT LAN Manager dialect
or later, the client SHOULD use the 12-parameter words version of the request, as this version allows
specification of 64-bit file offsets. This is the only read command that supports 64-bit file offsets.

The following are the commands that can follow an SMB_COM_READ_ANDX in an AndX chain:

 SMB_COM_CLOSE (section 2.2.4.5)

2.2.4.42.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT FID;
 ULONG Offset;

 USHORT MaxCountOfBytesToReturn;
 USHORT MinCountOfBytesToReturn;
 ULONG Timeout;
 USHORT Remaining;

238 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 ULONG OffsetHigh (optional);
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (25 bytes)

...

...

... SMB_Data

SMB_Parameters (25 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (24 bytes)

...

...

...

WordCount (1 byte): This field MUST be either 0x0A or 0x0C.

Words (24 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

FID Offset

... MaxCountOfBytesToReturn

MinCountOfBytesToReturn Timeout

... Remaining

OffsetHigh

239 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB commands in the client request

packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is

sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF. If
AndXCommand is 0xFF, this field MUST be ignored by the server.

FID (2 bytes): This field MUST be a valid FID indicating the file from which the data MUST be
read.

Offset (4 bytes): If WordCount is 0x0A, this field represents a 32-bit offset, measured in
bytes, of where the read MUST start relative to the beginning of the file. If WordCount is
0x0C, this field represents the lower 32 bits of a 64-bit offset.

MaxCountOfBytesToReturn (2 bytes): The maximum number of bytes to read. A single
request MUST NOT return more data than permitted by the maximum negotiated buffer
size (MaxBufferSize) for the session unless CAP_LARGE_READX has been negotiated as

specified in sections 2.2.4.53.1 and 3.3.5.43. If MaxCountOfBytesToReturn would
cause the total size of the response message to exceed the maximum negotiated buffer
size, the server MUST return only the number of bytes that fit within the maximum
negotiated buffer size.

MinCountOfBytesToReturn (2 bytes): The requested minimum number of bytes to return.
This field is used only when reading from a named pipe or a device. It is ignored when
reading from a standard file.

Timeout (4 bytes): This field represents the amount of time, in milliseconds, that a server
MUST wait before sending a response. It is used only when reading from a named pipe or
I/O device and does not apply when reading from a regular file.

Remaining (2 bytes): Count of bytes remaining to satisfy client's read request. This field is
not used in the NT LAN Manager dialect. Clients MUST set this field to 0x0000, and
servers MUST ignore it.

OffsetHigh (4 bytes): This field is optional. If WordCount is 0x0A this field is not included

in the request. If WordCount is 0x0C this field represents the upper 32 bits of a 64-bit
offset, measured in bytes, of where the read SHOULD start relative to the beginning of the
file.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.42.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {

240 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT Available;
 USHORT DataCompactionMode;
 USHORT Reserved1;
 USHORT DataLength;
 USHORT DataOffset;
 USHORT Reserved2[5];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad[] (optional);
 UCHAR Data[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (25 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (25 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (24 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x0C.

Words (24 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

241 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Available DataCompactionMode

Reserved1 DataLength

DataOffset Reserved2

...

...

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to SMB_COM_NO_ANDX_COMMAND (section 2.2.4.75) (0xFF) if there
are no additional SMB command responses in the server response packet.<58>

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is

sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command
response in this packet. This field is valid only if the AndXCommand field is not set to
SMB_COM_NO_ANDX_COMMAND (0xFF). If AndXCommand is

SMB_COM_NO_ANDX_COMMAND, this field MUST be ignored by the client.<59>

Available (2 bytes): This field is valid when reading from named pipes. This field indicates
the number of bytes remaining to be read after the requested read was completed.

DataCompactionMode (2 bytes): Reserved and SHOULD be 0x0000.

Reserved1 (2 bytes): This field MUST be 0x0000.

DataLength (2 bytes): The number of data bytes included in the response. If this value is
less than the value in the Request.SMB_Parameters.MaxCountOfBytesToReturn

field, it indicates that the read operation has reached the end of the file (EOF).

DataOffset (2 bytes): The offset in bytes from the header of the read data.

Reserved2 (10 bytes): Reserved. All entries MUST be 0x0000. The last 5 words are reserved
in order to make the SMB_COM_READ_ANDX Response (section 2.2.4.42.2) the same size
as the SMB_COM_WRITE_ANDX Response (section 2.2.4.43.2).

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0000.

Bytes (variable):

242 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad Data (variable)

...

Pad (1 byte): This field is optional. When using the NT LAN Manager dialect, this field can be
used to align the Data field to a 16-bit boundary relative to the start of the SMB Header.
If Unicode strings are being used, this field MUST be present. When used, this field

MUST be one padding byte long.

Data (variable): The actual bytes read in response to the request.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ALREADY_COMMITTED

(0xC0000021)

ENOLCK Attempt to read from a
portion of the file that the
server detects has been
locked or been opened in
deny-read.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to read from a FID
that the server does not
have open.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode for the
attempted operation.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

STATUS_LOCK_NOT_GRANTED

(0xC0000055)

EAGAIN The requested byte range
was already locked by a
different process (PID).

ERRDOS

(0x01)

ERReof

(0x0026)

STATUS_END_OF_FILE

(0xC0000011)

 Attempted to read beyond
the end of the file.<60>

ERRDOS

(0x01)

ERRpipebusy

(0x00E7)

STATUS_PIPE_BUSY

(0xC00000AE)

EAGAIN Attempted to read from a
busy pipe.

ERRDOS

(0x01)

ERRpipeclosing

(0x00E8)

STATUS_PIPE_EMPTY

(0xC00000D9)

 Attempted to read from an
empty pipe.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The message on a
message mode named pipe
exceeds the requested
number of bytes. The
server MUST send a full
SMB_COM_READ response
with this error code. The
requested number of bytes

243 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

are read and returned to
the client.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EBADF The FID was validated by
the server but
unacceptable to the
system.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EDEADLK The read would block and
deadlock would result.

ERRSRV

(0x02)

ERRerror

 (0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt request has been
encountered.

ERRSRV

(0x02)

ERRinvdevice

 (0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Attempt to read from an
open spool file.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV

(0x02)

ERRtimeout

(0x0058)

 The requested operation
on a named pipe or an I/O
device has timed out.

ERRSRV

(0x02)

ERRbaduid

 (0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
defined as a valid ID for
this session, or the user
identified by the UID does
not have sufficient
privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in
the physical I/O.

ERRHRD

 (0x03)

ERRread

(0x001E)

 ENXIO The device associated with
the file descriptor is a
block-special or character-
special file and the value of
the file pointer is out of
range.

2.2.4.43 SMB_COM_WRITE_ANDX (0x2F)

This command was introduced in the LAN Manager 1.0 dialect.

This request is used to write bytes to a regular file, a named pipe, or a directly accessible I/O device

such as a serial port (COM) or printer port (LPT). If the client negotiates the NT LAN Manager dialect
or later the client SHOULD use the 14-parameter word version of the request, as this version allows
specification of 64-bit file offsets. This is the only write command that supports 64-bit file offsets.

The following are the commands that can follow an SMB_COM_WRITE_ANDX in an AndX chain:

 SMB_COM_READ (section 2.2.4.11)

 SMB_COM_READ_ANDX (section 2.2.4.42)

244 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_LOCK_AND_READ (section 2.2.4.20)

 SMB_COM_CLOSE (section 2.2.4.5)

2.2.4.43.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT FID;
 ULONG Offset;
 ULONG Timeout;
 USHORT WriteMode;
 USHORT Remaining;
 USHORT Reserved;
 USHORT DataLength;
 USHORT DataOffset;
 ULONG OffsetHigh (optional);
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad;
 UCHAR Data[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): This field MUST be either 0x0C or 0x0E.

Words (variable):

245 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

FID Offset

... Timeout

... WriteMode

Remaining Reserved

DataLength DataOffset

OffsetHigh

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB commands in the client request
packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is
sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF. If
AndXCommand is 0xFF, this field MUST be ignored by the server.

FID (2 bytes): This field MUST be a valid FID indicating the file to which the data SHOULD be
written.

Offset (4 bytes): If WordCount is 0x0C, this field represents a 32-bit offset, measured in
bytes, of where the write SHOULD start relative to the beginning of the file. If WordCount
is 0xE, this field represents the lower 32 bits of a 64-bit offset.

Timeout (4 bytes): This field is the time-out, in milliseconds, to wait for the write to
complete. This field is used only when writing to a named pipe or an I/O device. It does

not apply and MUST be 0x00000000 when writing to a regular file.

WriteMode (2 bytes): A 16-bit field containing flags defined as follows:

Name and
bitmask Meaning

WritethroughMode

0x0001

If set the server MUST NOT respond to the client before the

data is written to disk (write-through).

ReadBytesAvailable

0x0002

If set the server SHOULD set the
Response.SMB_Parameters.Available field correctly for
writes to named pipes or I/O devices.

RAW_MODE

0x0004

Applicable to named pipes only. If set, the named pipe MUST be
written to in raw mode (no translation).

MSG_START Applicable to named pipes only. If set, this data is the start of a
message.

246 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Meaning

0x0008

Remaining (2 bytes): This field is an advisory field telling the server approximately how
many bytes are to be written to this file before the next non-write operation. It SHOULD
include the number of bytes to be written by this request. The server MAY either ignore
this field or use it to perform optimizations. If a pipe write spans multiple requests, the
client SHOULD set this field to the number of bytes remaining to be written.<61>

Reserved (2 bytes): This field MUST be 0x0000.

DataLength (2 bytes): This field is the number of bytes included in the SMB_Data that are
to be written to the file.

DataOffset (2 bytes): The offset in bytes from the start of the SMB Header (section 2.2.3.1)
to the start of the data that is to be written to the file. The offset is relative to the start of

the SMB Header (section 2.2.3.1), regardless of the command request's position in an

AndX chain. Specifying this offset allows a client to efficiently align the data buffer.

The DataOffset field can be used to relocate the SMB_Data.Bytes.Data block to the end of
the message, even if the message is a multi-part AndX chain. If the SMB_Data.Bytes.Data
block is relocated, the contents of SMB_Data.Bytes will not be contiguous.

Consider, for example, an SMB_COM_WRITE_ANDX + SMB_COM_CLOSE AndX chain. The
client can specify a value for SMB_Parameters.Words.DataOffset that relocates the
SMB_Data.Bytes.Data block to the end of the message, beyond the SMB_COM_CLOSE, even

though the Data block is part of the SMB_COM_WRITE_ANDX request. In this case, the
message would be structured as follows:

 The SMB Header (section 2.2.3.1), with a command code of SMB_COM_WRITE_ANDX.

 The complete SMB_Parameters block of the SMB_COM_WRITE_ANDX.

 The SMB_Data block of the SMB_COM_WRITE_ANDX:

 The value of SMB_Data.ByteCount is equal to 1 +
SMB_Parameters.Words.DataLength. The additional 1 byte is to account for the

SMB_Data.Bytes.Pad byte.

 The SMB_Data.Bytes.Pad byte.

 The SMB_Data.Bytes.Data block is not included because it has been relocated.

 The SMB_Parameters block of the SMB_COM_CLOSE follows immediately after the
SMB_Data.Bytes.Pad byte of the SMB_COM_WRITE_ANDX. The location of the
SMB_Parameters block of the SMB_COM_CLOSE, relative to the start of the SMB

Header (section 2.2.3.1), is specified by the offset given in the
SMB_Parameters.AndXOffset field of the SMB_COM_WRITE_ANDX portion of the message.

 The SMB_Data block of the SMB_COM_CLOSE (consisting of a ByteCount of 0x0000).

 Optional padding follows the SMB_Data block of the SMB_COM_CLOSE. If present, the
padding is used to align the SMB_Data.Bytes.Data block to a 16- or 32-bit boundary.

 The SMB_Data.Bytes.Data block, which is SMB_Parameters.Words.DataLength bytes in
length. The location of the SMB_Data.Bytes.Data block within the message, relative to the

start of the SMB Header (section 2.2.3.1), is indicated by the

247 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_Parameters.Words.DataOffset field in the SMB_COM_WRITE_ANDX portion of the
request.

OffsetHigh (4 bytes): This field is optional. If WordCount is 0x0C, this field is not included
in the request. If WordCount is 0x0E, this field represents the upper 32 bits of a 64-bit

offset, measured in bytes, of where the write SHOULD start relative to the beginning of
the file.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0001.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad Data (variable)

...

Pad (1 byte): Padding byte that MUST be ignored.

Data (variable): The bytes to be written to the file.

2.2.4.43.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT Count;
 USHORT Available;

 ULONG Reserved;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (13 bytes)

248 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

... SMB_Data (variable)

...

SMB_Parameters (13 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

...

WordCount (1 byte): This field MUST be 0x06. The length in two-byte words of the remaining

SMB_Parameters.

Words (12 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

Count Available

Reserved

AndXCommand (1 byte): The command code for the next SMB command in the packet.
This value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is
sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the
SMB Header (section 2.2.3.1) to the start of the WordCount field in the next SMB

command response in this packet. This field is valid only if the AndXCommand field is
not set to 0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

Count (2 bytes): The number of bytes written to the file.

Available (2 bytes): This field is valid when writing to named pipes or I/O devices. This field
indicates the number of bytes remaining to be written after the requested write was
completed. If the client wrote to a disk file, this field MUST be set to 0xFFFF.<62>

Reserved (4 bytes): This field MUST be 0x00000000.

249 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

SUCCESS

(0x00)

SUCCESS

(0x0000)

STATUS_SUCCESS

(0x00000000)

EFBIG The file has grown too
large and no more data
can be written to the
file. A Count of zero
(0x0000) MUST be
returned to the client in
the server response.
This indicates to the
client that the file
system is full.

SUCCESS

(0x00)

SUCCESS

(0x0000)

STATUS_SUCCESS

(0x00000000)

NOSPC No space on the file
system. The server
MUST return a zero
(0x0000) in the Count
field of the response.
This indicates that the
file system is full.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 EAGAIN Resources for I/O on
the server are
temporarily exhausted.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

ENOLCK A record lock has been
taken on the file or the
client has attempted to
write to a portion of the
file that the server
detects has been
locked.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID, or FID
mapped to a valid
server FID but it was
not acceptable to the
operating system.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission
required.

ERRDOS

(0x01)

ERRlock

(0x0021)

STATUS_FILE_LOCK_CONFLICT

(0xC0000054)

 The requested byte
range was already
locked by a different
process (PID).

250 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRpipebusy

(0x00E7)

STATUS_PIPE_BUSY

(0xC00000AE)

EAGAIN Attempted to read from
a busy pipe.

ERRDOS

(0x01)

ERRnotconnected

(0x00E9)

STATUS_PIPE_DISCONNECTED

(0xC00000B0)

EPIPE Write to a named pipe
with no reader.

ERRSRV

(0x02)

ERRerror

(0x0001)

 EDEADLK The write would block
due to locking and
deadlock would result.

ERRSRV

(0x02)

ERRerror

(0x0001)

 ERANGE Attempted write size is
outside of the minimum
or maximum ranges
that can be written to
the supplied FID.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 A corrupt or invalid
SMB request was
received.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 Invalid TID in request.

ERRSRV

(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Print queue is full--too
many queued items.

ERRSRV

(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 Print queue is full--too
many queued items.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is
not known as a valid ID
on this server session,
or the user identified by
the UID does not have
sufficient privileges.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred
in the physical I/O.

ERRHRD

(0x03)

ERRwrite

(0x001D)

 ENXIO The device associated
with the file descriptor
is a block-special or
character-special file
and the value of the file
pointer is out of range.

ERRHRD

(0x03)

ERRdiskfull

(0x0027)

STATUS_DISK_FULL

(0xC000007F)

ENOSPC The file system is full.

2.2.4.44 SMB_COM_NEW_FILE_SIZE (0x30)

This command was reserved but not implemented. It was also never defined. It is listed in [SNIA],
but it is not defined in that document and does not appear in any other references.

http://go.microsoft.com/fwlink/?LinkId=90519

251 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Clients SHOULD NOT send requests using this command code, and servers receiving requests with this
command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOC/ERRbadfunc).<63>

2.2.4.45 SMB_COM_CLOSE_AND_TREE_DISC (0x31)

This command was introduced in the NT LAN Manager dialect, and was reserved but not
implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).<64>

2.2.4.46 SMB_COM_TRANSACTION2 (0x32)

This command was introduced in the LAN Manager 1.2 dialect.

SMB_COM_TRANSACTION2 subcommands provide support for a richer set of server-side file system
semantics. The "Trans2 subcommands", as they are called, allow clients to set and retrieve Extended

Attribute key/value pairs, make use of long file names (longer than the original 8.3 format names),
and perform directory searches, among other tasks.

The client indicates that it has not sent all of the Data bytes by setting DataCount to a value less
than TotalDataCount. Similarly, if ParameterCount is less than TotalParameterCount, then the
client has more Parameter bytes to send. Parameter bytes SHOULD be sent before Data bytes, and
clients SHOULD attempt to send as many bytes as possible in each message. Servers SHOULD be
prepared, however, to accept Parameters and Data in any order, in large or small amounts.

For both the request and the response, the positions and lengths of the
SMB_Data.Trans2_Parameters and SMB_Data.Trans2_Data fields are determined by the values
of the SMB_Parameters.ParameterOffset, SMB_Parameters.ParameterCount,
SMB_Parameters.DataOffset, and SMB_Parameters.DataCount fields. In addition, the
SMB_Parameters.ParameterDisplacement and SMB_Parameters.DataDisplacement fields can
be used to change the order in which subranges of bytes are transferred. Servers SHOULD transfer

bytes in order and give precedence to SMB_Data.Trans2_Parameters bytes. Clients SHOULD be

prepared to reconstruct transaction SMB_Data.Trans2_Parameters and SMB_Data.Trans_Data,
regardless of the order or locations in which they are delivered.

2.2.4.46.1 Request

The SMB_COM_TRANSACTION2 request format is similar to that of the SMB_COM_TRANSACTION
request except for the Name field. The differences are in the subcommands supported, and in the

purposes and usages of some of the fields.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT MaxParameterCount;
 USHORT MaxDataCount;
 UCHAR MaxSetupCount;
 UCHAR Reserved1;
 USHORT Flags;
 ULONG Timeout;
 USHORT Reserved2;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT DataCount;
 USHORT DataOffset;

252 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UCHAR SetupCount;
 UCHAR Reserved3;
 USHORT Setup[SetupCount];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Name;
 UCHAR Pad1[];
 UCHAR Trans2_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans2_Data[DataCount];
 }
 }

SMB_Header:

The Command for the initial request and for all responses MUST be SMB_COM_TRANSACTION2
(0x32). The Command for secondary request messages that are part of the same transaction
MUST be SMB_COM_TRANSACTION2_SECONDARY (0x33). The PID, MID, TID, and UID MUST
be the same for all requests and responses that are part of the same transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_TRANSACTION2 request contains the information used

to manage the transaction itself. It also contains flags and setup information that provide context for
the execution of the operation on the server side.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

SMB_Data (variable)

...

WordCount (1 byte): The value of Words.SetupCount plus 14 (0x0E). This value represents
the total number of SMB parameter words and MUST be greater than or equal to 14 (0x0E).

Words (variable):

253 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

MaxParameterCount MaxDataCount

MaxSetupCount Reserved1 Flags

Timeout

Reserved2 ParameterCount

ParameterOffset DataCount

DataOffset SetupCount Reserved3

Setup (variable)

...

TotalParameterCount (2 bytes): The total number of SMB_COM_TRANSACTION2
parameter bytes to be sent in this transaction request. This value MAY be reduced in any
or all subsequent SMB_COM_TRANSACTION2_SECONDARY requests that are part of the

same transaction. This value represents transaction parameter bytes, not SMB parameter
words. Transaction parameter bytes are carried in the SMB_Data block of the
SMB_COM_TRANSACTION2 request.

TotalDataCount (2 bytes): The total number of SMB_COM_TRANSACTION2 data bytes to be
sent in this transaction request. This value MAY be reduced in any or all subsequent

SMB_COM_TRANSACTION2_SECONDARY requests that are part of the same transaction.

This value represents transaction data bytes, not SMB data bytes.

MaxParameterCount (2 bytes): The maximum number of parameter bytes that the client
will accept in the transaction reply. The server MUST NOT return more than this number of
parameter bytes.

MaxDataCount (2 bytes): The maximum number of data bytes that the client will accept in
the transaction reply. The server MUST NOT return more than this number of data bytes.

MaxSetupCount (1 byte): The maximum number of setup bytes that the client will accept in

the transaction reply. The server MUST NOT return more than this number of setup bytes.

Reserved1 (1 byte): A padding byte. This field MUST be zero. Existing CIFS implementations
MAY combine this field with MaxSetupCount to form a USHORT. If MaxSetupCount is
defined as a USHORT, the high order byte MUST be 0x00.

Flags (2 bytes): A set of bit flags that alter the behavior of the requested operation. Unused
bit fields MUST be set to zero by the client sending the request, and MUST be ignored by
the server receiving the request. The client MAY set either or both of the following bit

flags:

254 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Meaning

DISCONNECT_TID

0x0001

If set, following the completion of the operation the server
MUST disconnect the tree connect associated with the tree
identifier (TID) field received in the SMB
Header (section 2.2.3.1) of this request. The client SHOULD
NOT send a subsequent SMB_COM_TREE_DISCONNECT for
this tree connect.

NO_RESPONSE

0x0002

This is a one-way transaction. The server MUST attempt to
complete the transaction, but SHOULD NOT send a response
to the client.<65>

Timeout (4 bytes): The number of milliseconds that the server waits for completion of the

transaction before generating a time-out. A value of 0x00000000 indicates that the
operation is not blocked.<66>

Reserved2 (2 bytes): Reserved. This field MUST be 0x0000 in the client request. The server

MUST ignore the contents of this field.

ParameterCount (2 bytes): The number of transaction parameter bytes being sent in this
SMB message. If the transaction fits within a single SMB_COM_TRANSACTION2 request,
then this value MUST be equal to TotalParameterCount. Otherwise, the sum of the

ParameterCount values in the primary and secondary transaction request messages
MUST be equal to the smallest TotalParameterCount value reported to the server. If the
value of this field is less than the value of TotalParameterCount, then at least one
SMB_COM_TRANSACTION2_SECONDARY message MUST be used to transfer the
remaining parameter bytes. The ParameterCount field MUST be used to determine the
number of transaction parameter bytes contained within the SMB_COM_TRANSACTION2

message.

ParameterOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes. This MUST be the number of bytes from the start of the SMB

message to the start of the SMB_Data.Bytes.Parameters field. Server implementations
MUST use this value to locate the transaction parameter block within the SMB message. If
ParameterCount is zero, the client/server MAY set this field to zero.<67>

DataCount (2 bytes): The number of transaction data bytes being sent in this SMB message.

If the transaction fits within a single SMB_COM_TRANSACTION2 request, then this value
MUST be equal to TotalDataCount. Otherwise, the sum of the DataCount values in the
primary and secondary transaction request messages MUST be equal to the smallest
TotalDataCount value reported to the server. If the value of this field is less than the
value of TotalDataCount, then at least one SMB_COM_TRANSACTION2_SECONDARY
message MUST be used to transfer the remaining data bytes.

DataOffset (2 bytes): The offset, in bytes, from the start of the SMB Header (section

2.2.3.1) to the transaction data bytes. This MUST be the number of bytes from the start of
the SMB message to the start of the SMB_Data.Bytes.Data field. Server
implementations MUST use this value to locate the transaction data block within the SMB

message. If DataCount is zero, the client/server MAY set this field to zero.<68>

SetupCount (1 byte): The number of setup words that are included in the transaction
request.

Reserved3 (1 byte): A padding byte. This field MUST be 0x00. Existing CIFS
implementations MAY combine this field with SetupCount to form a USHORT. If
SetupCount is defined as a USHORT, the high order byte MUST be0x00.

255 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Setup (variable): An array of two-byte words that provide transaction context to the server.
The size and content of the array are specific to individual

subcommands.SMB_COM_TRANSACTION2 messages MAY exceed the maximum size of a
single SMB message (as determined by the value of the MaxBufferSize session

parameter). If this is the case, then the client MUST use one or more
SMB_COM_TRANSACTION2_SECONDARY messages to transfer transaction Data and
Parameter bytes that did not fit in the initial message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array.

Bytes (variable): The Name field MUST be the first field in this section. The locations and sizes
of all other fields, including the padding, are determined by the values of ParameterOffset,
ParameterCount, DataOffset, and DataCount. The server SHOULD be able to read the
Parameters and Data regardless of their locations within the SMB_Data section of the
message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Pad1 (variable)

...

Trans2_Parameters (variable)

...

Pad2 (variable)

...

Trans2_Data (variable)

...

Name (1 byte): This field is not used in SMB_COM_TRANSACTION2 requests. This field MUST

be set to zero, and the server MUST ignore it on receipt.

Pad1 (variable): This field MUST be used as an array of padding bytes to align the following
field to a 4-byte boundary relative to the start of the SMB Header (section 2.2.3.1). This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

Trans2_Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_TRANSACTION2 subcommand descriptions for information on parameters sent

for each subcommand.

256 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Pad2 (variable): This field MUST be used as an array of padding bytes to align the following
field to a 4-byte boundary relative to the start of the SMB Header. This constraint can

cause this field to be a zero-length field. This field SHOULD be set to zero by the
client/server and MUST be ignored by the server/client.

Trans2_Data (variable): Transaction data bytes. See the individual
SMB_COM_TRANSACTION2 subcommand descriptions for information on data sent for
each subcommand.

2.2.4.46.2 Response

The SMB_COM_TRANSACTION2 response has two possible formats. The standard format is used to
return the results of the completed transaction. A shortened interim response message is sent

following the initial SMB_COM_TRANSACTION2 request if secondary request messages
(SMB_COM_TRANSACTION2_SECONDARY) are pending. Whenever a transaction request is split across
multiple SMB requests, the server MUST evaluate the initial SMB_COM_TRANSACTION2 request to
determine whether or not it has the resources necessary to process the transaction. It MUST also
check for any other errors it can detect based upon the initial request, and then send back an interim

response. The interim response advises the client as to whether it can send the rest of the transaction

to the server.

Interim Response

The format of the SMB_COM_TRANSACTION2 Interim Server Response message MUST be an SMB
Header (section 2.2.3.1) with an empty Parameter and Data section, and the WordCount and
ByteCount fields MUST be zero. Error codes MUST be returned in the SMB_Header.Status field if
errors occur.

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

If no error is returned in the SMB_COM_TRANSACTION2 Interim Server Response, the transaction
MAY proceed. The client can send as many SMB_COM_TRANSACTION2_SECONDARY messages as
needed in order to transfer the remainder of the transaction subcommand. The server MUST process

the transaction and MUST reply with one or more SMB_COM_TRANSACTION2 response messages.

Final Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT Reserved1;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT ParameterDisplacement;
 USHORT DataCount;
 USHORT DataOffset;
 USHORT DataDisplacement;
 UCHAR SetupCount;
 UCHAR Reserved2;

257 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT Setup[SetupCount];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Trans2_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans2_Data[DataCount];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The value of Words.SetupCount plus 10 (0x0A). This value represents the
total number of SMB parameter words and MUST be greater than or equal to 10 (0x0A).

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

Reserved1 ParameterCount

ParameterOffset ParameterDisplacement

DataCount DataOffset

DataDisplacement SetupCount Reserved2

258 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Setup (variable)

...

TotalParameterCount (2 bytes): The total number of SMB_COM_TRANSACTION2 parameter
bytes to be sent in this transaction response. This value can be reduced in any or all
subsequent SMB_COM_TRANSACTION2 responses that are part of the same transaction.

This value represents transaction parameter bytes, not SMB parameter words. Transaction
parameter bytes are carried within in the SMB_data block.

TotalDataCount (2 bytes): The total number of SMB_COM_TRANSACTION2 data bytes to be
sent in this transaction response. This value MAY be reduced in any or all subsequent
SMB_COM_TRANSACTION2 responses that are part of the same transaction. This value
represents transaction data bytes, not SMB data bytes.

Reserved1 (2 bytes): Reserved. This field MUST be 0x0000 in the client request. The server
MUST ignore the contents of this field.

ParameterCount (2 bytes): The number of transaction parameter bytes being sent in this
SMB message. If the transaction fits within a single SMB_COM_TRANSACTION2 response,
this value MUST be equal to TotalParameterCount. Otherwise, the sum of the
ParameterCount values in the transaction response messages MUST be equal to the
smallest TotalParameterCount value reported by the server. The ParameterCount field

MUST be used to determine the number of transaction parameter bytes contained within
the SMB message.

ParameterOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes. This MUST be the number of bytes from the start of the SMB
message to the start of the SMB_Data.Bytes.Parameters field. Server implementations
MUST use this value to locate the transaction parameter block within the SMB message. If
ParameterCount is zero, the client/server MAY set this field to zero.<69>

ParameterDisplacement (2 bytes): The offset relative to all of the transaction parameter
bytes in this transaction response at which this block of parameter bytes MUST be placed.
This value MAY be used by the client to correctly reassemble the transaction parameters
even if the SMB response messages are received out of order.

DataCount (2 bytes): The number of transaction data bytes being sent in this SMB message.
If the transaction fits within a single SMB_COM_TRANSACTION2 response, then this value

MUST be equal to TotalDataCount. Otherwise, the sum of the DataCount values in the
transaction response messages MUST be equal to the smallest TotalDataCount value
reported by the server.

DataOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction data bytes. This MUST be the number of bytes from the start of the SMB
message to the start of the SMB_Data.Bytes.Data field. Server implementations MUST
use this value to locate the transaction data block within the SMB message. If DataCount

is zero, the client/server MAY set this field to zero.<70>

DataDisplacement (2 bytes): The offset relative to all of the transaction data bytes in this
transaction response at which this block of data bytes MUST be placed. This value MAY be
used by the client to correctly reassemble the transaction data even if the SMB response
messages are received out of order.

SetupCount (1 byte): The number of setup words that are included in the transaction
response.

259 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved2 (1 byte): A padding byte. This field MUST be 0x00. If SetupCount is defined as a
USHORT, the high order byte MUST be 0x00.

Setup (variable): An array of two-byte words that provides transaction results from the
server. The size and content of the array are specific to individual subcommands.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION2 response contains the parameters and data
generated by the transaction subcommand.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Trans2_Parameters (variable)

...

Pad2 (variable)

...

Trans2_Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1). This can cause this field to be a zero-length field. This field SHOULD be set to
zero by the client/server and MUST be ignored by the server/client.

Trans2_Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_TRANSACTION2 subcommand descriptions for information on parameters

returned by the server for each subcommand.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4 byte boundary relative to the start of the SMB Header. This constraint
can cause this field to be a zero-length field. This field SHOULD be set to zero by the
client/server and MUST be ignored by the server/client.

260 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Trans2_Data (variable): Transaction data bytes. See the individual
SMB_COM_TRANSACTION2 subcommand descriptions for information on data returned by

the server for each subcommand.<71>

2.2.4.47 SMB_COM_TRANSACTION2_SECONDARY (0x33)

This command was introduced in the LAN Manager 1.2 dialect.

The SMB_COM_TRANSACTION2_SECONDARY command is used to complete a data transfer initiated
by an SMB_COM_TRANSACTION2 request.

2.2.4.47.1 Request

The SMB_COM_TRANSACTION2_SECONDARY request message differs from the
SMB_COM_TRANSACTION_SECONDARY Request (section 2.2.4.34.1) by the addition of the FID field
in the SMB_Parameters.Words section.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalParameterCount;
 USHORT TotalDataCount;
 USHORT ParameterCount;
 USHORT ParameterOffset;
 USHORT ParameterDisplacement;
 USHORT DataCount;
 USHORT DataOffset;
 USHORT DataDisplacement;
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Trans2_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Trans2_Data[DataCount];
 }
 }

SMB_Header:

This command MUST be sent following a successful SMB_COM_TRANSACTION2 Intermediate
Response from the server. The PID, MID, TID, and UID MUST be the same for all requests and
responses that are part of the same transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

261 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Wordcount Words (variable)

...

Wordcount (1 byte): This value represents the total number of SMB parameter words and MUST

be 0x09.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalParameterCount TotalDataCount

ParameterCount ParameterOffset

ParameterDisplacement DataCount

DataOffset DataDisplacement

FID

TotalParameterCount (2 bytes): The total number of transaction parameter bytes to be
sent to the server over the course of this transaction. This value MAY be less than or equal
to the TotalParameterCount in preceding request messages that are part of the same

transaction. This value represents transaction parameter bytes, not SMB parameter words.

TotalDataCount (2 bytes): The total number of transaction data bytes to be sent to the
server over the course of this transaction. This value MAY be less than or equal to the
TotalDataCount in preceding request messages that are part of the same transaction.
This value represents transaction data bytes, not SMB data bytes.

ParameterCount (2 bytes): The number of transaction parameter bytes being sent in the
SMB message. This value MUST be less than TotalParameterCount. The sum of the

ParameterCount values across all of the request messages in a transaction MUST be
equal to the TotalParameterCount reported in the last request message of the
transaction.

ParameterOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes contained in this SMB message. This MUST be the number of
bytes from the start of the SMB message to the start of the
SMB_Data.Bytes.Trans2_Parameters field. Server implementations MUST use this

value to locate the transaction parameter block within the SMB message. If
ParameterCount is zero, the client/server MAY set this field to zero.<72>

ParameterDisplacement (2 bytes): The offset relative to all of the transaction parameter
bytes sent to the server in this transaction at which this block of parameter bytes SHOULD

262 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

be placed. This value can be used by the server to correctly reassemble the transaction
parameters even if the SMB request messages are received out of order.

DataCount (2 bytes): The number of transaction data bytes being sent in this SMB message.
This value MUST be less than the value of TotalDataCount. The sum of the DataCount

values across all of the request messages in a transaction MUST be equal to the smallest
TotalDataCount value reported to the server.

DataOffset (2 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction data bytes contained in this SMB message. This MUST be the number of bytes
from the start of the SMB message to the start of the SMB_Data.Bytes.Trans2_Data
field. Server implementations MUST use this value to locate the transaction data block
within the SMB message. If DataCount is zero, the client/server MAY set this field to

zero.<73>

DataDisplacement (2 bytes): The offset relative to all of the transaction data bytes sent to
the server in this transaction at which this block of parameter bytes SHOULD be placed.
This value MAY be used by the server to correctly reassemble the transaction data block

even if the SMB request messages are received out of order.

FID (2 bytes): Either a valid File ID returned by a previous Open or Create operation, or

0xFFFF. A FID value of 0xFFFF is, by definition, an invalid FID and indicates that no FID
is being sent in this request. See the individual descriptions of the Trans2 subcommands
for specific information on the use of this field.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION2_SECONDARY request contains parameters
and data bytes being sent to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Trans2_Parameters (variable)

...

Pad2 (variable)

...

263 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Trans2_Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1). This constraint can cause this field to be a zero-length field. This field SHOULD

be set to zero by the client/server and MUST be ignored by the server/client.

Trans2_Parameters (variable): Transaction parameter bytes.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

Trans2_Data (variable): Transaction data bytes.

2.2.4.47.2 Response

There is no response message defined for the SMB_COM_TRANSACTION2_SECONDARY request.

Error Codes

Since there is no response to an SMB_COM_TRANSACTION2_SECONDARY request, there are no error
codes defined.

2.2.4.48 SMB_COM_FIND_CLOSE2 (0x34)

This command was introduced in the LAN Manager 1.2 dialect.

The SMB_COM_FIND_CLOSE2 command is used to close a search handle that was created by a

TRANS2_FIND_FIRST2 subcommand. Closing the search handle allows the server to release any

resources associated with the handle.

2.2.4.48.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT SearchHandle;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

TID (2 bytes): A valid TID MUST be provided. The TID MUST refer to a connected server

share.

UID (2 bytes): A valid UID MUST be provided and MUST match the UID used to initiate the
directory search.

264 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SID

SID (2 bytes): A search handle, also known as a Search ID (SID). This MUST be the SID
value returned in the initial TRANS2_FIND_FIRST2 subcommand request.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.48.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

265 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadfid
(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE The search handle is invalid.

ERRSRV
(0x02)

ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid or corrupt SMB.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined for the session.

2.2.4.49 SMB_COM_FIND_NOTIFY_CLOSE (0x35)

This command was introduced in the LAN Manager 1.2 dialect (see [XOPEN-SMB] section 15.3), and

was reserved but not implemented.

This command was intended to close a directory search handle that was created by a
TRANS2_FIND_NOTIFY_FIRST subcommand request to the server. The TRANS2_FIND_NOTIFY_FIRST
and TRANS2_FIND_NOTIFY_NEXT subcommands were also not implemented.

Clients SHOULD NOT send requests using this command code, and servers receiving requests with this
command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.4.50 SMB_COM_TREE_CONNECT (0x70)

This is an original Core Protocol command. This command has been deprecated. Client
Implementations SHOULD use SMB_COM_TREE_CONNECT_ANDX.

This command is used to establish a client connection to a server share. The share is identified by

name, and the connection, once established, is identified by a TID which is returned to the client.

2.2.4.50.1 Request

266 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 OEM_STRING Path;
 UCHAR BufferFormat2;
 OEM_STRING Password;
 UCHAR BufferFormat3;
 OEM_STRING Service;
 }
 }

SMB_Header

Flags2 (2 bytes): The SMB_FLAGS2_UNICODE flag bit SHOULD be zero. Servers MUST ignore the
SMB_FLAGS2_UNICODE flag and interpret strings in this request as OEM_STRING strings.<74>

TID (2 bytes): This field MUST be ignored by the server.

UID (2 bytes): This field represents an authenticated user. If the server is operating in share level

access control mode, then the UID is ignored. If the server is operating in user level access
control mode, then the server MUST validate the UID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0006.

Bytes (variable):

267 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 Path (variable)

...

BufferFormat2 Password (variable)

...

BufferFormat3 Service (variable)

...

BufferFormat1 (1 byte): A buffer format identifier. The value of this field MUST be 0x04.

Path (variable): A null-terminated string that represents the server and share name of the
resource to which the client is attempting to connect. This field MUST be encoded using

Universal Naming Convention (UNC) syntax. The string MUST be a null-terminated array of
OEM characters, even if the client and server have negotiated to use Unicode strings.

A share path in UNC syntax would be represented by a string in the following form:

 \\server\share

BufferFormat2 (1 byte): A buffer format identifier. The value of this field MUST be 0x04.

Password (variable): A null-terminated string that represents a share password in plaintext
form. The string MUST be a null-terminated array of OEM characters, even if the client and

server have negotiated to use Unicode strings.

BufferFormat3 (1 byte): A buffer format identifier. The value of this field MUST be 0x04.

Service (variable): A null-terminated string representing the type of resource that the client
intends to access. This field MUST be a null-terminated array of OEM characters, even if

the client and server have negotiated to use Unicode strings. The valid values for this field
are as follows:

Service String Description

"A:" Disk Share

"LPT1:" Printer Share

"IPC" Named Pipe

"COMM" Serial Communications device

"?????" Matches any type of device or resource

2.2.4.50.2 Response

 SMB_Parameters

268 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 UCHAR WordCount;
 Words
 {
 USHORT MaxBufferSize;
 USHORT TID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be set to 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxBufferSize TID

MaxBufferSize (2 bytes): The maximum size, in bytes, of the largest SMB message that the
server can receive. This is the size of the largest SMB message that the client can send to
the server. SMB message size includes the size of the SMB Header (section 2.2.3.1),

parameter, and data blocks. This size MUST NOT include any transport-layer framing or
other transport-layer data.

TID (2 bytes): The newly generated Tree ID, used in subsequent CIFS client requests to
refer to a resource relative to the SMB_Data.Bytes.Path specified in the request. Most
access to the server requires a valid TID, whether the resource is password protected or

not. The value 0xFFFF is reserved; the server MUST NOT return a TID value of 0xFFFF.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

269 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The share path does
not reference a valid
resource.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_LOGON_FAILURE

(0xC000006D)

EPERM The server rejected the
client logon attempt.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources. Out of
memory or TIDs.

ERRDOS
(0x01)

ERRnosuchshare

(0x0043)

STATUS_BAD_NETWORK_NAME

(0xC00000CC)

 The server is
temporarily paused.

ERRDOS

(0x01)

ERRpaused

(0x0046)

STATUS_SHARING_PAUSED

(0xC00000CF)

 The server is

temporarily paused.

ERRDOS
(0x01)

ERRreqnotaccep

(0x0047)

STATUS_REQUEST_NOT_ACCEPTED

(0xC00000D0)

 The server has no more
connections available.

ERRDOS
(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 Tree connect request
after request to end
session or internal
error.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter
bytes were sent. Did
the client omit a
session setup?

ERRSRV

(0x02)

ERRbadpw

(0x0002)

STATUS_LOGON_FAILURE

(0xC000006D)

 Incorrect password
during logon attempt.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_ACCESS_DENIED

(0xC0000022)

 The user is not

authorized to access
the resource.

ERRSRV

(0x02)

ERRinvnetname

(0x0006)

STATUS_BAD_NETWORK_NAME

(0xC00000CC)

 The share path is not
valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Resource type invalid.
Value of Service field in
the request was invalid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.4.51 SMB_COM_TREE_DISCONNECT (0x71)

This is an original Core Protocol command.

270 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command is used to logically disconnect client access to a server resource. The resource sharing
connection is identified by the TID in the SMB Header (section 2.2.3.1), and the TID is invalidated. It

MUST NOT be recognized if used by the client in subsequent requests. All open files, directories, and
other resources that exist within the resource identified by the TID are released. Locks on files or

directories within the shared resource are also released.

2.2.4.51.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header

TID (2 bytes): The Tree ID of the resource connection to be closed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.51.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

271 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB

error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV
(0x02)

ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 The client sent a badly formatted
SMB_COM_TREE_DISCONNECT request.

ERRSRV
(0x02)

ERRbadtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the request is invalid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not known to the
session, or the user identified by the UID
does not have sufficient privileges.

2.2.4.52 SMB_COM_NEGOTIATE (0x72)

This is an original Core Protocol command.

This command is used to initiate an SMB connection between the client and the server. An
SMB_COM_NEGOTIATE exchange MUST be completed before any other SMB messages are sent to the

server.

There MUST be only one SMB_COM_NEGOTIATE exchange per SMB connection. Subsequent
SMB_COM_NEGOTIATE requests received by the server MUST be rejected with error responses. The

server MUST NOT take any other action.

2.2.4.52.1 Request

 SMB_Parameters
 {

272 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Dialects[];
 }
 }

SMB_Header

CID (2 bytes): If the transport is connectionless (for example, Direct IPX Transport), then this

field MUST be 0x0000.

TID (2 bytes): The TID is uninitialized at this point and MUST be ignored by the server.<75>

UID (2 bytes): The UID is uninitialized at this point and MUST be ignored by the server.<76>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Dialects (variable)

...

273 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Dialects (variable): This is a variable length list of dialect identifiers in order of preference
from least to most preferred. The client MUST list only dialects that it supports. The

structure of the list entries is as follows:

 SMB_Dialect
 {
 UCHAR BufferFormat;
 OEM_STRING DialectString;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DialectString (variable)

...

BufferFormat (1 byte): This field MUST be 0x02. This is a buffer format indicator that
identifies the next field as a null-terminated array of characters.

DialectString (variable): A null-terminated string identifying an SMB dialect. A list of
common dialects is presented in section 1.7.

2.2.4.52.2 Response

The server's response is dependent upon the dialect, if any, that the server has selected.

 If the server is returning an error, the WordCount and ByteCount SHOULD be 0x00 and 0x0000,
respectively.

 If the server has selected the Core Protocol dialect, or if none of the offered protocols is
supported by the server, then WordCount MUST be 0x01 and the dialect index (the selected

dialect) MUST be returned as the only parameter.

 If the server has selected any dialect from LAN Manager 1.0 through LAN Manager 2.1,
WordCount MUST be 0x0D. See [XOPEN-SMB] for a specification of the LAN Manager dialects
other than LAN Manager 2.1. [SMB-LM21] provides documentation on the extensions to the LAN
Manager 2.0 dialect that define the LAN Manager 2.1 dialect.

 If the server has selected the NT LAN Manager dialect, then WordCount MUST be 0x11.

Other dialects can return an SMB_COM_NEGOTIATE (section 2.2.4.52) response using different
formats. The value of WordCount MUST, therefore, be considered variable until the dialect has been
determined. All dialects MUST return the DialectIndex as the first entry in the
SMB_Parameters.Words array. That is, the structure returned by the Core Protocol is the common
minimum. That structure is as follows.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT DialectIndex;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;

http://go.microsoft.com/fwlink/?LinkId=163216

274 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

SMB_Header

CID (2 bytes): If the underlying transport is connectionless (for example, Direct IPX), the
Connection ID (CID) is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The value of this field MUST be greater than or equal to 0x01.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DialectIndex

DialectIndex (2 bytes): The index of the dialect selected by the server from the list
presented in the request. Dialect entries are numbered starting with 0x0000, so a
DialectIndex value of 0x0000 indicates that the first entry in the list has been selected.
If the server does not support any of the listed dialects, it MUST return a DialectIndex of

0XFFFF.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): The value of this field MUST be set to 0x0000.

If the negotiated dialect is NT LAN Manager, the structure of the SMB_COM_NEGOTIATE
response is as follows.

 SMB_Parameters
 {

275 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UCHAR WordCount;
 Words
 {
 USHORT DialectIndex;
 UCHAR SecurityMode;
 USHORT MaxMpxCount;
 USHORT MaxNumberVcs;
 ULONG MaxBufferSize;
 ULONG MaxRawSize;
 ULONG SessionKey;
 ULONG Capabilities;
 FILETIME SystemTime;
 SHORT ServerTimeZone;
 UCHAR ChallengeLength;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Challenge[];
 SMB_STRING DomainName[];
 }
 }

SMB_Header

CID (2 bytes): If the underlying transport is connectionless (for example, Direct IPX Transport),
the Connection ID (CID) is returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The value of this field MUST be 0x11.

Words (variable):

276 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DialectIndex SecurityMode MaxMpxCount

... MaxNumberVcs MaxBufferSize

... MaxRawSize

... SessionKey

... Capabilities

... SystemTime

...

... ServerTimeZone

... ChallengeLength

DialectIndex (2 bytes): The index of the dialect selected by the server from the list
presented in the request. Dialect entries are numbered starting with 0x0000, so a
DialectIndex value of 0x0000 indicates the first entry in the list. If the server does not

support any of the listed dialects, it MUST return a DialectIndex of 0xFFFF.

SecurityMode (1 byte): An 8-bit field indicating the security modes supported or required by
the server, as follows:

Name and bitmask Meaning

NEGOTIATE_USER_SECURITY

0x01

If clear (0), the server supports only Share
Level access control.

If set (1), the server supports only User Level
access control.

NEGOTIATE_ENCRYPT_PASSWORDS

0x02

If clear, the server supports only plaintext
password authentication.

If set, the server supports challenge/response
authentication.<77>

NEGOTIATE_SECURITY_SIGNATURES_ENABLED

0x04

If clear, the server does not support SMB
security signatures.

If set, the server supports SMB security
signatures for this connection.<78>

NEGOTIATE_SECURITY_SIGNATURES_REQUIRED

0x08

If clear, the security signatures are optional for
this connection.

If set, the server requires security signatures.

This bit MUST be clear if the
NEGOTIATE_SECURITY_SIGNATURES_ENABLED
bit is clear.

Reserved

0xF0

The remaining bits are reserved and MUST be
zero.

277 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

MaxMpxCount (2 bytes): The maximum number of outstanding SMB operations that the
server supports. This value includes existing OpLocks, the

NT_TRANSACT_NOTIFY_CHANGE subcommand, and any other commands that are
pending on the server. If the negotiated MaxMpxCount is 0x0001, then OpLock support

MUST be disabled for this session. The MaxMpxCount MUST be greater than 0x0000. This
parameter has no specific relationship to the SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX commands.<79>

MaxNumberVcs (2 bytes): The maximum number of virtual circuits that can be established
between the client and the server as part of the same SMB session.<80>

MaxBufferSize (4 bytes): The maximum size, in bytes, of the largest SMB message that the
server can receive. This is the size of the largest SMB message that the client can send to

the server. SMB message size includes the size of the SMB header, parameter, and data
blocks. This size does not include any transport-layer framing or other transport-layer
data. The server SHOULD<81> provide a MaxBufferSize of 4356 bytes, and MUST be a
multiple of 4 bytes. If CAP_RAW_MODE is negotiated, the SMB_COM_WRITE_RAW
command can bypass the MaxBufferSize limit. Otherwise, SMB messages sent to the

server MUST have a total size less than or equal to the MaxBufferSize value. This

includes AndX chained messages.

MaxRawSize (4 bytes): This value specifies the maximum message size when the client
sends an SMB_COM_WRITE_RAW Request (section 2.2.4.25.1), and the maximum
message size that the server MUST NOT exceed when sending an SMB_COM_READ_RAW
Response (section 2.2.4.22.2). This value is significant only if CAP_RAW_MODE is
negotiated.<82>

SessionKey (4 bytes): The server SHOULD set the value to a token generated for the

connection, as specified in SessionKey Generation (section 2.2.1.6.6) .

Capabilities (4 bytes): A 32-bit field providing a set of server capability indicators. This bit
field is used to indicate to the client which features are supported by the server. Any value
not listed in the following table is unused. The server MUST set the unused bits to 0 in a
response, and the client MUST ignore these bits.

Name and bitmask Meaning

CAP_RAW_MODE

0x00000001

The server supports SMB_COM_READ_RAW and
SMB_COM_WRITE_RAW requests. Raw mode is not supported
over connectionless transports.

CAP_MPX_MODE

0x00000002

The server supports SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX requests. MPX mode is supported only
over connectionless transports.

CAP_UNICODE

0x00000004

The server supports UTF-16LE Unicode strings.

CAP_LARGE_FILES

0x00000008

The server supports 64-bit file offsets.

CAP_NT_SMBS

0x00000010

The server supports SMB commands particular to the NT LAN
Manager dialect.

CAP_RPC_REMOTE_APIS

0x00000020

The server supports the use of Microsoft remote procedure
call (MS-RPC) for remote API calls. Similar functionality would
otherwise require use of the legacy Remote Administration
Protocol, as specified in [MS-RAP].

CAP_STATUS32 The server is capable of responding with 32-bit status codes

%5bMS-RAP%5d.pdf

278 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

0x00000040 in the Status field of the SMB Header (section 2.2.3.1) (for
more information, see 2.2.3.1).

CAP_STATUS32 is also sometimes referred to as
CAP_NT_STATUS.

CAP_LEVEL_II_OPLOCKS

0x00000080

The server supports level II opportunistic locks (OpLocks).

CAP_LOCK_AND_READ

0x00000100

The server supports the SMB_COM_LOCK_AND_READ
command request.

CAP_NT_FIND

0x00000200

The server supports the TRANS2_FIND_FIRST2,
TRANS2_FIND_NEXT2, and FIND_CLOSE2 command requests.
This bit SHOULD be set if CAP_NT_SMBS is set.<83>

CAP_BULK_TRANSFER

0x00000400

This value was reserved but not implemented and MUST be
zero.<84>

CAP_COMPRESSED_DATA

0x00000800

This value was reserved but not implemented and MUST be
zero.<85>

CAP_DFS

0x00001000

The server is aware of the DFS Referral Protocol, as specified
in [MS-DFSC], and can respond to Microsoft DFS referral
requests. For more information, see sections 2.2.6.16.1 and
2.2.6.16.2.

CAP_QUADWORD_ALIGNED

0x00002000

This value was reserved but not implemented and MUST be
zero.<86>

CAP_LARGE_READX

0x00004000

The server supports large read operations.This capability
affects the maximum size, in bytes, of the server buffer for
sending an SMB_COM_READ_ANDX response to the client.
When this capability is set by the server (and set by the client
in the SMB_COM_SESSION_SETUP_ANDX request), the
maximum server buffer size for sending data can be up to
65,535 bytes rather than the MaxBufferSize field. Therefore,
the server can send a single SMB_COM_READ_ANDX response
to the client up to this size.

SystemTime (8 bytes): The number of 100-nanosecond intervals that have elapsed since
January 1, 1601, in Coordinated Universal Time (UTC) format.<87>

ServerTimeZone (2 bytes): SHORT A signed 16-bit signed integer that represents the

server's time zone, in minutes, from UTC. The time zone of the server MUST be expressed
in minutes, plus or minus, from UTC.<88>

ChallengeLength (1 byte): This field MUST be 0x00 or 0x08. The length of the random
challenge used in challenge/response authentication. If the server does not support
challenge/response authentication, this field MUST be 0x00. This field is often referred to

in older documentation as EncryptionKeyLength.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

%5bMS-DFSC%5d.pdf

279 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0001. If CAP_UNICODE has
been negotiated, it MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Challenge (variable)

...

DomainName (variable)

...

Challenge (variable): An array of unsigned bytes that MUST be ChallengeLength bytes
long and MUST represent the server challenge. This array MUST NOT be null-terminated.
This field is often referred to in older documentation as EncryptionKey.

DomainName (variable): The null-terminated name of the NT domain or workgroup to
which the server belongs.<89>

Error Codes

SMB error
class SMB error code NT status code

POSIX
equivalent Description

ERRSRV (0x02) ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 The command was already
sent.

2.2.4.53 SMB_COM_SESSION_SETUP_ANDX (0x73)

This command was introduced in the LAN Manager 1.0 dialect. The formats of the request and

response messages have changed since the command was first defined. The CIFS format, as defined
for the NT LAN Manager dialect, is presented here. This format MUST be used when the NT LAN
Manager dialect has been negotiated.

This command is used to configure an SMB session. If the server is operating in user level access
control mode, then at least one SMB_COM_SESSION_SETUP_ANDX MUST be sent in order to perform
a user logon to the server and to establish a valid UID.

In CIFS, it is a protocol violation to issue an SMB_COM_TREE_CONNECT or

SMB_COM_TREE_CONNECT_ANDX request before an SMB_COM_SESSION_SETUP_ANDX command
has been successfully executed, even if the server is operating in Share Level Access Control mode.
Including an SMB_COM_TREE_CONNECT_ANDX batched request in an AndX chain (section 2.2.3.4)
following an SMB_COM_SESSION_SETUP_ANDX request is sufficient to fulfill this requirement.<90>
Anonymous authentication is also sufficient to fulfill this requirement.

Multiple SMB_COM_SESSION_SETUP_ANDX commands are permitted within an SMB connection,
either to establish additional UIDs or to create additional virtual circuits.

280 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The following are the commands that can follow an SMB_COM_SESSION_SETUP_ANDX with an
SMB_COM_TREE_CONNECT_ANDX (section 2.2.4.55) in an AndX chain:

 SMB_COM_OPEN (section 2.2.4.3)

 SMB_COM_OPEN_ANDX (section 2.2.4.41)

 SMB_COM_CREATE (section 2.2.4.4)

 SMB_COM_CREATE_NEW (section 2.2.4.16)

 SMB_COM_CREATE_DIRECTORY (section 2.2.4.1)

 SMB_COM_DELETE (section 2.2.4.7)

 SMB_COM_DELETE_DIRECTORY (section 2.2.4.2)

 SMB_COM_FIND (section 2.2.4.59)

 SMB_COM_FIND_UNIQUE (section 2.2.4.60)

 SMB_COM_RENAME (section 2.2.4.8)

 SMB_COM_NT_RENAME (section 2.2.4.66)

 SMB_COM_CHECK_DIRECTORY (section 2.2.4.17)

 SMB_COM_QUERY_INFORMATION (section 2.2.4.9)

 SMB_COM_SET_INFORMATION (section 2.2.4.10)

 SMB_COM_OPEN_PRINT_FILE (section 2.2.4.67)

 SMB_COM_TRANSACTION (section 2.2.4.33)

2.2.4.53.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT MaxBufferSize;
 USHORT MaxMpxCount;
 USHORT VcNumber;
 ULONG SessionKey;
 USHORT OEMPasswordLen;
 USHORT UnicodePasswordLen;
 ULONG Reserved;
 ULONG Capabilities;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR OEMPassword[];
 UCHAR UnicodePassword[];
 UCHAR Pad[];
 SMB_STRING AccountName[];
 SMB_STRING PrimaryDomain[];

281 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_STRING NativeOS[];
 SMB_STRING NativeLanMan[];
 }
 }

SMB_Header:

TID (2 bytes): This field is ignored in this request.

UID (2 bytes): This field is ignored in this request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (27 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (27 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (26 bytes)

...

...

...

WordCount (1 byte): The value of this field MUST be 0x0D.

Words (26 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

MaxBufferSize MaxMpxCount

VcNumber SessionKey

... OEMPasswordLen

282 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

UnicodePasswordLen Reserved

... Capabilities

...

AndXCommand (1 byte): This field MUST be either the command code for the next SMB
command in the packet or 0xFF.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is

sent, and the server MUST ignore this value.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF. If
AndXCommand is 0xFF, this field MUST be ignored by the server.

MaxBufferSize (2 bytes): The maximum size, in bytes, of the largest SMB message that the

client can receive. This is the size of the largest SMB message that the server can send to
the client. SMB message size includes the size of the SMB header, parameter, and data
blocks.<91> This size MUST NOT include any transport-layer framing or other transport-
layer data.

There are two exceptions to the limit imposed by the client's MaxBufferSize value.

 If the CAP_RAW_MODE capability is negotiated, then the maximum size of an
SMB_COM_READ_RAW command response from the server MUST be limited by the

MaxRawSize value previously returned by the server in the SMB_COM_NEGOTIATE
Response (section 2.2.4.52.2) message.

 If the CAP_LARGE_READX capability is negotiated, the
SMB_COM_READ_ANDX (section 2.2.4.42) command response MAY bypass the client's

MaxBufferSize limit. There is no field in any CIFS message that indicates the maximum
size of an SMB_COM_READ_ANDX if CAP_LARGE_READX is negotiated.<92>

MaxMpxCount (2 bytes): The maximum number of pending requests supported by the

client. This value MUST be less than or equal to the MaxMpxCount field value provided by
the server in the SMB_COM_NEGOTIATE Response.

VcNumber (2 bytes): The number of this VC (virtual circuit) between the client and the
server. This field SHOULD be set to a value of 0x0000 for the first virtual circuit between
the client and the server and it SHOULD be set to a unique nonzero value for each
additional virtual circuit.<93>

SessionKey (4 bytes): The client MUST set this field to be equal to the SessionKey field in
the SMB_COM_NEGOTIATE Response for this SMB connection.<94>

OEMPasswordLen (2 bytes): The length, in bytes, of the contents of the

SMB_Data.OEMPassword field.

UnicodePasswordLen (2 bytes): The length, in bytes, of the contents of the
SMB_Data.UnicodePassword field.

Reserved (4 bytes): Reserved. This field MUST be 0x00000000. The server MUST ignore the

contents of this field.

283 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Capabilities (4 bytes): A 32-bit field providing a set of client capability indicators. The client
uses this field to report its own set of capabilities to the server. The client capabilities are a

subset of the server capabilities.<95>

Name and bitmask Meaning

CAP_RAW_MODE

0x00000001

The client supports
SMB_COM_READ_RAW and
SMB_COM_WRITE_RAW
requests. Raw mode is not
supported over
connectionless transports.

CAP_MPX_MODE

0x00000002

The client supports
SMB_COM_READ_MPX and
SMB_COM_WRITE_MPX
requests. MPX mode is
supported only over
connectionless transports.

CAP_UNICODE

0x00000004

The client supports UTF-16LE
Unicode strings.

CAP_LARGE_FILES

0x00000008

The client supports 64-bit file
offsets.<96>

CAP_NT_SMBS

0x00000010

The client supports SMB
commands particular to the
NT LAN Manager
dialect.<97>

CAP_RPC_REMOTE_APIS

0x00000020

The client supports the use
of Microsoft remote
procedure call (MS-RPC) for
remote API calls.

CAP_STATUS32

0x00000040

The client supports 32-bit
status codes, received in the
Status field of the SMB
Header.

CAP_STATUS32 is also
sometimes referred to as
CAP_NT_STATUS.

CAP_LEVEL_II_OPLOCKS

0x00000080

The client supports level II
opportunistic locks
(OpLocks).

CAP_LOCK_AND_READ

0x00000100

The client supports the
SMB_COM_LOCK_AND_READ

command.

CAP_NT_FIND

0x00000200

The client supports the
TRANS2_FIND_FIRST2,
TRANS2_FIND_NEXT2, and
FIND_CLOSE2 command
requests.<98>

CAP_DFS

0x00001000

The client supports the DFS
Referral Protocol, as
specified in [MS-DFSC].

CAP_LARGE_READX The client supports large

%5bMS-DFSC%5d.pdf

284 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

0x00004000 read operations.

This capability affects the
maximum size, in bytes, of
the client buffer for receiving
an SMB_COM_READ_ANDX
response from the server.

When this capability is set by
the client, the maximum
client buffer size for
receiving an
SMB_COM_READ_ANDX can
be up to 65,535 bytes,
rather than the
MaxBufferSize field.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OEMPassword (variable)

...

UnicodePassword (variable)

...

Pad (variable)

...

AccountName (variable)

...

PrimaryDomain (variable)

...

NativeOS (variable)

285 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

NativeLanMan (variable)

...

OEMPassword (variable): The contents of this field depends upon the authentication methods
in use:

 If Unicode has not been negotiated and the client sends a plaintext password, this field

MUST contain the password represented in the OEM character set.

 If the client uses challenge/response authentication, this field can contain a cryptographic
response.

 This field MAY be empty.

The OEMPassword value is an array of bytes, not a null-terminated string.

UnicodePassword (variable): The contents of this field depends upon the authentication

methods in use:

 If Unicode has been negotiated and the client sends a plaintext password, this field MUST
contain the password represented in UTF-16LE Unicode.<99>

 If the client uses challenge/response authentication, this field can contain a cryptographic
response.

 This field MAY be empty.

See section 3.2.4.2.4 for a description of authentication mechanisms used with CIFS.

If the client sends a plaintext password, then the password MUST be encoded in either OEM

or Unicode characters, but not both. The value of the SMB_FLAGS2_UNICODE bit of the
SMB_Header.Flags2 indicates the character encoding of the password. If a plaintext
password is sent, then:

 If SMB_FLAGS2_UNICODE is clear (0), the value of UnicodePasswordLen MUST be
0x0000, and the password MUST be encoded using the 8-bit OEM character set (extended
ASCII).

 If SMB_FLAGS2_UNICODE is set (1), the value of OEMPasswordLen MUST be 0x0000 and
the password MUST be encoded using UTF-16LE Unicode. Padding MUST NOT be added to
align this plaintext Unicode string to a word boundary.

Pad (variable): Padding bytes. If Unicode support has been enabled and
SMB_FLAGS2_UNICODE is set in SMB_Header.Flags2, this field MUST contain zero (0x00)
or one null padding byte as needed to ensure that the AccountName string is aligned on a

16-bit boundary. This also forces alignment of subsequent strings without additional

padding.

AccountName (variable): The name of the account (username) with which the user
authenticates.

PrimaryDomain (variable): A string representing the desired authentication domain. This MAY
be the empty string. If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header
of the request, this string MUST be a null-terminated array of 16-bit Unicode characters.

Otherwise, this string MUST be a null-terminated array of OEM characters. If this string

286 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

consists of Unicode characters, this field MUST be aligned to start on a 2-byte boundary
from the start of the SMB header.

NativeOS (variable): A string representing the native operating system of the CIFS client. If
SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header of the request, this

string MUST be a null-terminated array of 16-bit Unicode characters. Otherwise, this string
MUST be a null-terminated array of OEM characters. If this string consists of Unicode
characters, this field MUST be aligned to start on a 2-byte boundary from the start of the
SMB header.<100>

NativeLanMan (variable): A string that represents the native LAN manager type of the client.
If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header of the request, this
string MUST be a null-terminated array of 16-bit Unicode characters. Otherwise, this string

MUST be a null-terminated array of OEM characters. If this string consists of Unicode
characters, this field MUST be aligned to start on a 2-byte boundary from the start of the
SMB header.<101>

2.2.4.53.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT Action;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad[];
 SMB_STRING NativeOS[];
 SMB_STRING NativeLanMan[];
 SMB_STRING PrimaryDomain[];
 }
 }

SMB_Header:

UID (2 bytes): The UID returned in the response to a successful
SMB_COM_SESSION_SETUP_ANDX request represents an authenticated session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (7 bytes):

287 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): The value of this field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

Action

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is
sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB

Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command
response in this packet. This field is valid only if the AndXCommand field is not set to
0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

Action (2 bytes): A 16-bit field. The two lowest-order bits have been defined:

Name and Bitmask Meaning

SMB_SETUP_GUEST

0x0001

If clear (0), the user successfully authenticated
and is logged in.

if set (1), authentication failed but the server
has granted guest access. The user is logged in
as Guest.

SMB_SETUP_USE_LANMAN_KEY

0x0002

If clear, the NTLM user session key will be used
for message signing (if enabled).

If set, the LM session key will be used for
message signing.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The sum of the lengths, in bytes, of the Pad, NativeOS, NativeLanMan,
and PrimaryDomain fields.

288 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad (variable)

...

NativeOS (variable)

...

NativeLanMan (variable)

...

PrimaryDomain (variable)

...

Pad (variable): Padding bytes. If Unicode support has been enabled, this field MUST contain
zero or one null padding byte as needed to ensure that the NativeOS field, which follows,

is aligned on a 16-bit boundary.

NativeOS (variable): A string that represents the native operating system of the server. If
SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header of the response, the
string MUST be a null-terminated array of 16-bit Unicode characters. Otherwise, the string
MUST be a null-terminated array of OEM characters. If the string consists of Unicode
characters, this field MUST be aligned to start on a 2-byte boundary from the start of the

SMB header.<102>

NativeLanMan (variable): A string that represents the native LAN Manager type of the
server. If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header of the
response, the string MUST be a null-terminated array of 16-bit Unicode characters.
Otherwise, the string MUST be a null-terminated array of OEM characters. If the string
consists of Unicode characters, this field MUST be aligned to start on a 2-byte boundary
from the start of the SMB header.<103>

PrimaryDomain (variable): A string representing the primary domain or workgroup name of
the server. If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB header of the
response, the string MUST be a null-terminated array of 16-bit Unicode characters.
Otherwise, the string MUST be a null-terminated array of OEM characters. If the string
consists of Unicode characters, this field MUST be aligned to start on a 2-byte boundary
from the start of the SMB header.<104>

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_LOGON_FAILURE

(0xC000006D)

EPERM Authentication failure.

ERRSRV ERRerror STATUS_INVALID_SMB A corrupt or invalid

289 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x02) (0x0001) (0x00010002) SMB request was
received.

ERRSRV
(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV
(0x02)

ERRtoomanyuids

(0x005A)

STATUS_TOO_MANY_SESSIONS

(0xC00000CE)

 The maximum number
of active UIDs per SMB
connection has been
reached.

2.2.4.54 SMB_COM_LOGOFF_ANDX (0x74)

The user connection represented by UID in the SMB Header (section 2.2.3.1) is logged off. The server
releases all locks and closes all files currently open by this user, disconnects all tree connects, cancels
any outstanding requests for this UID, and invalidates the UID.

The following are the commands that can follow an SMB_COM_LOGOFF_ANDX in an AndX chain:

 SMB_COM_SESSION_SETUP_ANDX.

2.2.4.54.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

UID (2 bytes): The User ID to be logged off. The value of this field MUST have been
previously generated by an SMB_COM_SESSION_SETUP_ANDX command.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data

SMB_Parameters (5 bytes):

290 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): The value of this field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

AndXCommand (1 byte): The secondary SMB command request in the packet. This value
MUST be set to 0xFF if there are no additional SMB command requests in the client request
packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is
sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB

Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.54.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

291 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... SMB_Data

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): The value of this field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

AndXCommand (1 byte): The secondary SMB command response in the packet. This value
MUST be set to 0xFF if there are no additional SMB command responses in the server
response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is

sent, and the client MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV
(0x02)

ERRerror
(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB or ANDX command is not
valid with this command.

ERRSRV
(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified in the request is
not defined as a valid UID for this
session.

292 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.55 SMB_COM_TREE_CONNECT_ANDX (0x75)

This command was introduced in the LAN Manager 1.0 dialect.

This command is used to establish a client connection to a server share. The share is identified by

name, and the connection, once established, is identified by a TID that is returned to the client.

The following are the commands that can follow an SMB_COM_TREE_CONNECT_ANDX in an AndX
chain:

 SMB_COM_OPEN (section 2.2.4.3)

 SMB_COM_OPEN_ANDX (section 2.2.4.41)

 SMB_COM_CREATE (section 2.2.4.4)

 SMB_COM_CREATE_NEW (section 2.2.4.16)

 SMB_COM_CREATE_DIRECTORY (section 2.2.4.1)

 SMB_COM_DELETE (section 2.2.4.7)

 SMB_COM_DELETE_DIRECTORY (section 2.2.4.2)

 SMB_COM_SEARCH (section 2.2.4.58)

 SMB_COM_FIND (section 2.2.4.59)

 SMB_COM_FIND_UNIQUE (section 2.2.4.60)

 SMB_COM_RENAME (section 2.2.4.8)

 SMB_COM_NT_RENAME (section 2.2.4.66)

 SMB_COM_CHECK_DIRECTORY (section 2.2.4.17)

 SMB_COM_QUERY_INFORMATION (section 2.2.4.9)

 SMB_COM_SET_INFORMATION (section 2.2.4.10)

 SMB_COM_OPEN_PRINT_FILE (section 2.2.4.67)

 SMB_COM_TRANSACTION (section 2.2.4.33)

2.2.4.55.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT Flags;
 USHORT PasswordLength;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Password[PasswordLength];

293 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 UCHAR Pad[];
 SMB_STRING Path;
 OEM_STRING Service;
 }
 }

SMB_Header:

TID (2 bytes): This field MAY contain a valid TID. If the SMB_Header.TID is valid and the
lowest-order bit of the SMB_Parameters.Words.Flags field is set, the
SMB_Header.TID MUST be disconnected.

UID (2 bytes): This field MUST contain a UID returned in a previously successful
SMB_COM_SESSION_SETUP_ANDX Response (section 2.2.4.53.2). If the server is

operating in share level access control mode, then the UID represents anonymous, or "null
session" authentication. If the server is operating in user level access control mode, then
the server MUST validate the UID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data (variable)

...

SMB_Parameters (9 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): The value of this field MUST be 0x04.

Words (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

Flags PasswordLength

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB command requests in the
request packet.

294 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is
sent, and the server MUST ignore this value.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field of the next SMB command

request in this packet. This field is valid only if the AndXCommand field is not set to
0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the server.

Flags (2 bytes): A 16-bit field used to modify the SMB_COM_TREE_CONNECT_ANDX Request
(section 2.2.4.55.1). The client MUST set reserved values to 0, and the server MUST
ignore them.

Bitmask Meaning

TREE_CONNECT_ANDX_DISCONNECT_TID

0x0001

If this bit is set
and the
SMB_Header.TID
field of the request
is valid, the tree
connect specified
by the
SMB_Header.TID
field of the request
SHOULD be
disconnected when
the server sends
the response. If
this tree
disconnect fails,
the error SHOULD
be ignored. If this
bit is set and the
SMB_Header.TID
field of the request
is invalid, the
server MUST
ignore this bit.

0x0002 Reserved.
SHOULD be
zero.<105>

0xFFFC Reserved. MUST
be zero.

PasswordLength (2 bytes): This field MUST be the length, in bytes, of the

SMB_Data.Bytes.Password field.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The value of this field MUST be 0x0003 or greater.

Bytes (variable):

295 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Password (variable)

...

Pad (variable)

...

Path (variable)

...

Service (variable)

...

Password (variable): An array of bytes.

 If the server is operating in share level access control mode and plaintext passwords have
been negotiated, then the Password MUST be an OEM_STRING representing the user's

password in plaintext.

 If the server is operating in share level access control mode and challenge/response
authentication has been negotiated, then the Password MUST be an authentication
response.

 If authentication is not used, then the Password SHOULD be a single null padding byte
(which takes the place of the Pad[] byte).

The SMB_Parameters.Bytes.PasswordLength MUST be the full length of the
Password field. If the Password is the null padding byte, the password length is 1.

Pad (variable): Padding bytes. If Unicode support has been enabled and
SMB_FLAGS2_UNICODE is set in SMB_Header.Flags2, this field MUST contain zero or
one null padding bytes as needed to ensure that the Path string is aligned on a 16-bit
boundary.

Path (variable): A null-terminated string that represents the server and share name of the

resource to which the client attempts to connect. This field MUST be encoded using
Universal Naming Convention (UNC) syntax. If SMB_FLAGS2_UNICODE is set in the
Flags2 field of the SMB Header of the request, the string MUST be a null-terminated array
of 16-bit Unicode characters. Otherwise, the string MUST be a null-terminated array of
OEM characters. If the string consists of Unicode characters, this field MUST be aligned to

start on a 2-byte boundary from the start of the SMB Header. A path in UNC syntax would
be represented by a string in the following form:

 \\server\share

Service (variable): The type of resource that the client attempts to access. This field MUST
be a null-terminated array of OEM characters even if the client and server have negotiated
to use Unicode strings. The valid values for this field are as follows:

296 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Service String Description

"A:" Disk Share

"LPT1:" Printer Share

"IPC" Named Pipe

"COMM" Serial Communications device

"?????" Matches any type of device or resource

2.2.4.55.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 USHORT OptionalSupport;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 OEM_STRING Service;

 SMB_STRING NativeFileSystem;
 }

SMB_Header:

TID (2 bytes): If the command is successful, the TID field in the response header MUST
contain the TID identifying the newly created connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (7 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

297 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): The value of this field MUST be 0x03.

Words (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

OptionalSupport

AndXCommand (1 byte): The command code for the next SMB command in the packet. This

value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this response is
sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command

response in this packet. This field is valid only if the AndXCommand field is not set to
0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

OptionalSupport (2 bytes): A 16-bit field. The following OptionalSupport field flags are
defined. Any combination of the following flags MUST be supported. All undefined values
are considered reserved. The server SHOULD set them to 0, and the client MUST ignore
them.

Value Meaning

SMB_SUPPORT_SEARCH_BITS

0x0001

If set, the server supports the use of
SMB_FILE_ATTRIBUTES (section 2.2.1.2.4) exclusive
search attributes in client requests.

SMB_SHARE_IS_IN_DFS

0x0002

If set, this share is managed by DFS, as specified in
[MS-DFSC].

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The value of this field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Service (variable)

...

%5bMS-DFSC%5d.pdf

298 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NativeFileSystem (variable)

...

Service (variable): The type of the shared resource to which the TID is connected. The
Service field MUST be encoded as a null-terminated array of OEM characters, even if the
client and server have negotiated to use Unicode strings. The valid values for this field are

as follows.

Service string Description

"A:" Disk Share

"LPT1:" Printer Share

"IPC" Named Pipe

"COMM" Serial Communications device

NativeFileSystem (variable): The name of the file system on the local resource to which the
returned TID is connected. If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB
Header of the response, this value MUST be a null-terminated string of Unicode characters.
Otherwise, this field MUST be a null-terminated string of OEM characters. For resources
that are not backed by a file system, such as the IPC$ share used for named pipes, this
field MUST be set to the empty string.<106>

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The share path does
not reference a valid
resource.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_LOGON_FAILURE

(0xC000006D)

EPERM The server rejected the
client logon attempt.

ERRDOS
(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources. Out of
memory or TIDs.

ERRDOS
(0x01)

ERRpaused

(0x0046)

STATUS_SHARING_PAUSED

(0xC00000CF)

 The server is
temporarily paused.

ERRDOS
(0x01)

ERRreqnotaccep

(0x0047)

STATUS_REQUEST_NOT_ACCEPTED

(0xC00000D0)

 The server has no more
connections available.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter
bytes were sent.

ERRSRV

(0x02)

ERRbadpw

(0x0002)

STATUS_LOGON_FAILURE

(0xC000006D)

 Incorrect password
during logon attempt.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_ACCESS_DENIED

(0xC0000022)

 The user is not
authorized to access
the resource.

299 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV

(0x02)

ERRinvnetname

(0x0006)

STATUS_BAD_NETWORK_NAME

(0xC00000CC)

 The share path is not
valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 Resource type invalid.
Value of Service field
in the request was
invalid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.4.56 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E)

This command was introduced in the LAN Manager 1.0 dialect. It is now obsolete.

This command was used to negotiate security packages and related information, but is no longer used.
Documentation describing the implementation of this command can be found in [XOPEN-SMB] section
11.2. Clients SHOULD NOT send requests using this command code. Servers receiving requests with
this command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).<107>

2.2.4.57 SMB_COM_QUERY_INFORMATION_DISK (0x80)

This is an original Core Protocol command. This command is deprecated. New client
implementations SHOULD use the SMB_COM_TRANSACTION2 command along with a subcommand of
TRANS2_QUERY_FS_INFORMATION.

This command MAY be sent by a client to obtain the capacity and remaining free space on the volume

hosting the subtree indicated by the TID in the SMB Header (section 2.2.3.1). The client MUST

provide a valid TID in the SMB Header. The TID SHOULD have been acquired through a previously
successful use of one of the SMB commands for connecting to a subtree.

The block or allocation units used in the response MAY be independent of the actual physical or logical
allocation algorithm(s) used internally by the server. However, they MUST accurately reflect the
amount of space on the server.

The response returns only 16 bits of information for each field. It is possible that some system require

more than this amount of information. TotalUnits is commonly much larger than 65,535. However,
the typical client relies on total disk size in bytes, and the free space in bytes. Hence the server
SHOULD adjust the relative values of BlocksPerUnit and BlockSize to achieve the most accurate
representation possible, given the 16-bit restriction. If after all adjustment, the values still exceed a
16-bit representation, the largest possible values for TotalUnits or FreeUnits (0xFFFF) SHOULD be
returned.

2.2.4.57.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

300 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this command.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this command.

2.2.4.57.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT TotalUnits;
 USHORT BlocksPerUnit;
 USHORT BlockSize;
 USHORT FreeUnits;
 USHORT Reserved;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

...

... SMB_Data

...

SMB_Parameters (11 bytes):

301 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

...

WordCount (1 byte): This field MUST be 0x05.

Words (10 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TotalUnits BlockPerUnit

BlockSize FreeUnits

Reserved

TotalUnits (2 bytes): This field is a 16-bit unsigned value that represents the total count of
logical allocation units available on the volume.

BlockPerUnit (2 bytes): This field is a 16-bit unsigned value that represents the number of
blocks per allocation unit for the volume.

BlockSize (2 bytes): This field is a 16-bit unsigned value that represents the size in bytes of
each allocation unit for the volume.

FreeUnits (2 bytes): This field is a 16-bit unsigned value that represents the total number of
free allocation units available on the volume.

Reserved (2 bytes): This field is a 16-bit unsigned field and is reserved. The client SHOULD
ignore this field.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS ERRnoaccess STATUS_ACCESS_DENIED Permissions denied request

302 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0005) (0xC0000022) on the file system.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Unspecified internal server
error.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

EACCES Client does not have the
required read permissions
on the share.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

ENOTDIR The TID specified in the
command was invalid OR
The directory referenced by
the TID has been removed
from the system.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not
defined as a valid ID on
this server session, or the
user identified by the UID
does not have sufficient
privileges.

ERRHRD
(0x03)

ERRnotready

(0x0015)

STATUS_NO_MEDIA_IN_DEVICE

(0xC0000013)

ENOENT The file system has been
removed from the system.

ERRHRD
(0x03)

ERRdata

(0x0017)

 EIO Physical I/O error while
reading disk resource.

2.2.4.58 SMB_COM_SEARCH (0x81)

This is an original Core Protocol command. This command is deprecated. New client
implementations SHOULD use the TRANS2_FIND_FIRST2 subcommand (section 2.2.6.2) instead.

The SMB_COM_SEARCH command searches a directory for files or other objects that have names

matching a given wildcard template. The response message contains as many of the found names as
can fit, given the maximum buffer size. The response message also contains a continuation key that
MAY be used in subsequent SMB_COM_SEARCH command messages to return the next set of
matching names.

This command returns only 8.3 name format file names, and the base set of file attributes. Unicode is
not supported; names are returned in the extended ASCII (OEM) character set only. There is no
close operation associated with SMB_COM_SEARCH. The server MUST maintain search state until the

end of the search is reached, the PID or TID associated with the search is closed, the UID associated
with the search is invalidated (logged off), or the session is closed.

2.2.4.58.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT MaxCount;
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }

303 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 SMB_STRING FileName;
 UCHAR BufferFormat2;
 USHORT ResumeKeyLength;
 SMB_Resume_Key ResumeKey[ResumeKeyLength];
 }
 }

SMB_Header

TID (2 bytes): A valid TID MUST be provided. The TID MUST refer to a file system subtree.

UID (2 bytes): A valid UID MUST be provided and MUST have, at a minimum, read permission on

all directories in the FileName path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxCount SearchAttributes

MaxCount (2 bytes): The maximum number of directory entries to return. This value
represents the maximum number of entries across the entirety of the search, not just the

initial response.

SearchAttributes (2 bytes): An attribute mask used to specify the standard attributes a file
MUST have in order to match the search. If the value of this field is 0x0000, then only
normal files are returned. If the Volume Label attribute is set, the server MUST return only
the volume label (the Volume Label attribute is exclusive). If the Directory, System, or

304 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Hidden attributes are specified, then those entries are returned in addition to the normal
files. Exclusive search attributes (see section 2.2.1.2.4) can also be set.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be 0x0005 or greater.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 FileName (variable)

...

BufferFormat2 ResumeKeyLength ResumeKey (variable)

...

BufferFormat1 (1 byte): This field MUST be 0x04, which indicates that a null-terminated
SMB_STRING is to follow.

FileName (variable): A null-terminated SMB_STRING. This is the full directory path (relative

to the TID) of the file(s) being sought. Only the final component of the path MAY contain
wildcards. This string MAY be the empty string.

BufferFormat2 (1 byte): This field MUST be 0x05, which indicates a variable block is to
follow.

ResumeKeyLength (2 bytes): This field MUST be either 0x0000 or 21 (0x0015). If the value
of this field is 0x0000, this is an initial search request. The server MUST allocate resources
to maintain search state so that subsequent requests MAY be processed. If the value of this

field is 21 (0x0015), this request MUST be the continuation of a previous search, and the
next field MUST contain a ResumeKey previously returned by the server.

ResumeKey (variable): SMB_Resume_Key If the value of ResumeKeyLength is 21
(0x0015), this field MUST contain a ResumeKey returned by the server in response to a
previous SMB_COM_SEARCH request. The ResumeKey contains data used by both the
client and the server to maintain the state of the search. The structure of the ResumeKey

follows:

 SMB_Resume_Key
 {
 UCHAR Reserved;
 UCHAR ServerState[16];
 UCHAR ClientState[4];
 }

305 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved ServerState (16 bytes)

...

...

... ClientState

...

Reserved (1 byte): This field is reserved and MUST NOT be modified by the client. Older
documentation is contradictory as to whether this field is reserved for client side or server side
use. New server implementations SHOULD avoid using or modifying the content of this

field.<108>

ServerState (16 bytes): This field is maintained by the server and MUST NOT be modified by
the client. The contents of this field are server-specific.<109>

ClientState (4 bytes): This field MAY be used by the client to maintain state across a series of
SMB_COM_SEARCH calls. The value provided by the client MUST be returned in each
ResumeKey provided in the response. The contents of this field are client-specific.

2.2.4.58.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Count;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT DataLength;
 SMB_Directory_Information DirectoryInformationData[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

306 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

Count (2 bytes): The number of directory entries returned in this response message. This
value MUST be less than or equal to the value of MaxCount in the initial request.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength DirectoryInformationData
(variable)

...

BufferFormat (1 byte): This field MUST be 0x05, which indicates that a variable-size block is
to follow.

DataLength (2 bytes): The size, in bytes, of the DirectoryInformationData array, which
follows. This field MUST be equal to 43 times the value of SMB_Parameters.Count.

DirectoryInformationData (variable): Array of SMB_Directory_Information An array
of zero or more SMB_Directory_Information records. The structure and contents of these

records is specified below. Note that the SMB_Directory_Information record structure is a

fixed 43 bytes in length.

 SMB_Directory_Information
 {
 SMB_Resume_Key ResumeKey;
 UCHAR FileAttributes;
 SMB_TIME LastWriteTime;
 SMB_DATE LastWriteDate;
 ULONG FileSize;
 OEM_STRING FileName;

307 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ResumeKey (21 bytes)

...

...

... FileAttributes LastWriteTime

LastWriteDate FileSize

... FileName (13 bytes)

...

...

...

ResumeKey (21 bytes): SMB_Resume_Key While each DirectoryInformationData entry has a
ResumeKey field, the client MUST use only the ResumeKey value from the last
DirectoryInformationData entry when continuing the search with a subsequent
SMB_COM_SEARCH command.

FileAttributes (1 byte): These are the file system attributes of the file.

LastWriteTime (2 bytes): The time when the file was last modified. The SMB_TIME structure

contains a set of bit fields indicating hours, minutes, and seconds (with a 2 second resolution).

LastWriteDate (2 bytes): The date when the file was last modified. The SMB_DATE structure
contains a set of bit fields indicating the year, month, and date.

FileSize (4 bytes): The size of the file, in bytes. If the file is larger than (2 ** 32 - 1) bytes in size,
the server SHOULD return the least significant 32 bits of the file size.

FileName (13 bytes): The null-terminated 8.3 name format file name. The file name and extension,
including the '.' delimiter MUST be left-justified in the field. The character string MUST be padded

with " " (space) characters, as necessary, to reach 12 bytes in length. The final byte of the field
MUST contain the terminating null character.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalen
t

Descriptio
n

ERRDO
S

(0x01)

ERRbadpath (0x0003) STATUS_OBJECT_PATH_NOT_FOUN
D

(0xC000003A)

STATUS_OBJECT_PATH_SYNTAX_BA

ENOTDIR A non-
terminal
component
of the
specified

308 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalen
t

Descriptio
n

D

(0xC000003B)

path was
not a
directory
OR the
path syntax
is invalid.

ERRDO
S

(0x01)

ERRnoaccess (0x0005) STATUS_ACCESS_DENIED

(0xC0000022)

EACCES No file
system
permission
on the
specified
pathname.

ERRDO
S

(0x01)

ERRbadfid (0x0006) STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to
resume a
search that
was not
active on
the server.

ERRDO
S

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOUR
CES

(0xC0000205)

 The server
is out of
resources.

ERRDO
S

(0x01)

ERRnofiles (0x0012) STATUS_NO_MORE_FILES

(0x80000006)

EOF No more
matching
files found

on the
server.

ERRSR
V

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid
SMB
request.

ERRSR
V

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is
no longer
valid.

ERRDO
S

(0x01)

ERROR_NO_MORE_SEARCH_HAND
LES

(0x0071)

STATUS_OS2_NO_MORE_SIDS

(0x00710001)

EMFILE

ENFILE

Maximum
number of
searches
has been
exhausted.

ERRSR
V

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B00002)

 The UID in
the header
is not valid
for this
session.

ERRHR
D
(0x03)

ERRdata

(0x0017)

STATUS_CRC_ERROR

(0xC000003F)

EIO Data I/O
error
(incorrect
CRC on
device).

In [XOPEN-SMB] it is noted that POSIX-style servers MAY also generate ENOENT while searching for
files. ENOENT errors MUST be handled on the server side and MUST NOT be returned to the client.

309 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.59 SMB_COM_FIND (0x82)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. New
client implementations SHOULD use the SMB_COM_TRANSACTION2 subcommand

TRANS2_FIND_FIRST2 (section 2.2.6.2) instead.

This command is identical in structure and purpose to SMB_COM_SEARCH. The only difference is that
SMB_COM_FIND is paired with the SMB_COM_FIND_CLOSE command, which allows the client to
explicitly close a search operation.

2.2.4.59.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT MaxCount;
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 SMB_STRING FileName;
 UCHAR BufferFormat2;
 USHORT ResumeKeyLength;
 SMB_Resume_Key ResumeKey[ResumeKeyLength];
 }
 }

SMB_Header:

TID (2 bytes): A valid TID MUST be provided. The TID MUST refer to a file system subtree.

UID (2 bytes): A valid UID MUST be provided and MUST have, at a minimum, read
permission on all directories in the FileName path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

310 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxCount SearchAttributes

MaxCount (2 bytes): The maximum number of directory entries to return. This value

represents the maximum number of entries across the entirety of the search, not just the
initial response.

SearchAttributes (2 bytes): An attribute mask used to specify the standard attributes that
a file MUST have to match the search. If the value of this field is 0x0000, then only normal
files MUST be returned. If the Volume Label attribute is set, the server MUST return only
the volume label (the Volume Label attribute is exclusive). If the Directory, System, or

Hidden attributes are specified, then those entries MUST be returned in addition to the
normal files. Exclusive search attributes (see section 2.2.1.2.4) can also be set.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be 0x0005 or greater.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 FileName (variable)

...

BufferFormat2 ResumeKeyLength ResumeKey (variable)

...

BufferFormat1 (1 byte): This field MUST be 0x04, which indicates that a null-terminated
ASCII string is to follow.

FileName (variable): A null-terminated character string. This is the full directory path
(relative to the TID) of the file(s) being sought. Only the final component of the path MAY
contain wildcards. This string MAY be the empty string.

BufferFormat2 (1 byte): This field MUST be 0x05, which indicates that a variable block is to
follow.

ResumeKeyLength (2 bytes): This field MUST be either 0x0000 or 21 (0x0015). If the value
of this field is 0x0000, then this is an initial search request. The server MUST allocate

311 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

resources to maintain search state so that subsequent requests can be processed. If the
value of this field is 21 (0x0015) then this request MUST be the continuation of a previous

search, and the next field MUST contain a ResumeKey previously returned by the server.

ResumeKey (variable): If the value of the ResumeKeyLength field is 21 (0x0015), this

field MUST contain a ResumeKey returned by the server in response to a previous
SMB_COM_SEARCH request. The ResumeKey contains data used by both the client and
the server to maintain the state of the search. The structure of the ResumeKey follows.

 SMB_Resume_Key
 {
 UCHAR Reserved;
 UCHAR ServerState[16];
 UCHAR ClientState[4];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved ServerState (16 bytes)

...

...

... ClientState

...

Reserved (1 byte): This field is reserved and MUST NOT be modified by the client. Older
documentation is contradictory as to whether this field is reserved for client-side or server-side

use. New server implementations SHOULD avoid using or modifying the content of this field.

ServerState (16 bytes): This field is maintained by the server and MUST NOT be modified by the
client. The contents of this field are server-specific.

ClientState (4 bytes): Array of UCHAR This field MAY be used by the client to maintain state
across a series of SMB_COM_SEARCH calls. The value provided by the client MUST be returned in
each ResumeKey provided in the response. The contents of this field are client-specific.

2.2.4.59.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Count;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT DataLength;
 SMB_Directory_Information DirectoryInformationData[DataLength];
 }

312 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

Count (2 bytes): The number of directory entries returned in this response message. This

value MUST be less than or equal to the value of MaxCount in the initial request.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength DirectoryInformationData
(variable)

...

BufferFormat (1 byte): This field MUST be 0x05, which indicates that a variable-size block is
to follow.

313 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DataLength (2 bytes): The size, in bytes, of the DirectoryInformationData array, which
follows. This field MUST be equal to 43 times the value of

SMB_Parameters.Words.Count.

DirectoryInformationData (variable): An array of zero or more SMB_Directory_Information

records. The structure and contents of these records is specified below. Note that the
SMB_Directory_Information record structure is a fixed 43 bytes in length.

 SMB_Directory_Information
 {
 SMB_Resume_Key ResumeKey;
 UCHAR FileAttributes;
 SMB_TIME LastWriteTime;
 SMB_DATE LastWriteDate;
 ULONG FileSize;
 OEM_STRING FileName[13];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ResumeKey (21 bytes)

...

...

... FileAttributes LastWriteTime

LastWriteDate FileSize

... FileName (13 bytes)

...

...

...

ResumeKey (21 bytes): SMB_Resume_Key While each DirectoryInformationData entry has a
ResumeKey field, the client MUST use only the ResumeKey value from the last
DirectoryInformationData entry when continuing the search with a subsequent
SMB_COM_SEARCH command.

FileAttributes (1 byte): These are the file system attributes of the file.

LastWriteTime (2 bytes): The time at which the file was last modified.

LastWriteDate (2 bytes): The date when the file was last modified.

FileSize (4 bytes): The size of the file, in bytes. If the file is larger than (2 ** 32 - 1) bytes in size,
the server SHOULD return the least-significant 32 bits of the file size.

FileName (13 bytes): The null-terminated 8.3 name format file name. The file name and extension,
including the '.' delimiter MUST be left-justified in the field. The character string MUST be padded

314 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

with " " (space) characters, as necessary, to reach 12 bytes in length. The final byte of the field
MUST contain the terminating null character.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalen
t

Descriptio
n

ERRDO
S

(0x01)

ERRbadpath (0x0003) STATUS_OBJECT_PATH_NOT_FOUN
D

(0xC000003A)

STATUS_OBJECT_PATH_SYNTAX_BA
D

(0xC000003B)

ENOTDIR A non-
terminal
component
of the
specified
path was
not a
directory
OR the
path syntax
is invalid.

ERRDO
S

(0x01)

ERRnoaccess (0x0005) STATUS_ACCESS_DENIED

(0xC0000022)

EACCES No file
system
permission
on the
specified
pathname.

ERRDO
S

(0x01)

ERRbadfid (0x0006) STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to
resume a
search that
was not
active on
the server.

ERRDO
S

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOUR
CES

(0xC0000205)

 The server
is out of
resources.

ERRDO
S

(0x01)

ERRnofiles (0x0012) STATUS_NO_MORE_FILES

(0x80000006)

EOF No more
matching
files found
on the
server.

ERRSR
V

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid
SMB
request.

ERRSR
V

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is
no longer
valid.

ERRDO
S

(0x01)

ERROR_NO_MORE_SEARCH_HAND
LES

(0x0071)

STATUS_OS2_NO_MORE_SIDS

(0x00710001)

EMFILE

ENFILE

Maximum
number of
searchs has
been
exhausted.

ERRSR
V

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

The UID in
the header
is not valid
for this

315 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalen
t

Descriptio
n

session.

ERRHR
D
(0x03)

ERRdata

(0x0017)

STATUS_CRC_ERROR

(0xC000003F)

EIO Data I/O
error
(incorrect
CRC on
device).

In [XOPEN-SMB] it is noted that POSIX-style servers MAY also generate ENOENT while searching for

files. ENOENT errors MUST be handled on the server side and MUST NOT be returned to the client.

2.2.4.60 SMB_COM_FIND_UNIQUE (0x83)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. New

client implementations SHOULD use the SMB_COM_TRANSACTION2 subcommand

TRANS2_FIND_FIRST2 (section 2.2.6.2) instead.

SMB_COM_FIND_UNIQUE has nearly the same format as SMB_COM_SEARCH and SMB_COM_FIND,
with the exception that the Request Field SMB_Data.ResumeKey in never present. The use of this
command, as opposed to SMB_COM_SEARCH or SMB_COM_FIND, indicates to the server that it need
not maintain a search context or any other state. The SMB_COM_FIND_UNIQUE command is single-
use. No follow-up commands are permitted.

As with the other search commands in this family, the request MAY include wildcard characters. The

server MAY return as many matching file names as can fit in a single response. If there are any
matching names, the server MUST return at least one matching name. After the
SMB_COM_FIND_UNIQUE response has been returned, the search is closed.

2.2.4.60.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT MaxCount;
 SMB_FILE_ATTRIBUTES SearchAttributes;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 SMB_STRING FileName;
 UCHAR BufferFormat2;
 USHORT ResumeKeyLength;
 SMB_Resume_Key ResumeKey[ResumeKeyLength];
 }
 }

SMB_Header:

TID (2 bytes): A valid TID MUST be provided. The TID MUST refer to a file system subtree.

UID (2 bytes): A valid UID MUST be provided and MUST have, at a minimum, read
permission on all directories in the FileName path.

316 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxCount SearchAttributes

MaxCount (2 bytes): The maximum number of directory entries to return.

SearchAttributes (2 bytes): An attribute mask used to specify the standard attributes that a
file MUST have in order to match the search. If the value of this field is 0, then only normal

files MUST be returned. If the Volume Label attribute is set, then the server MUST only

return the volume label. If the Directory, System, or Hidden attributes are specified, then
those entries MUST be returned in addition to the normal files. Exclusive search attributes
(see section 2.2.1.2.4) can also be set.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be 0x0005 or greater.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 FileName (variable)

317 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

BufferFormat2 ResumeKeyLength

BufferFormat1 (1 byte): This field MUST be 0x04, which indicates that a null-terminated
ASCII string is to follow.

FileName (variable): A null-terminated SMB_STRING. This is the full directory path (relative

to the TID) of the file(s) being sought. Only the final component of the path MAY contain
wildcards. This string MAY be the empty string.

BufferFormat2 (1 byte): This field MUST be 0x05, which indicates that a variable block is to
follow.

ResumeKeyLength (2 bytes): This field MUST be 0x0000. No Resume Key is permitted in
the SMB_COM_FIND_UNIQUE request. If the server receives an SMB_COM_FIND_UNIQUE

request with a nonzero ResumeKeyLength, it MUST ignore this field.

2.2.4.60.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Count;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT DataLength;
 SMB_Directory_Information DirectoryInformationData[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

318 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

Count (2 bytes): The number of directory entries returned in this response message. This
value MUST be less than or equal to the value of MaxCount in the initial request.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength DirectoryInformationData
(variable)

...

BufferFormat (1 byte): This field MUST be 0x05, which indicates that a variable-size block is
to follow.

DataLength (2 bytes): The size in bytes of the DirectoryInformationData array that
follows. This field MUST be equal to 43 times the value of
SMB_Parameters.Words.Count.

DirectoryInformationData (variable): Array of SMB_Directory_Information An array
of zero or more SMB_Directory_Information records. The structure and contents of these
records is specified following. Note that the SMB_Directory_Information record structure is
a fixed 43 bytes in length.

 SMB_Directory_Information
 {
 SMB_Resume_Key ResumeKey;
 UCHAR FileAttributes;
 SMB_TIME LastWriteTime;
 SMB_DATE LastWriteDate;
 ULONG FileSize;
 OEM_STRING FileName[13];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ResumeKey (21 bytes)

319 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

... FileAttributes LastWriteTime

LastWriteDate FileSize

... FileName (13 bytes)

...

...

...

ResumeKey (21 bytes): This field is structured as described in SMB_COM_FIND. The client MUST
ignore the contents of this field in an SMB_COM_FIND_UNIQUE response.

FileAttributes (1 byte): These are the file system attributes of the file.

LastWriteTime (2 bytes): The time when the file was last modified. The SMB_TIME structure
contains a set of bit fields indicating hours, minutes, and seconds (with a 2 second resolution).

LastWriteDate (2 bytes): The date when the file was last modified. The SMB_DATE structure
contains a set of bit fields indicating the year, month, and date.

FileSize (4 bytes): The size of the file, in bytes. If the file is larger than (2 ** 32 - 1) bytes in size,
the server SHOULD return the least significant 32 bits of the file size.

FileName (13 bytes): The null-terminated 8.3 name format file name. The file name and extension,

including the '.' delimiter MUST be left-justified in the field. The character string MUST be padded
with " " (space) characters, as necessary, to reach 12 bytes in length. The final byte of the field
MUST contain the terminating null character.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

 (0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR A non-terminal component
of the specified path was
not a directory OR the
path syntax is invalid.

ERRDOS

(0x01)

ERRnoaccess

 (0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCES No file system permission
on the specified
pathname.

ERRDOS

(0x01)

ERRbadfid

 (0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to resume a
search that was not active
on the server.

320 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

 The server is out of
resources.

ERRDOS

(0x01)

ERRnofiles

 (0x0012)

STATUS_NO_MORE_FILES

(0x80000006)

EOF No more matching files
found on the server.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB request.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMD_BAD_UID

(0x005B0002)

 The UID in the header is
not valid for this session.

ERRHRD

 (0x03)

ERRdata

(0x0017)

STATUS_CRC_ERROR

(0xC000003F)

EIO Data I/O error (incorrect
CRC on device).

In [XOPEN-SMB] it is noted that POSIX-style servers MAY also generate ENOENT while searching for
files. ENOENT errors MUST be handled on the server side and MUST NOT be returned to the client.

2.2.4.61 SMB_COM_FIND_CLOSE (0x84)

This command was introduced in the LAN Manager 1.0 dialect. This command is deprecated. New
client implementations SHOULD use the SMB_COM_TRANSACTION2 subcommand
TRANS2_FIND_FIRST2 (section 2.2.6.2) instead.

This command is used to close a directory search opened by SMB_COM_FIND. The initial
SMB_COM_FIND request logically opens and initiates the search. Subsequent SMB_COM_FIND

requests that present a valid ResumeKey continue the search. The SMB_COM_FIND_CLOSE closes

the search, allowing the server to free any resources used to maintain the search context.

If the initial SMB_COM_FIND fails (returns an error), the search is not open, and this command
SHOULD NOT be called to close it. This command SHOULD NOT be used to close a directory search
opened by SMB_COM_SEARCH.

The format of this command is nearly identical to that of SMB_COM_SEARCH and SMB_COM_FIND,
with the exception that the Reply field SMB_Data.DirectoryInformationData is never present.

2.2.4.61.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT MaxCount;
 USHORT SearchAttributes;
 }
 }
 SMB_Data

 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;

321 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_STRING FileName;
 UCHAR BufferFormat2;
 USHORT ResumeKeyLength;
 SMB_Resume_Key ResumeKey;
 }
 }

SMB_Header:

TID (2 bytes): A valid TID MUST be provided. The TID MUST refer to a connected server
share and MUST match the TID in the corresponding SMB_COM_FIND commands.

UID (2 bytes): A valid UID MUST be provided and MUST match the UID specified in the
corresponding SMB_COM_FIND commands.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (28 bytes)

...

...

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxCount SearchAttributes

MaxCount (2 bytes): This field has no meaning in this context. It SHOULD<110> be set to
0x0000 by the client and MUST be ignored by the server.

SearchAttributes (2 bytes): This field has no meaning in this context. It SHOULD be set to
0x0000 by the client and MUST be ignored by the server.

SMB_Data (28 bytes):

322 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (26 bytes)

...

...

ByteCount (2 bytes): This field MUST be 26 (0x001A).

Bytes (26 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat1 FileName BufferFormat2 ResumeKeyLength

... ResumeKey (21 bytes)

...

...

...

BufferFormat1 (1 byte): This field MUST be 0x04, which indicates that a null-terminated
ASCII string follows.

FileName (1 byte): SMB_STRING A null-terminated SMB_STRING. This MUST be the empty

string.

BufferFormat2 (1 byte): This field MUST be 0x05, which indicates that a variable block
follows.

ResumeKeyLength (2 bytes): This field MUST be 21 (0x0015).

ResumeKey (21 bytes): SMB_Resume_Key This MUST be the last ResumeKey returned by
the server in the search being closed. See SMB_COM_FIND for a description of the
SMB_Resume_Key data structure.

2.2.4.61.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT Count;
 }
 }
 SMB_Data
 {

 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;

323 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT DataLength;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Count

Count (2 bytes): The server SHOULD set this field to 0x0000, and the client MUST ignore the
value of this field. No entries are returned in the response.

SMB_Data (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes

...

ByteCount (2 bytes): This field SHOULD<111> be 0x0003.

Bytes (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength

BufferFormat (1 byte): If sent, this field MUST be 0x05, which indicates that a variable-size
block follows.

DataLength (2 bytes): If sent, this field MUST be 0x0000. No DirectoryInformationData

records are returned.

324 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath
(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR A non-terminal component
of the specified path was
not a directory OR the
path syntax is invalid.

ERRDOS

(0x01)

ERRnoaccess
(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCES No file system permission
on the specified
pathname.

ERRDOS

(0x01)

ERRbadfid
(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Attempt to resume a
search that was not active
on the server.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

 The server is out of
resources.

ERRDOS

(0x01)

ERRnofiles
(0x0012)

STATUS_NO_MORE_FILES

(0x80000006)

EOF No more matching files
found on the server.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB request.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

The UID in the header is
not valid for this session,
or the user identified by
the UID does not have
sufficient privileges.

ERRHRD
(0x03)

ERRdata

(0x0017)

STATUS_CRC_ERROR

(0xC000003F)

EIO Data I/O error (incorrect
CRC on device).

2.2.4.62 SMB_COM_NT_TRANSACT (0xA0)

This command was introduced in the NT LAN Manager dialect.

SMB_COM_NT_TRANSACT subcommands extend the file system feature access offered by
SMB_COM_TRANSACTION2 (section 2.2.4.46), and also allow for the transfer of very large parameter

and data blocks.

SMB_COM_NT_TRANSACT messages MAY exceed the maximum size of a single SMB message (as
determined by the value of the MaxBufferSize session parameter). In this case, the client will use
one or more SMB_COM_NT_TRANSACT_SECONDARY messages to transfer transaction Data and
Parameter bytes that did not fit in the initial message.

The client indicates that it has not sent all of the Data bytes by setting DataCount to a value less
than TotalDataCount. Similarly, if ParameterCount is less than TotalParameterCount, then the

client has more Parameter bytes to send. Parameter bytes SHOULD be sent before Data bytes, and

325 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

clients SHOULD attempt to send as many bytes as possible in each message. Servers SHOULD be
prepared, however, to accept Parameters and Data in any order, in large or small amounts.

For both the request and the response, the positions and lengths of the
SMB_Data.NT_Trans_Parameters and SMB_Data.NT_Trans_Data fields are determined by the

values of the SMB_Parameters.ParameterOffset, SMB_Parameters.ParameterCount,
SMB_Parameters.DataOffset, and SMB_Parameters.DataCount fields. In addition, the
SMB_Parameters.ParameterDisplacement and SMB_Parameters.DataDisplacement fields MAY
be used to change the order in which subranges of bytes are transferred. Servers SHOULD transfer
bytes in order and give precedence to SMB_Data.NT_Trans_Parameters bytes. Clients SHOULD be
prepared to reconstruct transaction SMB_Data.NT_Trans_Parameters and
SMB_Data.NT_Trans_Data, regardless of the order or locations in which they are delivered.

2.2.4.62.1 Request

The SMB_COM_NT_TRANSACT request differs in structure from the other two transaction request
types. Although there are several common fields, the SMB_COM_NT_TRANSACT message rearranges
fields to provide better byte alignment. The other transaction types use 16-bit fields to provide the

size and offset of parameters and data; SMB_COM_NT_TRANSACT uses 32-bit fields, allowing for

much larger data transfers. Finally, SMB_COM_NT_TRANSACT includes a Function field, which carries
the subcommand code.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR MaxSetupCount;
 USHORT Reserved1;
 ULONG TotalParameterCount;
 ULONG TotalDataCount;
 ULONG MaxParameterCount;
 ULONG MaxDataCount;
 ULONG ParameterCount;
 ULONG ParameterOffset;
 ULONG DataCount;
 ULONG DataOffset;
 UCHAR SetupCount;
 USHORT Function;
 USHORT Setup[SetupCount];
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR NT_Trans_Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR NT_Trans_Data[DataCount];
 }
 }

SMB_Header:

The Command for the initial request and for all responses MUST be SMB_COM_NT_TRANSACT
(0xA0). The Command for secondary request messages that are part of the same transaction
MUST be SMB_COM_NT_TRANSACT_SECONDARY (0xA1). The PID, MID, TID, and UID MUST be
the same for all requests and responses that are part of the same transaction.

326 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_NT_TRANSACT request contains the information used
to manage the transaction itself. It also contains flags and setup information that provide context for

the execution of the operation on the server side.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): This field MUST be greater than or equal to 0x13.

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MaxSetupCount Reserved1 TotalParameterCount

... TotalDataCount

... MaxParameterCount

... MaxDataCount

... ParameterCount

... ParameterOffset

... DataCount

... DataOffset

... SetupCount

Function Setup (variable)

...

327 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

MaxSetupCount (1 byte): Maximum number of setup bytes that the client will accept in the
transaction reply. This field MUST be set as specified in the subsections of Transaction

Subcommands (section 2.2.5). The server MUST NOT return more than this number of
setup bytes.

Reserved1 (2 bytes): Two padding bytes. This field MUST be 0x0000. This field is used to
align the next field to a 32-bit boundary.

TotalParameterCount (4 bytes): The total number of SMB_COM_NT_TRANSACT parameter
bytes to be sent in this transaction request. This value MAY be reduced in any or all
subsequent SMB_COM_NT_TRANSACT_SECONDARY requests that are part of the same
transaction. This value represents transaction parameter bytes, not SMB parameter words.
Transaction parameter bytes are carried in the SMB_Data block of the

SMB_COM_NT_TRANSACT request or in subsequent
SMB_COM_NT_TRANSACT_SECONDARY requests.

TotalDataCount (4 bytes): The total number of SMB_COM_NT_TRANSACT data bytes to be
sent in this transaction request. This value MAY be reduced in any or all subsequent

SMB_COM_NT_TRANSACT_SECONDARY requests that are part of the same transaction.
This value represents transaction data bytes, not SMB data bytes.

MaxParameterCount (4 bytes): The maximum number of parameter bytes that the client
will accept in the transaction reply. This field MUST be set as specified in the subsections
of Transaction Subcommands. The server MUST NOT return more than this number of
parameter bytes.

MaxDataCount (4 bytes): The maximum number of data bytes that the client will accept in
the transaction reply. This field MUST be set as specified in the subsections of Transaction
Subcommands. The server MUST NOT return more than this number of data bytes.

ParameterCount (4 bytes): The number of transaction parameter bytes being sent in this
SMB message. If the transaction fits within a single SMB_COM_NT_TRANSACT request,
this value MUST be equal to TotalParameterCount. Otherwise, the sum of the
ParameterCount values in the primary and secondary transaction request messages

MUST be equal to the smallest TotalParameterCount value reported to the server. If the
value of this field is less than the value of TotalParameterCount, then at least one
SMB_COM_NT_TRANSACT_SECONDARY message MUST be used to transfer the remaining

parameter bytes.

ParameterOffset (4 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes. This MUST be the number of bytes from the start of the SMB
message to the start of the SMB_Data.Bytes.Parameters field. Server implementations
MUST use this value to locate the transaction parameter block within the SMB message. If
ParameterCount is zero, the client/server MAY set this field to zero.<112>

DataCount (4 bytes): The number of transaction data bytes being sent in this SMB message.
If the transaction fits within a single SMB_COM_NT_TRANSACT request, then this value
MUST be equal to TotalDataCount. Otherwise, the sum of the DataCount values in the
primary and secondary transaction request messages MUST be equal to the smallest
TotalDataCount value reported to the server. If the value of this field is less than the

value of TotalDataCount, then at least one SMB_COM_NT_TRANSACT_SECONDARY
message MUST be used to transfer the remaining data bytes.

DataOffset (4 bytes): The offset, in bytes, from the start of the SMB Header (section
2.2.3.1) to the transaction data bytes. This MUST be the number of bytes from the start of
the SMB message to the start of the SMB_Data.Bytes.Data field. Server
implementations MUST use this value to locate the transaction data block within the SMB
message. If DataCount is zero, the client/server MAY set this field to zero.<113>

328 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SetupCount (1 byte): The number of setup words that are included in the transaction
request.

Function (2 bytes): The transaction subcommand code, which is used to identify the
operation to be performed by the server.

Setup (variable): An array of two-byte words that provides transaction context to the server.
The size and content of the array are specific to the individual subcommands.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_NT_TRANSACT request contains the parameters and data
that are the input to the transaction operation on the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

NT_Trans_Parameters (variable)

...

Pad2 (variable)

...

NT_Trans_Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This

constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

NT_Trans_Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_NT_TRANSACT subcommand descriptions for information on parameters sent
for each subcommand.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This

329 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server, and MUST be ignored by the server/client.

NT_Trans_Data (variable): Transaction data bytes. See the individual
SMB_COM_NT_TRANSACT subcommand descriptions for information on data sent for

each subcommand.

2.2.4.62.2 Response

The SMB_COM_NT_TRANSACT response has two possible formats. The standard format is used to
return the results of the completed transaction. A shortened interim response message is sent
following the initial SMB_COM_NT_TRANSACT request if secondary request messages
(SMB_COM_NT_TRANSACT_SECONDARY) are pending.

Whenever a transaction request is split across multiple SMB requests, the server evaluates the initial
SMB_COM_NT_TRANSACT request to determine whether or not it has the resources necessary to
process the transaction. It also checks for any other errors that it can detect based upon the initial
request and then sends back an interim response. The interim response indicates to the client as to

whether it can send the rest of the transaction to the server.

The format of the SMB_COM_NT_TRANSACT Interim Server Response message is simply an SMB

Header (section 2.2.3.1) with an empty Parameter and Data section (WordCount and ByteCount
are zero).

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

If no error (that is, SUCCESS) is returned in the SMB_COM_NT_TRANSACT Interim Server Response,
the transaction MAY proceed. The client sends as many SMB_COM_NT_TRANSACT_SECONDARY
messages as needed to transfer the remainder of the transaction subcommand. The server processes
the transaction and replies with one or more SMB_COM_NT_TRANSACT response messages.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR Reserved1[3];
 ULONG TotalParameterCount;
 ULONG TotalDataCount;
 ULONG ParameterCount;
 ULONG ParameterOffset;
 ULONG ParameterDisplacement;
 ULONG DataCount;
 ULONG DataOffset;
 ULONG DataDisplacement;
 UCHAR SetupCount;
 USHORT Setup[SetupCount];
 }

 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes

330 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 UCHAR Pad1[];
 UCHAR Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Data[DataCount];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (variable)

...

SMB_Data (variable)

...

SMB_Parameters (variable):

The SMB_Parameters section of the SMB_COM_NT_TRANSACT response contains information used to

manage the transfer of the complete transaction response. It also contains setup information that can
include subcommand return codes or state information returned by the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (variable)

...

WordCount (1 byte): The value of Words.SetupCount plus 18 (0x12). This value represents
the total number of SMB parameter words and MUST be greater than or equal to 18 (0x12).

Words (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1 TotalParameterCount

... TotalDataCount

... ParameterCount

... ParameterOffset

... ParameterDisplacement

... DataCount

331 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... DataOffset

... DataDisplacement

... SetupCount

Setup (variable)

...

Reserved1 (3 bytes): Reserved. This field MUST be 0x000000 in the server response. The
client MUST ignore the contents of this field.

TotalParameterCount (4 bytes): The total number of SMB_COM_NT_TRANSACT parameter

bytes to be sent in this transaction response. This value MAY be reduced in any or all

subsequent SMB_COM_NT_TRANSACT responses that are part of the same transaction.
This value represents transaction parameter bytes, not SMB parameter words. Transaction
parameter bytes are carried within in the SMB_data block.

TotalDataCount (4 bytes): The total number of SMB_COM_NT_TRANSACT data bytes to be
sent in this transaction response. This value MAY be reduced in any or all subsequent

SMB_COM_NT_TRANSACT responses that are part of the same transaction. This value
represents transaction data bytes, not SMB data bytes.

ParameterCount (4 bytes): The number of transaction parameter bytes being sent in this
SMB message. If the transaction fits within a single SMB_COM_NT_TRANSACT response,
then this value MUST be equal to TotalParameterCount. Otherwise, the sum of the
ParameterCount values in the transaction response messages MUST be equal to the
smallest TotalParameterCount value reported by the server.

ParameterOffset (4 bytes): The offset, in bytes, from the start of the SMB_Header to the

transaction parameter bytes. This MUST be the number of bytes from the start of the SMB
message to the start of the SMB_Data.Bytes.Parameters field. Server implementations
MUST use this value to locate the transaction parameter block within the SMB message. If
ParameterCount is zero, the client/server MAY set this field to zero.<114>

ParameterDisplacement (4 bytes): The offset, relative to all of the transaction parameter
bytes in this transaction response, at which this block of parameter bytes MUST be placed.

This value can be used by the client to correctly reassemble the transaction parameters
even if the SMB response messages are received out of order.

DataCount (4 bytes): The number of transaction data bytes being sent in this SMB message.
If the transaction fits within a single SMB_COM_NT_TRANSACT response, then this value
MUST be equal to TotalDataCount. Otherwise, the sum of the DataCount values in the
transaction response messages MUST be equal to the smallest TotalDataCount value

reported by the server.

DataOffset (4 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction data bytes. This MUST be the number of bytes from the start of the SMB
message to the start of the SMB_Data.Bytes.Data field. Server implementations MUST
use this value to locate the transaction data block within the SMB message. If DataCount
is zero, the client/server MAY set this field to zero.<115>

DataDisplacement (4 bytes): The offset, relative to all of the transaction data bytes in this

transaction response, at which this block of data bytes MUST be placed. This value can be
used by the client to correctly reassemble the transaction data even if the SMB response
messages are received out of order.

332 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SetupCount (1 byte): The number of Setup words that are included in the transaction
response.

Setup (variable): An array of two-byte words that provides transaction results from the
server. The size and content of the array are specific to individual subcommand.

SMB_Data (variable):

The SMB_Data section of the SMB_COM_NT_TRANSACT response contains the parameters and data
generated by the transaction subcommand.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0000.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Parameters (variable)

...

Pad2 (variable)

...

Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1). This constraint can cause this field to be a zero-length field. This field SHOULD
be set to zero by the client/server and MUST be ignored by the server/client.

Parameters (variable): Transaction parameter bytes. See the individual
SMB_COM_NT_TRANSACT subcommand descriptions for information on parameters

returned by the server for each subcommand.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

333 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Data (variable): Transaction data bytes. See the individual SMB_COM_NT_TRANSACT
subcommand descriptions for information on data returned by the server for each

subcommand.

As with the request message, the positions and lengths of the Parameters and Data

fields are determined by the values of the ParameterOffset, ParameterCount,
DataOffset, and DataCount fields. In addition, the ParameterDisplacement and
DataDisplacement fields MAY be used to change the order in which subranges of bytes
are transferred. Servers SHOULD transfer byte blocks in order and SHOULD give
precedence to Parameter bytes. Clients SHOULD be prepared to reconstruct transaction
Parameters and Data regardless of the orders or locations in which they are delivered.

Error Codes

The errors returned from calls to SMB_COM_NT_TRANSACT are specific to the subcommand being
executed. See the documentation for the individual subcommands for more detailed error information.

2.2.4.63 SMB_COM_NT_TRANSACT_SECONDARY (0xA1)

The SMB_COM_NT_TRANSACT_SECONDARY command is used to complete a data transfer initiated by
an SMB_COM_NT_TRANSACT request.

2.2.4.63.1 Request

The SMB_COM_NT_TRANSACT_SECONDARY request message has the same purpose as the other
secondary transaction messages used in SMB. The fields are in a different order to provide better
alignment, and the Count, Offset, and Displacement fields are 32 bits wide instead of 16.

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR Reserved1[3];
 ULONG TotalParameterCount;
 ULONG TotalDataCount;
 ULONG ParameterCount;
 ULONG ParameterOffset;
 ULONG ParameterDisplacement;
 ULONG DataCount;
 ULONG DataOffset;
 ULONG DataDisplacement;
 UCHAR Reserved2;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR Pad1[];
 UCHAR Parameters[ParameterCount];
 UCHAR Pad2[];
 UCHAR Data[DataCount];
 }
 }

SMB_Header:

334 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command MUST be sent following a successful SMB_COM_NT_TRANSACT Intermediate
Response from the server. The PID, MID, TID, and UID MUST be the same for all requests and

responses that are part of the same transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (37 bytes)

...

...

... SMB_Data (variable)

...

SMB_Parameters (37 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (36 bytes)

...

...

...

WordCount (1 byte): This value represents the total number of SMB parameter words and MUST
be 0x12.

Words (36 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1 TotalParameterCount

... TotalDataCount

... ParameterCount

... ParameterOffset

... ParameterDisplacement

... DataCount

... DataOffset

335 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... DataDisplacement

... Reserved2

Reserved1 (3 bytes): Reserved. Used to align the following fields to a 32-bit boundary. This
field MUST contain null padding bytes in the server response. The client MUST ignore the
contents of this field.

TotalParameterCount (4 bytes): The total number of transaction parameter bytes to be sent
to the server over the course of this transaction. This value MAY be less than or equal to
the TotalParameterCount in preceding request messages that are part of the same
transaction. This value represents transaction parameter bytes, not SMB parameter words.

TotalDataCount (4 bytes): The total number of transaction data bytes to be sent to the
server over the course of this transaction. This value MAY be less than or equal to the

TotalDataCount in preceding request messages that are part of the same transaction. This
value represents transaction data bytes, not SMB data bytes.

ParameterCount (4 bytes): The number of transaction parameter bytes being sent in the
SMB message. This value MUST be less than TotalParameterCount. The sum of the
ParameterCount values across all of the request messages in a transaction MUST be
equal to the TotalParameterCount reported in the last request message of the
transaction.

ParameterOffset (4 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction parameter bytes contained in this SMB message. This MUST be the number of
bytes from the start of the SMB message to the start of the SMB_Data.Bytes.Parameters
field. Server implementations MUST use this value to locate the transaction parameter
block within the SMB message. If ParameterCount is zero, the client/server MAY set this
field to zero.<116>

ParameterDisplacement (4 bytes): The offset, relative to all of the transaction parameter

bytes sent to the server in this transaction, at which this block of parameter bytes MUST be
placed. This value can be used by the server to correctly reassemble the transaction
parameters even if the SMB request messages are received out of order.

DataCount (4 bytes): The number of transaction data bytes being sent in this SMB message.
This value MUST be less than the value of TotalDataCount. The sum of the DataCount
values across all of the request messages in a transaction MUST be equal to the smallest

TotalDataCount value reported to the server.

DataOffset (4 bytes): The offset, in bytes, from the start of the SMB_Header to the
transaction data bytes contained in this SMB message. This MUST be the number of bytes
from the start of the SMB message to the start of the SMB_Data.Bytes.Data field. Server
implementations MUST use this value to locate the transaction data block within the SMB
message. If DataCount is zero, the client/server MAY set this field to zero.<117>

DataDisplacement (4 bytes): The offset, relative to all of the transaction data bytes sent to

the server in this transaction, at which this block of parameter bytes MUST be placed. This
value can be used by the server to correctly reassemble the transaction data block even if
the SMB request messages are received out of order.

Reserved2 (1 byte): Reserved. MUST be 0x00. The server MUST ignore the contents of this
field.

SMB_Data (variable):

336 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SMB_Data section of the SMB_COM_NT_TRANSACT_SECONDARY request contains parameters
and data bytes being sent to the server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The number of bytes in the SMB_Data.Bytes array, which follows.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Pad1 (variable)

...

Parameters (variable)

...

Pad2 (variable)

...

Data (variable)

...

Pad1 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header (section
2.2.3.1). This constraint can cause this field to be a zero-length field. This field SHOULD
be set to zero by the client/server and MUST be ignored by the server/client.

Parameters (variable): Transaction parameter bytes.

Pad2 (variable): This field SHOULD be used as an array of padding bytes to align the
following field to a 4-byte boundary relative to the start of the SMB Header. This
constraint can cause this field to be a zero-length field. This field SHOULD be set to zero
by the client/server and MUST be ignored by the server/client.

Data (variable): Transaction data bytes.

2.2.4.63.2 Response

There is no response message defined for the SMB_COM_NT_TRANSACT_SECONDARY command.

Error Codes

Because there is no response to an SMB_COM_NT_TRANSACT_SECONDARY request, no error codes
are defined.

337 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.4.64 SMB_COM_NT_CREATE_ANDX (0xA2)

This command was introduced in the NT LAN Manager dialect.

This command is used to create and open a new file, or to open an existing file, or to open and

truncate an existing file to zero length, or to create a directory, or to create a connection to a named
pipe. The FID returned MAY be used in subsequent requests.

The message includes the pathname of the file, directory, or named pipe, and RootDirectoryFID
(see following) that the client attempts to create or open. If the message is successful, the server
response MUST include a FID value identifying the opened resource. The client MUST supply the FID
in subsequent operations on the resource. The client MUST have write permission on the resource
parent directory to create a new file or directory, or write permissions on the file itself to truncate the

file.

The following are the commands that MAY follow an SMB_COM_NT_CREATE_ANDX in an AndX chain:

 SMB_COM_READ (section 2.2.4.11)

 SMB_COM_READ_ANDX (section 2.2.4.42)

 SMB_COM_IOCTL (section 2.2.4.35)

2.2.4.64.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 UCHAR Reserved;
 USHORT NameLength;
 ULONG Flags;
 ULONG RootDirectoryFID;
 ULONG DesiredAccess;
 LARGE_INTEGER AllocationSize;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG ShareAccess;
 ULONG CreateDisposition;
 ULONG CreateOptions;
 ULONG ImpersonationLevel;
 UCHAR SecurityFlags;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 SMB_STRING FileName;
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (49 bytes)

338 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

...

...

SMB_Parameters (49 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (48 bytes)

...

...

... SMB_Data (variable)

...

WordCount (1 byte): This field MUST be 0x18.

Words (48 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

Reserved NameLength Flags

... RootDirectoryFID

... DesiredAccess

... AllocationSize

...

... ExtFileAttributes

... ShareAccess

... CreateDisposition

... CreateOptions

... ImpersonationLevel

339 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... SecurityFlags

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB commands in the client request
packet.

AndXReserved (1 byte): A reserved field. This MUST be set to 0x00 when this request is
sent, and the server MUST ignore this value when the message is received.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command in
this packet. This field is valid only if the AndXCommand field is not set to 0xFF. If
AndXCommand is 0xFF, this field MUST be ignored by the server.

Reserved (1 byte): An unused value that SHOULD be set to 0x00 when sent and MUST be
ignored on receipt.

NameLength (2 bytes): This field MUST be the length of the FileName field (see following) in
bytes.

Flags (4 bytes): A 32-bit field containing a set of flags that modify the client request. Unused
bit fields SHOULD be set to 0 when sent and MUST be ignored on receipt.

Name and bitmask Meaning

NT_CREATE_REQUEST_OPLOCK

0x00000002

If set, the client requests an exclusive
OpLock.

NT_CREATE_REQUEST_OPBATCH

0x00000004

If set, the client requests an exclusive batch
OpLock.

NT_CREATE_OPEN_TARGET_DIR

0x00000008

If set, the client indicates that the parent
directory of the target is to be opened.

RootDirectoryFID (4 bytes): If nonzero, this value is the File ID of an opened root directory,
and the FileName field MUST be handled as relative to the directory specified by this
RootDirectoryFID. If this value is 0x00000000, the FileName field MUST be handled as

relative to the root of the share (the TID). The RootDirectoryFID MUST have been acquired
in a previous message exchange.

DesiredAccess (4 bytes): A 32-bit field of flags that indicate standard, specific, and generic
access rights. These rights are used in access-control entries (ACEs) and are the primary
means of specifying the requested or granted access to an object. If this value is
0x00000000, it represents a request to query the attributes without accessing the file.

Name and bitmask Meaning

FILE_READ_DATA

0x00000001

Indicates the right to read data from the file.

FILE_WRITE_DATA

0x00000002

Indicates the right to write data into the file
beyond the end of the file.

FILE_APPEND_DATA

0x00000004

Indicates the right to append data to the file
beyond the end of the file only.

FILE_READ_EA Indicates the right to read the extended

340 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

0x00000008 attributes (EAs) of the file.

FILE_WRITE_EA

0x00000010

Indicates the right to write or change the
extended attributes (EAs) of the file.

FILE_EXECUTE

0x00000020

Indicates the right to execute the file.

FILE_READ_ATTRIBUTES

0x00000080

Indicates the right to read the attributes of the
file.

FILE_WRITE_ATTRIBUTES

0x00000100

Indicates the right to change the attributes of the
file.

DELETE

0x00010000

Indicates the right to delete or to rename the file.

READ_CONTROL

0x00020000

Indicates the right to read the security descriptor
of the file.

WRITE_DAC

0x00040000

Indicates the right to change the discretionary
access control list (DACL) in the security
descriptor of the file.

WRITE_OWNER

0x00080000

Indicates the right to change the owner in the
security descriptor of the file.

SYNCHRONIZE

0x00100000

SHOULD NOT be used by the sender and MUST
be ignored by the receiver.

ACCESS_SYSTEM_SECURITY

0x01000000

Indicates the right to read or change the system
access control list (SACL) in the security
descriptor for the file. If the SE_SECURITY_NAME
privilege is not set in the access token, the server
MUST fail the open request and return
STATUS_PRIVILEGE_NOT_HELD.

MAXIMUM_ALLOWED

0x02000000

Indicates that the client requests an open to the
file with the highest level of access that the client
has on this file. If no access is granted for the
client on this file, the server MUST fail the open
and return a STATUS_ACCESS_DENIED.

GENERIC_ALL

0x10000000

Indicates a request for all of the access flags that
are previously listed except MAXIMUM_ALLOWED
and ACCESS_SYSTEM_SECURITY.

GENERIC_EXECUTE

0x20000000

Indicates a request for the following combination
of access flags listed previously in this table:
FILE_READ_ATTRIBUTES, FILE_EXECUTE,
SYNCHRONIZE, and READ_CONTROL.

GENERIC_WRITE

0x40000000

Indicates a request for the following combination
of access flags listed previously in this table:
FILE_WRITE_DATA, FILE_APPEND_DATA,
SYNCHRONIZE, FILE_WRITE_ATTRIBUTES, and
FILE_WRITE_EA.

GENERIC_READ

0x80000000

Indicates a request for the following combination
of access flags listed previously in this table:
FILE_READ_DATA, FILE_READ_ATTRIBUTES,

341 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

FILE_READ_EA, and SYNCHRONIZE.

AllocationSize (8 bytes): The client MUST set this value to the initial allocation size of the file
in bytes. The server MUST ignore this field if this request is to open an existing file. This
field MUST be used only if the file is created or overwritten. The value MUST be set to
0x0000000000000000 in all other cases. This does not apply to directory-related requests.
This is the number of bytes to be allocated, represented as a 64-bit integer value.

ExtFileAttributes (4 bytes): This field contains the extended file attributes of the file being
requested, encoded as an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

ShareAccess (4 bytes): A 32-bit field that specifies how the file SHOULD be shared with
other processes. The names in the table below are provided for reference use only. If
ShareAccess values of FILE_SHARE_READ, FILE_SHARE_WRITE, or FILE_SHARE_DELETE
are set for a printer file or a named pipe, the server SHOULD ignore these values. The

value MUST be FILE_SHARE_NONE or some combination of the other values:

Name and bitmask Meaning

FILE_SHARE_NONE

0x00000000

(No bits set.)Prevents the file from being
shared.

FILE_SHARE_READ

0x00000001

Other open operations can be performed on
the file for read access.

FILE_SHARE_WRITE

0x00000002

Other open operations can be performed on
the file for write access.

FILE_SHARE_DELETE

0x00000004

Other open operations can be performed on
the file for delete access.

CreateDisposition (4 bytes): A 32-bit value that represents the action to take if the file
already exists or if the file is a new file and does not already exist.<118>

Name and value Meaning

FILE_SUPERSEDE

0x00000000

(No bits set.)If the file already exists, it
SHOULD be superseded (overwritten). If it
does not already exist, then it SHOULD be
created.

FILE_OPEN

0x00000001

If the file already exists, it SHOULD be
opened rather than created. If the file does
not already exist, the operation MUST fail.

FILE_CREATE

0x00000002

If the file already exists, the operation MUST
fail. If the file does not already exist, it
SHOULD be created.

FILE_OPEN_IF

0x00000003

If the file already exists, it SHOULD be
opened. If the file does not already exist,
then it SHOULD be created. This value is
equivalent to (FILE_OPEN | FILE_CREATE).

FILE_OVERWRITE

0x00000004

If the file already exists, it SHOULD be
opened and truncated. If the file does not
already exist, the operation MUST fail. The
client MUST open the file with at least

342 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and value Meaning

GENERIC_WRITE access for the command to
succeed.

FILE_OVERWRITE_IF

0x00000005

If the file already exists, it SHOULD be
opened and truncated. If the file does not
already exist, it SHOULD be created. The
client MUST open the file with at least
GENERIC_WRITE access.

CreateOptions (4 bytes): A 32-bit field containing flag options to use if creating the file or
directory. This field MUST be set to 0x00000000 or a combination of the following possible

values. Unused bit fields SHOULD be set to 0 when sent and MUST be ignored on receipt.
The following is a list of the valid values and their associated behaviors. Server
implementations SHOULD reserve all bits not specified in the following definitions.

Name and bitmask Meaning

FILE_DIRECTORY_FILE

0x00000001

The file being created or
opened is a directory file. With
this option, the
CreateDisposition field MUST
be set to FILE_CREATE,
FILE_OPEN, or FILE_OPEN_IF.
When this bit field is set, other
compatible CreateOptions
include only the following:
FILE_WRITE_THROUGH,
FILE_OPEN_FOR_BACKUP_INT
ENT, and
FILE_OPEN_BY_FILE_ID.

FILE_WRITE_THROUGH

0x00000002

Applications that write data to
the file MUST actually transfer
the data into the file before
any write request is considered
complete. If
FILE_NO_INTERMEDIATE_BUFF
ERING is set, the server MUST
perform as if
FILE_WRITE_THROUGH is set

in the create request.

FILE_SEQUENTIAL_ONLY

0x00000004

This option indicates that
access to the file can be
sequential. The server can use
this information to influence its
caching and read-ahead
strategy for this file. The file
MAY in fact be accessed
randomly, but the server can
optimize its caching and read-
ahead policy for sequential
access.

FILE_NO_INTERMEDIATE_BUFFE
RING

0x00000008

The file SHOULD NOT be
cached or buffered in an
internal buffer by the server.

This option is incompatible
when the FILE_APPEND_DATA
bit field is set in the
DesiredAccess field.

343 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

FILE_SYNCHRONOUS_IO_ALERT

0x00000010

This flag MUST be ignored by
the server, and clients SHOULD
set this to 0.

FILE_SYNCHRONOUS_IO_NONA
LERT

0x00000020

This flag MUST be ignored by
the server, and clients SHOULD
set this to 0.

FILE_NON_DIRECTORY_FILE

0x00000040

If the file being opened is a
directory, the server MUST fail
the request with
STATUS_FILE_IS_A_DIRECTOR
Y in the Status field of the SMB

Header in the server response.

FILE_CREATE_TREE_CONNECTI
ON

0x00000080

This option SHOULD NOT be
sent by the clients, and this
option MUST be ignored by the
server.

FILE_COMPLETE_IF_OPLOCKED

0x00000100

This option SHOULD NOT be
sent by the clients, and this
option MUST be ignored by the
server.

FILE_NO_EA_KNOWLEDGE

0x00000200

The application that initiated
the client's request does not
support extended attributes
(EAs). If the EAs on an existing
file being opened indicate that
the caller SHOULD support EAs
to correctly interpret the file,
the server SHOULD fail this
request with
STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess) in the
Status field of the SMB Header
in the server response.

FILE_OPEN_FOR_RECOVERY

0x00000400

This option SHOULD NOT be
sent by the clients, and this
option MUST be ignored if
received by the server.

FILE_RANDOM_ACCESS

0x00000800

Indicates that access to the file
can be random. The server
MAY use this information to
influence its caching and read-
ahead strategy for this file.
This is a hint to the server that
sequential read-ahead
operations might not be
appropriate on the file.

FILE_DELETE_ON_CLOSE

0x00001000

The file SHOULD be
automatically deleted when the
last open request on this file is
closed. When this option is set,
the DesiredAccess field MUST
include the DELETE flag. This
option is often used for
temporary files.

344 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

FILE_OPEN_BY_FILE_ID

0x00002000

Opens a file based on the
FileId. If this option is set, the
server MUST fail the request
with
STATUS_NOT_SUPPORTED in
the Status field of the SMB
Header in the server response.

FILE_OPEN_FOR_BACKUP_INTE
NT

0x00004000

The file is being opened or
created for the purposes of
either a backup or a restore
operation. Thus, the server can
make appropriate checks to
ensure that the caller is
capable of overriding whatever
security checks have been
placed on the file to allow a
backup or restore operation to
occur. The server can check for
certain access rights to the file
before checking the
DesiredAccess field.

FILE_NO_COMPRESSION

0x00008000

When a new file is created, the
file MUST NOT be compressed,
even if it is on a compressed
volume. The flag MUST be
ignored when opening an
existing file.

FILE_RESERVE_OPFILTER

0x00100000

This option SHOULD NOT be
sent by the clients, and this
option MUST be ignored if
received by the server.

FILE_OPEN_NO_RECALL

0x00400000

In a hierarchical storage
management environment, this
option requests that the file
SHOULD NOT be recalled from
tertiary storage such as tape. A
file recall can take up to
several minutes in a
hierarchical storage
management environment. The
clients can specify this option
to avoid such delays.

FILE_OPEN_FOR_FREE_SPACE_
QUERY

0x00800000

This option SHOULD NOT be
sent by the clients, and this
option MUST be ignored if
received by the server.

ImpersonationLevel (4 bytes): This field specifies the impersonation level requested by the
application that is issuing the create request, and MUST contain one of the following values.
The server MUST validate this field, but otherwise ignore it.

Impersonation is described in [MS-WPO] section 8.5.1; for more information about
impersonation, see [MSDN-IMPERS].

%5bMS-WPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=106009

345 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and value Meaning

SEC_ANONYMOUS

0x00000000

The application-requested
impersonation level is Anonymous.

SEC_IDENTIFY

0x00000001

 The application-requested
impersonation level is Identification.

SEC_IMPERSONATE

0x00000002

 The application-requested
impersonation level is Impersonation.

SecurityFlags (1 byte): An 8-bit field containing a set of options that specify the security
tracking mode. These options specify whether the server is to be given a snapshot of the
client's security context (called static tracking) or is to be continually updated to track
changes to the client's security context (called dynamic tracking). When bit 0 of the
SecurityFlags field is clear, static tracking is requested. When bit 0 of the SecurityFlags
field is set, dynamic tracking is requested. Unused bit fields SHOULD be set to 0 when sent

and MUST be ignored on receipt. This field MUST be set to 0x00 or a combination of the
following possible values. Value names are provided for convenience only. Supported
values are:

Name and value Meaning

SMB_SECURITY_CONTEXT_TRACKING

0x01

When set, dynamic
tracking is requested.
When this bit field is
not set, static tracking
is requested.

SMB_SECURITY_EFFECTIVE_ONLY

0x02

Specifies that only the
enabled aspects of the
client's security context
are available to the
server. If this flag is
not specified, all
aspects of the client's
security context are
available. This flag
allows the client to limit
the groups and
privileges that a server
can use while
impersonating the
client.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): The length in bytes of the remaining SMB_Data. If
SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB Header of the request, this field
has a minimum value of 0x0003. If SMB_FLAGS2_UNICODE is not set, this field has a
minimum value of 0x0002. This field MUST be the total length of the Name field, plus any

padding added for alignment.

346 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FileName (variable)

...

FileName (variable): A string that represents the fully qualified name of the file relative to
the supplied TID to create or truncate on the server. If SMB_FLAGS2_UNICODE is set in

the Flags2 field of the SMB Header of the request, the FileName string MUST be a null-
terminated array of 16-bit Unicode characters. Otherwise, the FileName string MUST be a
null-terminated array of extended ASCII (OEM) characters. If the FileName string consists
of Unicode characters, this field MUST be aligned to start on a 2-byte boundary from the
start of the SMB Header. When opening a named pipe, the FileName field MUST contain
only the relative name of the pipe, that is, the "\PIPE\" prefix MUST NOT be present. This

is in contrast with other commands, such as SMB_COM_OPEN_ANDX and TRANS2_OPEN2,
which require that the "\PIPE" prefix be present in the pathname.

2.2.4.64.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 UCHAR AndXCommand;
 UCHAR AndXReserved;
 USHORT AndXOffset;
 UCHAR OpLockLevel;
 USHORT FID;
 ULONG CreateDisposition;
 FILETIME CreateTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastChangeTime;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 LARGE_INTEGER AllocationSize;
 LARGE_INTEGER EndOfFile;
 USHORT ResourceType;
 SMB_NMPIPE_STATUS NMPipeStatus;
 UCHAR Directory;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters (69 bytes)

...

...

347 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

... SMB_Data

SMB_Parameters (69 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words (68 bytes)

...

...

...

WordCount (1 byte): This field MUST be 0x22.

Words (68 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

AndXCommand AndXReserved AndXOffset

OpLockLevel FID CreateDisposition

... CreateTime

...

... LastAccessTime

...

... LastWriteTime

...

... LastChangeTime

...

... ExtFileAttributes

... AllocationSize

...

... EndOfFile

348 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

... ResourceType

... NMPipeStatus Directory

AndXCommand (1 byte): The command code for the next SMB command in the packet. This
value MUST be set to 0xFF if there are no additional SMB command responses in the
server response packet.

AndXReserved (1 byte): A reserved field. The server MUST set this field to 0x00 when this
response is sent, and the client MUST ignore this field.

AndXOffset (2 bytes): This field MUST be set to the offset in bytes from the start of the SMB
Header (section 2.2.3.1) to the start of the WordCount field in the next SMB command
response in this packet. This field is valid only if the AndXCommand field is not set to

0xFF. If AndXCommand is 0xFF, this field MUST be ignored by the client.

OpLockLevel (1 byte): The OpLock level granted to the client process.

Value Meaning

0x00 No OpLock granted.

0x01 Exclusive OpLock granted.

0x02 Batch OpLock granted.

0x03 Level II OpLock granted.

FID (2 bytes): A FID representing the file or directory that was created or opened.

CreateDisposition (4 bytes): A 32-bit value that represents the action to take if the file
already exists or if the file is a new file and does not already exist.

Name and bitmask Meaning

FILE_SUPERSEDE

0x00000000

The file has been superseded.

FILE_OPEN

0x00000001

The file or directory has been opened.

FILE_CREATE

0x00000002

The file or directory has been created.

FILE_OPEN_IF

0x00000003

The file has been overwritten.

FILE_OVERWRITE

0x00000004

The file already exists.

FILE_OVERWRITE_IF

0x00000005

The file does not exist.

CreateTime (8 bytes): A 64-bit integer value representing the time that the file was created.
The time value is a signed 64-bit integer representing either an absolute time or a time

349 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

interval. Times are specified in units of 100ns. A positive value expresses an absolute
time, where the base time (the 64- bit integer with value 0x0000000000000000) is the

beginning of the year 1601 AD in the Gregorian calendar. A negative value expresses a
time interval relative to some base time, usually the current time.

LastAccessTime (8 bytes): The time that the file was last accessed encoded in the same
format as CreateTime.

LastWriteTime (8 bytes): The time that the file was last written, encoded in the same
format as CreateTime.

LastChangeTime (8 bytes): The time that the file was last changed, encoded in the same
format as CreateTime.

ExtFileAttributes (4 bytes): This field contains the extended file attributes that the server

assigned to the file or directory as a result of the command, encoded as an
SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

AllocationSize (8 bytes): The number of bytes allocated to the file by the server.

EndOfFile (8 bytes): The end of file offset value.

ResourceType (2 bytes): The file type. This field MUST be interpreted as follows.

Name and value Meaning

FileTypeDisk

0x0000

File or directory

FileTypeByteModePipe

0x0001

Byte mode named pipe

FileTypeMessageModePipe

0x0002

Message mode named pipe

FileTypePrinter

0x0003

Printer device

FileTypeCommDevice

0x0004

Character mode device. When an extended
protocol has been negotiated, this value allows a
device to be opened for driver-level I/O. This
provides direct access to devices such as modems,
scanners, and so forth.

NMPipeStatus (2 bytes): A 16-bit field that shows the status of the named pipe if the
resource type opened is a named pipe. This field is formatted as an SMB_NMPIPE_STATUS
(section 2.2.1.3).

Directory (1 byte): If the returned FID represents a directory, the server MUST set this
value to a nonzero value (0x01 is commonly used). If the FID is not a directory, the

server MUST set this value to 0x00 (FALSE).

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

350 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

ERRDO
S

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The file does not exist.

ERRDO
S

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDO
S

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FILE
S

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

EMFILE Too many open files; no
more FIDs available.

ERRDO
S

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDO
S

(0x01)

ERRnoaccess

(0x0005)

STATUS_FILE_IS_A_DIRECTORY

(0xC00000BA)

EISDIR Named file is an existing
directory and
CreateOptions in the
request contains
FILE_NON_DIRECTORY_FIL
E.

ERRDO
S

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE Invalid FID;
RootDirectoryFID is not
valid.

ERRDO
S

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCE
S

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDO
S

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode.

ERRDO
S

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRDO
S

(0x01)

ERRunsup

(0x0032)

STATUS_NOT_SUPPORTED

(0xC00000BB)

 This command is not
supported by the server.

ERRDO
S

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The file already exists.

ERRDO
S

ERRinvalidpara
m

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the request values is
out of range.

351 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

(0x01) (0x0057)

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent
or the path extends beyond
the end of the message.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_INVALID_DEVICE_TYPE

(0xC00000CB)

 Device type and request are
inconsistent.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRHR
D

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO A problem has occurred in
the physical I/O.

2.2.4.65 SMB_COM_NT_CANCEL (0xA4)

This command was introduced in the NT LAN Manager dialect.

This command allows a client to request that a currently pending request be canceled. The server uses
the identifiers supplied in SMB_Header to identify the client request that the client requests to
cancel. The server can attempt to cancel the request or to process it immediately. The server MUST
NOT send a corresponding response for this request. The client SHOULD rely on the server's response

to the request that the client requests to cancel to determine the result of the request. If the server

cannot identify the client's request that is to be canceled, the server SHOULD NOT send a
response.<119>

This command is used primarily to cancel outstanding notify change operations initiated with the
SMB_COM_NT_TRANSACT command and NT_TRANSACT_NOTIFY_CHANGE subcommand. Clients
typically use NT_TRANSACT_NOTIFY_CHANGE to avoid polling for changes to directories. Other uses
include canceling commands that are waiting indefinitely on a busy resource to become available or
commands that retry several times for a busy resource to become available.

2.2.4.65.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

SMB_Header:

352 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CID (2 bytes): If the transport is connectionless, this field MUST contain the CID of the
connection.

TID (2 bytes): This field MUST contain the TID of the pending request(s) to be canceled.

UID (2 bytes): This field MUST contain the UID of the pending request(s) to be canceled.

MID (2 bytes): This field MUST contain the MID of the pending request(s) to be canceled.

PID (4 bytes): This field MUST contain the PID of the pending request(s) to be canceled.
The PID is calculated by combining the PIDHigh and PIDLow values as described in section
2.2.3.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this request.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this request.

Error Codes

SMB error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not known to
the session.

2.2.4.66 SMB_COM_NT_RENAME (0xA5)

This command was introduced in the NT LAN Manager dialect and is obsolescent.<120>

353 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command allows a client to create hard links on the remote server, to perform an in-place file
rename, and to move a file within its existing path hierarchy.<121> See the InformationLevel field

in the request for details. This command does not support wild card characters in the path or the file
names. The command manipulates a single file per request. Existing files MUST NOT be overwritten.

However, an in-place rename is supported. If the NewFileName field in the request has a zero
length, the destination path for the new file MUST be the root directory of the share represented by
the TID in the SMB Header (section 2.2.3.1). For in-place renames, the paths to the file MUST be
identical or the request MUST fail with an appropriate error code.

2.2.4.66.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 SMB_FILE_ATTRIBUTES SearchAttributes;
 USHORT InformationLevel;
 ULONG Reserved;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat1;
 SMB_STRING OldFileName;
 UCHAR BufferFormat2;
 SMB_STRING NewFileName;
 }
 }

SMB_Header:

TID (2 bytes): USHORT This field MUST contain a valid TID.

UID (2 bytes): USHORT This field MUST contain a valid UID.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount SearchAttributes InformationLevel

... Reserved

... ByteCount BufferFormat1

OldFileName (variable)

...

BufferFormat2 NewFileName (variable)

...

WordCount (1 byte): This field MUST be 0x04.

354 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SearchAttributes (2 bytes): This field indicates the attributes that the target file(s) MUST have. If
the attribute is 0x0000, then only normal files are renamed or linked. If the system file or hidden

attributes are specified, then the rename is inclusive of both special types.

InformationLevel (2 bytes): This field MUST be one of the three values shown in the following

table.

Value Meaning

SMB_NT_RENAME_SET_LINK_INFO

0x0103

Create a hard link to the original file.

SMB_NT_RENAME_RENAME_FILE

0x0104

An in-place rename of the file.<122>

SMB_NT_RENAME_MOVE_FILE

0x0105

Move the file within the path hierarchy. This
information level is obsolete. Clients MUST NOT use
this value in a request.<123>

Reserved (4 bytes): This field SHOULD be set to 0x00000000 by the client and MUST be ignored by

the server.<124>

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0004.

BufferFormat1 (1 byte): This field MUST be 0x04.

OldFileName (variable): A null-terminated string containing the full path name of the file to be
manipulated. Wildcards are not supported.

BufferFormat2 (1 byte): This field MUST be 0x04.

NewFileName (variable): A null-terminated string containing the new full path name to be assigned

to the file provided in OldFileName or the full path into which the file is to be moved.

2.2.4.66.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount ByteCount

WordCount (1 byte): This field MUST be set to 0x00. No parameters are sent by this message.

ByteCount (2 bytes): This field MUST be set to 0x0000. No data is sent by this message.

Error Codes

355 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The specified file does not
exist.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT A component in the path
prefix is not a directory or
the pathname contained
wildcard characters.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM The new file already exists.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

- - There are too many links
to the old file.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

- - The directory is full.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

- - The old path is the last link
to an executing program.

ERRDOS

(0x01)

ERRdiffdevice

(0x0011)

STATUS_NOT_SAME_DEVICE

(0xC00000D4)

EXDEV The new path is on a
different file system.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

- Invalid SMB. Request
contains a packaging or
value error.

ERRSRV

(0x02)

ERRaccess

(0x0004)

STATUS_NETWORK_ACCESS_DENIED

(0xC00000CA)

EACCES Access denied. The given
UID does not have
permission to execute the
requested command within
the current context (TID).

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

- The TID specified in the
command was invalid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid)

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

- The UID given is not
known as a valid ID on this
server session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0x0C00000A2)

EROFS Attempt to modify a read-
only file system.

2.2.4.67 SMB_COM_OPEN_PRINT_FILE (0xC0)

This is an original Core Protocol command.

This command is used to create a print queue spool file. The file will be queued to the printer when
closed. The server SHOULD delete the file once it has been printed.

2.2.4.67.1 Request

356 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT SetupLength;
 USHORT Mode;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 SMB_STRING Identifier[];
 }
 }

SMB_Header:

TID (1 byte): This field MUST represent a printer share (print queue).

UID (1 byte): This field MUST be valid within the SMB session, and the UID MUST have the
appropriate permissions to create new print jobs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters

... SMB_Data (variable)

...

SMB_Parameters (5 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

...

WordCount (1 byte): This field MUST be 0x02.

Words (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SetupLength Mode

SetupLength (2 bytes): Length, in bytes, of the printer-specific control data that is to be

included as the first part of the spool file. The server MUST pass this initial portion of the
spool file to the printer unmodified.

357 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Mode (2 bytes): A 16-bit field that contains a flag that specifies the print file mode.

Value Meaning

0 Text mode. Starting SetupLength bytes into the spool file, the server MAY
modify character sequences to normalize them for printer output. For example,
the printer can convert tab characters in the spool file to sequences of spaces,
or normalize end-of-line sequences.

1 Binary mode. The server MUST NOT modify the contents of the spool file
before sending it to the printer.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0002.

Bytes (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat Identifier (variable)

...

BufferFormat (1 byte): This field MUST be 0x04, representing an ASCII string.

Identifier (variable): A null-terminated string containing a suggested name for the spool

file. The server can ignore, modify, or use this information to identify the print job.<125>

2.2.4.67.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

358 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): The returned file handle that MUST be used by subsequent write and close
operations on the spool file. When the spool file is closed, the file is queued and printed.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

 (0x01)

 (0x0001)

STATUS_INVALID_DEVICE_REQUEST

(0xC0000010)

EACCES The device rejected the
request.

ERRDOS

 (0x01)

ERRnofids

 (0x0004)

 EMFILE This connection has
reached the maximum
number open file
descriptors.

ERRDOS

 (0x01)

ERRnofids

 (0x0004)

 ENFILE The server's system file
table is full.

ERRDOS

 (0x01)

ERRnoaccess

 (0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCES The client does not have
permission to create the
spool file.

ERRDOS

 (0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

 (0x02)

ERRerror

 (0x0001)

 EINTR A signal was caught during
a system call.

359 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRSRV

 (0x02)

ERRerror

 (0x0001)

 EROFS The spool file or spool
queue resides on a read-
only file system.

ERRerror

ERRSRV
(0x02)

ERRerror

 (0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Malformed or invalid SMB
request.

ERRSRV
(0x02)

ERRerror

 (0x0001)

 The server cannot find the
spool queue for this file.

ERRSRV

 (0x02)

ERRinvtid

0x0005

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the
command was invalid.

ERRSRV

 (0x02)

ERRinvdevice

 (0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 The TID does not refer to
a printer resource.

ERRSRV

 (0x02)

ERRqfull

 (0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Insufficient resources to
create the print job; the
queue is full.

ERRSRV

 (0x02)

ERRqtoobig

 (0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 The queue is full; no entry
is available to create the
job.

ERRSRV

 (0x02)

ERRbaduid

 (0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID is not defined as
a valid ID for this SMB
session, or the user
identified by the UID does
not have sufficient

privileges.

2.2.4.68 SMB_COM_WRITE_PRINT_FILE (0xC1)

This is an original Core Protocol command. This command is deprecated. Use the
SMB_COM_WRITE_ANDX command to write to an open spool file.

This command is used to write data to an open print queue spool file.

The first data written to the print file MUST be printer-specific control data, the length of the control
data block is specified in the SMB_Parameters.Words.SetupLength field in the
SMB_COM_OPEN_PRINT_FILE request that is used to create the print file. A single
SMB_COM_WRITE_PRINT_FILE command can contain both printer-specific control data and print file

data, as long as the control data is completely written first.

2.2.4.68.1 Request

 SMB_Parameters
 {
 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }

360 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }
 SMB_Data
 {
 USHORT ByteCount;
 Bytes
 {
 UCHAR BufferFormat;
 USHORT DataLength;
 UCHAR Data[DataLength];
 }
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data (variable)

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

FID: This field MUST be a valid FID that is created using the SMB_COM_OPEN_PRINT_FILE

command.

SMB_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount Bytes (variable)

...

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0003.

Bytes (variable): Array of UCHAR

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BufferFormat DataLength Data (variable)

...

BufferFormat (1 byte): This field MUST be 0x01.

361 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DataLength (2 bytes): Length, in bytes, of the following data block.

Data (variable): STRING Bytes to be written to the spool file indicated by FID.

2.2.4.68.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 EAGAIN A temporary resource
limitation prevented this
data from being written.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC00000CA)

 Client does not have write
permission for the file.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE FID is invalid to the
system.

362 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Malformed or invalid SMB
request.

ERRSRV

(0x02)

ERRinvtid

0x0005

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the
command was invalid.

ERRSRV

(0x02)

ERRinvdevice

(0x0007)

STATUS_BAD_DEVICE_TYPE

(0xC00000CB)

 The TID does not refer to
a printer resource.

ERRSRV

(0x02)

ERRqfull

(0x0031)

STATUS_PRINT_QUEUE_FULL

(0xC00000C6)

 Insufficient resources to
create the print job; the
queue is full.

ERRSRV

(0x02)

ERRqtoobig

(0x0032)

STATUS_NO_SPOOL_SPACE

(0xC00000C7)

 The queue is full; no entry
is available to create the
job.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID is not defined as
a valid ID for this SMB
session, or the user
identified by the UID does
not have sufficient
privileges.

ERRHRD

(0x03)

ERRwrite

(0x001D)

 EIO A physical I/O error has
occurred.

2.2.4.69 SMB_COM_CLOSE_PRINT_FILE (0xC2)

This is an original Core Protocol command. This command is deprecated. Client implementations

SHOULD make use of SMB_COM_CLOSE to close a spool file opened by SMB_COM_OPEN_PRINT_FILE.

This command closes the specified print queue spool file, causing the server to queue the file for
printing.

2.2.4.69.1 Request

 SMB_Parameters
 {

 UCHAR WordCount;
 Words
 {
 USHORT FID;
 }
 }
 SMB_Data
 {
 USHORT ByteCount;
 }

363 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

...

SMB_Parameters (3 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount Words

WordCount (1 byte): This field MUST be 0x01.

Words (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID

FID (2 bytes): This field MUST be a valid FID created using the
SMB_COM_OPEN_PRINT_FILE command. Following successful execution of this command,
this FID MUST be invalidated.

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

2.2.4.69.2 Response

 SMB_Parameters
 {
 UCHAR WordCount;
 }
 SMB_Data
 {
 USHORT ByteCount;

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SMB_Parameters SMB_Data

SMB_Parameters (1 byte):

364 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WordCount

WordCount (1 byte): This field MUST be 0x00. No parameters are sent by this message

SMB_Data (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ByteCount

ByteCount (2 bytes): This field MUST be 0x0000. No data is sent by this message.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid
(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

ENFILE The FID is invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 The TID specified in the command is
invalid.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID specified in the command is
invalid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID specified is not defined as a
valid ID on this server session, or the
user identified by the UID does not
have sufficient privileges.

2.2.4.70 SMB_COM_GET_PRINT_QUEUE (0xC3)

This is an original Core Protocol command (see [SMB-CORE] section 5.26). It was rendered obsolete
in the NT LAN Manager dialect. This command was designated optional in [CIFS].<126>

This command was used to generate a list of items currently in a print queue associated with the
specified TID. Clients SHOULD NOT send requests using this command code. Servers receiving

requests with this command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.4.71 SMB_COM_READ_BULK (0xD8)

This command was reserved but not implemented. It is listed in earlier documentation from
Microsoft and third parties; however, no formal definition of the command was ever provided, and the

command itself was never implemented. Two related commands--SMB_COM_WRITE_BULK and
SMB_COM_WRITE_BULK_DATA--were also never implemented.

http://go.microsoft.com/fwlink/?LinkId=164301
http://go.microsoft.com/fwlink/?LinkId=89836

365 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code SHOULD<127> return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.4.72 SMB_COM_WRITE_BULK (0xD9)

This command was reserved but not implemented. It is listed in earlier documentation from
Microsoft and third parties; however, no formal definition of the command was ever provided, and the
command itself was never implemented. Two related commands--SMB_COM_READ_BULK and
SMB_COM_WRITE_BULK_DATA--were also never implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code SHOULD<128> return STATUS_NOT_IMPLEMENTED (ERRDOX/ERRbadfunc).

2.2.4.73 SMB_COM_WRITE_BULK_DATA (0xDA)

This command was reserved but not implemented. It is listed in earlier documentation from

Microsoft and third parties; however, no formal definition of the command was ever provided, and the

command itself was never implemented. Two related commands--SMB_COM_READ_BULK and
SMB_COM_WRITE_BULK--were also never implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code SHOULD<129> return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.4.74 SMB_COM_INVALID (0xFE)

This command was introduced in the LAN Manager 1.0 dialect. It is a reserved value that specifically
indicates an invalid command.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code MUST return STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

2.2.4.75 SMB_COM_NO_ANDX_COMMAND (0xFF)

This command was introduced in the LAN Manager 1.0 dialect. This command code was designated
as the AndX Chain terminator.

Clients SHOULD NOT use this command code in a primary command. Servers receiving this command

code in a primary command MUST return STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

In the earliest SMB Protocol specifications (see [IBM-SMB]), this command code was reserved for
proprietary protocol extensions. That usage is obsolete. Core Protocol documentation from Microsoft,
including [SMB-CORE] and [MSFT-XEXTNP], does not include any reference to the use of this
command code for protocol extensions or any other purpose.

2.2.5 Transaction Subcommands

Transaction subcommands are used to communicate with mailslots and named pipes. Mailslots are

used for one-way inter-process communication. Named pipes are bidirectional.

2.2.5.1 TRANS_SET_NMPIPE_STATE (0x0001)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<130>

The TRANS_SET_NMPIPE_STATE subcommand of the SMB_COM_TRANSACTION allows a client to set
the read mode and the non-blocking mode of a specified named pipe.

http://go.microsoft.com/fwlink/?LinkId=164301
http://go.microsoft.com/fwlink/?LinkId=162042

366 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This section covers the specific details of the TRANS_SET_NMPIPE_STATE subcommand ONLY.
Request and response fields with values specific to this transaction are covered in this section. For

general information see SMB_COM_TRANSACTION.

2.2.5.1.1 Request

 Trans_Parameters
 {
 USHORT PipeState;
 }

SMB_Parameters:

WordCount (1 byte): This field value is the total number of SMB parameter words and

MUST be 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0002 for this request.

TotalDataCount (2 bytes): This field MUST be set to 0x0000 for this request.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

MaxDataCount (2 bytes): This field MUST be set to 0x0000 for this request.

MaxSetupCount (1 byte): This field MUST be set to 0x00 for this request.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field SHOULD be set to 0x0002 for this request.

DataCount (2 bytes): This field MUST be set to 0x0000 for this request.

SetupCount (1 byte): This field MUST be set to 0x02 for this request.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand value of TRANS_SET_NMPIPE_STATE (0x0001) for this request.

FID (2 bytes): This field MUST be set to the FID for the named pipe to read.
This field MUST be set to a valid FID from a server response for a previous
SMB command to open or create a named pipe. These commands include
SMB_COM_OPEN, SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,

SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

Trans_Parameters (2 bytes):

367 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PipeState

PipeState (2 bytes): This field contains the value that defines the state being set on the pipe. Any
combination of the following flags MUST be valid for the set operation. All other flags are
considered unused and SHOULD be set to 0 when this message is sent. The server MUST ignore

the unused bits when the message is received.

Name and
bitmask Meaning

Nonblocking

0x8000

If set, a read or a raw read request returns all data available to be read from the named pipe, up
to the maximum read size set in the request. A write request returns after writing data to the
named pipe without waiting for the data to be consumed. Named pipe non-blocking raw writes
are not allowed. Raw writes MUST be performed in blocking mode.

If not set, a read or a raw read request will wait (block) until sufficient data to satisfy the read

request becomes available, or until the request is canceled. A write request blocks until its data
is consumed, if the write request length is greater than zero.

ReadMode

0x0100

If set, the named pipe is operating in message mode. If not set, the named pipe is operating in
byte mode. In message mode, the system treats the bytes read or written in each I/O operation
to the pipe as a message unit. The system MUST perform write operations on message-type
pipes as if write-through mode were enabled.

2.2.5.1.2 Response

This message MUST be sent by a server to respond to a client sending the
TRANS_SET_NMPIPE_STATE subcommand request when the request is successful. The server MUST
set an error code in the Status field of the SMB Header (section 2.2.3.1) of the response to indicate

whether the request to set the read mode and non-blocking mode succeeded or failed.

SMB_Parameters:

The SMB_Parameters section contains the relevant fields for the TRANS_QUERY_NMPIPE_STATE

subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field value is the total number of SMB parameter words and
MUST be 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

TotalDataCount (2 bytes): This field MUST be set to 0x0000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

DataCount (2 bytes): This field MUST be set to 0x0000 for this request.

DataDisplacement (2 bytes): This field MUST be set to 0x0000 for this request.

SetupCount (1 byte): This field MUST be set to 0x00 for this request.

Reserved2 (1 byte): An unused value that SHOULD be set to 0x00 when sending this
response. The client MUST ignore this field when receiving this message.

368 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.2 TRANS_RAW_READ_NMPIPE (0x0011)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect. This subcommand is
deprecated in favor of TRANS_READ_NMPIPE.

The TRANS_RAW_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION allows for a raw read
of data from a name pipe. This method of reading data from a named pipe ignores message
boundaries even if the pipe was set up as a message mode pipe. When the named pipe is not set to
non-blocking mode, and there is no data in the named pipe, the read operation on the server MUST
wait indefinitely for data to become available. This section covers the specific details of using the

TRANS_RAW_READ_NMPIPE subcommand. For general information see
SMB_COM_TRANSACTION.<131>

2.2.5.2.1 Request

SMB_Parameters:

The SMB_Parameters section contains the relevant field values for the
TRANS_RAW_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): The value of (0x0E) plus Words.SetupCount. This value represents
the total number of SMB parameter words and MUST be 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

369 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

TotalDataCount (2 bytes): This field MUST be set to 0x0000 for this request.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

MaxDataCount (2 bytes): The value MUST be the number of bytes that the client is
requesting to read from the named pipe.

MaxSetupCount (1 byte): This field MUST be set to 0x00 for this request.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

DataCount (2 bytes): This field MUST be set to 0x0000 for this request.

SetupCount (1 byte): This field MUST be set to 0x02 for this request.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand value of TRANS_RAW_READ_NMPIPE (0x0011).

FID (2 bytes): This field is the FID for the named pipe to read. This field MUST
be set to a valid FID from a server response for a previous SMB command to
open or create a named pipe. These commands include SMB_COM_OPEN,
SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,

SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

2.2.5.2.2 Response

This message MUST be sent by a server to respond to a client TRANS_RAW_READ_NMPIPE

Request (section 2.2.5.2.1). The server MUST set an error code in the Status field of the SMB

Header (section 2.2.3.1) of the response to indicate whether the read from the named pipe was
successful or failed.

 Trans_Data
 {
 UCHAR BytesRead[TotalDataCount] (variable);
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_RAW_READ_NMPIPE (section 2.2.5.2) subcommand of the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).

WordCount (1 byte): The count of 16-bit words in the response structure. For this

response, this MUST be 0x0A, which is 0x0A plus the SetupCount of 0x00.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

TotalDataCount (2 bytes): This value MUST be the number of bytes read from the
named pipe in raw format.

ParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

370 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ParameterDisplacement (2 bytes): This field MUST be set to 0x0000 for this
request.

DataCount (2 bytes): The number of bytes in the Trans_Data buffer contained in
this packet. For this response, it MUST be set to less than or equal to the value of

the TotalDataCount field.

DataDisplacement (2 bytes): An offset in bytes into the final Trans_Data buffer
assembled from all responses. For a single buffer transaction (whose Trans_Data
buffer fits in a single response), this value MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x00 for this request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

The SMB_Data section of the SMB_COM_TRANSACTION Response contains the parameters and data
generated by the transaction subcommand.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BytesRead (variable)

...

BytesRead (variable): The data buffer that MUST contain the bytes read from the named pipe in
raw mode. The size of the buffer MUST be equal to the value in TotalDataCount.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

 The TID is no longer
valid.

371 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x00050002)

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.3 TRANS_QUERY_NMPIPE_STATE (0x0021)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<132>

The TRANS_QUERY_NMPIPE_STATE subcommand of the SMB_COM_TRANSACTION allows a client to
retrieve information about a specified named pipe. This section covers the specific details of using the

TRANS_QUERY_NMPIPE_STATE subcommand. For general information see SMB_COM_TRANSACTION.

2.2.5.3.1 Request

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_QUERY_NMPIPE_STATE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field value is the total number of SMB parameter words and
MUST be 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): This field SHOULD be set to 0x0002.

MaxDataCount (2 bytes): This field SHOULD be set to 0x0000 for this transaction.

MaxSetupCount (1 byte): This field SHOULD be set to 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction

subcommand value TRANS_QUERY_NMPIPE_STATE (0x0021).

FID (2 bytes): This field MUST be set to a valid FID of a named pipe received in
a server response for a previous SMB command to open or create a named
pipe. These commands include SMB_COM_OPEN, SMB_COM_CREATE,
SMB_COM_CREATE_TEMPORARY, SMB_COM_CREATE_NEW,

372 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_COM_OPEN_ANDX, SMB_COM_NT_CREATE_ANDX, and
SMB_COM_NT_TRANSACT with subcommand NT_TRANSACT_CREATE.

2.2.5.3.2 Response

This message MUST be sent by a server to respond to a client sending the
TRANS_QUERY_NMPIPE_STATE subcommand request when the request is successful. The server
MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the response to
indicate whether the read from the named pipe succeeded or failed.

 Trans_Parameters
 {
 SMB_NMPIPE_STATUS NMPipeStatus;
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_QUERY_NMPIPE_STATE subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0002.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

ParameterCount (2 bytes): This field SHOULD be set to 0x0002.

ParameterDisplacement (2 bytes): This field SHOULD be set to 0x0000.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

Trans_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NMPipeStatus

NMPipeStatus (2 bytes): A 16-bit field that shows the status of the named pipe. This field is

formatted as an SMB_NMPIPE_STATUS (section 2.2.1.3).

Error Codes

SMB
error

class

SMB error

code NT status code

POSIX

equivalent Description

ERRDOS ERRbadfid STATUS_INVALID_HANDLE EBADF Invalid FID.

373 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

(0x01) (0x0006) (0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.4 TRANS_QUERY_NMPIPE_INFO (0x0022)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<133>

The TRANS_QUERY_NMPIPE_INFO subcommand of the SMB_COM_TRANSACTION allows for a client to

retrieve information about a specified named pipe.

2.2.5.4.1 Request

 Trans_Parameters
 {
 USHORT Level;
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_QUERY_NMPIPE_INFO subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field value is the total number of SMB parameter words and
MUST be 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0002.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): This field SHOULD be set to 0x0000.

MaxDataCount (2 bytes): This field SHOULD be greater than or equal to 0x00040.

374 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

MaxSetupCount (1 byte): This field SHOULD be set to 0x0000.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes) USHORT: This field SHOULD be set to 0x0002.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand value of TRANS_QUERY_NMPIPE_INFO (0x0022).

FID (2 bytes): This field is the FID for the named pipe to read. This field MUST
be set to a valid FID from a server response for a previous SMB command to

open or create a named pipe. These commands include SMB_COM_OPEN,
SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

Trans_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Level

Level (2 bytes): This field MUST be set to 0x0001. This value (as specified in [MS-DTYP] section
2.2.59) describes the information level being queried for the pipe. If the server receives any
other value, it MUST fail the request with a status of STATUS_INVALID_PARAMETER
(ERRDOS/ERRinvalidparam).

2.2.5.4.2 Response

SMB_Parameters

 Trans_Data
 {
 USHORT OutputBufferSize;
 USHORT InputBufferSize;
 UCHAR MaximumInstances;
 UCHAR CurrentInstances;
 UCHAR PipeNameLength;
 SMB_STRING PipeName;

 }

%5bMS-DTYP%5d.pdf

375 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SMB_Parameters section contains the relevant fields for the TRANS_QUERY_NMPIPE_INFO
subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field value is the total number of SMB parameter words and MUST be
0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000 for this request.

TotalDataCount (2 bytes): This field MUST be greater than or equal to 0x0007.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to less than or equal to the value of the
TotalDataCount field.

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

The Trans_Data section of the SMB_COM_TRANSACTION response contains the parameters and data
generated by the transaction TRANS_QUERY_NMPIPE_INFO subcommand.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OutputBufferSize InputBufferSize

MaximumInstances CurrentInstances PipeNameLength PipeName (variable)

...

OutputBufferSize (2 bytes): This field MUST be the actual size of the buffer for outgoing

(server) I/O.

InputBufferSize (2 bytes): This field MUST be the actual size of the buffer for incoming (client)
I/O.

MaximumInstances (1 byte): This field MUST be the maximum number of allowed instances of
the named pipe.

CurrentInstances (1 byte): This field MUST be the current number of named pipe instances.
The count increments when the server creates a named pipe and decrements when the server

closes the named pipe for an unconnected pipe, or when both the server and the client close
the named pipe for a connected pipe.

PipeNameLength (1 byte): This field MUST be the length in bytes of the pipe name, including
the terminating null character.

376 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

PipeName (variable): This field MUST be a null-terminated string containing the name of the
named pipe, not including the initial \\NodeName string (that is, of the form \PIPE\pipename).

If SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB Header (section 2.2.3.1) of the
response, the name string MUST be in a null-terminated array of 16-bit Unicode characters.

Otherwise, the name string MUST be a null-terminated array of OEM characters. If the
PipeName field consists of Unicode characters, this field MUST be aligned to start on a 2-byte
boundary from the start of the SMB Header.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 Invalid value in Level
field.

ERRDOS

(0x01)

ERRbufftosmall

(0x007A)

STATUS_BUFFER_TOO_SMALL

(0xC0000023)

 The MaxDataCount is
too small to accept the
request information.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005L)

 There is more data
available than can fit
based on the

MaxDataCount sent by
the client. The pipe name
has been requested and
cannot fit in within the
MaxDataCount buffer.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid or corrupt SMB.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.5 TRANS_PEEK_NMPIPE (0x0023)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<134>

377 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The TRANS_PEEK_NMPIPE subcommand of the SMB_COM_TRANSACTION is used to copy data out of a
named pipe without removing it and to retrieve information about data in a named pipe. This section

covers the specific details of using the TRANS_PEEK_NMPIPE subcommand. For general information
see SMB_COM_TRANSACTION.<135>

2.2.5.5.1 Request

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_RAW_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): This field SHOULD be set to 0x0006.

MaxDataCount (2 bytes): This field SHOULD be set to the number of bytes that the
client attempts to peek from the named pipe.

MaxSetupCount (1 byte): This field SHOULD be 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand of TRANS_PEEK_NMPIPE (0x0023).

FID (2 bytes): This field is the FID for the named pipe to read. This field MUST
be set to a valid FID from a server response for a previous SMB command to
open or create a named pipe. These commands include SMB_COM_OPEN,
SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

2.2.5.5.2 Response

 Trans_Parameters
 {
 USHORT ReadDataAvailable;
 USHORT MessageBytesLength;
 USHORT NamedPipeState;
 }
 Trans_Data
 {
 UCHAR ReadData[TotalDataCount] (variable);

 }

378 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the
response to indicate whether the operation on the named pipe succeeded or failed.

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_PEEK_NMPIPE subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0006.

TotalDataCount (2 bytes): This field MUST be set to the number of bytes read from
the named pipe in a peek fashion and in raw format.

ParameterCount (2 bytes): This field MUST be set to 0x0006.

DataCount (2 bytes): This field MUST be set to less than or equal to the value of the

TotalDataCount field.

SetupCount (1 byte): The number of setup words. For this response, it MUST be set
to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

... Trans_Data (variable)

...

Trans_Parameters (6 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadDataAvailable MessageBytesLength

NamedPipeState

ReadDataAvailable (2 bytes): This field contains the total number of bytes available to be read
from the pipe.

MessageBytesLength (2 bytes): If the named pipe is a message mode pipe, this MUST be set
to the number of bytes remaining in the message that was peeked (the number of bytes in the
message minus the number of bytes read). If the entire message was read, this value is
0x0000. If the named pipe is a byte mode pipe, this value MUST be set to 0x0000.

NamedPipeState (2 bytes): The status of the named pipe.

Value Meaning

0x0001 Named pipe was disconnected by server.

0x0002 Named pipe is listening.

0x0003 Named pipe connection to the server is okay.

379 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

0x0004 Server end of named pipe is closed.

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadData (variable)

...

ReadData (variable): This field contains the data read from the named pipe.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005L)

 There is more data
available than can fit in the
response buffer based on
the MaxDataCount field
value in the client request.
None of the data was
returned in the response.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.6 TRANS_TRANSACT_NMPIPE (0x0026)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<136>

380 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The TRANS_TRANSACT_NMPIPE subcommand of the SMB_COM_TRANSACTION is used to execute a
transacted exchange against a named pipe. This transaction MUST only be used for named pipes of

the duplex message type. This section covers the specific details of using the
TRANS_TRANSACT_NMPIPE subcommand. For general information see SMB_COM_TRANSACTION.

2.2.5.6.1 Request

 Trans_Data
 {
 UCHAR WriteData[TotalDataCount];
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_TRANSACT_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to the number of bytes that the
client requests to write to the named pipe as part of the transaction.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000.

MaxDataCount (2 bytes): This field MUST be the number of bytes that the client
requests to read from the named pipe as part of the transacted operation.

MaxSetupCount (1 byte): This field MUST be set to 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of data bytes in this
request to be written to the named pipe during the transaction. For a single-request
transaction, this MUST be equal to the TotalDataCount.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand of TRANS_TRANSACT_NMPIPE (0x0026).

FID (2 bytes): This field is the FID for the named pipe that is being transacted.
This field MUST be set to a valid FID from a server response for a previous

SMB command to open or create a named pipe. These commands include
SMB_COM_OPEN, SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with

subcommand NT_TRANSACT_CREATE.

381 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WriteData (variable)

...

WriteData (variable): This field MUST contain the bytes to be written to the named pipe as part

of the transacted operation.

2.2.5.6.2 Response

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the
response to indicate whether the transaction against the named pipe succeeded or failed.<137>

 Trans_Data
 {
 UCHAR ReadData[TotalDataCount];
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_TRANSACT_NMPIPE (section 2.2.5.6) subcommand of the
SMB_COM_TRANSACTION (section 2.2.4.33) response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be the total number of bytes read from
the named pipe in raw format.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of bytes read from the
named pipe that are returned in this response. This field MUST be less than or equal

to the value of the TotalDataCount field.

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

382 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadData (variable)

...

ReadData (variable): This field MUST contain data read from the named pipe.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 The named pipe
indicated by the FID is
not in message mode.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 There is more data
available than can fit in
the response buffer
based on the
MaxDataCount field
value in the client
request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

383 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.5.7 TRANS_RAW_WRITE_NMPIPE (0x0031)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect. This subcommand is
deprecated. Clients can use either TRANS_WRITE_NMPIPE or TRANS_TRANSACT_NMPIPE.

The TRANS_RAW_WRITE_NMPIPE subcommand of the SMB_COM_TRANSACTION allows for a raw
write of data to a named pipe. Raw writes to named pipes put bytes directly into a pipe in byte mode,
regardless of whether it is a message mode pipe or byte mode pipe.

This method of writing data into a named pipe assumes that the data itself contains the message
boundaries if the pipe is a message mode pipe. The operation can allow a single write to insert
multiple messages.

This section covers the specific details of using the TRANS_RAW_WRITE_NMPIPE subcommand. For

general information, see SMB_COM_TRANSACTION.<138>

2.2.5.7.1 Request

 Trans_Data
 {
 UCHAR WriteData[TotalDataCount];
 }

SMB_Parameters:

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to the total number of bytes that
the client attempts to write to the named pipe in raw format.

MaxParameterCount (2 bytes): This field MUST be set to 0x0002.

MaxDataCount (2 bytes): This field MUST be set to 0x0000.

MaxSetupCount (1 byte): This field MUST be set to 0x00.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of bytes being written to
the named pipe in raw format contained in this request. If this is the only request of
this transaction, the TotalDataCount field MUST equal the DataCount field.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand of TRANS_RAW_WRITE_NMPIPE (0x0031).

FID (2 bytes): This field is the FID for the named pipe to read. This field MUST
be set to a valid FID from a server response for a previous SMB command to

open or create a named pipe. These commands include SMB_COM_OPEN,
SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

384 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WriteData (variable)

...

WriteData (variable): This field MUST contain the bytes to write to the named pipe in raw

format. The size of the buffer MUST be equal to the value in TotalDataCount.

2.2.5.7.2 Response

The server MUST set an error code in the SMB_Header.Status field of the response to indicate whether
the read from the named pipe succeeded or failed.

 Trans_Parameters
 {
 USHORT BytesWritten;
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_RAW_WRITE_NMPIPE subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0002.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

ParameterCount (2 bytes): This field MUST be set to 0x0002.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

Trans_Parameters (2 bytes):

385 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BytesWritten

BytesWritten (2 bytes): This field MUST be set to the number of bytes written to the pipe.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 The named pipe
indicated by the FID is
not in message mode or
this is not a 2-byte write
request that contains
two null padding bytes.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.8 TRANS_READ_NMPIPE (0x0036)

This Transaction subcommand was introduced in the NT LAN Manager dialect.

The TRANS_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION allows a client to read data

from a named pipe. This section covers the specific details of using the TRANS_READ_NMPIPE
subcommand. For general information, see SMB_COM_TRANSACTION.

2.2.5.8.1 Request

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

386 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000.

MaxDataCount (2 bytes): This field MUST be set to the maximum number of bytes
that the client attempts to read from the named pipe.

MaxSetupCount (1 byte): This field MUST be 0x00.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand of TRANS_READ_NMPIPE (0x0036).

FID (2 bytes): This field is the FID for the named pipe to read. This field MUST
be set to a valid FID from a server response for a previous SMB command to
open or create a named pipe. These commands include SMB_COM_OPEN,

SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

2.2.5.8.2 Response

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the

response to indicate whether the read from the named pipe succeeded or failed.

If the named pipe specified in the Request.SMB_Parameters.Setup.FID field is not set to non-
blocking mode, and there is no data in the named pipe, the read operation will wait indefinitely.

 Trans_Data
 {
 UCHAR ReadData[TotalDataCount];
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_READ_NMPIPE subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to the total number of bytes read

from the named pipe.

387 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of bytes that the

ReadData field contained in the Trans_Data of this response. For this response, it
MUST be set to less than or equal to the value of the TotalDataCount field.

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadData (variable)

...

ReadData (variable): This field MUST contain the bytes read from the named pipe. The size of
the buffer MUST be equal to the value in TotalDataCount. If the named pipe is a message

mode pipe, and the entire message was not read, the Status field in the SMB Header MUST
be set to STATUS_BUFFER_OVERFLOW.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005L)

 There is more data available
than can fit in the response
buffer based on the

MaxDataCount field value
in the client request.
MaxDataCount bytes of
data were returned in the
response.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

 The TID is no longer valid.

388 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

STATUS_SMB_BAD_TID

(0x00050002)

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

2.2.5.9 TRANS_WRITE_NMPIPE (0x0037)

This Transaction subcommand was introduced in the NT LAN Manager dialect.

The TRANS_WRITE_NMPIPE subcommand of SMB_COM_TRANSACTION allows a client to write data to
a named pipe. This section covers the specific details of using the TRANS_WRITE_NMPIPE

subcommand. For general information see SMB_COM_TRANSACTION.

2.2.5.9.1 Request

 Trans_Data
 {
 UCHAR WriteData[TotalDataCount];
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_WRITE_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be the total number of bytes that the

client requests to write to the named pipe.

MaxParameterCount (2 bytes): This field MUST be set to 0x0002.

MaxDataCount (2 bytes): This field MUST be 0x0000.

MaxSetupCount (1 byte): This field MUST be 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of bytes being written to
the named pipe in this request.

SetupCount (1 byte): This field MUST be set to 0x0002.

389 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction

subcommand value of TRANS_WRITE_NMPIPE (0x0037).

FID (2 bytes): This field is the FID for the named pipe to write. This field MUST

be set to a valid FID from a server response for a previous SMB command to
open or create a named pipe. These commands include SMB_COM_OPEN,
SMB_COM_CREATE, SMB_COM_CREATE_TEMPORARY,
SMB_COM_CREATE_NEW, SMB_COM_OPEN_ANDX,
SMB_COM_NT_CREATE_ANDX, and SMB_COM_NT_TRANSACT with
subcommand NT_TRANSACT_CREATE.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WriteData (variable)

...

WriteData (variable): This field MUST contain the bytes to write to the named pipe. The size of
the buffer MUST be equal to the value in TotalDataCount.

2.2.5.9.2 Response

 Trans_Parameters
 {
 USHORT BytesWritten;
 }

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the
response to indicate whether the read from the named pipe succeeded or failed.

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the

TRANS_WRITE_NMPIPE subcommand of the SMB_COM_TRANSACTION response.

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0002.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

ParameterCount (2 bytes): This field SHOULD be set to 0x0002.

DataCount (2 bytes): This field MUST be set to 0x0000.

390 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SetupCount (1 byte): This field MUST be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Parameters

Trans_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BytesWritten

BytesWritten (2 bytes): This field MUST be set to the number of bytes written to the pipe.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.10 TRANS_WAIT_NMPIPE (0x0053)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<139>

The TRANS_WAIT_NMPIPE subcommand of the SMB_COM_TRANSACTION allows a client to be notified

when the specified named pipe is available to be connected to. This section covers the specific details
of using the TRANS_WAIT_NMPIPE subcommand. For general information, see
SMB_COM_TRANSACTION.

391 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.5.10.1 Request

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_WAIT_NMPIPE subcommand of the SMB_COM_TRANSACTION request.

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000.

MaxDataCount (2 bytes): This field MUST be set to 0x0000.

MaxSetupCount (1 byte): This field MUST be set to 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field MUST be set to the maximum number of milliseconds
that the server SHOULD wait for the named pipe to become available.<140>

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to 0x0000.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand TRANS_WAIT_NMPIPE (0x0053).

Priority (2 bytes): This field SHOULD be in the range of 0x0000 to 0x03FF,

where 0x0000 indicates that the server SHOULD use a default value. Larger
values indicate higher priority.<141>

SMB_Data: The SMB_Data section contains the relevant fields for the TRANS_WAIT_NMPIPE

subcommand of the SMB_COM_TRANSACTION request.

ByteCount (2 bytes): This field MUST be greater than or equal to 0x0001.

Name (variable): The name field MUST be set to the name of the pipe being waited for, in
the format \PIPE\<pipename> where <pipename> is the name of the pipe to wait to
connect to. To wait on the pipe PipeA, the name field is set to \PIPE\PipeA. If
SMB_FLAGS2_UNICODE is set in the Flags2 field of the SMB Header (section 2.2.3.1) of
the request, the name string MUST be a null-terminated array of 16-bit Unicode

characters. Otherwise, the name string MUST be a null-terminated array of OEM
characters. If the name string consists of Unicode characters, this field MUST be aligned to
start on a 2-byte boundary from the start of the SMB header.

2.2.5.10.2 Response

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the

response to indicate whether the transact operation on the named pipe succeeded or failed. The
server returns a response when either the named pipe is available to be connected to or the Timeout
field specified in the client request has been exceeded. If the Timeout value is exceeded, the server
MUST return STATUS_IO_TIMEOUT in the Status field of the SMB Header. If the named pipe is

392 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

available to be connected to, and the Timeout is not exceeded, the server MUST return
STATUS_SUCCESS in the Status field of the SMB Header.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF Invalid FID.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRtimeout

(0x0058)

STATUS_IO_TIMEOUT The request timed out.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Pipe name
might not be valid or
request is not internally
consistent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.11 TRANS_CALL_NMPIPE (0x0054)

This Transaction subcommand was introduced in the LAN Manager 1.0 dialect.<142>

The TRANS_CALL_NMPIPE subcommand allows a client to open a named pipe, issue a write to the

named pipe, issue a read from the named pipe, and close the named pipe. The named pipe is opened
in message mode. This section covers the specific details of using the TRANS_CALL_NMPIPE
subcommand. For general information, see SMB_COM_TRANSACTION (section 2.2.4.34).

2.2.5.11.1 Request

 Trans_Data
 {
 UCHAR WriteData[TotalDataCount];
 }

SMB_Parameters: The SMB_Parameters section contains the relevant fields for the
TRANS_CALL_NMPIPE subcommand of the SMB_COM_TRANSACTION
Request (section 2.2.4.33.1).

393 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

WordCount (1 byte): This field MUST be set to 0x10.

Words (32 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to the total number of bytes that

the client attempts to write to the named pipe.

MaxParameterCount (2 bytes): This field MUST be set to 0x0000.

MaxDataCount (2 bytes): This field MUST be set to the number of bytes that the
client attempts to read from the named pipe.

MaxSetupCount (1 byte): This field MUST be 0x00.

Flags (2 bytes): This field SHOULD be set to 0x0000 for this request.

Timeout (4 bytes): This field SHOULD be set to 0x00000000 for this request.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the count of bytes in the
Trans_Data.WriteData buffer field. If this field is less than the value of
TotalDataCount then the client MUST send at least one more request to send the
remaining (TotalDataCount - DataCount) bytes to write to the named pipe.

SetupCount (1 byte): This field MUST be set to 0x02.

Setup (4 bytes):

Subcommand (2 bytes): This field MUST be set to the transaction
subcommand TRANS_CALL_NMPIPE 0x0054.

Priority (2 bytes): This field MUST be in the range of 0x0000 to 0x0009. The

larger value is the higher priority.

SMB_Data: The SMB_Data section contains the relevant fields for the TRANS_READ_NMPIPE
subcommand of the SMB_COM_TRANSACTION request.

ByteCount (2 bytes): The value of this field MUST be the count of bytes that follows the
ByteCount field.

Name (variable): The name field MUST be set to the name of the pipe, in the format
\PIPE\<pipename> where <pipename> is the name of the pipe to open. To open the pipe
PipeA, the name field is set to \PIPE\PipeA. If SMB_FLAGS2_UNICODE is set in the Flags2
field of the SMB Header (section 2.2.3.1) of the request, the name string MUST be a null-
terminated array of 16-bit Unicode characters. Otherwise, the name string MUST be a

null-terminated array of OEM characters. If the name string consists of Unicode
characters, this field MUST be aligned to start on a 2-byte boundary from the start of the
SMB Header.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

394 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

WriteData (variable)

...

WriteData (variable): This field MUST contain the bytes to write to the named pipe. The size of
the buffer MUST be equal to the value in TotalDataCount.

2.2.5.11.2 Response

The server MUST set an error code in the Status field of the SMB Header (section 2.2.3.1) of the
response to indicate whether the transaction succeeded or failed.

 Trans_Data
 {
 UCHAR ReadData[TotalDataCount];
 }

SMB_Parameters:

The SMB_Parameters section contains the relevant fields for the
TRANS_READ_NMPIPE (section 2.2.5.8) subcommand of the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).

WordCount (1 byte): This field MUST be set to 0x0A.

Words (20 bytes):

TotalParameterCount (2 bytes): This field MUST be set to 0x0000.

TotalDataCount (2 bytes): This field MUST be set to the total number of bytes read
from the named pipe.

ParameterCount (2 bytes): This field MUST be set to 0x0000.

DataCount (2 bytes): This field MUST be set to the number of bytes contained in the
Trans_Data.ReadData field. The value MUST be less than or equal to
TotalDataCount. If the value is less than TotalDataCount, the server MUST send

the remaining bytes in one or more additional response messages.<143>

SetupCount (1 byte): This field SHOULD<144> be set to 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans_Data (variable)

...

Trans_Data (variable):

395 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReadData (variable)

...

ReadData (variable): This field MUST contain the bytes read from the named pipe. The size of
the buffer MUST be equal to the value in the TotalDataCount field of the response. If the
named pipe is a message mode pipe, and the entire message was not read, the Status field in

the SMB Header MUST be set to STATUS_BUFFER_OVERFLOW.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources required to
process the request.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Write permission required.

ERRDOS

(0x01)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005L)

 There is more data
available than can fit in the
response buffer based on
the MaxDataCount field
value in the client request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008L)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.5.12 TRANS_MAILSLOT_WRITE (0x0001)

The TRANS_MAILSLOT_WRITE transaction subcommand was introduced in the LAN Manager 1.0
dialect. It is used to write a message to a mailslot.

The subcommand code for a TRANS_MAILSLOT_WRITE is 0x0001, which is identical to the
subcommand code for TRANS_SET_NMPIPE_STATE. This is permitted because transaction
subcommand codes are not global; they are interpreted relative to the resource being accessed.

There are no mailslot operations that are defined as part of the CIFS protocol. Mailslots are not

accessed over SMB sessions (although the Mailslot sub-protocol defines a mechanism for doing so). As

396 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

a result, mailslot operations are documented separately. For more information on the Remote Mailslot
Protocol, see [MS-MAIL] and [MSLOT].

Windows clients do not send TRANS_MAILSLOT_WRITE commands via CIFS sessions. Related
protocols, such as [MS-BRWS], send Class 2 mailslot messages as NetBIOS datagrams.

TRANS_MAILSLOT_WRITE commands carrying Class 2 messages do not require responses. See [MS-
MAIL].

2.2.6 Transaction2 Subcommands

2.2.6.1 TRANS2_OPEN2 (0x0000)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect.

This transaction is used to open or create a file and set extended attributes on the file.

2.2.6.1.1 Request

The TRANS2_OPEN2 request and response formats are a special case of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_OPEN2 request specifics are
described here.

SMB_Parameters

WordCount (1 byte): This field MUST be0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000) if no Trans2_Data is being
supplied. This field MUST be the total size of the Trans2_Data if extended attributes are
being provided.

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_OPEN2 (0x0000).

Trans2_Parameters

 Trans2_Parameters
 {
 USHORT Flags;
 USHORT AccessMode;
 USHORT Reserved1;
 SMB_FILE_ATTRIBUTES FileAttributes;
 UTIME CreationTime;
 USHORT OpenMode;
 ULONG AllocationSize;
 USHORT Reserved[5];
 SMB_STRING FileName;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags AccessMode

Reserved1 FileAttributes

%5bMS-MAIL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90218
%5bMS-BRWS%5d.pdf

397 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CreationTime

OpenMode AllocationSize

... Reserved

...

...

FileName (variable)

...

Flags (2 bytes): This 16-bit field of flags is used to request that the server take certain actions.

Bitmask Meaning

REQ_ATTRIB

0x0001

Return additional information in the response; populate the CreationTime, FileDataSize,
AccessMode, ResourceType, and NMPipeStatus fields in the response.

REQ_OPLOCK

0x0002

Exclusive OpLock requested.

REQ_OPBATCH

0x0004

Batch OpLock requested.

REQ_EASIZE

0x0008

Return total length of Extended Attributes (EAs); populate the ExtendedAttributeLength field
in the response.

AccessMode (2 bytes): A 16-bit field for encoding the requested access mode. See section 3.2.4.5.1
for a discussion on sharing modes.

Name and
bitmask Values Meaning

AccessMode

0x0007

0 Open for reading.

1 Open for writing.

2 Open for reading and writing.

3 Open for execution.

0x0008 Reserved

SharingMode

0x0070

0 Compatibility mode

1 Deny read/write/execute to others (exclusive use requested).

2 Deny write to others.

3 Deny read/execute to others.

4 Deny nothing to others.

0x0080 Reserved

398 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Values Meaning

ReferenceLocality

0x0700

0 Unknown locality of reference

1 Mainly sequential access

2 Mainly random access

3 Random access with some locality

4 - 7 Undefined

0x0800 Reserved

CacheMode

0x1000

0 Perform caching on file.

1 Do not cache the file.

0x2000 Reserved

WritethroughMode

0x4000

0 Write-through mode. If this flag is set, then no read ahead or write behind is
allowed on this file or device. When the response is returned, data is expected to
be on the disk or device. 1

0x8000 Reserved

Reserved1 (2 bytes): This field MUST be set to zero (0x0000) and MUST be ignored by the server.

FileAttributes (2 bytes): Attributes to apply to the file if it needs to be created.

CreationTime (4 bytes): A 32-bit integer time value to be assigned to the file as the time of creation
if the file is to be created.

OpenMode (2 bytes): A 16-bit field that controls the way that a file SHOULD be treated when it is
opened for use by certain extended SMB requests.

Name and
bitmask Values Meaning

FileExistsOpts

0x0003

0 The request SHOULD fail and an error SHOULD be returned indicating the prior
existence of the file.

1 The file is to be appended.

2 The file is to be truncated to zero (0) length.

3 Reserved

CreateFile

0x0010

0 If the file does not exist, return error.

1 If the file does not exist, create it.

All other bits are reserved; they SHOULD NOT be used by the client and MUST be ignored by the
server.

AllocationSize (4 bytes): The number of bytes to reserve for the file if the file is being created or

truncated.

Reserved (10 bytes): All entries in this field MUST be set to zero (0x0000).

399 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FileName (variable): A buffer containing the name of the file to be opened, created, or truncated.
The string MUST be null terminated.

Trans2_Data

 Trans2_Data
 {

 SMB_FEA_LIST ExtendedAttributeList;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ExtendedAttributeList (variable)

...

ExtendedAttributeList (variable): A list of extended attribute (EA) name/value pairs that are to be
assigned to the file.

2.2.6.1.2 Response

Trans2_Parameters

 Trans2_Parameters
 {
 USHORT FID;
 SMB_FILE_ATTRIBUTES FileAttributes;

 UTIME CreationTime;
 ULONG FileDataSize;
 USHORT AccessMode;
 USHORT ResourceType;
 SMB_NMPIPE_STATUS NMPipeStatus;
 USHORT ActionTaken;
 ULONG Reserved;
 USHORT ExtendedAttributeErrorOffset;
 ULONG ExtendedAttributeLength;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID FileAttributes

CreationTime

FileDataSize

AccessMode ResourceType

NMPipeStatus ActionTaken

400 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved

ExtendedAttributeErrorOffset ExtendedAttributeLength

...

FID (2 bytes): This field contains the FID of the opened file.

FileAttributes (2 bytes): The file attributes assigned to the file after the open or create has
occurred.

CreationTime (4 bytes): A 32-bit integer time value to be assigned to the file as the time of creation
if the file is to be created.

FileDataSize (4 bytes): The current size of the file in bytes.

AccessMode (2 bytes): A 16-bit field for encoding the granted access mode. This field is formatted

in the same way as the equivalent field in the request.

ResourceType (2 bytes): The file type. This field MUST be interpreted as follows:

Name and value Meaning

FileTypeDisk

0x0000

File or directory

FileTypeByteModePipe

0x0001

Byte mode named pipe

FileTypeMessageModePipe

0x0002

Message mode named pipe

FileTypePrinter

0x0003

Printer device

FileTypeUnknown

0xFFFF

Unknown file type

NMPipeStatus (2 bytes): A 16-bit field that contains the status of the named pipe if the resource
type opened is a named pipe instance. This field is formatted as an SMB_NMPIPE_STATUS
(section 2.2.1.3).

ActionTaken (2 bytes): A 16-bit field that shows the results of the open operation.

Name and
bitmask Values Meaning

OpenResult

0x0003

0 Reserved.

1 The file existed and was opened.

 2 The file did not exist and was therefore created.

3 The file existed and was truncated.

401 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and
bitmask Values Meaning

LockStatus

0x8000

0 No OpLock was requested, the OpLock could not be granted, or the server does
not support OpLocks.

 1 An OpLock was requested by the client and was granted by the server.

All other bits are reserved, SHOULD NOT be used by the client and MUST be ignored by the server.

Reserved (4 bytes): This field SHOULD be set to zero (0x00000000) and MUST be ignored by the

server.

ExtendedAttributeErrorOffset (2 bytes): If an error was detected while applying the entries in the
ExtendedAttributeList, this field contains the offset in bytes to the specific
ExtendedAttributeList.FEAList entry in the request that caused the error.

ExtendedAttributeLength (4 bytes): The total size of the extended attributes for the opened file.

Trans2_Data

No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode.

ERRDOS

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the EA at
which the error was
detected.

ERRDOS

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The file already exists.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flag bit value.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS ERRbadealist STATUS_OS2_EA_LIST_INCONSISTENT Inconsistent extended
attribute list.

402 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

(0x01) (0x00FF) (0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter bytes
were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

2.2.6.2 TRANS2_FIND_FIRST2 (0x0001)

TRANS2_FIND_FIRST2 (0x0001)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect, replacing the obsolete

TRANS2_FIND_FIRST subcommand introduced in the LAN Manager 1.2 dialect.

This transaction is used to begin a search for file(s) within a directory or for a directory. The search
can be continued if necessary with the TRANS2_FIND_NEXT2 command. There are several levels of
information that can be queried for the returned files or directories. The information level is specified

in the InformationLevel field of the Trans2_Parameters (see following), and each information level
has a unique response format.

2.2.6.2.1 Request

The TRANS2_FIND_FIRST2 request and response formats are special cases of the
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_FIND_FIRST2 specifics are
described here.

SMB_Parameters

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): If no Trans2_Data is supplied, this field MUST be 0x0000. If

Trans2_Parameters.InformationLevel is SMB_INFO_QUERY_EAS_FROM_LIST (see
following), this field MUST be the total size of the extended attribute list.

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_FIND_FIRST2 (0x0001).

Trans2_Parameters

 Trans2_Parameters

403 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 SMB_FILE_ATTRIBUTES SearchAttributes;
 USHORT SearchCount;
 USHORT Flags;
 USHORT InformationLevel;
 ULONG SearchStorageType;
 SMB_STRING FileName;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SearchAttributes SearchCount

Flags InformationLevel

SearchStorageType

FileName (variable)

...

SearchAttributes (2 bytes): File attributes to apply as a constraint to the file search. Exclusive
search attributes (see section 2.2.1.2.4) can also be set.

SearchCount (2 bytes): The server MUST NOT return more entries than indicated by the value of
this field.

Flags (2 bytes): This bit field contains flags used to request that the server manage the state of the
transaction based on how the client attempts to traverse the results.

Name and bitmask Description

SMB_FIND_CLOSE_AFTER_REQUEST

0x0001

Close the search after this request.

SMB_FIND_CLOSE_AT_EOS

0x0002

Close search when end of search is reached.

SMB_FIND_RETURN_RESUME_KEYS

0x0004

Return resume keys for each entry found.

SMB_FIND_CONTINUE_FROM_LAST

0x0008

Continue search from previous ending place.

SMB_FIND_WITH_BACKUP_INTENT

0x0010

Find with backup intent.

InformationLevel (2 bytes): This field contains an information level code, which determines the
information contained in the response. The list of valid information level codes is specified in
section 2.2.2.3.1. A client that has not negotiated long names support MUST request only
SMB_INFO_STANDARD. If a client that has not negotiated long names support requests an
InformationLevel other than SMB_INFO_STANDARD, the server MUST return a status of
STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).

404 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SearchStorageType (4 bytes): The client MUST set this field to zero and the server MUST ignore it
on receipt.

FileName (variable): The file pattern to search for. This field MAY contain wildcard characters.

Trans2_Data

The following Trans2_Data structure MUST be included if the
Trans2_Parameters.InformationLevel field is set to SMB_INFO_QUERY_EAS_FROM_LIST;
otherwise, it MUST NOT be included.

 Trans2_Data
 {

 SMB_GEA_LIST GetExtendedAttributeList;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GetExtendedAttributeList (variable)

...

GetExtendedAttributeList (variable): A list of extended attribute (EA) names. The value of the
AttributeName fields MUST be used by the server to query the set of extended attributes that

match the set of AttributeName values provided in this list.

2.2.6.2.2 Response

Trans2_Parameters

 Trans2_Parameters
 {
 USHORT SID;
 USHORT SearchCount;
 USHORT EndOfSearch;
 USHORT EaErrorOffset;
 USHORT LastNameOffset;
 }

SID (2 bytes): The server-generated search identifier for this transaction. It MUST be provided in

TRANS2_FIND_NEXT2 transactions.

SearchCount (2 bytes): The number of entries returned by the search.

EndOfSearch (2 bytes): This field MUST be zero (0x0000) if the search can be continued using
the TRANS2_FIND_NEXT2 transaction. This field MUST be nonzero if this response is the last
and the find has reached the end of the search results.

EaErrorOffset (2 bytes): If Request.Trans2_Parameters.InformationLevel is not
SMB_INFO_QUERY_EAS_FROM_LIST, this field MUST be zero (0x0000). If InformationLevel is

SMB_INFO_QUERY_EAS_FROM_LIST, this field marks the offset to an extended attribute name,
the retrieval of which caused an error. This field MUST contain the offset in bytes to the

405 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_GEA entry in the Trans2_Data.GetExtendedAttributesList that identifies the extended
attribute that caused the error, or zero (0x0000) if no error was encountered.

LastNameOffset (2 bytes): If the server cannot resume the search, this field MUST be zero
(0x0000). If the server can resume the search, this field contains the offset in bytes into the

Trans2_Data structure at which the file name of the last entry returned by the server is
located. This value can be used in the Trans2_Parameters structure of the request to continue
a search. See TRANS2_FIND_NEXT2 (section 2.2.6.3) for more information.

Trans2_Data

The Trans2_Data block carries the structure of the information level specified by the request's
Trans2_Parameters.InformationLevel field. Each information level's corresponding structure is
specified in section 2.2.8.1.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named file was not
found.

ERRDOS
(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR The file path syntax is
invalid.

ERRDOS
(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS
(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode.

ERRDOS
(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRDOS
(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
address of the
SMB_GEA structure at
which the error was
detected.

ERRDOS
(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flag bit value.

ERRDOS
(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS
(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter bytes
were sent.

406 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRSRV

(0x02)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The number of bytes
read from the named
pipe exceeds the
MaxDataCount field in
the client request.

2.2.6.3 TRANS2_FIND_NEXT2 (0x0002)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect, replacing the obsolete
TRANS2_FIND_NEXT subcommand introduced in the LAN Manager 1.2 dialect.

This transaction is used to continue a search for file(s) within a directory or for a directory. The search
MUST have been initiated using TRANS2_FIND_FIRST2. There are several information levels that
can be queried for the returned files or directories. The information level is specified in the

Trans2_Parameters.InformationLevel field, and each information level has a unique response
format. See TRANS2_FIND_FIRST2 for the specification of each information level's response data. If
the client attempts to terminate a search prior to reaching the end of the search results, as indicated
by the server's response, the client MUST use the SMB_COM_FIND_CLOSE2 command and MUST

provide the SID from the search.

2.2.6.3.1 Request

The TRANS2_FIND_NEXT2 request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_FIND_NEXT2 specifics are
described here.

SMB_Parameters

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): If no Trans2_Data is supplied, this field MUST be 0x0000. If
Trans2_Parameters.InformationLevel is SMB_INFO_QUERY_EAS_FROM_LIST (see

TRANS2_FIND_FIRST2), this field MUST be the total size of the extended attribute list.

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_FIND_NEXT2 (0x0002).

407 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans2_Parameters (variable)

...

Trans2_Data (variable)

...

Trans2_Parameters (variable):

 Trans2_Parameters
 {
 USHORT SID;
 USHORT SearchCount;
 USHORT InformationLevel;
 ULONG ResumeKey;
 USHORT Flags;
 SMB_STRING FileName;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SID SearchCount

InformationLevel ResumeKey

... Flags

FileName (variable)

...

SID (2 bytes): This field MUST be the search identifier (SID) returned in TRANS2_FIND_FIRST2
response.

SearchCount (2 bytes): This field MUST be the maximum number of entries to return in the

response.

InformationLevel (2 bytes): This field contains an information level code, which determines the
information contained in the response. The list of valid information level codes is specified in
section 2.2.2.3.1. A client that has not negotiated long names support MUST request only

SMB_INFO_STANDARD. If a client that has not negotiated long names support requests an
InformationLevel other than SMB_INFO_STANDARD, the server MUST return a status of

STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).

ResumeKey (4 bytes): This field MUST be the value of a ResumeKey field returned in the response
from a TRANS2_FIND_FIRST2 or TRANS2_FIND_NEXT2 that is part of the same search (same
SID).

Flags (2 bytes): This bit mask field is used to request that the server manage the state of the
transaction based on how the client attempts to traverse the results.

408 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Description

SMB_FIND_CLOSE_AFTER_REQUEST

0x0001

Close the search after this request.

SMB_FIND_CLOSE_AT_EOS

0x0002

Close search when end of search is reached.

SMB_FIND_RETURN_RESUME_KEYS

0x0004

Return resume keys for each entry found.

SMB_FIND_CONTINUE_FROM_LAST

0x0008

Continue search from previous ending place.

SMB_FIND_WITH_BACKUP_INTENT

0x0010

Find with backup intent.

FileName (variable): A filename pattern. The server re-runs the search based on the search criteria

defined by the FileName field in the TRANS2_FIND_FIRST2 Request (section 2.2.6.2.1), and the
file names are returned starting after the first file that matches the filename pattern. This field can
contain wildcard characters.<145>

Trans2_Data (variable): The Trans2_Data MUST be included if the
Trans2_Parameters.InformationLevel field is set to SMB_INFO_QUERY_EAS_FROM_LIST;
else, it MUST NOT be included.

 Trans2_Data
 {

 SMB_GEA_LIST GetExtendedAttributeList;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GetExtendedAttributeList (variable)

...

GetExtendedAttributeList (variable): A list of extended attribute (EA) names. The value of the
AttributeName field MUST be used by the server to further constrain the find query to files

having the set of extended attributes that match the set of AttributeName values provided in
this list.

2.2.6.3.2 Response

Trans2_Parameters

 Trans2_Parameters
 {
 USHORT SearchCount;
 USHORT EndOfSearch;
 USHORT EaErrorOffset;
 USHORT LastNameOffset;
 }

409 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Trans2_Parameters:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SearchCount EndOfSearch

EaErrorOffset LastNameOffset

SearchCount (2 bytes): The number of entries returned by the search.

EndOfSearch (2 bytes): This field MUST be zero (0x0000) if the search can be continued using the

TRANS2_FIND_NEXT2 (section 2.2.6.3) transaction. This field MUST be nonzero if this response is
the last and the find has reached the end of the search results.

EaErrorOffset (2 bytes): If the Request.Trans2_Parameters.InformationLevel field is not
SMB_INFO_QUERY_EAS_FROM_LIST, this field MUST be zero (0x0000). If the InformationLevel

field is SMB_INFO_QUERY_EAS_FROM_LIST, this field marks the offset to an extended attribute
name, the retrieval of which caused an error. This field MUST contain the offset in bytes to the

SMB_GEA (section 2.2.1.2.1) entry in the Trans2_Data.GetExtendedAttributesList field that
identifies the extended attribute that caused the error, or zero (0x0000) if no error was
encountered.

LastNameOffset (2 bytes): If the server cannot resume the search, this field MUST be zero
(0x0000). If the server can resume the search, this field contains the offset in bytes into the
Trans2_Data structure at which the file name of the last entry returned by the server is located.
This value can be used in the Trans2_Parameters structure of the request to continue a search.

The Trans2_Data block carries the structure of the Information Level specified by the request's
Trans2_Parameters.InformationLevel field. Each Information Level's corresponding structure is
specified in section 2.2.8.1.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS
(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

EPERM Represents that an
invalid SID was
supplied.

ERRDOS

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode.

ERRDOS

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the

410 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

SMB_GEA structure at
which the error was
detected.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flags bit value.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x0058)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
known to the session.

2.2.6.4 TRANS2_QUERY_FS_INFORMATION (0x0003)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is used to request information about the object store underlying a share on the
server. The share being queried is identified by the TID supplied in the SMB Header (section 2.2.3.1)
of the request. There are several levels of information that can be queried for the returned files or
directories. The information level is specified in the InformationLevel field of the
Trans2_Parameters data block, and each information level has a unique response format.

2.2.6.4.1 Request

The TRANS2_QUERY_FS_INFORMATION request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_QUERY_FS_INFORMATION

specifics are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000).

SetupCount (1 byte): This field MUST be 0x01.

411 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Setup(2 bytes): This field MUST be TRANS2_QUERY_FS_INFORMATION (0x0003).

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT InformationLevel;
 }

InformationLevel (2 bytes): This field contains an information level code, which
determines the information contained in the response. The list of valid information level
codes is specified in section 2.2.2.3.2

Trans2_Data: No data is sent by this message.

2.2.6.4.2 Response

Trans2_Parameters

No parameters are sent by this message

Trans2_Data

The Trans2_Data block carries the structure of the information level specified by the request's
Trans2_Parameters.InformationLevel field. Each information level's corresponding structure is

specified in section 2.2.8.2.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of

resources.

ERRSRV

(0x02)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter bytes
were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRSRV

(0x02)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The number of bytes
read from the named
pipe exceeds the
MaxDataCount field in
the client request.

ERRHRD

(0x03)

ERRnotready

(0x0015)

STATUS_NO_MEDIA_IN_DEVICE

(0x0xC0000013)

 Share represents a
removable device and
there is no media
present in the device.

412 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.5 TRANS2_SET_FS_INFORMATION (0x0004)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect. This subcommand is
reserved but not implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code MUST return STATUS_SMB_NO_SUPPORT (ERRSRV/ERRnosupport).

2.2.6.6 TRANS2_QUERY_PATH_INFORMATION (0x0005)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is used to get information about a specific file or directory. There are several
information levels that can be queried. The information level is specified in the
Request.Trans2_Parameters.InformationLevel field (see following) and each information level

has a unique response format. See the individual response formats for the specification of the data
returned by each information level.

2.2.6.6.1 Request

The TRANS2_QUERY_PATH_INFORMATION request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_QUERY_PATH_INFORMATION
specifics are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): If no Trans2_Data is supplied, this field MUST be
0x0000. If Trans2_Parameters.InformationLevel is
SMB_INFO_QUERY_EAS_FROM_LIST (see following), this field MUST be the total
size of the extended attribute list.

SetupCount (1 byte): This field MUST be 0x01.

Setup[0] (2 bytes): This field MUST be TRANS2_QUERY_PATH_INFORMATION
(0x0005).

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT InformationLevel;
 ULONG Reserved;
 SMB_STRING FileName;
 }

413 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

InformationLevel (2 bytes): This field contains an information level code, which
determines the information contained in the response. The list of valid information level

codes is specified in section 2.2.2.3.3. A client that has not negotiated long names support
MUST request only SMB_INFO_STANDARD. If a client that has not negotiated long names

support requests an InformationLevel other than SMB_INFO_STANDARD, the server
MUST return a status of STATUS_INVALID_PARAMETER of (ERRDOS/ERRinvalidparam).

Reserved (4 bytes): This field is reserved and MUST be zero (0x0000).

FileName (variable): The file name or directory name for which to retrieve the information.

Trans2_Data: The Trans2_Data field MUST be included if the
Trans2_Parameters.InformationLevel field is set to SMB_INFO_QUERY_EAS_FROM_LIST;
else, it MUST NOT be included.

 Trans2_Data
 {

 SMB_GEA_LIST GetExtendedAttributeList;
 }

GetExtendedAttributeList (variable): A list of extended attribute (EA) names. The server
MUST return only those extended attributes that have an AttributeName matching one

of the AttributeName values in the list.

2.2.6.6.2 Response

 For the information levels greater than 0x100, the transaction response has 1 parameter word that
SHOULD be ignored by the client.

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT EaErrorOffset;
 }

EaErrorOffset (2 bytes): If Request.Trans2_Parameters.InformationLevel is not
SMB_INFO_QUERY_EAS_FROM_LIST, this field MUST be zero (0x0000). If
InformationLevel is SMB_INFO_QUERY_EAS_FROM_LIST, this field marks the offset to
an extended attribute, the retrieval of which caused an error. This field MUST contain the
offset in bytes to the SMB_GEA entry in Trans2_Data.GetExtendedAttributesList that
caused the error or zero (0x0000) if no error was encountered.

Trans2_Data:

The Trans2_Data block carries the structure of the information level specified by the request's
Trans2_Parameters. InformationLevel field. Each information level's corresponding structure

is specified in section 2.2.8.3.

Error Codes:

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The named file was not
found.

414 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOTDIR The file path syntax is
invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadlength

(0x0018)

STATUS_INFO_LENGTH_MISMATCH

(0xC0000004)

 The client's
MaxDataCount is too
small to accommodate
the results.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of SMB_GEA
structure at which the
error was detected.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough

parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRHRD

(0x03)

ERRnotready

(0x0015)

STATUS_NO_MEDIA_IN_DEVICE

(0x0xC0000013)

 Share represents a
removable device and
there is no media
present in the device.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.7 TRANS2_SET_PATH_INFORMATION (0x0006)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is used to set the standard and extended attribute information of a specific file or
directory on the server. The file or directory is specified by a path relative to the TID supplied in the

415 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB Header (section 2.2.3.1). The file or directory does not need to be opened by the client before
sending the transaction request. The set of standard and extended attribute information included in

the request is determined by the InformationLevel field (see following). The setting of attribute
information for the root directory of the share, as identified by the TID, MUST NOT be supported.

2.2.6.7.1 Request

The TRANS2_SET_PATH_INFORMATION request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_SET_PATH_INFORMATION
specifics are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000).

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_SET_PATH_INFORMATION (0x0006).

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT InformationLevel;
 ULONG Reserved;
 SMB_STRING FileName;
 }

InformationLevel (2 bytes): This field contains an information level code, which

determines the information contained in the Trans2_Data block. The list of valid
information level codes is specified in section 2.2.2.3.4. A client that has not negotiated
long names support MUST use only SMB_INFO_STANDARD. If a client that has not

negotiated long names support uses an InformationLevel other than
SMB_INFO_STANDARD, the server MUST return a status of STATUS_INVALID_PARAMETER
(ERRDOS/ERRinvalidparam).

Reserved (4 bytes): This field is reserved and MUST be zero (0x00000000).

FileName (variable): The file name or directory name for which to retrieve the information.

Trans2_Data: The Trans2_Data block carries the structure of the information level specified by

the Trans2_Parameters.InformationLevel field. Each information level's corresponding
structure is specified in section 2.2.8.4.

2.2.6.7.2 Response

The response information indicates if there was a problem with the list of extended attributes supplied
when the InformationLevel field is SMB _INFO_SET_EAS. The outcome of the request is included
in the SMB Header (section 2.2.3.1).

Trans2_Parameters

 Trans2_Parameters
 {
 USHORT EaErrorOffset;

416 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans2_Parameters

Trans2_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EaErrorOffset

EaErrorOffset (2 bytes): This field contains the offset in bytes into the ExtendedAttributeList
that identifies the attribute that caused an error. This field is meaningful only when the
request's Trans2_Parameters.InformationLevel is set to SMB_INFO_SET_EAS.

Trans2_Data:

No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfile

(0x0002)

STATUS_NO_SUCH_FILE

(0xC000000F)

ENOENT The file does not exist.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRbadlength

(0x0018)

STATUS_INFO_LENGTH_MISMATCH

(0xC0000004)

 The client's
MaxDataCount is too
small to accommodate
the results.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the
SMB_FEA structure at
which the error was
detected.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

 Inconsistent extended
attribute list.

417 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.8 TRANS2_QUERY_FILE_INFORMATION (0x0007)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is an alternative to TRANS2_QUERY_PATH_INFORMATION. The

Trans2_Parameters of this request contain a FID while the Trans2_Parameters of the
TRANS2_QUERY_PATH_INFORMATION request contain a path string.

2.2.6.8.1 Request

The TRANS2_QUERY_FILE_INFORMATION request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_QUERY_FILE_INFORMATION
Request specifics are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000) if no Trans2_Data is
supplied. This field MUST be the total size of the extended attribute list if
InformationLevel is SMB_INFO_QUERY_EAS_FROM_LIST (see

TRANS2_QUERY_PATH_INFORMATION).

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_QUERY_FILE_INFORMATION (0x0007).

Trans2_Parameters:

 Trans2_Parameters
 {

418 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 USHORT FID
 USHORT InformationLevel;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID InformationLevel

FID (2 bytes): This field MUST contain a valid FID returned from a previously successful SMB open
command.

InformationLevel (2 bytes): This field contains an information level code, which determines the
information contained in the response. The list of valid information level codes is specified in
section 2.2.2.3.3. A client that has not negotiated long names support MUST request only

SMB_INFO_STANDARD. If a client that has not negotiated long names support requests an
InformationLevel other than SMB_INFO_STANDARD, the server MUST return a status of
STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).

Trans2_Data: The Trans2_Data field MUST be included if the

Trans2_Parameters.InformationLevel field is set to SMB_INFO_QUERY_EAS_FROM_LIST;
else, it MUST NOT be included.

 Trans2_Data
 {
 SMB_GEA_LIST GetExtendedAttributeList;
 }

GetExtendedAttributeList (variable): A list of extended attribute (EA) names. The server
MUST return only those extended attributes that have an AttributeName matching one

of the AttributeName values in the list.

2.2.6.8.2 Response

For information levels greater than 0x100, the transaction response has one parameter word that
SHOULD be ignored by the client.

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT EaErrorOffset;
 }

EaErrorOffset (2 bytes): If Request.Trans2_Parameters.InformationLevel is not

SMB_INFO_QUERY_EAS_FROM_LIST, this field MUST be zero (0x0000). If

InformationLevel is SMB_INFO_QUERY_EAS_FROM_LIST, this field marks the offset to
an extended attribute, the retrieval of which caused an error. This field MUST contain the
offset, in bytes, to the SMB_GEA (section 2.2.1.2.1) entry in
Trans2_Data.ExtendedAttributesList that caused the error, or zero (0x0000) if no
error was encountered.

Trans2_Data:

419 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The Trans2_Data block carries the structure of the information level specified by the request's
Trans2_Parameters.InformationLevel field. Each information level's corresponding structure is

specified in section 2.2.8.3.<146>

Error Codes:

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

ENOENT The FID supplied is
invalid.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the
SMB_GEA structure at

which the error was
detected.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flag bit value.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid, or
the DataCount failed
validation for the
requested
InformationLevel
because not enough
information was
supplied by the client.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

420 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.9 TRANS2_SET_FILE_INFORMATION (0x0008)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is an alternative to TRANS2_SET_PATH_INFORMATION. The
Trans2_Parameters block of this request contains a FID, while the Trans2_Parameters block of
the TRANS2_SET_PATH_INFORMATION request contains a path string.

2.2.6.9.1 Request

The TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) request and response formats are special
cases of SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the
TRANS2_SET_FILE_INFORMATION specifics are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be 0x0000.

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_SET_FILE_INFORMATION (0x0008).

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT FID;
 USHORT InformationLevel;
 USHORT Reserved;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID InformationLevel

Reserved Trans2_Data (variable)

...

FID (2 bytes): This field MUST contain a valid FID returned from a previously successful SMB open
command.

421 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

InformationLevel (2 bytes): This field determines the information contained in the response. See
TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) for complete details.

Reserved (2 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Trans2_Data (variable): The Trans2_Data block carries the structure of the information level

specified by the Trans2_Parameters.InformationLevel field. Each information level's
corresponding structure is specified in section 2.2.8.4.

2.2.6.9.2 Response

The response information indicates if there was a problem with the list of extended attributes supplied
when the InformationLevel field is SMB_INFO_SET_EAS. The outcome of the request is included in
the SMB Header (section 2.2.3.1).

Trans2_Parameters:

 Trans2_Parameters
 {
 USHORT EaErrorOffset;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans2_Parameters

Trans2_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EaErrorOffset

EaErrorOffset (2 bytes): This field contains the offset, in bytes, into the
ExtendedAttributeList that identifies the attribute that caused an error. This field is

meaningful only when the request's Trans2_Parameters.InformationLevel is set to
SMB_INFO_SET_EAS.

Trans2_Data:

No data is sent by this message.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

ENOENT The FID supplied is
invalid.

ERRDOS

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

422 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the
SMB_FEA structure at
which the error was
detected.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flag bit value.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid or the
DataCount failed
validation for the
requested
InformationLevel
because not enough
information was
supplied by the client.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

 The FID supplied is on
write- protected media.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.10 TRANS2_FSCTL (0x0009)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect. This subcommand is
reserved but not implemented.

423 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.6.11 TRANS2_IOCTL2 (0x000A)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect. This subcommand is
reserved but not implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.6.12 TRANS2_FIND_NOTIFY_FIRST (0x000B)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect. It was rendered
obsolete in the NT LAN Manager dialect.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this

command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.6.13 TRANS2_FIND_NOTIFY_NEXT (0x000C)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect. It was rendered
obsolete in the NT LAN Manager dialect.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code MUST return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.6.14 TRANS2_CREATE_DIRECTORY (0x000D)

This Transaction2 subcommand was introduced in the LAN Manager 2.0 dialect.

This transaction is used to create a new directory and can be used to set extended attribute

information. The directory is specified by a path relative to the TID supplied in the SMB
Header (section 2.2.3.1). The directory MUST NOT exist. If the directory does exist, the request MUST
fail and the server MUST return STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists).

2.2.6.14.1 Request

The TRANS2_CREATE_DIRECTORY request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_CREATE_DIRECTORY specifics
are described here.

SMB_Parameters

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000).

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_CREATE_DIRECTORY (0x000D).

Trans2_Parameters

 Trans2_Parameters
 {

424 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 ULONG Reserved;
 SMB_STRING DirectoryName;
 }

Reserved (4 bytes): This field is reserved and MUST be zero (0x00000000).

DirectoryName (variable): The directory name to assign to the new directory.

Trans2_Data

This Trans2_Data is used to set extended attribute information for the new directory. The data
element is as follows.

 Trans2_Data
 {
 SMB_FEA_LIST ExtendedAttributeList;
 }

ExtendedAttributeList (variable): A list of extended attribute name/value pairs.

2.2.6.14.2 Response

The response information indicates if there was a problem with the list of extended attributes, if they
were supplied. The outcome of the request is included in the SMB Header (section 2.2.3.1).

 Trans2_Parameters
 {
 USHORT EaErrorOffset;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Trans2_Parameters

Trans2_Parameters (2 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EaErrorOffset

EaErrorOffset (2 bytes): This field contains the offset in bytes into the

ExtendedAttributeList.FEAList that identifies the attribute that caused an error. This field is

meaningful only when the request included Trans2_Data.

Trans2_Data

No data is sent by this message.

Error Codes

425 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The path syntax is
invalid.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_INVALID

(0xC0000039)

ENOTDIR A component of the
path-prefix was not a
directory.

ERRDOS

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_NOT_FOUND

(0xC000003A)

ENOENT The path does not exist.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EACCESS A component of the
path-prefix denied
search permission.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 ENOSPC The parent directory is
full.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

 EMLINK Too many links to the
parent directory.

ERRDOS

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

 The size of the extended
attribute list is not
correct. Check the
EaErrorOffset field for
the address of the
SMB_FEA structure at
which the error was
detected.

ERRDOS

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The specified path
already exists.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

STATUS_INVALID_EA_FLAG

(0x80000015)

 One of the extended
attributes had an invalid
Flag bit value.

ERRDOS

(0x01)

ERRunknownlevel

(0x007C)

STATUS_OS2_INVALID_LEVEL

(0x007C0001)

 The InformationLevel
supplied is invalid.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_EA_NAME

(0x80000013)

 Invalid value for
extended attribute
name. Check the
EaErrorOffset field for
the location.

ERRDOS

(0x01)

ERRbadealist

(0x00FF)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

STATUS_OS2_EA_LIST_INCONSISTENT

(0x00FF0001)

 Inconsistent extended
attribute list detected
during system
validation.
EaErrorOffset indicates
the incorrect entry.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were
sent.

ERRSRV ERRinvtid STATUS_SMB_BAD_TID The TID is no longer

426 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalent Description

(0x02) (0x0005) (0x00050002) valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRHRD

(0x03)

ERRnowrite

(0x0013)

STATUS_MEDIA_WRITE_PROTECTED

(0xC00000A2)

EROFS Attempt to write to a
read-only file system.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.6.15 TRANS2_SESSION_SETUP (0x000E)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect. This subcommand is
reserved but not implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this

command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.6.16 TRANS2_GET_DFS_REFERRAL (0x0010)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect.

This transaction subcommand is used to request a referral for a disk object in DFS.

2.2.6.16.1 Request

The TRANS2_GET_DFS_REFERRAL request and response formats are special cases of
SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_GET_DFS_REFERRAL specifics
are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalDataCount (2 bytes): This field MUST be zero (0x0000).

Flags (2 bytes): This field SHOULD be zero (0x0000).

Timeout (4 bytes): This field SHOULD be zero (0x00000000).

MaxSetupCount (1 byte): This field MUST be zero (0x00).

MaxParameterCount (4 bytes): This field MUST be zero (0x00000000).

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_GET_DFS_REFERRAL (0x0010).

427 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Trans2_Parameters:

 Trans2_Parameters
 {
 REQ_GET_DFS_REFERRAL ReferralRequest;
 }

ReferralRequest (variable): REQ_GET_DFS_REFERRAL This field MUST be a properly
formatted DFS referral request, as specified in [MS-DFSC] section 2.2.2.

Trans2_Data: No data is sent by this message.

2.2.6.16.2 Response

The TRANS2_GET_DFS_REFERRAL request and response formats are special cases of

SMB_COM_TRANSACTION2 (section 2.2.4.46) SMB. Only the TRANS2_GET_DFS_REFERRAL specifics

are described here.

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x0F.

Words (30 bytes):

TotalParameterCount (2 bytes): This field MUST be zero (0x0000).

SetupCount (1 byte): This field MUST be 0x01.

Setup (2 bytes): This field MUST be TRANS2_GET_DFS_REFERRAL (0x0010).

Trans2_Parameters: No parameters are sent by this message.

Trans2_Data:

 Trans2_Data
 {
 RESP_GET_DFS_REFERRAL ReferralResponse;
 }

ReferralResponse: RESP_GET_DFS_REFERRAL This field MUST be a properly formatted
DFS referral response, as specified in [MS-DFSC] section 2.2.4.

2.2.6.17 TRANS2_REPORT_DFS_INCONSISTENCY (0x0011)

This Transaction2 subcommand was introduced in the NT LAN Manager dialect. This subcommand is
reserved but not implemented.

Clients SHOULD NOT send requests using this command code. Servers receiving requests with this
command code SHOULD return STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

2.2.7 NT Transact Subcommands

2.2.7.1 NT_TRANSACT_CREATE (0x0001)

This NT Transaction subcommand was introduced in the NT LAN Manager dialect.

%5bMS-DFSC%5d.pdf
%5bMS-DFSC%5d.pdf

428 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This transaction subcommand is used to create or open a file or directory when extended attributes
(EAs) or a security descriptor (SD) need to be applied.

Parameters and Data for the subcommand are encoded as shown following. The information required
in order to perform the create or open operation is passed in the Parameters section of the transaction

request. Extended attributes and/or the security descriptors are provided in the Data portion of the
transaction request.

2.2.7.1.1 Request

The NT_TRANSACT_CREATE requestFILE_SEQUENTIAL_ONLY format is a special case of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. The NT_TRANSACT_CREATE request specifics are
described here.

 NT_Trans_Parameters
 {
 ULONG Flags;
 ULONG RootDirectoryFID;
 ULONG DesiredAccess;
 LARGE_INTEGER AllocationSize;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG ShareAccess;
 ULONG CreateDisposition;
 ULONG CreateOptions;
 ULONG SecurityDescriptorLength;
 ULONG EALength;
 ULONG NameLength;
 ULONG ImpersonationLevel;
 UCHAR SecurityFlags;
 UCHAR Name[NameLength];
 }
 NT_Trans_Data
 {
 SECURITY_DESCRIPTOR SecurityDescriptor;
 FILE_FULL_EA_INFORMATION ExtendedAttributes[];
 }

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x13.

Words (38 bytes): Array of USHORT

Function (2 bytes): USHORT This field MUST be NT_TRANSACT_CREATE (0x0001).

SetupCount (1 byte): This field MUST be 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters (variable)

...

NT_Trans_Data (variable)

...

429 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NT_Trans_Parameters (variable): The format of the parameters is very similar to the
SMB_COM_NT_CREATE_ANDX command.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

RootDirectoryFID

DesiredAccess

AllocationSize

...

ExtFileAttributes

ShareAccess

CreateDisposition

CreateOptions

SecurityDescriptorLength

EALength

NameLength

ImpersonationLevel

SecurityFlags Name (variable)

...

Flags (4 bytes): ULONG A 32-bit field containing a set of flags that modify the client request.

Unused bits SHOULD be set to 0 by the client when sending a message and MUST be ignored
when received by the server.

Name and bitmask Meaning

NT_CREATE_REQUEST_OPLOCK

0x00000002

Level I (exclusive) OpLock requested.

NT_CREATE_REQUEST_OPBATCH

0x00000004

Batch OpLock requested.

NT_CREATE_OPEN_TARGET_DIR

0x00000008

The parent directory of the target is to be opened.

RootDirectoryFID (4 bytes): ULONG If nonzero, this value is the FID of an opened root
directory, and the Name field MUST be handled as relative to the directory specified by this

430 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FID. If this value is zero (0x00000000), the Name field MUST be handled as relative to the
root of the share (the TID). The FID MUST have been acquired in a previous message

exchange.

DesiredAccess (4 bytes): ULONG A 32-bit field containing standard, specific, and generic access

rights. These rights are used in access-control entries (ACEs) and are the primary means of
specifying the requested or granted access to an object. If this value is 0x00000000, it
represents a request to query the attributes without accessing the file. If the value is not
0x00000000, the bits represent requests for the following types of access:

Name and bitmask Meaning

FILE_READ_DATA

0x00000001

Indicates the right to read data from the file.

FILE_WRITE_DATA

0x00000002

Indicates the right to write data into the file beyond the end of the file.

FILE_APPEND_DATA

0x00000004

Indicates the right to append data to the file beyond the end of the file only.

FILE_READ_EA

0x00000008

Indicates the right to read the extended attributes of the file.

FILE_WRITE_EA

0x00000010

Indicates the right to write or change the extended attributes of the file.

FILE_EXECUTE

0x00000020

Indicates the right to execute the file.

FILE_READ_ATTRIBUTES

0x00000080

Indicates the right to read the attributes of the file.

FILE_WRITE_ATTRIBUTES

0x00000100

Indicates the right to change the attributes of the file.

DELETE

0x00010000

Indicates the right to delete or to rename the file.

READ_CONTROL

0x00020000

Indicates the right to read the security descriptor of the file.

WRITE_DAC

0x00040000

Indicates the right to change the discretionary access control list (DACL) in
the security descriptor of the file.

WRITE_OWNER

0x00080000

Indicates the right to change the owner in the security descriptor of the file.

SYNCHRONIZE

0x00100000

SHOULD NOT be used by the sender and MUST be ignored by the receiver.

ACCESS_SYSTEM_SECURITY

0x01000000

Indicates the right to read or change the system access control list (SACL) in
the security descriptor for the file. If the SE_SECURITY_NAME privilege ([MS-
LSAD] section 3.1.1.2.1) is not set in the access token, the server MUST fail
the open request and return STATUS_PRIVILEGE_NOT_HELD.

MAXIMUM_ALLOWED

0x02000000

Indicates that the client requests an open to the file with the highest level of
access that the client has on this file. If no access is granted for the client on
this file, the server MUST fail the open and return a
STATUS_ACCESS_DENIED.

%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf

431 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

GENERIC_ALL

0x10000000

Indicates a request for all of the access flags that are previously listed,
except MAXIMUM_ALLOWED and ACCESS_SYSTEM_SECURITY.

GENERIC_EXECUTE

0x20000000

Indicates a request for the following combination of access flags listed
previously in this table:

FILE_READ_ATTRIBUTES, FILE_EXECUTE, SYNCHRONIZE, and
READ_CONTROL.

GENERIC_WRITE

0x40000000

Indicates a request for the following combination of access flags listed
previously in this table:

FILE_WRITE_DATA, FILE_APPEND_DATA, SYNCHRONIZE,
FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and READ_CONTROL.

GENERIC_READ

0x80000000

Indicates a request for the following combination of access flags listed
previously in this table:

FILE_WRITE_DATA, FILE_APPEND_DATA, SYNCHRONIZE,
FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and READ_CONTROL.

AllocationSize (8 bytes): LARGE_INTEGER The client MUST set this value to the initial allocation
size of the file in bytes. The server MUST ignore this field if this request is to open an existing
file. This field MUST be used only if the file is created or overwritten. The value MUST be set to

0x0000000000000000 in all other cases. This does not apply to directory-related requests. This
is the number of bytes to be allocated, represented as a 64-bit integer value.

ExtFileAttributes (4 bytes): This field contains the extended file attributes of the file being
requested, encoded as an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

ShareAccess (4 bytes): ULONG A 32-bit field that specifies how the file SHOULD be shared with
other processes. The names in the table below are provided for reference use only. The value

MUST be FILE_SHARE_NONE or some combination of the other values:

Name and bitmask Meaning

FILE_SHARE_NONE

0x00000000

(No bits set.)

Prevents the file from being shared.

FILE_SHARE_READ

0x00000001

Other open operations can be performed on the file for read access.

FILE_SHARE_WRITE

0x00000002

Other open operations can be performed on the file for write access.

FILE_SHARE_DELETE

0x00000004

Other open operations can be performed on the file for delete access.

CreateDisposition (4 bytes): ULONG A 32-bit value that represents the action to take if the file
already exists or if the file is a new file and does not already exist.

Name and Value Meaning

FILE_SUPERSEDE

0x00000000

(No bits set.)

If the file already exists, it SHOULD be superseded (overwritten). If it does not
already exist, it SHOULD be created.

FILE_OPEN

0x00000001

If the file already exists, it SHOULD be opened rather than creating a new file. If
the file does not already exist, the operation MUST fail.

432 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and Value Meaning

FILE_CREATE

0x00000002

If the file already exists, the operation MUST fail. If the file does not already exist,
it SHOULD be created.

FILE_OPEN_IF

0x00000003

If the file already exists, it SHOULD be opened. If the file does not already exist,
it SHOULD be created.

FILE_OVERWRITE

0x00000004

If the file already exists, it SHOULD be opened and truncated. If the file does not
already exist, the operation MUST fail. The client MUST open the file with at least
GENERIC_WRITE access for the command to succeed.

FILE_OVERWRITE_IF

0x00000005

If the file already exists, it SHOULD be opened and truncated. If the file does not
already exist, it SHOULD be created. The client MUST open the file with at least
GENERIC_WRITE access.

CreateOptions (4 bytes): ULONG A 32-bit field containing flag options to use if creating the file
or directory. This field MUST be set to 0x00000000 or a combination of the following possible

values. Unused bit fields SHOULD be set to 0 by the client when sending a request and

SHOULD be ignored when received by the server. Below is a list of the valid values and their
associated behaviors.

Name and bitmask Meaning

FILE_DIRECTORY_FILE

0x00000001

The file being created or opened is a directory file. With this
option, the CreateDisposition field MUST be set to
FILE_CREATE, FILE_OPEN, or FILE_OPEN_IF. When this bit
field is set, other compatible CreateOptions include only the

following: FILE_WRITE_THROUGH,
FILE_OPEN_FOR_BACKUP_INTENT, and
FILE_OPEN_BY_FILE_ID.

FILE_WRITE_THROUGH

0x00000002

Applications that write data to the file MUST actually transfer
the data into the file before any write request qualifies as
semantically complete. If
FILE_NO_INTERMEDIATE_BUFFERING is set, the server MUST
process the request as if FILE_WRITE_THROUGH is set in the
create request, even if not set by the client.

FILE_SEQUENTIAL_ONLY

0x00000004

This option indicates that access to the file MAY be sequential.
The server can use this information to influence its caching and
read-ahead strategy for this file. The file MAY in fact be
accessed randomly, but the server can optimize its caching and
read-ahead policy for sequential access.

FILE_NO_INTERMEDIATE_BUFFERING

0x00000008

The file SHOULD NOT be cached or buffered in an internal
buffer by the server. This option is incompatible when the
FILE_APPEND_DATA bit field is set in the DesiredAccess field.

FILE_SYNCHRONOUS_IO_ALERT

0x00000010

This flag MUST be ignored by the server, and clients SHOULD
set it to 0.

FILE_SYNCHRONOUS_IO_NONALERT

0x00000020

This flag MUST be ignored by the server, and clients SHOULD
set it to 0.

FILE_NON_DIRECTORY_FILE

0x00000040

If the file being opened is a directory, the server MUST fail the
request with STATUS_FILE_IS_A_DIRECTORY in the Status
field of the SMB Header (section 2.2.3.1) in the server
response.

FILE_CREATE_TREE_CONNECTION This option SHOULD NOT be sent by the clients, and this option
MUST be ignored by the server.

433 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

0x00000080

FILE_COMPLETE_IF_OPLOCKED

0x00000100

This option SHOULD NOT be sent by the clients, and this option
MUST be ignored by the server.

FILE_NO_EA_KNOWLEDGE

0x00000200

The application that initiated the client's request does not
support extended attributes (EAs). If the EAs on an existing file
being opened indicate that the caller SHOULD support EAs to
correctly interpret the file, the server SHOULD fail this request
with STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) in the
Status field of the SMB Header in the server response.

FILE_OPEN_FOR_RECOVERY

0x00000400

This option SHOULD NOT be sent by the clients, and this option
MUST be ignored if received by the server.

FILE_RANDOM_ACCESS

0x00000800

Indicates that access to the file MAY be random. The server
MAY use this information to influence its caching and read-
ahead strategy for this file. This is a hint to the server that
sequential read-ahead operations might not be appropriate on
the file.

FILE_DELETE_ON_CLOSE

0x00001000

The file SHOULD be automatically deleted when the last open
request on this file is closed. When this option is set, the
DesiredAccess field MUST include the DELETE flag. This
option is often used for temporary files.

FILE_OPEN_BY_FILE_ID

0x00002000

Opens a file based on the FileId. If this option is set, the server
MUST fail the request with STATUS_NOT_SUPPORTED in the
Status field of the SMB Header in the server response.

FILE_OPEN_FOR_BACKUP_INTENT

0x00004000

The file is opened or created for the purposes of either a
backup or a restore operation. Thus, the server can check to
ensure that the caller is capable of overriding whatever security

checks have been placed on the file to allow a backup or
restore operation to occur. The server can check for access
rights to the file before checking the DesiredAccess field.

FILE_NO_COMPRESSION

0x00008000

When a new file is created, the file MUST NOT be compressed,
even if it is on a compressed volume. The flag MUST be ignored
when opening an existing file.

FILE_RESERVE_OPFILTER

0x00100000

This option SHOULD NOT be sent by the clients, and this option
MUST be ignored if received by the server.

FILE_OPEN_NO_RECALL

0x00400000

In a hierarchical storage management environment, this option
requests that the file SHOULD NOT be recalled from tertiary
storage such as tape. A file recall can take up to several
minutes in a hierarchical storage management environment.
The clients can specify this option to avoid such delays.

FILE_OPEN_FOR_FREE_SPACE_QUERY

0x00800000

This option SHOULD NOT be sent by the clients, and this option
MUST be ignored if received by the server.

SecurityDescriptorLength (4 bytes): ULONG Length of the

NT_Trans_Data.SecurityDescriptor field, in bytes.

EALength (4 bytes): ULONG Length of the NT_Trans_Data.ExtendedAttributes field, in
bytes.

NameLength (4 bytes): ULONG Length of the Name field in characters.

434 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ImpersonationLevel (4 bytes): ULONG This field specifies the impersonation level requested by
the application that is issuing the create request, and MUST contain one of the following

values. The server MUST validate this field, but otherwise ignore it.

Impersonation is described in [MS-WPO] section 8.5.1; for more information about

impersonation, see [MSDN-IMPERS].

Name and value Meaning

SEC_ANONYMOUS

0x00000000

The application-requested impersonation level is Anonymous.

SEC_IDENTIFY

0x00000001

 The application-requested impersonation level is Identification.

SEC_IMPERSONATE

0x00000002

 The application-requested impersonation level is Impersonation.

SecurityFlags (1 byte): UCHAR An 8-bit field containing a set of options that specify the security

tracking mode. These options specify whether the server is to be given a snapshot of the
client's security context (called static tracking) or is to be continually updated to track changes
to the client's security context (called dynamic tracking). When bit 0 of the SecurityFlags
field is set to 0, static tracking is requested. When bit 0 the SecurityFlags field is set to 1,
dynamic tracking is requested. Unused bit fields SHOULD be set to 0 by the client when
sending a request and MUST be ignored when received by the server. This field MUST be set
to 0x00 or a combination of the following possible values. Value names are provided for

convenience only. Supported values are:

Name and value Meaning

SMB_SECURITY_CONTEXT_TRACKING

0x01

When set, dynamic tracking is requested. When this bit field is
not set, static tracking is requested.

SMB_SECURITY_EFFECTIVE_ONLY

0x02

Specifies that only the enabled aspects of the client's security
context are available to the server. If this flag is not specified,
all aspects of the client's security context are available. This
flag allows the client to limit the groups and privileges that a
server can use while impersonating the client.

Name (variable): The name of the file; not null-terminated. If SMB_FLAGS2_UNICODE is set in
the Flags2 field of the SMB Header of the request, this field MUST be an array of 16-bit
Unicode characters. Otherwise, it MUST be an array of extended ASCII (OEM) characters. If

the Name consists of Unicode characters, this field MUST be aligned to start on a 2-byte
boundary from the start of the NT_Trans_Parameters.

NT_Trans_Data (variable): The NT_Trans_Data provides the Security Descriptor and Extended
Attributes data, if any.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SecurityDescriptor (variable)

...

ExtendedAttributes (variable)

%5bMS-WPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=106009

435 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

SecurityDescriptor (variable): SECURITY_DESCRIPTOR The security descriptor to use when
requesting access to the file. The self-relative form of a SECURITY_DESCRIPTOR MUST be used.
See SECURITY_DESCRIPTOR ([MS-DTYP] section 2.4.6) for details. This field MUST be

NT_Trans_Parameters.SecurityDescriptorLength in bytes.

ExtendedAttributes (variable): The extended attributes that SHOULD be applied to the new file
MUST be in the format that is specified for FILE_FULL_EA_INFORMATION in ([MS-FSCC]
section 2.4.15).<147>

2.2.7.1.2 Response

The NT_TRANSACT_CREATE response format is a special case of

SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. The NT_TRANSACT_CREATE response specifics are
described here. The outcome of the request is returned in the Status field of the SMB
Header (section 2.2.3.1).

 NT_Trans_Parameters
 {
 UCHAR OpLockLevel;
 UCHAR Reserved;
 USHORT FID;
 ULONG CreateAction;
 ULONG EAErrorOffset;
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastChangeTime;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 LARGE_INTEGER AllocationSize;
 LARGE_INTEGER EndOfFile;
 USHORT ResourceType;
 SMB_NMPIPE_STATUS NMPipeStatus;
 UCHAR Directory;
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters (69 bytes)

...

...

...

NT_Trans_Parameters (69 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

OpLockLevel Reserved FID

%5bMS-DTYP%5d.pdf
%5bMS-FSCC%5d.pdf

436 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CreateAction

EAErrorOffset

CreationTime

...

LastAccessTime

...

LastWriteTime

...

LastChangeTime

...

ExtFileAttributes

AllocationSize

...

EndOfFile

...

ResourceType NMPipeStatus

Directory

OpLockLevel (1 byte): UCHAR The OpLock level granted to the client process.

Value Meaning

0x00 No OpLock granted.

0x01 Exclusive OpLock granted.

0x02 Batch OpLock granted.

0x03 Level II OpLock granted.

Reserved (1 byte): UCHAR Reserved and MUST be zero (0x00).

FID (2 bytes): USHORT The file ID value representing the file or directory that was created or

opened.

CreateAction (4 bytes): ULONG The action taken in establishing the open. This field MUST
contain one of the following values:

437 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Value Meaning

FILE_SUPERSEDED

0x00000000

An existing file was deleted and a new file was created in its place.

FILE_OPENED

0x00000001

An existing file was opened.

FILE_CREATED

0x00000002

A new file was created.

FILE_OVERWRITTEN

0x00000003

An existing file was overwritten.

EAErrorOffset (4 bytes): ULONG Offset of the extended attribute that caused an error if an
error occurred with an extended attribute.

CreationTime (8 bytes): FILETIME A 64-bit integer value representing the time that the file
was created. The time value is a signed 64-bit integer representing either an absolute time
or a time interval. Times are specified in units of 100ns. A positive value expresses an

absolute time, where the base time (the 64- bit integer with value 0) is the beginning of the
year 1601 AD in the Gregorian calendar. A negative value expresses a time interval relative
to some base time, usually the current time.

LastAccessTime (8 bytes): FILETIME The time that the file was last accessed, encoded in the
same format as CreationTime.

LastWriteTime (8 bytes): FILETIME The time that the file was last written, encoded in the
same format as CreationTime.

LastChangeTime (8 bytes): FILETIME The time that the file was last changed, encoded in the
same format as CreationTime.

ExtFileAttributes (4 bytes): This field contains the extended file attributes the file, encoded
as an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

AllocationSize (8 bytes): LARGE_INTEGER The number of bytes allocated to the file by the
server.

EndOfFile (8 bytes): LARGE_INTEGER The end of file offset value.

ResourceType (2 bytes): The file type. This field MUST be interpreted as follows.

Name and value Meaning

FileTypeDisk

0x0000

File or directory

FileTypeByteModePipe

0x0001

Byte mode named pipe

FileTypeMessageModePipe

0x0002

Message mode named pipe

FileTypePrinter

0x0003

Printer device

FileTypeUnknown

0xFFFF

Unknown file type

438 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

NMPipeStatus (2 bytes): A 16-bit field that shows the status of the named pipe if the
resource type created is a named pipe. This field is formatted as an SMB_NMPIPE_STATUS

(section 2.2.1.3).

Directory (1 byte): UCHAR If the returned FID represents a directory, the server MUST set

this value to a nonzero (0x00) value. If the FID is not a directory, the server MUST set this
value to 0x00 (FALSE).

NT_Trans_Data

The server does not return any NT_Trans data.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

ERRDO
S

(0x01)

ERRbadpath

(0x0003)

STATUS_OBJECT_PATH_SYNTAX_BAD

(0xC000003B)

ENOENT The file path syntax is
invalid.

ERRDO
S

(0x01)

ERRnofids

(0x0004)

STATUS_OS2_TOO_MANY_OPEN_FILE
S

(0x00040001)

STATUS_TOO_MANY_OPENED_FILES

(0xC000011F)

EMFILE Too many open files; no
more FIDs available.

ERRDO
S

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDO
S

(0x01)

ERRnoaccess

(0x0005)

STATUS_FILE_IS_A_DIRECTORY

(0xC00000BA)

EISDIR Named file is an existing
directory and CreateOptions
in the request contains
FILE_NON_DIRECTORY_FIL
E.

ERRDO
S

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

EBADF Invalid FID;
RootDirectoryFID is not
valid.

ERRDO
S

(0x01)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCE
S

(0xC0000205)

ENOMEM The server is out of
resources.

ERRDO

S

(0x01)

ERRbadaccess

(0x000C)

STATUS_ACCESS_DENIED

(0xC0000022)

 Invalid open mode.

ERRDO
S

(0x01)

ERRbadshare

(0x0020)

STATUS_SHARING_VIOLATION

(0xC0000043)

ETXTBSY Sharing violation.

ERRDO
S

(0x01)

ERRgeneral

(0x001F)

STATUS_UNSUCCESSFUL

(0xC0000001)

STATUS_INVALID_EA_NAME

(0x80000013)

 The size of the extended
attribute list is not correct.
Check the EAErrorOffset
field for the address of the
EA at which the error was
detected.

439 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalen
t Description

EA name was invalid.

ERRDO
S

(0x01)

ERRfilexists

(0x0050)

STATUS_OBJECT_NAME_COLLISION

(0xC0000035)

EEXIST The file already exists.

ERRDO
S

(0x01)

ERRinvalidpara
m

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 One of the extended
attributes had an invalid
Flags bit value.

ERRDO
S

(0x01)

ERRbadealist

(0x00FF)

STATUS_OS2_EA_LIST_INCONSISTEN
T

(0x00FF0001)

STATUS_EA_LIST_INCONSISTENT

(0x80000014)

 Inconsistent extended
attribute list.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not enough
parameter bytes were sent,
or the path extends beyond
the end of the message.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCE
S

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UIDsupplied is not
defined to the session.

ERRSRV

(0x02)

ERRgeneral

(0x001F)

STATUS_INVALID_SECURITY_DESCR

(0xC0000079)

 Invalid security descriptor.

ERRHR
D

(0x03)

ERRgeneral

(0x001F)

STATUS_INVALID_SECURITY_DESCR

(0xC0000079)

 Invalid security descriptor.

2.2.7.2 NT_TRANSACT_IOCTL (0x0002)

This NT Transaction subcommand was introduced in the NT LAN Manager dialect.

This transaction subcommand allows IOCTL and FSCTL functions to be transferred transparently from

client to server. This command is useful for sending platform-specific or implementation-specific

information to the server.<148>

2.2.7.2.1 Request

The NT_TRANSACT_IOCTL request format is a special case of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_IOCTL request specifics
are described here.

440 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 NT_Trans_Parameters
 {
 }

 NT_Trans_Data
 {
 UCHAR Data[TotalDataCount];
 }

SMB_Parameters:

WordCount (1 byte): UCHAR This field MUST be 0x17.

Words (46 bytes): Array of USHORT.

TotalParameterCount (2 bytes): USHORT This field MUST be set to 0x0000.

MaxParameterCount (2 bytes): USHORT This field MUST be set to 0x0000.

ParameterCount (2 bytes): USHORT This field MUST be set to 0x0000.

SetupCount (1 byte): UCHAR This field MUST be 0x04.

Function (2 bytes): USHORT This field MUST be NT_TRANSACT_IOCTL (0x0002).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Setup

...

NT_Trans_Parameters (variable)

...

NT_Trans_Data (variable)

...

Setup (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FunctionCode

FID IsFsctl IsFlags

FunctionCode (4 bytes): ULONG The control code of the file system control or device control

(FSCTL/IOCTL) method. The values are defined in [MS-FSCC] section 2.3.

FID (2 bytes): USHORT MUST contain a valid FID obtained from a previously successful SMB
open command. The FID MUST be for either an I/O device or for a file system control device.
The type of FID being supplied is specified by IsFsctl.

%5bMS-FSCC%5d.pdf

441 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

IsFsctl (1 byte): BOOLEAN This field is TRUE if the command is a file system control command
and the FID is a file system control device. Otherwise, the command is a device control

command and FID is an I/O device.

IsFlags (1 byte): BOOLEAN If bit 0 is set, the command is to be applied to a share root handle.

The share MUST be a Distributed File System (DFS) type.

NT_Trans_Parameters (variable): (0 bytes): No NT_Trans parameters are sent in this request.

NT_Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): The raw bytes that are passed to the fsctl or ioctl function as the input buffer.

2.2.7.2.2 Response

The NT_TRANSACT_IOCTL response formats are special cases of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_IOCTL response specifics
are described here. The outcome of the request is encoded in the SMB Header (section 2.2.3.1).

 NT_Trans_Data
 {
 UCHAR Data[TotalDataCount];
 }

SMB_Parameters:

WordCount (1 byte): UCHAR This field MUST be 0x13.

Words (38 bytes): Array of USHORT

SetupWordCount (1 byte): UCHAR Count of setup words. The value is 0x01.

SetupWords (2 bytes): USHORT The size of the transaction data, in bytes, returned
by the server for the file system control command. The client MUST ignore this field

value.

DataCount (2 bytes): USHORT Count of data bytes returned by either an I/O device
or a file system control command.

NT_Trans_Parameters: The server does not return any NT_Trans parameters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Data (variable)

...

NT_Trans_Data (variable):

442 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

...

Data (variable): Results returned by either an I/O device or a file system control command. The
results are the raw bytes returned from the command if the command was successful.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

EBADF The FID is invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 A parameter is
invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter
bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is
not defined to the
session.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.7.3 NT_TRANSACT_SET_SECURITY_DESC (0x0003)

This NT Transaction subcommand was introduced in the NT LAN Manager dialect.

This transaction subcommand allows a client to set the security descriptors for a file.<149> The client
MUST provide the FID of the file for which the security descriptors are to be set. The server MUST set
the security descriptor for the file referred to in FID. The security descriptor is provided in the Data

portion of the transaction request.

2.2.7.3.1 Request

The NT_TRANSACT_SET_SECURITY_DESC request format is a special case of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_SET_SECURITY_DESC
request specifics are described here.

443 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 NT_Trans_Parameters
 {
 USHORT FID;
 USHORT Reserved;
 ULONG SecurityInformation;
 }
 NT_Trans_Data
 {
 SECURITY_DESCRIPTOR SecurityDescriptor (variable);
 }

SMB_Parameters:

WordCount (1 byte): UCHAR This field MUST be 0x13.

Words (38 bytes): Array of USHORT

Function (2 bytes): USHORT This field MUST be NT_TRANSACT_SET_SECURITY_DESC

(0x0003).

MaxSetupCount (1 byte): This field MUST be 0x00.

MaxDataCount (4 bytes): This field MUST be 0x00000000.

MaxParameterCount (4 bytes): This field MUST be 0x00000000.

SetupCount (1 byte): UCHAR This field MUST be 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters

...

NT_Trans_Data (variable)

...

NT_Trans_Parameters (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Reserved

SecurityInformation

FID (2 bytes): USHORT File identifier or handle of the target file.

Reserved (2 bytes): USHORT Reserved. This value MUST be 0x0000.

SecurityInformation (4 bytes): ULONG Fields of security descriptor to be set. This is a bit field.
These values can be logically OR-ed together to set several descriptors in one request. The
server MUST set only the descriptors requested by SecurityInformation.

444 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

OWNER_SECURITY_INFORMATION

0x00000001

Owner of the object or resource.

GROUP_SECURITY_INFORMATION

0x00000002

Group associated with the object or resource.

DACL_SECURITY_INFORMATION

0x00000004

Discretionary access control list (DACL) associated with
the object or resource.

SACL_SECURITY_INFORMATION

0x00000008

System access control list (SACL) associated with the
object or resource.

NT_Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SecurityDescriptor (variable)

...

SecurityDescriptor (variable): SECURITY_DESCRIPTOR The requested security descriptor
structure. The self-relative form of a SECURITY_DESCRIPTOR is required. For details, see [MS-

DTYP] SECURITY_DESCRIPTOR (section 2.4.6).

2.2.7.3.2 Response

The NT_TRANSACT_SET_SECURITY_DESC response format is a special case of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_SET_SECURITY_DESC
response specifics are described here. The outcome of the request is encoded in the SMB

Header (section 2.2.3.1).

NT_Trans_Parameters: The server does not return any NT_Trans parameters.

NT_Trans_Data: The server does not return any NT_Trans data.

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

STATUS_SMB_BAD_FID

(0x00060001)

EBADF The FID is invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 A parameter is
invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Not
enough parameter

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

445 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

bytes were sent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is
not defined to the
session.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

ERRHRD

(0x03)

ERRgeneral

(0x001F)

STATUS_INVALID_SECURITY_DESCR

(0xC0000079)

 Invalid security
descriptor.

2.2.7.4 NT_TRANSACT_NOTIFY_CHANGE (0x0004)

This NT Transaction subcommand was introduced in the NT LAN Manager dialect.

This command notifies the client when the directory, specified by FID, is modified. It also returns the
names of all file system objects that changed, and the ways in which they were modified. The
command completes once the directory has been modified based on the supplied CompletionFilter.
The command is a "single shot" and therefore needs to be reissued to watch for more directory
changes.

The TotalParameterCount field of the server response indicates the number of bytes that are being

returned. If too many files (that is, more entries than will fit in the response buffer) have changed
since the last time that the command was issued, then zero bytes are returned and
STATUS_NOTIFY_ENUM_DIR (ERRDOS/ERROR_NOTIFY_ENUM_DIR) is returned in the Status field of
the server response header.

A directory file MUST be opened before this command can be used. After the directory is open, this
command is used to watch files and subdirectories in the specified directory for changes. When the

command is issued, the server creates a buffer that is used to collect directory changes between
NT_TRANSACT_NOTIFY_CHANGE calls. The SMB_Parameters.Words.MaxParameterCount field in
the SMB_COM_NT_TRANSACT Request (section 2.2.4.62.1) determines the size of the buffer that the
server uses to store directory change information.

2.2.7.4.1 Request

The NT_TRANSACT_NOTIFY_CHANGE request and response formats are special cases of

SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_NOTIFY_CHANGE request
specifics are described here.

 Setup
 {
 ULONG CompletionFilter;
 USHORT FID;
 BOOLEAN WatchTree;
 UCHAR Reserved;
 }

446 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_Parameters:

WordCount (1 byte): This field MUST be 0x17.

Words (46 bytes): Array of USHORT.

MaxSetupCount (1 byte): This field MUST be 0x00.

MaxDataCount (4 bytes): This field MUST be 0x00000000.

Function (2 bytes): This field MUST be NT_TRANSACT_NOTIFY_CHANGE (0x0004).

SetupCount (1 byte): This field MUST be 04, indicating that 4 words (8 bytes) are used

for Setup information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Setup

...

Setup (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompletionFilter

FID WatchTree Reserved

CompletionFilter (4 bytes): A 32-bit field of flags that specify the types of operations to
monitor.

Name Value

FILE_NOTIFY_CHANGE_FILE_NAME 0x00000001

FILE_NOTIFY_CHANGE_DIR_NAME 0x00000002

FILE_NOTIFY_CHANGE_NAME 0x00000003

FILE_NOTIFY_CHANGE_ATTRIBUTES 0x00000004

FILE_NOTIFY_CHANGE_SIZE 0x00000008

FILE_NOTIFY_CHANGE_LAST_WRITE 0x00000010

FILE_NOTIFY_CHANGE_LAST_ACCESS 0x00000020

FILE_NOTIFY_CHANGE_CREATION 0x00000040

FILE_NOTIFY_CHANGE_EA 0x00000080

FILE_NOTIFY_CHANGE_SECURITY 0x00000100

FILE_NOTIFY_CHANGE_STREAM_NAME 0x00000200

FILE_NOTIFY_CHANGE_STREAM_SIZE 0x00000400

447 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Value

FILE_NOTIFY_CHANGE_STREAM_WRITE 0x00000800

FID (2 bytes): The FID of the directory to monitor.

WatchTree (1 byte): If all subdirectories are to be watched, then this field MUST be set to TRUE;
otherwise, it MUST be set to FALSE.

Reserved (1 byte): Reserved. This value MUST be 0x00.

NT_Trans_Parameters

The client does not provide any NT_Trans_Parameters in the request.

NT_Trans_Data

The client does not provide any NT_Trans_Data in the request.

2.2.7.4.2 Response

 NT_Trans_Parameters
 {
 FILE_NOTIFY_INFORMATION FileNotifyInformation[];
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters (variable)

...

NT_Trans_Parameters (variable):

FileNotifyInformation: An array of FILE_NOTIFY_INFORMATION structures, as specified in [MS-
FSCC] section 2.4.42.<150>

NT_Trans_Data

The server does not return any data.

Error Codes

SMB
error
class SMB error code NT status code

POSIX
equivalen
t Description

ERRDO

S

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

EBADF The FID is invalid.

ERRDO
S

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

448 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB
error
class SMB error code NT status code

POSIX
equivalen
t Description

ERRDO
S

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 A parameter is
invalid.

ERRSRV

(0x02)

ERR_NOTIFY_ENUM_DI
R

(0x03FE)

STATUS_NOTIFY_ENUM_DIR

(0x0000010C)

 The number of bytes
of changed data
exceeds the
MaxParameterCoun
t field in the client
request.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Byte
count and sizes are
inconsistent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no
longer valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURC
ES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is
not defined to the
session.

ERRHR
D

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.7.5 NT_TRANSACT_RENAME (0x0005)

This is NT Transaction subcommand was introduced in the NT LAN Manager dialect. This subcommand
was reserved but not implemented.

Clients SHOULD NOT send requests using this subcommand code. Servers receiving requests with this

subcommand code MUST return STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

2.2.7.6 NT_TRANSACT_QUERY_SECURITY_DESC (0x0006)

This NT Transaction subcommand was introduced in the NT LAN Manager dialect.

This transaction subcommand allows a client to retrieve the security descriptor for a file.<151> The
client MUST provide the FID of the file that is the target of the query. The server MUST query the

security descriptor from the file system for the file referred to in FID. The security descriptor is
returned in the NT_Trans_Data portion of the transaction response.

2.2.7.6.1 Request

The NT_TRANSACT_QUERY_SECURITY_DESC request format is a special case of

SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_QUERY_SECURITY_DESC
request specifics are described here.

449 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 NT_Trans_Parameters
 {
 USHORT FID;
 USHORT Reserved;
 ULONG SecurityInfoFields;
 }

SMB_Parameters:

WordCount (1 byte): UCHAR This field MUST be 0x13.

Words (38 bytes): Array of USHORT.

MaxSetupCount (1 byte): This field MUST be 0x00.

MaxParameterCount (4 bytes): This field MUST be 0x00000004.

Function (2 bytes): USHORT This field MUST be NT_TRANSACT_QUERY_SECURITY_DESC

(0x0006).

SetupCount (1 byte): UCHAR This field MUST be 0x00.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters

...

NT_Trans_Parameters (8 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FID Reserved

SecurityInfoFields

FID (2 bytes): USHORT FID of the target file. The FID MUST have been obtained through a
previously successful SMB open request.

Reserved (2 bytes): USHORT Reserved. This value MUST be 0x0000.

SecurityInfoFields (4 bytes): ULONG A 32-bit field representing the requested fields of the
security descriptor to be retrieved. These values can be logically OR-ed together to request
several descriptors in one request. The descriptor response format contains storage for all of
the descriptors. The client MUST ignore the values returned for descriptors corresponding to

bits that were not included in this field as part of the request.

Name and bitmask Meaning

OWNER_SECURITY_INFORMATION

0x00000001

Owner of the object or resource.

GROUP_SECURITY_INFORMATION

0x00000002

Group associated with the object or resource.

450 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name and bitmask Meaning

DACL_SECURITY_INFORMATION

0x00000004

Discretionary access control list (DACL)
associated with the object or resource.

SACL_SECURITY_INFORMATION

0x00000008

System access control list (SACL) associated
with the object or resource.

NT_Trans_Data

The client does not provide any data in the request.

2.2.7.6.2 Response

The NT_TRANSACT_QUERY_SECURITY_DESC (section 2.2.7.6) response format is a special case of
SMB_COM_NT_TRANSACT (section 2.2.4.62) SMB. Only the NT_TRANSACT_QUERY_SECURITY_DESC
response format specifics are described here.

 NT_Trans_Parameters
 {
 ULONG LengthNeeded;
 }

 NT_Trans_Data
 {
 SECURITY_DESCRIPTOR SecurityDescriptor (variable);
 }

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NT_Trans_Parameters

NT_Trans_Data (variable)

...

NT_Trans_Parameters (4 bytes):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LengthNeeded

LengthNeeded (4 bytes): The length of the returned SecurityDescriptor field.

NT_Trans_Data (variable):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SecurityDescriptor (variable)

451 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

...

SecurityDescriptor (variable): The requested security descriptor structure. The self-relative
form of a SECURITY_DESCRIPTOR structure is returned. For details, see
SECURITY_DESCRIPTOR ([MS-DTYP] section 2.4.6).

Error Codes

SMB
error
class

SMB error
code NT status code

POSIX
equivalent Description

ERRDOS

(0x01)

ERRbadfid

(0x0006)

STATUS_INVALID_HANDLE

(0xC0000008)

EBADF The FID is invalid.

ERRDOS

(0x01)

ERRnoaccess

(0x0005)

STATUS_ACCESS_DENIED

(0xC0000022)

EPERM Access denied.

ERRDOS

(0x01)

ERRinvalidparam

(0x0057)

STATUS_INVALID_PARAMETER

(0xC000000D)

 A parameter is invalid.

ERRSRV

(0x02)

ERRerror

(0x0001)

STATUS_INVALID_SMB

(0x00010002)

 Invalid SMB. Byte count
and sizes are
inconsistent.

ERRSRV

(0x02)

ERRinvtid

(0x0005)

STATUS_SMB_BAD_TID

(0x00050002)

 The TID is no longer
valid.

ERRSRV

(0x02)

ERRnomem

(0x0008)

STATUS_INSUFF_SERVER_RESOURCES

(0xC0000205)

ENOMEM The server is out of
resources.

ERRSRV

(0x02)

ERRbaduid

(0x005B)

STATUS_SMB_BAD_UID

(0x005B0002)

 The UID supplied is not
defined to the session.

ERRSRV

(0x02)

ERRmoredata

(0x00EA)

STATUS_BUFFER_OVERFLOW

(0x80000005)

 The number of bytes of
changed data exceeds
the
MaxParameterCount
field in the client request.

ERRHRD

(0x03)

ERRdata

(0x0017)

STATUS_DATA_ERROR

(0xC000003E)

EIO Disk I/O error.

2.2.8 Information Levels

The client MUST map the application-provided [MS-FSCC] information levels to SMB information levels

as specified in the following tables. For all other [MS-FSCC] information levels, the client MUST fail the
request with STATUS_NOT_SUPPORTED.

FIND Information Levels

FSCC Level SMB Level

FileDirectoryInformation ([MS-FSCC] section
2.4.10)

SMB_FIND_FILE_DIRECTORY_INFO (section 2.2.8.1.4)

%5bMS-DTYP%5d.pdf
%5bMS-FSCC%5d.pdf

452 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FSCC Level SMB Level

FileFullDirectoryInformation ([MS-FSCC] section
2.4.14)

SMB_FIND_FILE_FULL_DIRECTORY_INFO (section 2.2.8.1.5)

FileNamesInformation ([MS-FSCC] section
2.4.26)

SMB_FIND_FILE_NAMES_INFO (section 2.2.8.1.6)

FileBothDirectoryInformation ([MS-FSCC] section
2.4.8)

SMB_FIND_FILE_BOTH_DIRECTORY_INFO (section 2.2.8.1.7)

QUERY_FS Information Levels

FSCC Level SMB Level

FileFsVolumeInformation ([MS-FSCC] section 2.5.9) SMB_QUERY_FS_VOLUME_INFO (section 2.2.8.2.3)

FileFsSizeInformation ([MS-FSCC] section 2.5.8) SMB_QUERY_FS_SIZE_INFO (section 2.2.8.2.4)

FileFsDeviceInformation ([MS-FSCC] section 2.5.10) SMB_QUERY_FS_DEVICE_INFO (section 2.2.8.2.5)

FileFsAttributeInformation ([MS-FSCC] section 2.5.1) SMB_QUERY_FS_ATTRIBUTE_INFO (section 2.2.8.2.6)

QUERY Information Levels

FSCC Level SMB Level

FileBasicInformation ([MS-FSCC] section 2.4.7) SMB_QUERY_FILE_BASIC_INFO (section 2.2.8.3.6)

FileStandardInformation ([MS-FSCC] section
2.4.38)

SMB_QUERY_FILE_STANDARD_INFO (section 2.2.8.3.7)

FileEaInformation ([MS-FSCC] section 2.4.12) SMB_QUERY_FILE_EA_INFO (section 2.2.8.3.8)

FileNameInformation ([MS-FSCC] section 2.4.25) SMB_QUERY_FILE_NAME_INFO (section 2.2.8.3.9)

FileAllInformation ([MS-FSCC] section 2.4.2) SMB_QUERY_FILE_ALL_INFO (section 2.2.8.3.10)

FileAlternateNameInformation ([MS-FSCC]
section 2.4.5)

SMB_QUERY_FILE_ALT_NAME_INFO (section 2.2.8.3.11)

FileStreamInformation ([MS-FSCC] section
2.4.40)

SMB_QUERY_FILE_STREAM_INFO (section 2.2.8.3.12)

FileCompressionInformation ([MS-FSCC] section
2.4.9)

SMB_QUERY_FILE_COMPRESSION_INFO (section 2.2.8.3.13)

SET Information Levels

FSCC Level SMB Level

FileBasicInformation ([MS-FSCC] section 2.4.7) SMB_SET_FILE_BASIC_INFO (section 2.2.8.4.3)

FileDispositionInformation ([MS-FSCC] section 2.4.11) SMB_SET_FILE_DISPOSITION_INFO (section 2.2.8.4.4)

FileAllocationInformation ([MS-FSCC] section 2.4.4) SMB_SET_FILE_ALLOCATION_INFO (section 2.2.8.4.5)

FileEndOfFileInformation ([MS-FSCC] section 2.4.13) SMB_SET_FILE_END_OF_FILE_INFO (section 2.2.8.4.6)

453 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.8.1 FIND Information Levels

2.2.8.1.1 SMB_INFO_STANDARD

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the following information for all files that
match the request's search criteria:

 Creation, access, and last write timestamps

 File size

 File attributes

 File name

 SMB_INFO_STANDARD[SearchCount]
 {
 ULONG ResumeKey (optional);
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG AllocationSize;
 SMB_FILE_ATTRIBUTES Attributes;
 UCHAR FileNameLength;
 SMB_STRING FileName;
 }

ResumeKey: (4 bytes): This field is optional. If the SMB_FIND_RETURN_RESUME_KEYS bit is set in

the Flags field of the TRANS2_FIND_FIRST2 Request (section 2.2.6.2.1) parameters, this field
MUST contain the server-generated resume key. The resume key MUST be supplied in subsequent

TRANS2_FIND_NEXT2 Requests to continue the search. If the SMB_FIND_RETURN_RESUME_KEYS
bit is not set, then the server MUST NOT include this field.

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate: (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

FileDataSize: (4 bytes): This field contains the file size, in filesystem allocation units.

AllocationSize: (4 bytes): This field contains the size of the filesystem allocation unit, in bytes.

Attributes: (2 bytes): This field contains the file attributes.

FileNameLength: (1 byte): This field contains the length of the FileName field, in bytes.

FileName: (variable): This field contains the name of the file.<152>

2.2.8.1.2 SMB_INFO_QUERY_EA_SIZE

454 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the SMB_INFO_STANDARD data along

with the size of a file's extended attributes (EAs) list for all files that match the request's search
criteria.

 SMB_INFO_QUERY_EA_SIZE[SearchCount]
 {
 ULONG ResumeKey (optional);
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG AllocationSize;
 SMB_FILE_ATTRIBUTES Attributes;
 ULONG EaSize;
 UCHAR FileNameLength;
 UCHAR FileName[];
 }

ResumeKey: (4 bytes): This field is optional. If the SMB_FIND_RETURN_RESUME_KEYS bit is set in
the Flags field of the TRANS2_FIND_FIRST2 Request (section 2.2.6.2.1) parameters, then this
field MUST contain the server-generated resume key. The resume key MUST be supplied in
subsequent TRANS2_FIND_NEXT2 Requests (section 2.2.6.3.1) to continue the search. If the

SMB_FIND_RETURN_RESUME_KEYS bit is not set, then the server MUST NOT include this field.

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate: (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

FileDataSize: (4 bytes): This field contains the file size, in filesystem allocation units.

AllocationSize: (4 bytes): This field contains the size of the filesystem allocation unit, in bytes.

Attributes: (2 bytes): This field contains the file attributes.

EaSize: (4 bytes): This field contains the size of the file's extended attribute (EA) information, in
bytes.

FileNameLength: (1 byte): This field contains the length of the FileName field, in bytes.

FileName: (variable): This field contains the name of the file.<153>

2.2.8.1.3 SMB_INFO_QUERY_EAS_FROM_LIST

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the SMB_INFO_QUERY_EA_SIZE data
along with a specific list of EAs for all files that match the request's search criteria. The requested EAs
are provided in the Trans2_Data block of the request.

 SMB_INFO_QUERY_EAS_FROM_LIST[SearchCount]

455 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 ULONG ResumeKey (optional);
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG AllocationSize;
 SMB_FILE_ATTRIBUTES Attributes;
 SMB_FEA_LIST ExtendedAttributeList;
 UCHAR FileNameLength;
 UCHAR FileName[];
 }

ResumeKey: (4 bytes): This field is optional. If the SMB_FIND_RETURN_RESUME_KEYS bit is set in
the Flags field of the TRANS2_FIND_FIRST2 Request (section 2.2.6.2.1) parameters, this field

MUST contain the server-generated resume key. The resume key MUST be supplied in subsequent
TRANS2_FIND_NEXT2 Requests (section 2.2.6.3.1) to continue the search. If the
SMB_FIND_RETURN_RESUME_KEYS bit is not set, the server MUST NOT include this field.

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate: (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

FileDataSize: (4 bytes): This field contains the file size, in filesystem allocation units.

AllocationSize: (4 bytes): This field contains the size of the filesystem allocation unit, in bytes.

Attributes: (2 bytes): This field contains the file attributes.

ExtendedAttributeList: (variable): A list of all of the extended attribute (EA) name/value pairs

assigned to the file.

FileNameLength: (1 byte): This field contains the length of the FileName field, in bytes.<154>

FileName: (variable): This field contains the name of the file.<155>

2.2.8.1.4 SMB_FIND_FILE_DIRECTORY_INFO

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the following information for all files that

match the request's search criteria:

 64-bit versions of creation, access, and last write timestamps

 64-bit version of file size

 Extended file attributes

 File name

456 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_FIND_FILE_DIRECTORY_INFO[SearchCount]
 {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastAttrChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG FileNameLength;
 UCHAR FileName[];
 }

NextEntryOffset: (4 bytes): This field contains the offset, in bytes, from this entry in the list to the
next entry in the list. If there are no additional entries the value MUST be zero (0x00000000).

FileIndex: (4 bytes): This field SHOULD<156> be set to zero when sent in a response and SHOULD
be ignored when received by the client.

CreateTime: (8 bytes): This field contains the date and time when the file was created.

LastAccessTime: (8 bytes): This field contains the date and time when the file was last accessed.

LastWriteTime: (8 bytes): This field contains the date and time when data was last written to the
file.

LastAttrChangeTime: (8 bytes): This field contains the date and time when the file attributes
where last changed.

EndOfFile: (8 bytes): This field contains the offset, in bytes, to the start of the file to the first byte
after the end of the file.

AllocationSize: (8 bytes): This field contains the file allocation size, in bytes. Usually, this value is a
multiple of the sector or cluster size of the underlying physical device.

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as
an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

FileNameLength: (4 bytes): This field contains the length of the FileName field, in bytes.<157>

FileName: (variable): This field contains the name of the file.<158>

2.2.8.1.5 SMB_FIND_FILE_FULL_DIRECTORY_INFO

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the
SMB_FIND_FILE_DIRECTORY_INFO (section 2.2.8.1.4) data along with the size of a file's extended
attributes (EAs) list for all files that match the request's search criteria.

 SMB_FIND_FILE_FULL_DIRECTORY_INFO[SearchCount]
 {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastAttrChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;

457 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 UCHAR FileName[];
 }

NextEntryOffset: (4 bytes): This field contains the offset, in bytes, from this entry in the list to the
next entry in the list. If there are no additional entries, the value MUST be zero (0x00000000).

FileIndex: (4 bytes): This field SHOULD<159> be set to zero when sent in a response and SHOULD
be ignored when received by the client.

CreationTime: (8 bytes): This field contains the date and time when the file was created.

LastAccessTime: (8 bytes): This field contains the date and time when the file was last accessed.

LastWriteTime: (8 bytes): This field contains the date and time when data was last written to the
file.

LastAttrChangeTime: (8 bytes): This field contains the date and time when the file attributes
where last changed.

EndOfFile: (8 bytes): This field contains the offset, in bytes, from the start of the file to the first
byte after the end of the file.

AllocationSize: (8 bytes): This field contains the file allocation size, in bytes. Usually, this value is a

multiple of the sector or cluster size of the underlying physical device.

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as
an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

FileNameLength: (4 bytes): This field contains the length of the FileName field, in bytes.<160>

EaSize: (4 bytes): This field contains the size of the file's extended attribute (EA) information, in

bytes.

FileName: (variable): This field contains the name of the file.<161>

2.2.8.1.6 SMB_FIND_FILE_NAMES_INFO

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return the file name for all files that match the
request's search criteria.

 SMB_FIND_FILE_NAMES_INFO[SearchCount]
 {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 ULONG FileNameLength;
 UCHAR FileName[];
 }

NextEntryOffset: (4 bytes): This field contains the offset, in bytes, from this entry in the list to the
next entry in the list. If there are no additional entries, the value MUST be zero (0x00000000).

FileIndex: (4 bytes): This field SHOULD<162> be set to zero when sent in a response and SHOULD
be ignored when received by the client.

458 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FileNameLength: (4 bytes): This field MUST contain the length of the FileName field, in
bytes.<163>

FileName: (variable): This field contains the name of the file.<164>

2.2.8.1.7 SMB_FIND_FILE_BOTH_DIRECTORY_INFO

This information level structure is used in TRANS2_FIND_FIRST2 (section 2.2.6.2) and
TRANS2_FIND_NEXT2 (section 2.2.6.3) responses to return a combination of the
SMB_FILE_FULL_DIRECTORY_INFO and SMB_FIND_FILE_NAMES_INFO (section 2.2.8.1.6) data for all
files that match the request's search criteria.

 SMB_FIND_FILE_BOTH_DIRECTORY_INFO[SearchCount]
 {
 ULONG NextEntryOffset;
 ULONG FileIndex;
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastChangeTime;
 LARGE_INTEGER EndOfFile;
 LARGE_INTEGER AllocationSize;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG FileNameLength;
 ULONG EaSize;
 UCHAR ShortNameLength;
 UCHAR Reserved;
 WCHAR ShortName[12];
 UCHAR FileName[];

 }

NextEntryOffset: (4 bytes): This field contains the offset, in bytes, from this entry in the list to the
next entry in the list. If there are no additional entries the value MUST be zero (0x00000000).

FileIndex: (4 bytes): This field SHOULD<165> be set to zero when sent in a response and SHOULD
be ignored when received by the client.

CreationTime: (8 bytes): This field contains the date and time when the file was created.

LastAccessTime: (8 bytes): This field contains the date and time when the file was last accessed.

LastWriteTime: (8 bytes): This field contains the date and time when data was last written to the
file.

LastChangeTime: (8 bytes): This field contains the date and time when the file was last changed.

EndOfFile: (8 bytes): The absolute new end-of-file position as a byte offset from the start of the file.
EndOfFile specifies the byte offset to the end of the file. Because this value is zero-based, it
actually refers to the first free byte in the file. In other words, EndOfFile is the offset to the byte

immediately following the last valid byte in the file.

AllocationSize: (8 bytes): This field contains the file allocation size, in bytes. Usually, this value is a
multiple of the sector or cluster size of the underlying physical device.

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as
an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

FileNameLength: (4 bytes): This field MUST contain the length of the FileName field, in
bytes.<166>

459 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

EaSize: (4 bytes): This field MUST contain the length of the FEAList, in bytes.

ShortNameLength: (1 byte): This field MUST contain the length of the ShortName, in bytes, or

zero if no 8.3 name is present.

Reserved: (1 byte): This field is reserved and MUST be zero (0x00).

ShortName: (24 bytes): This field MUST contain the 8.3 name, if any, of the file in Unicode format.

FileName: (variable): This field contains the long name of the file.<167>

2.2.8.2 QUERY_FS Information Levels

2.2.8.2.1 SMB_INFO_ALLOCATION

This information level structure is used in TRANS2_QUERY_FS_INFORMATION
Responses (section 2.2.6.4.2) to return allocation and size information of the object store underlying
the share specified in the request.

 SMB_INFO_ALLOCATION
 {
 ULONG idFileSystem;
 ULONG cSectorUnit;
 ULONG cUnit;
 ULONG cUnitAvailable;
 USHORT cbSector;
 }

idFileSystem: (4 bytes): This field contains a file system identifier.<168>

cSectorUnit: (4 bytes): This field contains the number of sectors per allocation unit.

cUnit: (4 bytes): This field contains the total number of allocation units.

cUnitAvailable: (4 bytes): This field contains the total number of available allocation units.

cbSector: (2 bytes): This field contains the number of bytes per sector.

2.2.8.2.2 SMB_INFO_VOLUME

This information level structure is used in TRANS2_QUERY_FS_INFORMATION
Responses (section 2.2.6.4.2) to return volume information of the object store underlying the share
specified in the request.

 SMB_INFO_VOLUME
 {
 ULONG ulVolSerialNbr;
 UCHAR cCharCount;
 SMB_STRING VolumeLabel;
 }

ulVolSerialNbr: (4 bytes): This field contains the serial number of the volume.

cCharCount: (1 byte): This field contains the number of characters in the VolumeLabel field.

VolumeLabel: (variable): This field contains the volume label.<169>

460 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.8.2.3 SMB_QUERY_FS_VOLUME_INFO

This information level structure is used in TRANS2_QUERY_FS_INFORMATION
Responses (section 2.2.6.4.2) to return extended volume information of the object store underlying

the share specified in the request.<170>

 SMB_QUERY_FS_VOLUME_INFO
 {
 FILETIME VolumeCreationTime;
 ULONG SerialNumber;
 ULONG VolumeLabelSize;
 USHORT Reserved;
 WCHAR VolumeLabel[VolumeLabelSize/2];
 }

VolumeCreationTime: (8 bytes): This field contains the date and time when the volume was

created.

SerialNumber: (4 bytes): This field contains the serial number of the volume.

VolumeLabelSize: (4 bytes): This field contains the size of the VolumeLabel field, in bytes.

VolumeLabel: (variable): This field contains the Unicode-encoded volume label.

2.2.8.2.4 SMB_QUERY_FS_SIZE_INFO

This information level structure is used in TRANS2_QUERY_FS_INFORMATION

Responses (section 2.2.6.4.2) to return extended allocation and size information of the object store
underlying the share specified in the request.<171>

 SMB_QUERY_FS_SIZE_INFO
 {
 LARGE_INTEGER TotalAllocationUnits;
 LARGE_INTEGER TotalFreeAllocationUnits;
 ULONG SectorsPerAllocationUnit;
 ULONG BytesPerSector;
 }

TotalAllocationUnits: (8 bytes): This field contains the total number of allocation units assigned to
the volume.

TotalFreeAllocationUnits: (8 bytes): This field contains the total number of unallocated or free
allocation units for the volume.

SectorsPerAllocationUnit: (4 bytes): This field contains the number of sectors per allocation unit.

BytesPerSector: (4 bytes): This field contains the bytes per sector.

2.2.8.2.5 SMB_QUERY_FS_DEVICE_INFO

This information level structure is used in TRANS2_QUERY_FS_INFORMATION
Responses (section 2.2.6.4.2) to return device information of the object store underlying the share
specified in the request.<172>

 SMB_QUERY_FS_DEVICE_INFO
 {
 ULONG DeviceType;
 ULONG DeviceCharacteristics;

461 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

DeviceType: (4 bytes): This field contains the device type on which the volume resides.

Name Value

FILE_DEVICE_BEEP 0x0001

FILE_DEVICE_CD_ROM 0x0002

FILE_DEVICE_CD_ROM_FILE_SYSTEM 0x0003

FILE_DEVICE_CONTROLLER 0x0004

FILE_DEVICE_DATALINK 0x0005

FILE_DEVICE_DFS 0x0006

FILE_DEVICE_DISK 0x0007

FILE_DEVICE_DISK_FILE_SYSTEM 0x0008

FILE_DEVICE_FILE_SYSTEM 0x0009

FILE_DEVICE_INPORT_PORT 0x000a

FILE_DEVICE_KEYBOARD 0x000b

FILE_DEVICE_MAILSLOT 0x000c

FILE_DEVICE_MIDI_IN 0x000d

FILE_DEVICE_MIDI_OUT 0x000e

FILE_DEVICE_MOUSE 0x000f

FILE_DEVICE_MULTI_UNC_PROVIDER 0x0010

FILE_DEVICE_NAMED_PIPE 0x0011

FILE_DEVICE_NETWORK 0x0012

FILE_DEVICE_NETWORK_BROWSER 0x0013

FILE_DEVICE_NETWORK_FILE_SYSTEM 0x0014

FILE_DEVICE_NULL 0x0015

FILE_DEVICE_PARALLEL_PORT 0x0016

FILE_DEVICE_PHYSICAL_NETCARD 0x0017

FILE_DEVICE_PRINTER 0x0018

FILE_DEVICE_SCANNER 0x0019

FILE_DEVICE_SERIAL_MOUSE_PORT 0x001a

FILE_DEVICE_SERIAL_PORT 0x001b

FILE_DEVICE_SCREEN 0x001c

462 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Value

FILE_DEVICE_SOUND 0x001d

FILE_DEVICE_STREAMS 0x001e

FILE_DEVICE_TAPE 0x001f

FILE_DEVICE_TAPE_FILE_SYSTEM 0x0020

FILE_DEVICE_TRANSPORT 0x0021

FILE_DEVICE_UNKNOWN 0x0022

FILE_DEVICE_VIDEO 0x0023

FILE_DEVICE_VIRTUAL_DISK 0x0024

FILE_DEVICE_WAVE_IN 0x0025

FILE_DEVICE_WAVE_OUT 0x0026

FILE_DEVICE_8042_PORT 0x0027

FILE_DEVICE_NETWORK_REDIRECTOR 0x0028

FILE_DEVICE_BATTERY 0x0029

FILE_DEVICE_BUS_EXTENDER 0x002a

FILE_DEVICE_MODEM 0x002b

FILE_DEVICE_VDM 0x002c

DeviceCharacteristics: (4 bytes): This 32-bit field of flags contains the device characteristics. The
individual flags are as follows.

Name Bitmask

FILE_REMOVABLE_MEDIA 0x0001

FILE_READ_ONLY_DEVICE 0x0002

FILE_FLOPPY_DISKETTE 0x0004

FILE_WRITE_ONCE_MEDIA 0x0008

FILE_REMOTE_DEVICE 0x0010

FILE_DEVICE_IS_MOUNTED 0x0020

FILE_VIRTUAL_VOLUME 0x0040

2.2.8.2.6 SMB_QUERY_FS_ATTRIBUTE_INFO

This information level is used to query file system attributes.<173>

FileSystemAttributes: (4 bytes): This 32-bit field of flags contains the file system's attributes. The
individual flags are as follows.

463 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name Bitmask

FILE_CASE_SENSITIVE_SEARCH 0x00000001

FILE_CASE_PRESERVED_NAMES 0x00000002

FILE_UNICODE_ON_DISK 0x00000004

FILE_PERSISTENT_ACLS 0x00000008

FILE_FILE_COMPRESSION 0x00000010

FILE_VOLUME_IS_COMPRESSED 0x00008000

MaxFileNameLengthInBytes: (4 bytes): This field contains the maximum size, in bytes, of a file
name on the file system.

LengthOfFileSystemName: (4 bytes): This field contains the size, in bytes, of the
FileSystemName field.

FileSystemName: (variable): This field contains the Unicode-encoded name of the file system.

2.2.8.3 QUERY Information Levels

2.2.8.3.1 SMB_INFO_STANDARD

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the following information

for the file specified in the request:

 Creation, access, and last write timestamps

 File size

 File attributes

 SMB_INFO_STANDARD
 {
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG AllocationSize;
 SMB_FILE_ATTRIBUTES Attributes;
 }

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate: (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

464 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FileDataSize: (4 bytes): This field contains the file size, in filesystem allocation units.

AllocationSize: (4 bytes): This field contains the size of the filesystem allocation unit, in bytes.

Attributes: (2 bytes): This field contains the file attributes.

2.2.8.3.2 SMB_INFO_QUERY_EA_SIZE

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the
SMB_INFO_STANDARD (section 2.2.8.3.1) data along with the size of a file's extended attributes
(EAs) list for the file specified in the request.

 SMB_INFO_QUERY_EA_SIZE
 {
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 ULONG FileDataSize;
 ULONG AllocationSize;
 SMB_FILE_ATTRIBUTES Attributes;
 ULONG EaSize;
 }

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate : (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

FileDataSize: (4 bytes): This field contains the file size, in filesystem allocation units.

AllocationSize: (4 bytes): This field contains the size of the filesystem allocation unit, in bytes.

Attributes: (2 bytes): This field contains the file attributes.

EaSize: (4 bytes): This field contains the size of the file's extended attribute (EA) information in
bytes.

2.2.8.3.3 SMB_INFO_QUERY_EAS_FROM_LIST

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return a list of specificl extended
attributes (EAs) on the file specified in the request. The requested EAs are provided in the
Trans2_Data block of the request.

 SMB_INFO_QUERY_EAS_FROM_LIST
 {
 SMB_FEA_LIST ExtendedAttributeList;
 }

465 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ExtendedAttributeList: (variable): A list of extended attribute (EA) name/value pairs where the
AttributeName field values match those that were provided in the request.

2.2.8.3.4 SMB_INFO_QUERY_ALL_EAS

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return a list of specific extended
attributes (EAs) on the file specified in the request.

 SMB_INFO_QUERY_ALL_EAS
 {
 SMB_FEA_LIST ExtendedAttributeList;
 }

ExtendedAttributeList: (variable): A list of all of the extended attribute (EA) name/value pairs
assigned to the file.

2.2.8.3.5 SMB_INFO_IS_NAME_VALID

This information level enables a server test as to whether the name of the file contained in the
Request.Trans2_Parameters.FileName field has valid path syntax. This information level is valid

only for the TRANS2_QUERY_PATH_INFORMATION subcommand. No parameters or data are returned
on this InformationLevel request. An error is returned if the syntax of the name is incorrect.
Success indicates that the server accepts the path syntax, but it does not ensure that the file or
directory actually exists.

2.2.8.3.6 SMB_QUERY_FILE_BASIC_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and

TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the following information
for the file specified in the request:<174>

 64-bit versions of creation, access, and last write timestamps

 Extended file attributes

 SMB_QUERY_FILE_BASIC_INFO
 {
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastChangeTime;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG Reserved;
 }

CreationTime: (8 bytes): This field contains the date and time when the file was created.

LastAccessTime: (8 bytes): This field contains the date and time when the file was last accessed.

LastWriteTime: (8 bytes): This field contains the date and time when data was last written to the
file.

LastChangeTime: (8 bytes): This field contains the date and time when the file was last changed.

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as
an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

466 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved: (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.2.8.3.7 SMB_QUERY_FILE_STANDARD_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and

TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the following information
for the file specified in the request.<175>

 64-bit version of file size

 Number of hard links on the file

 Deletion status

 Whether the FID field in the request points to a directory

 SMB_QUERY_FILE_STANDARD_INFO
 {
 LARGE_INTEGER AllocationSize;
 LARGE_INTEGER EndOfFile;
 ULONG NumberOfLinks;
 UCHAR DeletePending;
 UCHAR Directory;
 }

Allocation Size: (8 bytes): This field contains the number of bytes that are allocated to the file.

EndOfFile: (8 bytes): This field contains the offset, in bytes, from the start of the file to the first
byte after the end of the file.

NumberOfLinks: (4 bytes): This field contains the number of hard links to the file.

DeletePending: (1 byte): This field indicates whether there is a delete action pending for the file.

Directory: (1 byte): This field indicates whether the file is a directory.

2.2.8.3.8 SMB_QUERY_FILE_EA_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the size of a file's
extended attributes (EAs) list for the file specified in the request.<176>

 SMB_QUERY_FILE_EA_INFO
 {
 ULONG EaSize;
 }

EaSize: (4 bytes): This field MUST contain the length of a file's list of extended attributes in bytes.

2.2.8.3.9 SMB_QUERY_FILE_NAME_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the Unicode-formatted
long file name of the file specified in the request.<177>

 SMB_QUERY_FILE_NAME_INFO
 {
 ULONG FileNameLength;
 WCHAR FileName[FileNameLength/2];

467 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 }

FileNameLength: (4 bytes): This field MUST contain the length of the FileName field in bytes.

FileName: (variable): This field contains the name of the file.

2.2.8.3.10 SMB_QUERY_FILE_ALL_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the
SMB_QUERY_FILE_BASIC_INFO, SMB_FILE_QUERY_STANDARD_INFO, SMB_FILE_EA_INFO, and

SMB_QUERY_FILE_NAME_INFO data as well as access flags, access mode, and alignment information
in a single request for the file specified in the request.

 SMB_QUERY_FILE_ALL_INFO
 {
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME LastChangeTime;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG Reserved1;
 LARGE_INTEGER AllocationSize
 LARGE_INTEGER EndOfFile;
 ULONG NumberOfLinks;
 UCHAR DeletePending;
 UCHAR Directory;
 USHORT Reserved2;
 ULONG EaSize;
 ULONG FileNameLength;
 WCHAR FileName[FileNameLength/2];
 }

CreationTime: (8 bytes): This field contains the date and time when the file was created.

LastAccessTime: (8 bytes): This field contains the date and time when the file was last accessed.

LastWriteTime: (8 bytes): This field contains the date and time when data was last written to the
file.

LastChangeTime: (8 bytes): This field contains the date and time when the file was last changed.

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as

an SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type.

Reserved1: (4 bytes): Reserved. This field SHOULD be set to 0x00000000 by the server and MUST
be ignored by the client.

AllocationSize: (8 bytes): This field contains the number of bytes that are allocated to the file.

EndOfFile: (8 bytes): This field contains the offset, in bytes, from the start of the file to the first
byte after the end of the file.

NumberOfLinks: (4 bytes): This field contains the number of hard links to the file.

DeletePending: (1 byte): This field indicates whether there is a delete action pending for the file.

Directory: (1 byte): This field indicates whether the file is a directory.

468 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Reserved2: (2 bytes): Reserved. This field SHOULD be set to 0x0000 by the server and MUST be
ignored by the client.

EaSize: (4 bytes): This field MUST contain the length of a file's list of extended attributes in bytes.

FileNameLength: (4 bytes): This field MUST contain the length, in bytes, of the FileName field.

FileName: (variable): This field contains the name of the file.

2.2.8.3.11 SMB_QUERY_FILE_ALT_NAME_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the 8.3 format file name of
the file in the request.<178>

 SMB_QUERY_FILE_ALT_NAME_INFO
 {
 ULONG FileNameLength;
 WCHAR FileName[FileNameLength/2];
 }

FileNameLength: (4 bytes): This field contains the length, in bytes, of the FileName field.

FileName: (variable): This field contains the 8.3 name of the file in Unicode. The string is not null-
terminated.

2.2.8.3.12 SMB_QUERY_FILE_STREAM_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the stream information for
the file in the request.<179>

 SMB_QUERY_FILE_STREAM_INFO
 {
 ULONG NextEntryOffset;
 ULONG StreamNameLength;
 LARGE_INTEGER StreamSize;
 LARGE_INTEGER StreamAllocationSize;
 WCHAR StreamName[StreamNameLength/2];
 }

NextEntryOffset: (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ STREAM _INFORMATION entry is located, if
multiple entries are present in a buffer. This member is 0x00000000 if no other entries follow this
one. An implementation MUST use this value to determine the location of the next entry (if

multiple entries are present in a buffer) and MUST NOT assume that the value of
NextEntryOffset is the same as the size of the current entry.

StreamNameLength: (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the
stream name string.

StreamSize: (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the stream. The
value of this field MUST be greater than or equal to 0x0000000000000000.

StreamAllocationSize: (8 bytes): A 64-bit signed integer that contains the file stream allocation

size in bytes. Usually, this value is a multiple of the sector or cluster size of the underlying
physical device. The value of this field MUST be greater than or equal to 0x0000000000000000.

469 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

StreamName: (variable): A sequence of Unicode characters containing the name of the stream
using the form ":streamname:$DATA", or "::$DATA" for the default stream. The :$DATA string

that follows streamname is an internal data type tag that is unintentionally exposed. The leading
':' and trailing ':$DATA' characters are not part of the stream name and MUST be stripped from

this field to derive the actual stream name. A resulting empty string for the stream name denotes
the default stream. Because this field might not be null-terminated, it MUST be handled as a
sequence of StreamNameLength bytes.

2.2.8.3.13 SMB_QUERY_FILE_COMRESSION_INFO

This information level structure is used in TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) and
TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.8) responses to return the compression

information for the file in the request.<180>

 SMB_QUERY_FILE_COMRESSION_INFO
 {
 LARGE_INTEGER CompressedFileSize;
 USHORT CompressionFormat;
 UCHAR CompressionUnitShift;
 UCHAR ChunkShift;
 UCHAR ClusterShift;
 UCHAR Reserved[3];
 }

CompressedFileSize: (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the
compressed file. This value MUST be greater than or equal to 0x0000000000000000.

CompressionFormat: (2 bytes): A 16-bit unsigned integer that contains the compression format.
The actual compression operation associated with each of these compression format values is

implementation-dependent. An implementation can associate any local compression algorithm
with the values described in the following table, because the compressed data does not travel
across the wire in the context of this transaction. The following compression formats are valid only
for NTFS.

Name and bitmask Meaning

COMPRESSION_FORMAT_NONE

0x0000

The file or directory is not compressed.

COMPRESSION_FORMAT_DEFAULT

0x0001

The file or directory is compressed by using the default compression
algorithm.

COMPRESSION_FORMAT_LZNT1

0x0002

The file or directory is compressed by using the LZNT1 compression
algorithm.

All other values Reserved for future use.

CompressionUnitShift: (1 byte): An 8-bit unsigned integer that contains the compression unit shift

that is the number of bits by which to left-shift a 1 bit to arrive at the compression unit size. The
compression unit size is the number of bytes in a compression unit, that is, the number of bytes to

be compressed. This value is implementation-defined.

ChunkShift: (1 byte): An 8-bit unsigned integer that contains the compression chunk size in bytes in
log 2 format. The chunk size is the number of bytes that the operating system's implementation of
the Lempel-Ziv compression algorithm tries to compress at one time. This value is
implementation-defined.

470 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ClusterShift: (1 byte): An 8-bit unsigned integer that specifies, in log 2 format, the amount of space
that MUST be saved by compression to successfully compress a compression unit. If that amount

of space is not saved by compression, the data in that compression unit MUST be stored
uncompressed. Each successfully compressed compression unit MUST occupy at least one cluster

that is less in bytes than an uncompressed compression unit. Therefore, the cluster shift is the
number of bits by which to left shift a 1 bit to arrive at the size of a cluster. This value is
implementation-defined.

Reserved: (3 bytes): A 24-bit reserved value. This field SHOULD be set to 0x000000 and MUST be
ignored.

2.2.8.4 SET Information levels

2.2.8.4.1 SMB_INFO_STANDARD

This information level structure is used in TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) and
TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) requests to set timestamp information for the file

specified in the request

 SMB_INFO_STANDARD
 {
 SMB_DATE CreationDate;
 SMB_TIME CreationTime;
 SMB_DATE LastAccessDate;
 SMB_TIME LastAccessTime;
 SMB_DATE LastWriteDate;
 SMB_TIME LastWriteTime;
 UCHAR Reserved[10];
 }

CreationDate: (2 bytes): This field contains the date when the file was created.

CreationTime: (2 bytes): This field contains the time when the file was created.

LastAccessDate: (2 bytes): This field contains the date when the file was last accessed.

LastAccessTime: (2 bytes): This field contains the time when the file was last accessed.

LastWriteDate: (2 bytes): This field contains the date when data was last written to the file.

LastWriteTime: (2 bytes): This field contains the time when data was last written to the file.

Reserved: (10 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

2.2.8.4.2 SMB_INFO_SET_EAS

This information level structure is used in TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) and
TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) requests to set specific extended attribute (EA)

information for the file specified in the request.

 SMB_INFO_SET_EAS
 {
 SMB_FEA_LIST ExtendedAttributeList;
 }

ExtendedAttributeList: (variable): A list of EA name/value pairs.

2.2.8.4.3 SMB_SET_FILE_BASIC_INFO

471 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This information level structure is used in TRANS2_SET_FILE_INFORMATION (section 2.2.6.9)
requests to set the following information for the file specified in the request.<181>

 64-bit versions of creation, access, and last write timestamps

 Extended file attributes

 SMB_SET_FILE_BASIC_INFO
 {
 FILETIME CreationTime;
 FILETIME LastAccessTime;
 FILETIME LastWriteTime;
 FILETIME ChangeTime;
 SMB_EXT_FILE_ATTR ExtFileAttributes;
 ULONG Reserved;
 }

CreationTime: (8 bytes): A 64-bit unsigned integer that contains the time when the file was

created. A valid time for this field is an integer greater than 0x0000000000000000. When setting

file attributes, a value of 0x0000000000000000 indicates to the server that it MUST NOT change
this attribute. When setting file attributes, a value of -1 (0xFFFFFFFFFFFFFFFF) indicates to the
server that it MUST NOT change this attribute for all subsequent operations on the same file
handle. This field MUST NOT be set to a value less than -1 (0xFFFFFFFFFFFFFFFF).

LastAccessTime: (8 bytes): A 64-bit unsigned integer that contains the last time that the file was
accessed, in the format of a FILETIME structure. A valid time for this field is an integer greater
than 0x0000000000000000. When setting file attributes, a value of 0x0000000000000000

indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value
of -1 (0xFFFFFFFFFFFFFFFF) indicates to the server that it MUST NOT change this attribute for all
subsequent operations on the same file handle. This field MUST NOT be set to a value less than -1
(0xFFFFFFFFFFFFFFFF).

LastWriteTime: (8 bytes): A 64-bit unsigned integer that contains the last time that information
was written to the file, in the format of a FILETIME structure. A valid time for this field is an

integer greater than 0x0000000000000000. When setting file attributes, a value of
0x0000000000000000 indicates to the server that it MUST NOT change this attribute. When
setting file attributes, a value of -1 (0xFFFFFFFFFFFFFFFF) indicates to the server that it MUST
NOT change this attribute for all subsequent operations on the same file handle. This field MUST
NOT be set to a value less than -1 (0xFFFFFFFFFFFFFFFF).

ChangeTime: (8 bytes): A 64-bit unsigned integer that contains the last time that the file was
changed, in the format of a FILETIME structure. A valid time for this field is an integer greater

than 0x0000000000000000. When setting file attributes, a value of 0x0000000000000000
indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value
of -1 (0xFFFFFFFFFFFFFFFF) indicates to the server that it MUST NOT change this attribute for all
subsequent operations on the same file handle. This field MUST NOT be set to a value less than -1
(0xFFFFFFFFFFFFFFFF).

ExtFileAttributes: (4 bytes): This field contains the extended file attributes of the file, encoded as
an SMB_EXT_FILE_ATTR data type (section 2.2.1.2.3).

Reserved: (4 bytes): A 32-bit reserved field that can be set to any value and MUST be ignored.

2.2.8.4.4 SMB_SET_FILE_DISPOSITION_INFO

This information level structure is used in TRANS2_SET_FILE_INFORMATION (section 2.2.6.9)
requests to mark or unmark the file specified in the request for deletion.<182>

 SMB_SET_FILE_DISPOSITION_INFO

472 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 {
 UCHAR DeletePending;
 }

DeletePending: (1 byte): An 8-bit field that is set to 0x01 to indicate that a file SHOULD be deleted
when it is closed; otherwise, to 0x00.

2.2.8.4.5 SMB_SET_FILE_ALLOCATION_INFO

This information level structure is used in TRANS2_SET_FILE_INFORMATION (section 2.2.6.9)
requests to set allocation size information for the file specified in the request.<183>

 SMB_SET_FILE_ALLOCATION_INFO
 {
 LARGE_INTEGER AllocationSize;
 }

AllocationSize: (8 bytes): A 64-bit signed integer containing the file allocation size, in bytes.
Usually, this value is a multiple of the sector or cluster size of the underlying physical device. This
value MUST be greater than or equal to 0x0000000000000000. All unused allocation (beyond
EOF) is freed.

2.2.8.4.6 SMB_SET_FILE_END_OF_FILE_INFO

This information level structure is used in TRANS2_SET_FILE_INFORMATION (section 2.2.6.9)

requests to set end-of-file information for the file specified in the request.<184>

 SMB_SET_FILE_END_OF_FILE_INFO
 {
 LARGE_INTEGER EndOfFile;
 }

EndOfFile: (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset from the beginning of the file
to the byte following the last byte in the file. It is the offset from the beginning of the file at which
new bytes appended to the file are to be written. The value of this field MUST be greater than or
equal to 0x0000000000000000.

473 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3 Protocol Details

3.1 Common Details

In the sections that follow, if an ADM element is not prepended with either Client. or Server., it

represents each entity's respective ADM element of the same name. Only ADM elements that share a
common name and scope between both Client and Server ADMs are presented in this way.

3.1.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with what is described in this document.

3.1.1.1 Global

There are no global parameters defined as common to both client and server.

3.1.2 Timers

No timers are shared between the client and the server.

3.1.3 Initialization

No initialization is shared between the client and the server.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Sending Any Message

Unless otherwise stated, all SMB messages sent by the client and the server MUST comply with the
following rules:

 SMB messages MUST be composed of three parts:

 An SMB_Header, as specified in section 2.2.3.1.

 An SMB_Parameters block, as specified in section 2.2.3.2.

 An SMB_Data block, as specified in section 2.2.3.3.

 The SMB_Header MUST be included in full.

 At minimum, the WordCount field of the SMB Parameters block MUST be included. The remainder

of the SMB_Parameters block MUST be two times WordCount bytes in length. If WordCount is
0x00, then zero parameter bytes MUST be included in the SMB_Parameters block.

 At minimum, the ByteCount field of the SMB_Data block MUST be included. The remainder of the
SMB_Data block MUST be ByteCount bytes in length. If ByteCount is 0x0000, then zero data
bytes MUST be included in the SMB_Data block.

Thus, the minimum size of an SMB message is 35 bytes. Section 2.2.3.1 lists required values for some
SMB Header fields. See the individual command descriptions for specific per-message requirements.

474 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If a message is sent and IsSigningActive is TRUE, the message MUST be signed.

This logic MUST be applied for messages sent in response to any of the higher-layer actions and in

compliance with the message sequencing rules.

 The client or server that sends the message MUST provide the 32-bit sequence number for this

message, as specified in sections 3.2.4.1 and 3.3.4.1.

 The SMB_FLAGS2_SMB_SECURITY_SIGNATURE flag in the header MUST be set.

 To generate the signature, a 32-bit sequence number is copied into the least significant 32 bits of
the SecuritySignature field and the remaining 4 bytes are set to 0x00.

 The MD5 algorithm, as specified in [RFC1321], MUST be used to generate a hash of the SMB
message from the start of the SMB Header, which is defined as follows.

 CALL MD5Init(md5context)
 CALL MD5Update(md5context, Connection.SigningSessionKey)
 CALL MD5Update(md5context, Connection.SigningChallengeResponse)
 CALL MD5Update(md5context, SMB message)
 CALL MD5Final(digest, md5context)
 SET signature TO the first 8 bytes of the digest

The resulting 8-byte signature MUST be copied into the SecuritySignature field of the SMB Header,
after which the message can be transmitted.

3.1.4.1.1 Command Sequence Requirements

An SMB connection, a Protocol Negotiation, and an SMB session MUST be established before a
message can be sent. That is:

 An SMB connection MUST be established before any messages can be sent.

 Following SMB connection establishment, an SMB_COM_NEGOTIATE (section 2.2.4.52) command
MUST be used to establish the SMB dialect to be used before any other SMB command can be
sent. Once a dialect has been negotiated, further SMB_COM_NEGOTIATE commands MUST NOT be

executed on the connection. Any subsequent SMB_COM_NEGOTIATE Request (section 2.2.4.52.1)
sent to the server on the same connection MUST be failed with an error code of
STATUS_INVALID_SMB (ERRSRV/ERRerror).

 Unless otherwise noted, following a successful Protocol Negotiation an
SMB_COM_SESSION_SETUP or SMB_COM_SESSION_SETUP_ANDX (section 2.2.4.53) command
MUST be used to establish an SMB session before any other SMB commands are sent. Multiple

SMB sessions can be set up per SMB connection.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Receiving Any Message

If a message is received and IsSigningActive is TRUE, unless otherwise specified, the signature of
the message MUST be verified by the client or the server receiving the message. See section 3.2.5.1
and 3.3.5.2, respectively.

This logic MUST be applied for any messages received, as defined in the message sequencing rules:

 The client or server that receives the message MUST save a temporary copy of the

SMB_Header.SecuritySignature field of the received message.

http://go.microsoft.com/fwlink/?LinkId=90275

475 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 To test the signature, the expected 32-bit sequence number for the received message is copied
into the least significant 32 bits of the SecuritySignature field, and the remaining 4 bytes of the

SecuritySignature field are set to 0x00.

 The MD5 algorithm, as specified in [RFC1321], MUST be used to generate a hash of the SMB

message (from the start of the SMB header), which is defined as follows.

 CALL MD5Init(md5context)
 CALL MD5Update(md5context, Connection.SigningSessionKey)
 CALL MD5Update(md5context, Connection.SigningChallengeResponse)
 CALL MD5Update(md5context, SMB message)
 CALL MD5Final(digest, md5context)
 SET signature TO first 8 bytes of digest

The resulting 8-byte signature is compared with the original value of the SecuritySignature field

from the SMB Header (section 2.2.3.1). If the signature received with the message does not match
the signature calculated, the message MUST be discarded, and no further processing is done on it. The

receiver MAY also terminate the connection by disconnecting the underlying transport connection and
cleaning up any state associated with the connection.

3.1.5.2 Algorithms for Challenge/Response Authentication

There are several challenge/response algorithms supported by CIFS for use with user authentication.
Note that CIFS does not support the full protocol defined in [MS-NLMP]; it makes use of the
challenge/response algorithms only. CIFS does not support Extended Session Security because there
is no mechanism in CIFS to negotiate Extended Session Security.

 The LAN Manager (LM) Response

 The LAN Manager (LM) response is computed using the DESL() operation defined in [MS-NLMP]
Appendix A. Specifically:

 LM_Hash = LMOWFv1(password);
 LM_Response = DESL(LM_Hash, Challenge);

If the client is configured to send the LM response, it MUST be sent in the OEMPassword field of the

SMB_COM_SESSION_SETUP_ANDX request. The LM response algorithm is described in [MS-NLMP]
section 3.3.1.

 The NT LAN Manager (NTLM) Response

 The NT LAN Manager (NTLM) response is also computed using the DESL() operation defined in
[MS-NLMP] Appendix A. Specifically:

 NTLM_Hash = NTOWFv1(password);
 NTLM_Response = DESL(NTLM_Hash, Challenge);

If the client is configured to send the NTLM response, it MUST be sent in the UnicodePassword field
of the SMB_COM_SESSION_SETUP_ANDX request. The NTLM response algorithm is described in [MS-
NLMP] section 3.3.1.

 LM v2 Authentication

http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-NLMP%5d.pdf

476 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 When the client is configured to use LM v2 authentication, the LM responses are replaced with the
LMv2 responses:<185>

 The LMv2 response is specified in the calculation of LmChallengeResponse in [MS-NLMP]
section 3.3.2.

 NTLM v2 Authentication

 When the client is configured to use NTLM v2 authentication, the NTLM responses are replaced
with the NTLMv2 responses:

 The NTLMv2 response is specified in the calculation of NtChallengeResponse in [MS-NLMP]
section 3.3.2.

3.1.6 Timer Events

There are no timers common to both client and server.

3.1.7 Other Local Events

There are no local events common to both client and server.

3.2 Client Details

3.2.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as long

as their external behavior is consistent with what is described in this document.

All ADM elements maintained by the client are prefixed with "Client".

3.2.1.1 Global

The following ADM elements are globally maintained for an individual client:

Client.SupportDialects: A list of client-supported dialect identifiers in order of preference from least
to most preferred.

Client.ConnectionTable: A list of SMB connections to servers, as defined in section 3.2.1.2. The list
MUST allow lookups based on Client.Connection.ServerName.

Client.LMAuthenticationPolicy: A state that determines the LAN Manager challenge/response
authentication mechanism to be used. The following options are available:

 Disabled: LAN Manager challenge/response authentication (LM) is disabled.

The client MUST NOT return either an LM or LMv2 response.

 V1-Enabled: LAN Manager challenge/response authentication (LM) is enabled.

If the server supports challenge/response authentication, the client MUST calculate and send
the LM response.

 V2-Enabled: LAN Manager v2 challenge/response authentication (LMv2) is enabled.

477 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the server supports challenge/response authentication, the client MUST calculate and send
the LMv2 response.

Client.MaxBufferSize: The size, in bytes, of the largest SMB message that the client can receive.

Client.MessageSigningPolicy: A state that determines whether this node signs messages. This

parameter has three possible values:

 Required: Message signing is required. Any connection to a server node that does not use
signing MUST be disconnected.

 Enabled: Message signing is enabled. If the server enables or requires signing, signing MUST
be used.<186>

 Disabled: Message signing is disabled. Message signing MUST NOT be used.

Client.NTLMAuthenticationPolicy: A state that determines the NT LAN Manager challenge/response

authentication mechanism to be used. The following options are available:

 Disabled: NT LAN Manager challenge/response authentication (NTLM) is disabled.

The client MUST NOT return either an NTLM or NTLMv2 response.

 V1-Enabled: NT LAN Manager challenge/response authentication (NTLM) is enabled.

If the server supports challenge/response authentication, the client MUST calculate and send
the NTLM response.

 V2-Enabled: NT LAN Manager v2 challenge/response authentication (NTLMv2) is enabled.

If the server supports challenge/response authentication, the client MUST calculate and send
the NTLMv2 response.

If Client.LMAuthenticationPolicy and Client.NTLMAuthenticationPolicy are both disabled,
and Client.PlaintextAuthenticationPolicy is enabled, then the client MAY attempt plaintext

authentication even if the server supports challenge/response authentication.

There is no protocol mechanism to allow the client and server to negotiate the challenge/response

algorithm to be used. If none of the selected authentication mechanisms matches, authentication
MUST fail.

Client.PlaintextAuthenticationPolicy: A state that determines whether plaintext authentication is
permitted. The following options are available:

 Enabled: Plaintext authentication enabled.

If the server does not support challenge/response authentication, the client MUST
authenticate using plaintext passwords. The server indicates support for challenge/response

authentication using the 0x02 flag bit of the SecurityMode field that is returned in the
SMB_COM_NEGOTIATE response.

 Disabled: Plaintext authentication disabled.

If the server does not support challenge/response authentication, the client MUST
disconnect from the server.

Client.SessionTimeoutValue: The maximum amount of time, in seconds, that the client will wait for

the server to respond to an SMB message.

Client.Capabilities: The set of capabilities, as described in section 1.7 and specified in section
2.2.4.53.1, supported by the client.

478 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.1.2 Per SMB Connection

Client.Connection: An established SMB connection between the client and the server. The following
ADM elements are maintained for each SMB connection established by a client.

Client.Connection.ClientNextSendSequenceNumber: A sequence number for the next signed
request being sent.

Client.Connection.ClientResponseSequenceNumber: A list of the expected sequence numbers for
the responses of outstanding signed requests, indexed by process identifier (PID) value and
Multiplex ID (MID value).

Client.Connection.ConnectionlessSessionID: Only used if the underlying transport is
connectionless. This is an SMB Connection identifier: a server-unique identifier for the connection

between the client and the server.

Client.Connection.IsSigningActive: A Boolean that indicates whether or not message signing is
active for this SMB connection.

Client.Connection.NegotiateSent: A Boolean that indicates whether an SMB_COM_NEGOTIATE
request has been sent for this connection.

Client.Connection.NTLMChallenge: A byte array containing the cryptographic challenge received

from the server during protocol negotiation. The challenge is returned in the
SMB_COM_NEGOTIATE response.

Client.Connection.OpenTable: A list of Opens, as specified in section 3.2.1.5. This list MUST allow
lookups based upon the Open.FID.

Client.Connection.PIDMIDList: A list of currently outstanding SMB commands. Each entry MUST
include the PID and Multiplex IDs (MIDs) assigned to the request and MUST include a time-out
time stamp of when the request was sent. For transaction requests (see section 3.2.4.1.5), each

entry MUST include a state variable TransactionState to describe the state of the transaction.
Each transaction has three states: TransmittedPrimaryRequest, ReceivedInterimResponse, and

TransmittedAllRequests.

The maximum number of entries in the Client.Connection.PIDMIDList is limited to the
Client.Connection.MaxMpxCount value. More than Client.Connection.MaxMpxCount
commands MUST NOT be outstanding at any given time.

Client.Connection.SearchOpenTable: A list of SearchOpens, as specified in section 3.2.1.6,

representing currently open file searches on the server associated with the SMB connection.

Client.Connection.SelectedDialect: A variable that stores the SMB Protocol dialect selected for use
on this connection. Details of dialects prior to NT LAN Manager (NTLM) ("NT LM 0.12") are
described in other documents. See the table in section 1.7 for a list of dialects and implementation
references.

Client.Connection.ServerCapabilities: The capabilities of the server, as specified in the description

of the SMB_COM_NEGOTIATE response, section 2.2.4.52.2. The capabilities indirectly reflect the

negotiated dialect for this connection.

Client.Connection.ServerChallengeResponse: A Boolean value that indicates whether or not the
server supports challenge/response authentication.

Client.Connection.ServerSessionKey: The session key value returned by the server in the
negotiate response.

479 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Client.Connection.ServerMaxBufferSize: The negotiated maximum size, in bytes, for SMB
messages sent to the server. This limit applies to all SMB messages sent to the server unless

otherwise specified for particular message types.

Client.Connection.MaxMpxCount: The negotiated maximum number of commands that are

permitted to be outstanding on a given SMB connection. This value is negotiated between the
server and client, and limits the maximum number of entries in the
Client.Connection.PIDMIDList.

Client.Connection.ServerName: The name of the server. For NetBIOS-based transports, this is the
NetBIOS name of the server. For other transports, this is a transport-specific identifier that
provides a unique name or address for the server.

Client.Connection.ServerSigningState: A value that indicates the signing policy of the server. This

value is one of Disabled, Enabled, or Required.

Client.Connection.SessionTable: A list of authenticated sessions that have been established on this
SMB connection as defined in section 3.2.1.3. It MUST be possible to look up entries by either the

UID or the security context of the user that established the session.

Client.Connection.ShareLevelAccessControl: A Boolean that determines whether the target server
requires share passwords (share level access control) instead of user accounts (user level access

control). Share level and user level access control are mutually exclusive. The server MUST
support one or the other, but not both.

Client.Connection.SigningChallengeResponse: A variable-length byte array that contains the
challenge response to use for signing, if signing is active. If SMB signing is activated on the
connection (Client.Connection.IsSigningActive becomes TRUE), the client response to the
server challenge from the first non-null, non-guest session is used for signing all traffic on the
SMB connection. The Client.Connection.SigningChallengeResponse is set to one of several

possible values:

 Empty -- If Client.Connection.IsSigningActive is FALSE, no connection signing challenge
response is used.

 LM or LMv2 response -- The response passed from client to server in the OEMPassword field of
the SMB_COM_SESSION_SETUP_ANDX request.

 NTLM or NTLMv2 response -- The response passed from client to server in the
UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX request.

Client.Connection.SigningSessionKey: A variable-length byte array that contains the session key
that is used for signing packets, if signing is active.

If SMB signing is activated on the connection (Client.Connection.IsSigningActive becomes
TRUE), the session key from the first non-null, non-guest session is used for signing all traffic on
the SMB connection. The Client.Connection.SigningSessionKey is set to one of three values:

 Empty - If Client.Connection.IsSigningActive is FALSE, no connection signing session key is

used.

 LM Session Key - The LM hash, generated from the user's password using the LMOWFv1()
function defined in [MS-NLMP] section 3.3.1.

 NT Session Key - The NTLM hash, generated from the user's password using the NTOWFv1()
function defined in [MS-NLMP] section 3.3.1.

Client.Connection.TreeConnectTable: A list of the tree connects over this SMB connection
established to shares on the target server, containing the TID for each of the tree connects. It

MUST be possible to look up entries either by TID or by share name.

%5bMS-NLMP%5d.pdf

480 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.1.3 Per SMB Session

Client.Session: An established session between the client and server. The following ADM elements
are maintained for each SMB session established by a client:

Client.Session.Connection: The SMB connection associated with this session.

Client.Session.SessionKey: The cryptographic session key associated with this session, as obtained
from the authentication subsystem after successful authentication.

Client.Session.SessionUID: The 2-byte UID for this session, representing the user that established
the session. The UID is returned by the server in the SMB Header (section 2.2.3.1) of the session
setup response. All subsequent SMB requests for this user on this connection MUST use this UID.

Client.Session.UserCredentials: An opaque implementation-specific entity that identifies the

credentials that were used for establishing the session.

3.2.1.4 Per Tree Connect

Client.TreeConnect: An established tree connect between the client and share on the server. The

following ADM elements are maintained for each tree connect established by a client:

Client.TreeConnect.Connection: The SMB connection associated with this tree connect.

Client.TreeConnect.ShareName: The share name corresponding to this tree connect.

Client.TreeConnect.TreeID: The treeID (TID) that identifies this tree connect as returned by the
server in the header of the SMB_COM_TREE_CONNECT Response (section 2.2.4.50.2) or the
SMB_COM_TREE_CONNECT_ANDX Response (section 2.2.4.55.2).

Client.TreeConnect.Session: A reference to the session on which this tree connect was established.

Client.TreeConnect.IsDfsShare: A Boolean that, if set, indicates that the tree connect was
established to a DFS share.

3.2.1.5 Per Unique Open

Client.Open: A file or named pipe on the server opened through the established

Client.TreeConnect. The following ADM elements are maintained for each open held by a client:

Client.Open.Connection: The SMB connection associated with this open.

Client.Open.FID: The FID associated with the open, as returned by the server in the response to an
open or create request.

Client.Open.NamedPipeMessageMode: A Boolean indicating whether the named pipe is in raw or
byte mode (FALSE) or in message mode (TRUE). This ADM element is used only for named pipe

opens.

Client.Open.OpLock: An element indicating the type of OpLock, if any, that has been granted on this

open. This value MUST be one of None, Exclusive, Batch, or Level II.<187>

Client.Open.Session: The SMB session associated with this open.

Client.Open.TreeConnect: The tree connect associated with this open.

481 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.1.6 Per Unique Open Search

Client.SearchOpen: A search operation that is being performed through the established
Client.TreeConnect. The following ADM elements are maintained for each SearchID open search

held by a client:

Client.SearchOpen.FindSID: The search ID (SID) that identifies a search opened using the
TRANS2_FIND_FIRST2 (section 2.2.6.2) subcommand.

Client.SearchOpen.TreeConnect: The tree connect associated with this open search.

3.2.2 Timers

3.2.2.1 Request Expiration Timer

This optional timer regulates the amount of time that the client SHOULD<188> wait for the server to

respond to an SMB request; see section 3.2.6.1.

3.2.3 Initialization

When the CIFS client is started, the following values MUST be initialized:

 Values for Client.PlaintextAuthenticationPolicy, Client.LMAuthenticationPolicy, and

Client.NTLMAuthenticationPolicy MUST be set based on system policy and implementation
capabilities, and MUST be one of the possible values listed in section 3.2.1.1.<189>

 Values for Client.MessageSigningPolicy MUST be set based on system policy and MUST be one
of the possible values listed in section 3.2.1.1. The value of this element is not constrained by the
values of any other policies.<190>

 Client.ConnectionTable MUST be empty.

 Client.SessionTimeoutValue MUST be set based on system policy.<191>

 Client.MaxBufferSize MUST be set based on system resource allocation policy.<192>

 Client.SupportDialects MUST be set to the list of dialect identifiers that the client supports,
presented in section 1.7.<193>

 Client.Capabilities MUST be set based on the capabilities of the local implementation. The
specific bits to set in this ADM element are specified in section 2.2.4.53.1.

When an SMB connection is established, the following values MUST be initialized:

 Client.Connection.ClientNextSendSequenceNumber MUST be set to 2.

 Client.Connection.ClientResponseSequenceNumber MUST be an empty list.

 Client.Connection.ConnectionlessSessionID MUST be set to zero.

 Client.Connection.IsSigningActive is set to FALSE.

 Client.Connection.NegotiateSent MUST be set to FALSE.

 Client.Connection.NTLMChallenge MUST be set to zero.

 Client.Connection.OpenTable MUST be empty.

 Client.Connection.PIDMIDList MUST be empty.

482 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Client.Connection.SearchOpenTable MUST be empty.

 Client.Connection.SelectedDialect MUST be empty.

 Client.Connection.ServerCapabilities MUST be set to zero.

 Client.Connection.ServerChallengeResponse MUST be set to FALSE.

 Client.Connection.ServerMaxBufferSize MUST be set to zero.

 Client.Connection.MaxMpxCount MUST be set based on system policy.<194>

 Client.Connection.ServerName MUST be set to the name of the server to which the connection
is being established.

 Client.Connection.ServerSigningState MUST be Disabled.

 Client.Connection.SessionTable MUST be empty.

 Client.Connection.ShareLevelAccessControl MUST be set to FALSE.

 Client.Connection.SigningChallengeResponse MUST be a zero-length array.

 Client.Connection.SigningSessionKey MUST be set to zero.

 Client.Connection.TreeConnectTable MUST be empty.

When a new SMB session is established, the following values MUST be initialized:

 Client.Session.Connection MUST be the SMB connection associated with this SMB session.

 Client.Session.SessionKey MUST be zero.

 Client.Session.SessionUID MUST be the server-supplied UID for this SMB session.

 Client.Session.UserCredentials MUST be set to empty.

When a new tree connect is established, the following values MUST be initialized:

 Client.TreeConnect.Connection MUST be the SMB connection associated with this tree connect.

 Client.TreeConnect.ShareName MUST be the name of the share to which the client is
connecting.

 Client.TreeConnect.TreeID MUST be the server-supplied TID for this tree connect.

3.2.4 Higher-Layer Triggered Events

3.2.4.1 Sending Any Message

Messages sent by the client MUST conform to the rules specified in section 3.1.4.1, with the following

additional requirements:

 The SMB_Header.Status field MUST be set to zero (0x00000000).

 The SMB_FLAGS_REPLY bit in the SMB Header (section 2.2.3.1) MUST be clear.

 The client MUST allocate or assign buffers to receive any parameters and/or data to be returned in

the response message.

The caller MUST provide the following:

483 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 A buffer containing the message to be sent.

 Exactly one of the following:

 The SMB connection (Client.Connection) identifying the transport connection on which to
send the request.

OR

 One or both of the Client.Session and Client.TreeConnect identifying the authenticated
user and share respectively.

If both the Client.Session and Client.TreeConnect, are supplied by the caller,
Client.Session.Connection MUST match Client.TreeConnect.Connection.

If the Connection was supplied by the caller, the same MUST be used to send the request. Otherwise,
the connection identified by Client.Session.Connection (or, equivalently,

Client.TreeConnect.Connection) MUST be used to send the request.

If a Client.Session is supplied by the caller, the SMB_Header.UID field MUST be set to
Client.Session.SessionUID. Otherwise, the client MUST set the SMB_Header.UID field to 0x0000.

If a Client.TreeConnect is supplied by the caller, the SMB_Header.TID MUST be set to
Client.TreeConnect.TreeID. Otherwise, the client MUST set the SMB_Header.TID field to 0xFFFF.

The value of SMB_Header.PID MUST be assigned as specified in section 2.2.1.6.3, and the value of

SMB_Header.MID MUST be assigned as specified in section 2.2.1.6.2.

3.2.4.1.1 Command Processing

SMB Commands are made up of one or more messages exchanged between the client and the server.
Several command requests MAY be sent together in a single message (see sections 3.2.4.1.4 and
3.2.5.1.3) or, at the other extreme, a single command MAY require several messages to complete (for
example, Write MPX or any of the Transaction requests).

When a command is initiated by an application on the client, the PID and MID values of the command
MUST be entered into the Client.Connection.PIDMIDList table. A single command MAY consist of
several messages exchanged between the client and server. All messages that are part of the same
command exchange MUST have the same PID and MID values. If a Request Expiration
Timer (section 3.2.2.1) is supported, the client MUST set the Request Expiration Timer to signal at the
configured time-out interval for this command, and each PIDMIDList entry MUST include the time-
out time stamp of the command. If the command is sent to the server in multiple messages, the time-

out time stamp MUST be updated when each part of the message is sent. The client MUST NOT allow
another command with the same PID and MID values to start execution until the pending command
has completed.

The SMB_COM_NT_CANCEL command is the only exception. SMB_COM_NT_CANCEL is used to cancel
a pending command, and MUST use the same PID and MID as the command to be canceled. The UID
and TID of the SMB_COM_NT_CANCEL command MUST also match those of the command to be

canceled. The PID and MID values of the SMB_COM_NT_CANCEL command MUST NOT be entered

into the Client.Connection.PIDMIDList table. No response to SMB_COM_NT_CANCEL is sent by the
server (as specified in section 2.2.4.65), and the client MUST NOT perform reply processing or
maintenance of session timeouts, or invoke retry or session disconnection for this command.

Once a command has completed processing, its Client.Connection.PIDMIDList entry MUST be
removed from the list and discarded.

3.2.4.1.2 Processing Options

484 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client keeps track of which optional processing features (Unicode, DFS, and so on) a server
provides in the Client.Connection.ServerCapabilities state variable. Many of these features require

that the client indicate that it uses them on a per-message basis. This is achieved by setting a flag
corresponding to a feature in the Flags2 field of the SMB Header (section 2.2.3.1).

3.2.4.1.3 Message Signing

If signing is active for the connection on which a message is sent, the message MUST be signed, as
specified in section 3.1.4.1, by providing the sequence number that is stored in
Client.Connection.ClientNextSendSequenceNumber. The client MUST maintain the appropriate
sequence number for a response. It does so by inserting the number into the
Client.Connection.ClientResponseSequenceNumber table with the PID/MID pair that identifies

the request/response pair. (PID and MID are specified in section 2.2.3.1. PID is the result of
combining the PIDLow and PIDHigh fields of the SMB Header (section 2.2.3.1).)

After signing the message with Client.Connection.ClientNextSendSequenceNumber, the following
steps MUST be taken:

 IF request command EQUALS SMB_COM_NT_CANCEL THEN
 INCREMENT Client.Connection.ClientNextSendSequenceNumber
 ELSE IF request has no response THEN
 INCREMENT Client.Connection.ClientNextSendSequenceNumber BY 2
 ELSE
 SET Client.Connection.ClientResponseSequenceNumber[PID,MID] TO
 Client.Connection.ClientNextSendSequenceNumber + 1
 INCREMENT Client.Connection.ClientNextSendSequenceNumber BY 2
 END IF

The SMB_COM_NT_CANCEL command is defined in section 2.2.4.65.

To guarantee that the sequence numbers match during server validation, the client MUST ensure that
packets are sent to the server in the same order in which they are signed.

3.2.4.1.4 Sending Any Batched ("AndX") Request

When sending a Batched request, the client MUST construct the message as follows:

The first request to be batched MUST be an AndX SMB command request, and MUST be included in
full. That is, the SMB_Header, SMB_Parameters, and SMB_Data blocks of the request MUST be

constructed, as specified in the corresponding subsection of Higher-Layer Triggered Events (section
3.2.4), with the following additional constraints:

1. The SMB_Header of the first command MUST be the only header in the message. Follow-on
commands are appended to the message without the header.

2. The SMB_Parameters.AndXCommand field MUST contain either the command code of a valid
follow-on command request to be batched, or SMB_COM_NO_ANDX_COMMAND (0xFF).

 If SMB_Parameters.AndXCommand contains SMB_COM_NO_ANDX_COMMAND, the chain is

terminated. If SMB_Parameters.AndXOffset is set to 0, no further command requests can
be added to the AndX Chain.

 If SMB_Parameters.AndXCommand is a valid follow-on command code, the
SMB_Parameters.AndXOffset field MUST be set to the offset, in bytes, from the start of the
SMB_Header block, of the follow-on command request's Parameters block.

3. If SMB_Parameters.AndXCommand is a valid follow-on command code:

485 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The SMB_Parameters and SMB_Data block pair of the follow-on command request MUST be
constructed as specified in the corresponding subsection of Higher-Layer Triggered Events

(section 3.2.4). The block pair MUST be appended to the end of the message, and the SMB
Header (section 2.2.3.1) of the follow-on message MUST NOT be included.

 If the follow-on command is NOT an AndX command, the chain is terminated and no further
command requests can be added to the chain.

4. If the follow-on command is an AndX command, the process repeats starting at step 2.<195>

The total size of the AndX message MUST NOT exceed the negotiated
Client.Connection.ServerMaxBufferSize.

If signing is active for the connection on which a message is sent, the AndX message MUST be signed
as a single message.

3.2.4.1.5 Sending Any Transaction

The Transaction SMB Commands are generic operations. They provide transport for extended sets of
subcommands which, in turn, allow the CIFS client to access advanced features on the server. CIFS
supports three different transaction messages, which differ only slightly in their construction:

 SMB_COM_TRANSACTION (section 2.2.4.33)

 SMB_COM_TRANSACTION2 (section 2.2.4.46)

 SMB_COM_NT_TRANSACT (section 2.2.4.62)

Transactions messages MAY exceed the maximum size of a single SMB message (as determined by
the value of the Client.Connection.ServerMaxBufferSize parameter). Transaction messages that
do not fit within a single SMB message MUST be split across multiple transaction SMBs. Each SMB
transaction request has an associated secondary request message for this purpose:

 SMB_COM_TRANSACTION_SECONDARY (section 2.2.4.34)

 SMB_COM_TRANSACTION2_SECONDARY (section 2.2.4.47)

 SMB_COM_NT_TRANSACT_SECONDARY (section 2.2.4.63)

There are no secondary response messages. The client MUST send as many secondary requests as are
needed to complete the transfer of the transaction request. The server MUST respond to the
transaction request as a whole. If the server's transaction response exceeds the maximum size of a
single SMB message, then the server MUST send multiple SMB responses to the request.

Like SMB messages, transactions are a rudimentary form of remote procedure call. Transaction

subcommands identify operations to be performed, the parameters to pass to the operation, and raw
data upon which to operate. The response also includes parameters and data.

Transactions are made up of four SMB message types. The set of all messages sent and received in
order to perform a particular operation is referred to as a transaction.

1. A "primary request" MUST be sent by the client to initiate the transaction. This message also
includes the total size of the transaction, which might not fit into a single request. If the primary

request is sent as part of a batched message, the size of the entire batch message including the
primary request MUST NOT exceed the negotiated Client.Connection.ServerMaxBufferSize.

2. If all of the parameters and data for the transaction request do not fit within the primary request,
a single "interim response" MUST be sent by the server.

3. If an interim response is sent, and no error is returned in the interim response, then a "secondary
request" MUST be used to continue a transaction started with a primary request. This message is

486 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

sent by the client only. The client sends as many secondary requests as are necessary to complete
the transaction. The server MUST NOT process the transaction until the entire transaction request

has been transferred.

4. A "final response" MUST be sent by the CIFS server when the transaction has been processed. If

the results of the transaction (the transaction response) do not fit within a single SMB response
message, multiple final response messages MUST be sent.

5. Transaction response messages MUST NOT be sent in response to transaction requests sent as
class 2 mailslot messages. See [MS-MAIL] for more information on mailslot protocols.

In its simplest form, a transaction consists of a single primary request to the server followed by a
single final response.

Figure 3: Simple Transaction

The client MUST set the TransactionState for the request (in Client.Connection.PIDMIDList) to
"TransmittedAllRequests".

If a transaction request does not fit within a single SMB message, the following messages are
exchanged:

1. The CIFS client MUST send a primary request that indicates that more messages are to follow. The
client indicates that the transaction request is incomplete by setting the ParameterCount value

less than the TotalParameterCount, or by setting the DataCount value less than the
TotalDataCount, or both. After sending the primary request, the client MUST set the
TransactionState for the request (in Client.Connection.PIDMIDList) to
"TransmittedPrimaryRequest".<196>

2. Upon receiving a primary request containing an incomplete transaction, the server MUST check for

any initial errors and MUST return a single interim response.

3. The response received from the server MUST be processed as described in section 3.2.5.1.4.

%5bMS-MAIL%5d.pdf

487 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 4: Transaction with secondary messages to complete the message transfer

Once it has received the entire request, the server MUST process the transaction and MUST finish with
a transaction response. If the transaction response does not fit within a single SMB message, the

following messages are exchanged:

1. The server MUST send a final response that indicates that additional response messages are to
follow.

2. The server MUST send as many final response messages as are needed to complete the transfer of
transaction parameters and data.

488 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 5: Transaction response with multiple SMB response messages

The number of SMB messages needed to transfer a transaction request is independent of the number
of messages that can be returned. A single-part request can generate a single response or a multi-

part response. Likewise, a multi-part request MAY generate one or more final response SMBs.

Secondary requests SHOULD NOT be used if the transaction request can fit within a single SMB
message. Similarly, multiple final response messages SHOULD NOT be used if the transaction
response can fit within a single SMB message.

Transaction parameters SHOULD take precedence over transaction data; all transaction parameters
SHOULD be transferred before any transaction data.

All messages that are part of the same transaction MUST have the same UID, TID, PID, and MID

values. If a connectionless transport is in use, the CID MUST also be the same for all transaction
messages that are part of the same transaction. The client MUST NOT start a new transaction if it has
not completed a previous transaction with the same PID and MID values. The client MAY start multiple
concurrent transactions as long as at least one of the values of PID or MID differs from all other in-
process transactions.

3.2.4.1.6 Accessing a Share in the DFS Namespace

If:

 The server has negotiated the NT LAN Manager dialect or later (SMB_COM_NEGOTIATE section
2.2.4.51),

 The server has negotiated DFS capabilities via the CAP_DFS flag (SMB_COM_NEGOTIATE section
2.2.4.51),

489 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The server has set the SMB_SHARE_IS_IN_DFS flag in the SMB_COM_TREE_CONNECT_ANDX
response (section 2.2.4.55.2) for the share,

Then the share is in the DFS namespace (a "DFS share") and the client MUST set
Client.TreeConnect.IsDfsShare to TRUE. The client MUST set the SMB_FLAGS2_DFS flag in the

header of any message that contains a pathname to an object within the share (a DFS path). The
pathname MUST have the full file name, including the server name and share name.

3.2.4.2 Application Requests Connecting to a Share

The application provides the following:

 ServerName: The name of the server to which to connect.

 ShareName: The name of the share to which to connect.

 UserCredentials: An opaque implementation-specific entity that identifies the credentials to be
used when authenticating to the remote server.

 IsDFSShare: A Boolean indicating whether this is a DFS share.

 TransportIdentifier: An optional implementation-specific identifier for the transport on which the

connection is to be established.

Upon successful completion, the client MUST return an existing or newly constructed
Session (section 3.2.1.3), an existing or newly constructed TreeConnect (section 3.2.1.4), and the
share type to the caller.

The client MUST follow the steps as described in the following flowchart. The request to connect to a
server can be either explicit (for example, the application requests an SMB connection to
\\server\share) or implicit (for example, the application requests to open the file

\\server\share\file.txt, which implies that an SMB connection to \\server\share is being established).
In either case, the following steps are followed. The only difference is that for the implicit case, the
error returned in the failure case MUST be returned as the error of the operation that caused the

implicit connect attempt.

490 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 6: Application that connects to a share on a server

To complete a successful share connect, the client MUST have an established SMB connection, an
authenticated SMB session for the user initiating the call, and a tree connect to the target share.

3.2.4.2.1 Connection Establishment

The client SHOULD search the Client.ConnectionTable and attempt to find an SMB connection where
Client.Connection.ServerName matches the application-supplied ServerName. If a connection is
found, the client SHOULD use the existing connection.

If there is no existing SMB connection, a new SMB connection MUST be established.

The ServerName and the optional TransportIdentifier provided by the caller are used to establish

the connection. The client SHOULD resolve the ServerName as described in [MS-WPO] section 6.1.3

%5bMS-WPO%5d.pdf

491 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

and SHOULD attempt connections to one or more of the returned addresses. The client MAY attempt
to initiate the SMB connection on all SMB transports that it supports, most commonly NetBIOS over

TCP (NBT, as described in section 2.1.1.2) and the other transports described in section 2.1. The client
MAY choose to prioritize the SMB transport order and try each SMB transport sequentially or try to

connect on all SMB transports and select one using any implementation-specific heuristic. The client
MAY accept the TransportIdentifier parameter from the calling application, which specifies what
SMB transport to use, and then attempt to use the transport specified.<197>

If all connection attempts fail, the connection establishment is failed and an appropriate error is
returned, which is passed back to the calling application, as described earlier.

If the connect attempt succeeds, the client MUST create a new SMB connection as described in 3.2.1.2
and insert it into the global Client.ConnectionTable. Client.Connection.ServerName MUST be set

to the caller-supplied ServerName.

3.2.4.2.2 Dialect Negotiation

If Client.Connection.NegotiateSent is FALSE, the client MUST set SMB_Dialect.DialectString to

Client.SupportDialects and negotiate a protocol dialect using the SMB_COM_NEGOTIATE command,
as specified in section 2.2.4.52. This step MUST be completed before progressing to any other

operations on the connection.

Upon receipt of the server response the client MUST complete the following steps:

 The client MUST set Client.Connection.NegotiateSent to TRUE.

 The CIFS client MUST examine the DialectIndex field in the SMB_COM_NEGOTIATE Server
response to determine the negotiated dialect. If an error was returned, or no dialect was selected,
then the Negotiate Protocol operation has failed. Otherwise, the selected dialect is stored in
Client.Connection.SelectedDialect.

 The CIFS client examines the SecurityMode bit field in the SMB_COM_NEGOTIATE Server
response and performs the following steps in sequence:

 If the 0x01 bit is zero, Client.Connection.ShareLevelAccessControl MUST be set to TRUE.

 If the 0x02 bit is set (1), Client.Connection.ServerChallengeResponse MUST be set to
TRUE.

 If Client.Connection.ServerChallengeResponse is TRUE and the 0x04 bit is set (1),
Client.Connection.ServerSigningState MUST be set to Enabled.

 If Client.Connection.ServerSigningState is Enabled and the 0x08 bit is set (1),
Client.Connection.ServerSigningState MUST be set to Required.

 The server capabilities, as returned in the Capabilities field of the SMB_COM_NEGOTIATE Server
response, MUST be stored in Client.Connection.ServerCapabilities.

 The server's maximum buffer size (which is, with specific exceptions, the maximum size of an SMB
message that can be sent to the server) MUST be stored in

Client.Connection.ServerMaxBufferSize.

If the Negotiate Protocol operation fails, then the connection MUST be closed and an appropriate error
message MUST be passed back to the calling application.

3.2.4.2.3 Capabilities Negotiation

Following a successful dialect negotiation, the client MUST perform a logical AND of
Client.Connection.ServerCapabilities and Client.Capabilities.

492 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client MUST communicate these capabilities to the server in the SMB_Parameters.Capabilities
field of an SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1).

The client MUST set the MaxMpxCount field in the SMB_COM_SESSION_SETUP_ANDX Request to the
value of Client.Connection.MaxMpxCount.

The client SHOULD set the SessionKey field in the SMB_COM_SESSION_SETUP_ANDX
Request (section 2.2.4.53.1) to the value of Client.Connection.ServerSessionKey.

3.2.4.2.4 User Authentication

If Client.Connection.ShareLevelAccessControl is TRUE:<198>

 Share level access control is required by the server. If no authentication has been performed on
the SMB connection, (Client.Connection.SessionTable is empty), the client MUST use

anonymous authentication to create a "null session". Application-provided credentials MUST NOT
be used.<199>

The client MUST send only one session setup request. An SMB_COM_SESSION_SETUP_ANDX
Request MUST be constructed as specified in section 2.2.4.53.1, with the following additional
requirements. In the SMB_Parameters block of the SMB_COM_SESSION_SETUP_ANDX
Request:

 The AccountName field MUST be the empty string.

 The OEMPassword and UnicodePassword fields MUST be empty (zero length).

 If the establishment of a null session fails, no further processing is possible. The connection MUST
be closed and an implementation-specific error message MUST be returned.

The use of share level access control is deprecated.<200>

If Client.Connection.ShareLevelAccessControl is FALSE:

 User level access control is required by the server. The client MUST look up Session from

Client.Connection.SessionTable where Session.UserCredentials matches the application-
supplied UserCredentials. If a session is found, it MUST be reused. Otherwise, the client MUST
create an SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1) and MUST attempt to
establish an authenticated session for the user with the application-supplied UserCredentials.

 Authentication:

If Client.Connection.ServerChallengeResponse is FALSE and
Client.PlaintextAuthenticationPolicy is Disabled, the client SHOULD fail the request with an

implementation-dependent error.

If Client.Connection.ServerChallengeResponse is FALSE and
Client.PlaintextAuthenticationPolicy is Enabled, the client MUST use plaintext
authentication.

 If the server supports Unicode (as indicated in Client.Connection.ServerCapabilities) the

client MAY send the plaintext password in Unicode. The Unicode password is placed into the

UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX Request as an array of
bytes (not a null-terminated string). No alignment padding is used. The
UnicodePasswordLength field is set to the length, in bytes, of the Unicode password.

 If neither the client nor the server supports Unicode, or the client sends the password in OEM
character set format, the password is placed into the OEMPassword field of the
SMB_COM_SESSION_SETUP_ANDX Request as an array of bytes (not a null-terminated
string). The OEMPasswordLength field is set to the length, in bytes, of the password.

493 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If Client.Connection.ServerChallengeResponse is TRUE, the server can accept
challenge/response authentication. The server MAY also accept plaintext authentication. The

client MUST determine the authentication type that it uses based upon local configuration (the
Client.PlaintextAuthenticationPolicy, Client.LMAuthenticationPolicy, and

Client.NTLMAuthenticationPolicy values) in an implementation-specific manner.<201>

The LAN Manager (LM) response and the LAN Manager version 2 (LMv2) response are mutually
exclusive. The implementation MUST select either the LM or the LMv2 response and send it in
the OEMPassword field of the SMB_COM_SESSION_SETUP_ANDX Request as an array of bytes
(not a null-terminated string). The OEMPasswordLength field MUST be set to the length in
bytes of the LM or LMv2 response.

The NT LAN Manager (NTLM) response and the NT LAN Manager version 2 (NTLMv2) response

are mutually exclusive. The implementation MUST select either the NTLM or the NTLMv2
response and send it in the UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX
Request as an array of bytes (not a null-terminated string). The UnicodePasswordLength field
MUST be set to the length, in bytes of the NTLM or NTLMv2 response.

If authentication fails, and the local configuration permits, the client MAY attempt authentication
again using alternative response calculations (for example, replacing the LMv2 response with an

LM response).<202> If all authentication attempts fail, and no authenticated SMB session
exists, the underlying transport connection MUST be closed, and an implementation-specific
error MUST be returned to the application.

 Guest Authentication

Guest access occurs in one of two ways:

1. The client logs on as a guest using the normal authentication process.

2. The client attempts to log on as some other user, but authentication fails. In this case, the

server MAY choose to permit access via the guest user account. The Session Setup succeeds,
but the SMB_SETUP_GUEST flag of the Action field in the SMB_COM_SESSION_SETUP_ANDX
Response MUST be set to indicate guest access (see Session Setup in sections 2.2.4.53.2 and

3.3.5.43).

 Signing:

If Client.Connection.IsSigningActive is FALSE and:

 A failed authentication resulted in guest access (as described above under Guest

Authentication option #2), or

 Authentication was anonymous (resulting in a null session),

Then signing MUST NOT be enabled for this authentication.

If the combination of Client.MessageSigningPolicy and
Client.Connection.ServerSigningState results in "Messages Signed" in the following table,
the client MUST set the Client.Connection.IsSigningActive variable to TRUE and MUST set

SMB_FLAGS2_SMB_SECURITY_SIGNATURE to TRUE in the SMB Header of the

SMB_COM_SESSION_SETUP_ANDX Request message. Setting this value indicates to the server
that signing is requested. Client.Connection.ServerSigningState was initialized during the
processing of a negotiation response, as specified in section 3.2.5.2.

Otherwise, if Client.Connection.IsSigningActive is FALSE and the result is "Blocked" in the
following table, the underlying transport connection MUST be closed and an implementation-
specific error MUST be returned to the application.

494 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If Client.Connection.IsSigningActive becomes TRUE as a result of the authentication

process, Client.Connection.SigningSessionKey and
Client.Connection.SigningChallengeResponse MUST be set as specified in section 3.2.5.3.

If authentication succeeds, the newly created Client.Session MUST be inserted into the
Client.Connection.SessionTable. The client MUST query the authentication subsystem for the
cryptographic session key of the newly authenticated user, as specified in [MS-NLMP], and store it in
Client.Session.SessionKey. The client MUST set Client.Session.UserCredentials to the
application-supplied UserCredentials.

3.2.4.2.5 Connecting to the Share (Tree Connect)

In the LAN Manager 1.0 dialect and above, it is a protocol violation to send a tree connect request
without completing an SMB_COM_SESSION_SETUP_ANDX (section 2.2.4.53) exchange. When using
share level access control, the client MUST perform anonymous authentication (empty username and

password) in the Session Setup.

If a tree connect is already established to the target share in Client.Connection.TreeConnectTable, it

SHOULD be reused. If not, the client creates an SMB_COM_TREE_CONNECT_ANDX
Request (section 2.2.4.55.1), as specified in section 2.2.4.55. Alternately, the client MAY use the
deprecated SMB_COM_TREE_CONNECT Request (section 2.2.4.50.1).

If Client.Connection ShareLevelAccessControl is TRUE and a null session has been established
(see section 3.2.4.2.4), the plaintext password or authentication response MUST be passed in the
Password field of the SMB_COM_TREE_CONNECT_ANDX.Request or SMB_COM_TREE_CONNECT

Request. There is only one Password field in the tree connect message, so only one response value
can be sent. The client MUST determine the authentication type that it uses based upon
Client.Connection.ServerChallengeResponse and the local configuration (the
Client.PlaintextAuthenticationPolicy, Client.LMAuthenticationPolicy, and
Client.NTLMAuthenticationPolicy values), as specified in section 3.2.4.2.4.

If Client.Connection.ShareLevelAccessControl is FALSE, then the PasswordLength field in the
SMB_COM_TREE_CONNECT_ANDX.Request or SMB_COM_TREE_CONNECT Request MUST be 0x0001,

and the Password MUST be a single null padding byte.

3.2.4.3 Application Requests Creating a Directory

The application provides:

 A Client.TreeConnect indicating the share within which the new directory is to be created.

%5bMS-NLMP%5d.pdf

495 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The pathname of the directory to be created, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

 An optional list of extended attributes for TRANS2_CREATE_DIRECTORY (section 2.2.6.14).

 An optional timeout value for the SMB_COM_TRANSACTION2 Request command.

The client SHOULD construct a TRANS2_CREATE_DIRECTORY subcommand request message as
specified in section 2.2.6.14. Alternately, the client MAY construct an SMB_COM_CREATE_DIRECTORY
request message as specified in section 2.2.4.1 or an SMB_COM_NT_CREATE_ANDX request message
as specified in section 2.2.4.64. The SMB_COM_CREATE_DIRECTORY (section 2.2.4.1) command is
deprecated in favor of TRANS2_CREATE_DIRECTORY (section 2.2.6.14).

The following additional rules MUST be followed for message construction:

 The SMB_Header.TID field MUST match the Client.TreeConnect.TID supplied by the

application.

 The SMB_Header.UID field MUST match the Client.Session.UID supplied by the application.

 The DirectoryName field MUST contain the pathname supplied by the application.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.4 Application Requests Deleting a Directory

The application provides:

 The Client.TreeConnect representing the share in which the directory to be deleted exists.

 The pathname of the directory to be deleted, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

The client MUST construct an SMB_COM_DELETE_DIRECTORY Request (section 2.2.4.2) message,with

the following additional requirements:

 The SMB_Header.TID field MUST match the Client.TreeConnect.TID supplied by the
application.

 The SMB_Header.UID field MUST match the Client.Session.UID supplied by the application.

 The SMB_Data.Bytes.DirectoryName field MUST contain the pathname supplied by the
application.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.5 Application Requests Opening an Existing File

To open a file on a remote share, the application provides the following:

 The Client.TreeConnect representing the share in which the file to be opened exists.

 The pathname of the file being opened, relative to Client.TreeConnect.ShareName.

 The Client.Session representing the security context of the user opening the file.

 The requested access mode (read, write, and so on).

 The share access for the open.

496 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The create disposition for the open.

 An optional set of create options for the open.

 An optional Boolean indicating whether the attributes and time stamps of the file are to be
returned in the response.

 An optional Boolean indicating whether the total length of the file's extended attributes is to be
returned in the response.

 A Boolean indicating whether or not the parent directory of the target is to be opened.

 An optional requested impersonation level.

 The security flags.

 An optional allocation size.

 An optional timeout value.

 An optional security descriptor.

 The request for an exclusive or batch OpLock, if any.<203>

To open the file, the client can issue one of the following command requests:

 SMB_COM_OPEN (section 2.2.4.3) (deprecated)

The client MUST construct an SMB_COM_OPEN Request (section 2.2.4.3.1) message. This
command provides basic Open semantics.

 SMB_COM_OPEN_ANDX (section 2.2.4.41) (deprecated)

The client MUST construct an SMB_COM_OPEN_ANDX Request (section 2.2.4.41.1) message. In
addition to basic Open semantics, SMB_COM_OPEN_ANDX provides:

 AndX chaining.

 The ability to request detailed information regarding the opened file.

 The ability to select the file to be opened based upon the file attributes, as well as the ability
to set the file attributes if the file does not exist and needs to be created.

 The ability to set or reset the creation time of the file.

 The disposition action to take based on the existence of the target file.

 TRANS2_OPEN2 (section 2.2.6.1)

The client MUST construct an SMB_COM_TRANSACTION2 (section 2.2.4.46) transaction request,
to transport the TRANS2_OPEN2 transaction request. The client MUST construct a
TRANS2_OPEN2 Request (section 2.2.6.1.1). In addition to basic Open semantics,

TRANS2_OPEN2 provides:

 The ability to set extended attribute (EA) name/value pairs.

 The ability to set or reset the creation time of the file.

 The ability to specify an initial allocation for newly opened or overwritten files.

 The disposition action to take based on the existence of the target file.

 NT_TRANSACT_CREATE (section 2.2.7.1)

497 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client MUST construct an SMB_COM_NT_TRANSACT (section 2.2.4.62) transaction
request,to transport the NT_TRANSACT_CREATE transaction request. The client MUST construct

an NT_TRANSACT_CREATE Request (section 2.2.7.1.1). In addition to basic Open semantics,
NT_TRANSACT_CREATE provides:

 The ability to specify a path relative to a subdirectory within the share indicated by the TID.

 The ability to specify an initial allocation for newly opened or overwritten files.

 The disposition action to take based on the existence of the target file.

 SMB_COM_NT_CREATE_ANDX (section 2.2.4.64)

The client MUST construct an SMB_COM_NT_CREATE_ANDX Request (section 2.2.4.64.1)
message. In addition to basic Open semantics, SMB_COM_NT_CREATE_ANDX provides:

 AndX chaining.

 The ability to open or create a directory.

 The ability to specify a path relative to a subdirectory within the share indicated by the TID.

 The ability to specify an initial allocation for newly opened or overwritten files.

 The disposition action to take based on the existence of the target file.

The SMB_COM_NT_CREATE_ANDX is the most comprehensive (and, therefore, the most
complex) of the open commands.

Any of the commands or subcommands listed above can be used to open a file. Directories, named
pipes, and devices can also be opened. Most of these commands provide the option to create a file if it
does not already exist, or to overwrite or append to the file if it does exist. For
SMB_COM_OPEN (section 2.2.4.3), SMB_COM_OPEN_ANDX (section 2.2.4.41), and
TRANS2_OPEN2 (section 2.2.6.1) commands, the client MUST construct the AccessMode field of the
request by translating the input parameters as follows:

Input parameter Value(s) AccessMode bit field
Valu
e

Access mode Only read access AccessMode.AccessMode 0

Access mode Only write access AccessMode.AccessMode 1

Access mode Read and write access AccessMode.AccessMode 2

Access mode execute AccessMode.AccessMode 3

Share Access 0 AccessMode.SharingMode 1

Share Access FILE_SHARE_READ AccessMode.SharingMode 2

Share Access FILE_SHARE_WRITE AccessMode.SharingMode 3

Share Access FILE_SHARE_DELETE AccessMode.SharingMode 4

Create Options FILE_SEQUENTIAL_ONL
Y = 0 and
FILE_RANDOM_ACCESS
= 0

AccessMode.ReferenceLocalit
y

0

Create Options. FILE_SEQUENTIAL_ONLY 1 AccessMode.ReferenceLocalit
y

1

498 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Input parameter Value(s) AccessMode bit field
Valu
e

Create Options. FILE_RANDOM_ACCESS 1 AccessMode.ReferenceLocalit
y

2 or 3

Create
Options.FILE_NO_INTERMEDIATE_BUFFERI
NG

0 AccessMode.CacheMode 0

Create
Options.FILE_NO_INTERMEDIATE_BUFFERI
NG

1 AccessMode.CacheMode 1

Create Options. FILE_WRITE_THROUGH 0 AccessMode.WritethroughMo
de

0

Create Options. FILE_WRITE_THROUGH 1 AccessMode.WritethroughMo
de

1

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.5.1 Compatibility Mode

Compatibility Mode (also referred to as "MS-DOS Compatibility Mode") provides the client with
exclusive access to an opened file.

 A file opened in compatibility mode can be opened (also in compatibility mode) any number of
times for any combination of reading and writing (subject to the user's permissions) by any UID
and PID on the same SMB connection.

 If one client has the file open for writing in compatibility mode, the file MUST NOT be opened in
any way by any other client.

 As an exception, if the filename has an extension of .EXE, .DLL, .SYM, or .COM (is executable),

other clients are permitted to open the file for reading regardless of read/write open modes of
other compatibility mode opens. The SMB_FLAGS2_READ_IF_EXECUTE bit (also known as the
SMB_FLAGS2_PAGING_IO bit) MUST be set in the open request.

 If the first client has the file open only for reading in compatibility mode, other clients can open
the file for reading in compatibility mode.

 Once one or more clients have the file open for reading in compatibility mode, other clients MUST
NOT open the file in any mode other than compatibility mode.

 If any client has the file open for reading in compatibility mode, then other clients MUST NOT open
the file for writing.

Because Compatibility Mode provides the client with exclusive access, it is incompatible with other

open modes that provide shared access to the file. If the file is opened with sharing enabled, a
subsequent Compatibility Mode open from the same client or any other client MUST return

STATUS_SHARING_VIOLATION (ERRDOS/ERRbadshare).

The other file exclusion modes (Deny read/write, Deny write, Deny read, Deny nothing) provide
exclusion at the file level. A file opened in any "Deny" mode MAY only be opened again for the
accesses allowed by the Deny mode (subject to the user's permissions).

3.2.4.5.2 FID Permissions

If the open operation that created the FID specified a Deny mode, any SMB session making use of the
FID (other than the SMB session within which the FID was created) has only the set of access rights

499 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

determined by performing a logical "and" on the open mode rights and the Deny mode rights. That is,
the Deny mode is checked on all file accesses.

3.2.4.6 Application Requests to Create or Overwrite a File

To create or overwrite a file on a remote share, the application provides the following:

 The Client.TreeConnect representing the share within which to create the file.

 The pathname of the file being created, relative to Client.TreeConnect.ShareName.

 The Client.Session representing the security context of the user opening the file.

 The requested access mode (read, write, and so on).

 An optional Boolean indicating whether the attributes and time stamps of the file are to be
returned in the response.

 An optional Boolean indicating whether the total length of the file's extended attributes is to be
returned in the response.

 The share access for the created file.

 The create disposition for the open.

 An optional set of create options for the open.

 An optional list of extended attributes.

 An optional list of search attributes.

 The request for an exclusive or batch OpLock, if any.

 A Boolean indicating whether or not the file attribute data is to be returned in the response.

 A Boolean indicating whether or not the parent directory of the target is to be opened.

 An optional requested level of impersonation.

 The security flags.

 An optional allocation size.

 An optional timeout value.

 An optional security descriptor.

 The print file mode Boolean.

To create the file, the client MUST issue one of the following command requests:

 SMB_COM_CREATE (section 2.2.4.4) (deprecated)

The client MUST construct an SMB_COM_CREATE Request (section 2.2.4.4.1) message as
defined in section 2.2.4.4. This command provides basic Create semantics.

 SMB_COM_CREATE_TEMPORARY (section 2.2.4.15) (obsolescent)

This command is used to create a temporary file on the server. The client MUST construct an
SMB_COM_CREATE_TEMPORARY Request (section 2.2.4.15.1) message.

 SMB_COM_CREATE_NEW (section 2.2.4.16) (deprecated)

500 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command is used to create a new file and MUST fail if the specified file already exists. The
client MUST construct an SMB_COM_CREATE_NEW Request (section 2.2.4.16.1) message as

defined in section 2.2.4.16.

 SMB_COM_OPEN_PRINT_FILE (section 2.2.4.67)

This command is used to create a new print spool file. The application provides opaque printer-
specific control data that is to be included as the first part of the spool file. The client MUST
construct an SMB_COM_OPEN_PRINT_FILE Request (section 2.2.4.67.1) message as defined in
2.2.4.67.

 SMB_COM_OPEN_ANDX (section 2.2.4.41) (deprecated)

The client MUST construct an SMB_COM_OPEN_ANDX Request (section 2.2.4.41.1) message as
defined in section 2.2.4.41. If the application-provided Boolean value indicates the file attribute

data to be returned in the response, the client MUST set REQ_ATTRIB flag in the
SMB_Parameters.Flags field. In addition to basic Create semantics, SMB_COM_OPEN_ANDX
provides:

 AndX chaining.

 The ability to set the file attributes when the file is created.

 The ability to set the creation time of the file.

 The disposition action to take based on the existence of the target file.

 TRANS2_OPEN2 (section 2.2.6.1)

The client MUST construct an SMB_COM_TRANSACTION2 (section 2.2.4.46) transaction request,
as defined in section 2.2.4.46, to transport the TRANS2_OPEN2 transaction request. The client
MUST construct a TRANS2_OPEN2 Request (section 2.2.6.1.1) as defined in section 2.2.6.1. If
the application-provided Boolean value indicates the file attribute data to be returned in the
response, the client MUST set REQ_ATTRIB flag in the SMB_Parameters.Flags field. In

addition to basic Create semantics, TRANS2_OPEN2 provides:

 The ability to set extended attribute (EA) name/value pairs.

 The ability to set or reset the creation time of the file.

 The ability to specify an initial allocation for newly created or overwritten files.

 The disposition action to take based on the existence of the target file.

 NT_TRANSACT_CREATE (section 2.2.7.1)

The client MUST construct an SMB_COM_NT_TRANSACT (section 2.2.4.62) transaction request,

as defined in section 2.2.4.62 to transport the NT_TRANSACT_CREATE transaction request. The
client MUST construct an NT_TRANSACT_CREATE Request (section 2.2.7.1.1) as defined in
section 2.2.7.1. In addition to basic Open semantics, NT_TRANSACT_CREATE provides:

 The ability to specify a path relative to a subdirectory within the share indicated by the TID.

 The ability to specify an initial allocation for newly opened or overwritten files.

 The disposition action to take based on the existence of the target file.

 SMB_COM_NT_CREATE_ANDX (section 2.2.4.64)

501 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client MUST construct an SMB_COM_NT_CREATE_ANDX Request (section 2.2.4.64.1)
message as defined in section 2.2.4.64. In addition to basic Open semantics,

SMB_COM_NT_CREATE_ANDX provides:

 AndX chaining.

 The ability to create a directory.

 The ability to specify a path relative to a subdirectory within the share indicated by the TID.

 The ability to specify an initial allocation for newly opened or overwritten files.

 The disposition action to take based on the existence of the target file.

The SMB_COM_NT_CREATE_ANDX is the most comprehensive (and, therefore, the most
complex) of the Create commands.

When opening a named pipe, the SMB_COM_NT_CREATE_ANDX command requires that the

FileName field MUST contain only the relative name of the pipe; that is, the "\PIPE\" prefix MUST

NOT be present. This is in contrast with other commands, such as SMB_COM_OPEN_ANDX and
TRANS2_OPEN2, which require that the "\PIPE\" prefix be present in the path name.

Any of the commands or subcommands listed in this section can be used to create a file. Directories
can also be created. Most of these commands provide the option to open or overwrite a file if it
already exists. For SMB_COM_OPEN_ANDX (section 2.2.4.41) and TRANS2_OPEN2 (section 2.2.6.1)

commands, the client MUST construct the AccessMode field of the request by translating the input
parameters as specified in section 3.2.4.5.

In early dialects of the SMB Protocol the Open and Create operations were somewhat separate. In
CIFS, there is considerable overlap between the set of commands used to open an existing file, the
commands used to overwrite an existing file, and those used to create a new file.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.7 Application Requests Closing a File

The application provides:

 A Client.Open, representing the file that the application requests to close.

 The requested file creation time, expressed as the number of seconds since January 1, 1970,

00:00:00.0.

The client MUST construct an SMB_COM_CLOSE Request (section 2.2.4.5.1) message, with the
following additional requirements:

 The SMB_Parameters.Words.FID field MUST match what was supplied by the application.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.8 Application Requests Flushing File Data

The application provides:

 A Client.Open, representing the file that the application requests to have flushed.

The client MUST construct an SMB_COM_FLUSH Request (section 2.2.4.6.1) message, with the
following additional requirements:

502 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The SMB_Parameters.Words.FID field MUST contain the FID that was supplied by the
application.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.9 Application Requests Deleting a File or Set of Files

The application provides:

 The Client.TreeConnect representing the share in which the file(s) to be deleted exist(s).

 The attribute mask of the file(s) to be deleted.

 The pathname of the file(s) to be deleted.

 A valid Client.Session.

The client MUST construct an SMB_COM_DELETE Request (section 2.2.4.7.1) message, with the

following additional requirements:

 The SMB_Parameters.Words.SearchAttributes field MUST contain the attribute mask that was
supplied by the application.

 The SMB_Data.Bytes.FileName field MUST contain the pathname that was supplied by the

application.

SMB_COM_DELETE (section 2.2.4.7) can be used to delete multiple files if the file name (the final
component of the FileName field) contains wildcard characters. The SearchAttributes are used to
modify the set of files that can be included in the delete operation.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.10 Application Requests Renaming a File or Set of Files

The application provides:

 The Client.TreeConnect representing the share in which the file(s) to be renamed exist(s).

 The attribute mask of the file(s) to be renamed.

 The pathname of the file(s) to be renamed.

 The new desired pathname of the file(s).

 A valid Client.Session.

To rename the file, the client MUST issue one of the following command requests:

 SMB_COM_NT_RENAME (section 2.2.4.66.1) (Obsolescent)

The client MUST construct an SMB_COM_NT_RENAME Request (section 2.2.4.66.1) message

with the following additional requirements:

 The SMB_Parameters.Words.SearchAttributes field MUST contain the attribute mask

supplied by the application.

 The SMB_Data.Bytes.OldFileName field MUST contain the source pathname supplied by the
application.

 The SMB_Data.Bytes.NewFileName field MUST contain the destination pathname supplied
by the application.

503 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The SMB_Parameters.Words.InformationLevel field MUST contain an information level
value of SMB_NT_RENAME_RENAME_FILE.

SMB_COM_NT_RENAME does not support wildcards and does not support renaming multiple
files. This command provides support for the creation of hard links (see section 3.2.4.11).

 SMB_COM_RENAME (section 2.2.4.8)

The client MUST construct an SMB_COM_RENAME Request (section 2.2.4.8.1) message with the
following additional requirements:

 The SMB_Parameters.Words.SearchAttributes field MUST contain the attribute mask
supplied by the application.

 The SMB_Data.Bytes.OldFileName field MUST contain the source pathname supplied by the
application.

 The SMB_Data.Bytes.NewFileName field MUST contain the destination pathname supplied
by the application.

SMB_COM_RENAME can be used to rename multiple files if the file name (the final component of
the FileName field) contains wildcard characters. The SearchAttributes are used to modify
the set of files that MAY be included in the rename operation.

Either of the preceding commands can be used to rename a file.

The request MUST be sent to the server as specified in section 3.2.4.1.

3.2.4.11 Application Requests Creating a Hard Link to a File

The application provides:

 The Client.TreeConnect representing the share in which the file to be linked exists.

 The attribute mask of the file to be linked.

 The pathname of the file to be linked.

 The requested pathname of the new hard link.

 A valid Client.Session.

The client MUST construct an SMB_COM_NT_RENAME Request (section 2.2.4.66.1) message with the
following additional requirements:

 The SMB_Parameters.Words.SearchAttributes field MUST contain the attribute mask supplied
by the application.

 The SMB_Data.Bytes.OldFileName field MUST contain the source pathname supplied by the
application.

 The SMB_Data.Bytes.NewFileName field MUST contain the destination pathname supplied by
the application.

 The SMB_Parameters.Words.InformationLevel field MUST contain an information level value

of SMB_NT_RENAME_SET_LINK_INFO.

SMB_COM_NT_RENAME (section 2.2.4.66) does not support wildcards and does not support creating
hard links for multiple files.

The request MUST be sent to the server as specified in section 3.2.4.1.

504 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.12 Application Requests Querying File Attributes

The application provides:

 A valid Client.Session.

 The Client.TreeConnect representing the share in which the file to be queried exists.

 If the file is not already open, the full pathname relative to the TID. Otherwise, attributes
SHOULD be queried using a valid FID representing the opened file.

 The Information Level that defines the format of the data to query, as specified in [MS-FSCC]
section 2.4.

 If the Information Level provided is SMB_INFO_QUERY_EAS_FROM_LIST, the application
provides a list of extended attributes.

The client can use any of the following commands to query file attributes. The
SMB_COM_QUERY_INFORMATION and SMB_COM_QUERY_INFORMATION2 commands are deprecated;

the client SHOULD use the TRANS2_QUERY_PATH_INFORMATION or the
TRANS2_QUERY_FILE_INFORMATION transaction subcommand instead. The transaction
subcommands can also be used to query named pipe attributes. The client MUST map the application-
provided Information Level to the Query Information Levels, as specified in section 2.2.8.

 SMB_COM_QUERY_INFORMATION (deprecated)

The client MUST construct the SMB_COM_QUERY_INFORMATION request as defined in section
2.2.4.9. This command retrieves the following file attributes:

 Basic SMB_FILE_ATTRIBUTES, as described in section 2.2.1.2.4.

 Last write time of the file.

 The size of the file (limited to a 32-bit value).

The file to be queried MUST be identified by a full pathname, relative to the TID.

 SMB_COM_QUERY_INFORMATION2 (deprecated)

The client MUST construct the SMB_COM_QUERY_INFORMATION2 request as defined in section
2.2.4.31. This command retrieves the following file attributes:

 Basic SMB_FILE_ATTRIBUTES, as described in section 2.2.1.2.4.

 The date and time of file creation, last access, and last write.

 The file size (limited to a 32-bit value).

 The file allocation size (limited to a 32-bit value), which can be larger than the actual number

of bytes contained in the file.

The file to be queried MUST be identified by a FID (an open file handle).

 TRANS2_QUERY_PATH_INFORMATION

The client MUST construct a TRANS2_QUERY_PATH_INFORMATION subcommand request as
defined in section 2.2.6.6. The TRANS2_QUERY_PATH_INFORMATION request MUST be
transported to the server using the Transaction2 subprotocol. This transaction subcommand

provides access to extended file information, including:

 Basic SMB_FILE_ATTRIBUTES, as described in section 2.2.1.2.4.

%5bMS-FSCC%5d.pdf

505 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The creation time, last access time, and last write time attributes of the file.

 The file size (limited to a 32-bit value).

 The file allocation size (limited to a 32-bit value), which can be larger than the actual number
of bytes contained in the file.

 The number of bytes allocated to extended attribute name/value pairs.

 Extended attributes.

 The number of hard links to the file.

 The file name and alternate file name.

 The ability to list alternate file streams.

 Whether or not the file is actually a directory.

 Whether or not the file is marked for delete upon close.

 Whether or not the file is compressed.

The file to be queried MUST be identified by a full pathname, relative to the TID.

 TRANS2_QUERY_FILE_INFORMATION

The client MUST construct a TRANS2_QUERY_FILE_INFORMATION subcommand request as
defined in section 2.2.6.8. The TRANS2_QUERY_FILE_INFORMATION request MUST be sent to
the server using the Transaction2 subprotocol as a transport. This transaction is identical to

TRANS2_QUERY_PATH_INFORMATION except that the file to be queried MUST be identified by
FID rather than by pathname.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.13 Application Requests Setting File Attributes

The application provides:

 A valid Client.Session.

 The Client.TreeConnect representing the share in which the file to be accessed exists.

 If the file is not open, the full pathname relative to Client.TreeConnect.ShareName. Otherwise,
attributes SHOULD be set using a valid Client.Open representing the opened file.

 The Information Level that defines the format of the data to set, as specified in [MS-FSCC] section

2.4.

 When the Information Level is SMB_INFO_STANDARD, the application provides the creation
date and time, last access date and time and last write date and time of the file, all expressed as

the number of seconds from January 1, 1970 00:00:00.0.

 When the Information Level is SMB_INFO_EAS, the application provides the extended attribute
name/value pairs of the file.

 When the Information Level is SMB_SET_FILE_BASIC_INFO, the application provides the

creation time, last access time, last write time, change time and extended attribute name/pair of
the file.

%5bMS-FSCC%5d.pdf

506 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 When the Information Level is SMB_SET_FILE_DISPOSITION_INFO, the application provides a
Boolean to indicate if the file is marked for deletion.

 When the Information Level is SMB_SET_FILE_ALLOCATION_INFO, the application provides
the file allocation size in bytes.

 When the Information Level is SMB_SET_FILE_END_OF_FILE_INFO, the application provides
the offset from the beginning of the file to the byte following the last byte in the file.

The client can use any of the following commands to set file attributes. The
SMB_COM_SET_INFORMATION (section 2.2.4.10) and
SMB_COM_SET_INFORMATION2 (section 2.2.4.30) commands are deprecated; the client SHOULD use
the TRANS2_SET_PATH_INFORMATION (section 2.2.6.7) or the
TRANS2_SET_FILE_INFORMATION (section 2.2.6.9) transaction subcommand. The transaction

subcommands can also be used to set named pipe attributes. The client MUST map the application-
provided Information Level to the Set Information Levels, as specified in section 2.2.8.

 SMB_COM_SET_INFORMATION (deprecated)

The client MUST construct the SMB_COM_SET_INFORMATION Request (section 2.2.4.10.1) as
defined in section 2.2.4.10. This command can be used to set basic
SMB_FILE_ATTRIBUTES (section 2.2.1.2.4), and to set the last write time attribute of the file.

The file to be modified MUST be identified by a full pathname, relative to the TID.

 SMB_COM_SET_INFORMATION2 (section 2.2.4.30) (deprecated)

The client MUST construct the SMB_COM_SET_INFORMATION2 Request (section 2.2.4.30.1) as
defined in section 2.2.4.30. This command can be used to set the creation time, last access
time, and last write time attributes of the file. This command does not support modification of
SMB_FILE_ATTRIBUTES. The file to be modified MUST be identified by a FID (an open file
handle).

 TRANS2_SET_PATH_INFORMATION

When the Information Level is SMB_INFO_STANDARD, the application provides:

 The creation date of the file.

 The creation time of the file.

 The last access date of the file.

 The last access time of the file.

 The last write date of the file.

 The last write time of the file.

When the Information Level is SMB_INFO_EAS, the application provides:

 The extended attribute name/value pairs of the file.

When the Information Level is SMB_SET_FILE_BASIC_INFO, the application provides:

 The creation date and time of the file.

 The last access date and time of the file.

 The last write date and time of the file.

 The change date and time of the file.

507 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The extended attribute name/value pairs of the file.

When the Information Level is SMB_SET_FILE_DISPOSITION_INFO, the application provides:

 A Boolean flag indicating whether the file is to be deleted when closed.

The client MUST construct the TRANS2_SET_PATH_INFORMATION (section 2.2.6.7)

subcommand request as defined in section 2.2.6.7. The TRANS2_SET_PATH_INFORMATION
Request (section 2.2.6.7.1) MUST be transported to the server using the Transaction2
subprotocol. This subcommand can be used to:

 Set SMB_FILE_ATTRIBUTES on the file.

 Set the creation time, last access time, and last write time attributes of the file.

 Set extended attribute (EA) name/value pairs.

 Set the delete-on-close state of a file.

 Change the allocated size of the file.

The file to be modified MUST be identified by a full pathname, relative to the TID.

 TRANS2_SET_FILE_INFORMATION

This transaction subcommand is identical in behavior to TRANS2_SET_PATH_INFORMATION,
except that the file MUST be identified by FID rather than by pathname.

The request MUST be sent to the server as specified in section 3.2.4.1.

3.2.4.14 Application Requests Reading from a File, Named Pipe, or Device

The application provides:

 A valid Client.Open, representing the file from which the application attempts to read.

 An offset, in bytes and relative to the start of the file, marking the location within the file at which

the application attempts to read.

 The number of bytes to be read.

 A minimum number of bytes to be read.

 An optional time-out value, in milliseconds, indicating how long a server is requested to wait.

The application MAY also provide an estimate of the number of bytes that it attempts to read next.
This value MUST represent a sequential read (immediately following the bytes being read in this

request), as it is used to allow the server to perform read-ahead caching.

CIFS provides several commands for reading data from a file, named pipe, or device. These are:

 SMB_COM_READ (deprecated)

The client MUST construct an SMB_COM_READ request message as defined in section
2.2.4.11.1. This command provides the basic Read operation.

 SMB_COM_LOCK_AND_READ (deprecated)

The client MUST construct an SMB_COM_LOCK_AND_READ request as defined in section

2.2.4.20.1. Prior to reading, this command attempts to establish a lock on the specified byte
range.

508 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_READ_RAW (deprecated)

The client MUST construct an SMB_COM_READ_RAW request as defined in section 2.2.4.22.1.

The behavior of the SMB_COM_READ_RAW request is described in section 3.2.4.14.1.

 SMB_COM_READ_MPX (obsolescent)

The client MUST construct SMB_COM_READ_MPX request messages as defined in section
2.2.4.23.1. The behavior of the SMB_COM_READ_MPX request is described in section
3.2.4.14.2.

 SMB_COM_READ_ANDX

If the application reads from a named pipe or device specifically, it MUST also provide the
minimum number of bytes to be read.

The client MUST construct an SMB_COM_READ_ANDX request message as defined in section

2.2.4.42.1, with the following additional requirements:

 If CAP_LARGE_FILES was negotiated during session setup, then the client MAY use a 64-bit
Offset value. If the client is using a 64-bit Offset value, SMB_Parameters.WordCount
MUST be set to 0x0C and the SMB_Parameters.Words.Offset and
SMB_Parameters.Words.OffsetHigh fields MUST be set to the lower 32 bits and higher 32
bits, respectively, of the supplied offset value.

 If the client is using a 32-bit Offset value, SMB_Parameters.WordCount MUST be set to
0x0A, the SMB_Parameters.Words.Offset field MUST be assigned the offset value supplied
by the application, and the SMB_Parameters.Words.OffsetHigh field MUST NOT be
included in the request.

 The SMB_Parameters.Words.MaxCountOfBytesToReturn field MUST be assigned the
number of bytes to be returned. This value is supplied by the application. If a value was
supplied for a minimum number of bytes to be read, the

SMB_Parameters.Words.MinCountOfBytesToReturn field MUST be assigned the value
that was supplied by the application. Otherwise, it MUST be set to 0x0000.

 If a time-out value was supplied, the SMB_Parameters.Words.Timeout field MUST be
assigned the value that was supplied by the application. Otherwise, it MUST be set to
0x00000000.

In addition, if CAP_LARGE_READX was set by the server in the negotiate protocol response and
FID refers to a disk file, then the MaxCountOfBytesToReturn field in the client request can

exceed the client's Client.MaxBufferSize.

 TRANS_RAW_READ_NMPIPE

The client MUST construct the TRANS_RAW_READ_NMPIPE subcommand as defined in section
2.2.5.2. The request MUST be transported to the server using the Transaction subprotocol.
TRANS_RAW_READ_NMPIPE allows for a raw read of data from a named pipe. This method of
reading data from a named pipe ignores message boundaries even if the pipe is set up as a

message mode pipe.

 TRANS_READ_NMPIPE

The client MUST construct the TRANS_READ_NMPIPE subcommand as defined in section 2.2.5.8.
The request MUST be transported to the server using the Transaction subprotocol.
TRANS_READ_NMPIPE allows data to be read from a named pipe in the mode set on the named
pipe. If the named pipe is in message mode, this subcommand MUST read a message from the
pipe.

The request MUST be sent to the server as described in section 3.2.4.1.

509 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.14.1 Client Requests Read Raw

SMB_COM_READ_RAW is a specialized read command intended to maximize the performance of
reading large blocks of data from an open regular file, named pipe, or device. The command permits a

server to send a large unformatted data (raw byte stream) message over the SMB transport without
requiring the usual SMB response format. It also permits a server to send messages in excess of the
maximum buffer size established during protocol negotiation and session setup. To accomplish this,
the client and the server enter into a dialog. For the dialog to begin, the client MUST perform the
following steps:

 The client MUST compose the SMB_COM_READ_RAW request as described in section 2.2.4.22.
This request advises the server of the total number of bytes that the client attempts to receive in

response to the request. The request MUST be sent to the server as described in section 3.2.4.1,
with the exception that SMB_COM_READ_RAW and message signing are mutually exclusive.
Message signing MUST be disabled in order to perform a raw read.

 After sending the SMB_COM_READ_RAW request, the client MUST NOT send any other request to
the server until the Read Raw response has been completely received. In addition, the client MUST

NOT have any outstanding requests pending on the server. Because the server sends a raw data

message that does not include the typical SMB Header (section 2.2.3.1), the SMB Protocol cannot
guarantee that the client can associate the server's raw data message with the correct
corresponding SMB_COM_READ_RAW command request. Therefore, the client MUST guarantee
that there are no other SMB requests from the client to the server for the duration of the
SMB_COM_READ_RAW command's dialog processing. It might not be possible for the client to
distinguish between the raw data and another message if the response to another operation is
sent by the server while the client is waiting for the raw data.

 The client MUST begin waiting for the unformatted data to arrive.

 The server MUST send the unformatted data message to the client. Because the message contains
unformatted raw bytes, the client MUST rely on the SMB transport to determine whether the
message was received successfully and to determine the size of the message.

 After the client has successfully received the unformatted data message, it MAY respond with

another SMB_COM_READ_RAW SMB to continue reading raw bytes from the file. The server MUST
then respond with another unformatted data message. This cycle MAY continue until the client has

read all of the bytes that it requires, an end of file is reached, or an error occurs. To indicate that
the end of the file has been reached on a regular file, the server MUST return fewer bytes than the
client has requested in the MaxCountOfBytesToReturn field. A Raw Read from a named pipe or
device MAY return fewer bytes than the client requested. This does not indicate an end of file on
the pipe or device. If a file read error occurs on the server, the server MUST return a zero-length
unformatted data message to the client.

If the server returns fewer bytes than requested by the client in the
MaxCountOfBytesToReturn field, the client MAY respond with an alternate file I/O SMB (such
as another Read operation or an SMB_COM_SEEK to the current position) using the same FID to
determine the error.

 If the client experiences a transport layer error, all bytes of the message MUST be received and
discarded. There is no mechanism to inform the server of the transport error. The client is

responsible for taking appropriate action to recover from the transport layer error.

A sample dialog flow is:

510 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 7: Read Raw request/response message flow

The client MUST accept an unformatted data message of up to MaxCountOfBytesToReturn bytes in
length. MaxCountOfBytesToReturn is often set to 65,535 to maximize the transfer size and improve
efficiency.

SMB Protocol SMB_COM_READ_RAW is not supported over connectionless SMB transports. If
SMB_COM_READ_RAW is supported by the server, the CAP_RAW_MODE flag MUST be set in the

Capabilities field in the response to the SMB_COM_NEGOTIATE SMB. If the
Client.Connection.SelectedDialect is NT LAN Manager or later, and the response to the
SMB_COM_NEGOTIATE SMB has CAP_LARGE_FILES set in the Capabilities field, an additional
request format is allowed that accommodates very large files having 64 bit offsets (see the
OffsetHigh field in the command description in section 2.2.4.22.1).<204>

3.2.4.14.2 Client Requests Multiplexed Read

511 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_COM_READ_MPX is a specialized read command intended to maximize performance when
reading large blocks of data from a regular file, while allowing for other operations to take place

between the client and the server. This command is valid only when using a multiplexed session (that
is, a single SMB connection multiplexed across multiple transport connections). The server MUST

respond to the command request with one or more response messages until the requested amount of
data has been returned or an error occurs. Each server response MUST contain the PID and MID of
the original client request and the Offset and Count describing the returned data.

If an error occurs, the server MUST send an error response. If any of the one or more responses to
the SMB_COM_READ_MPX request contains an error code, the error applies to the command as a
whole.

The client has successfully received all of the data bytes when the sum of the DataLength fields

received in each response equals the total amount of data bytes expected (smallest Count received).
This allows the protocol to work even if the responses are received out of sequence.

As is true in SMB_COM_READ, the total number of bytes returned can be less than the number
requested only if a read specifies bytes beyond the current file size and the FID refers to a disk file. In

this case, the server MUST return only the bytes that exist. A read completely beyond the end of file
MUST result in a single response with a zero value in Count. If the total number of bytes returned is

less than the number of bytes requested, this indicates end of file.

Once started, the Read Block Multiplexed operation is expected to continue until completion. The client
MUST receive all of the responses generated by the server. Conflicting commands such as file close
MUST NOT be sent to the server while a multiplexed operation is in progress. Server support of this
command is optional.

3.2.4.15 Application Requests Writing to a File, Named Pipe, or Device

The application provides:

 A valid Client.Open, representing the file to which the application attempts to write.

 An offset, in bytes and relative to the start of the file, marking the location within the file where

the application attempts to write.

 The data and the number of bytes to be written.

 Whether or not the write is to be done in write-through mode.

 An optional time-out value, in milliseconds, designating how long to wait for the write to complete.

CIFS provides several commands for writing data to a file, named pipe, or device. These are:

 SMB_COM_WRITE (section 2.2.4.12) (deprecated)

The client MUST construct an SMB_COM_WRITE Request (section 2.2.4.12.1) message as
defined in section 2.2.4.12.1. This command provides the basic Write operation.

 SMB_COM_WRITE_AND_UNLOCK (section 2.2.4.21) (deprecated)

This command is used to write to a locked byte range in the file and then unlock the range. The
application MAY provide an indication of the number of additional bytes immediately following
the bytes written and unlocked that it attempts to write. The byte range to be written MUST be
locked prior to writing. The client MUST construct the SMB_COM_WRITE_AND_UNLOCK
Request (section 2.2.4.21.1) as defined in section 2.2.4.21.1.

 SMB_COM_WRITE_RAW (section 2.2.4.25) (deprecated)

512 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client MUST construct an SMB_COM_WRITE_RAW Request (section 2.2.4.25.1). The
behavior of the SMB_COM_WRITE_RAW Request (section 2.2.4.25.1) is described in section

3.2.4.15.1.

 SMB_COM_WRITE_MPX (section 2.2.4.23) (obsolescent)

The client MUST construct an SMB_COM_WRITE_MPX Request (section 2.2.4.23.1) as defined in
section 2.2.4.26.1. The behavior of the SMB_COM_WRITE_MPX Request (section 2.2.4.23.1) is
described in section 3.2.4.15.2.

 SMB_COM_WRITE_AND_CLOSE (section 2.2.4.40) (deprecated)

The client MUST construct an SMB_COM_WRITE_AND_CLOSE (section 2.2.4.40) command as
defined in section 2.2.4.40.1. This command has the effect of writing to a range of bytes and
then closing the file associated with the supplied FID. This command behaves identically to an

SMB_COM_WRITE (section 2.2.4.12) command followed by an
SMB_COM_CLOSE (section 2.2.4.5) command.

 SMB_COM_WRITE_ANDX (section 2.2.4.43)

The client MUST construct an SMB_COM_WRITE_ANDX Request (section 2.2.4.43.1) message as
defined in section 2.2.4.43.1, with the following additional requirements:

 If the client uses a 64-bit offset value, SMB_Parameters.WordCount MUST be set to 0x0E

and the SMB_Parameters.Words.Offset and SMB_Parameters.Words.OffsetHigh fields
MUST be set to the lower 32 bits and the higher 32 bits, respectively, of the supplied offset
value.

 If the client uses a 32-bit offset value, SMB_Parameters.WordCount MUST be set to 0x0C,
the SMB_Parameters.Words.Offset field MUST be assigned the offset value supplied by the
application, and the SMB_Parameters.Words.OffsetHigh field MUST NOT be included in the
request.

 The SMB_Parameters.Words.WriteMode field MUST reflect any behavior that the
application requests from the server. See the description of the WriteMode field in section

2.2.4.25.1.

 The SMB_Parameters.Words.DataLength field MUST be set to the length, in bytes, of the
data to be written.

 The SMB_Parameters.Words.DataOffset field MUST be set to the offset, in bytes and
relative to the start of the SMB Header block, of the data to be written to the file.

 The SMB_Data.Bytes.Pad field MUST contain padding bytes used to align the
SMB_Data.Bytes.Data field to an appropriate boundary.

 The SMB_Data.Bytes.Data field MUST contain the data to be written.

 If the write is to a named pipe, and if the write spans multiple requests, the client SHOULD set
the SMB_Parameters.Words.Remaining field to the number of bytes remaining to be
written and MUST set the RAW_MODE bit in the SMB_Parameters.Words.WriteMode field.

For the first write request the client MUST set the MSG_START bit in the
SMB_Parameters.Words.WriteMode field.<205>

If the application writes to a named pipe or device and if a time-out value is supplied, the
SMB_Parameters.Words.Timeout field MUST be assigned the value supplied by the
application. Otherwise, it MUST be set to 0x00000000.

 SMB_COM_WRITE_PRINT_FILE (deprecated)

513 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This command is used to write data to an open print queue spool file. The first data written to
the print file MUST be printer-specific control data. The length of the control data block MUST be

specified in the SMB_Parameters.Words.SetupLength field. A single
SMB_COM_WRITE_PRINT_FILE command can contain both printer-specific control data and print

file data, as long as the control data is completely written first.

The client MUST construct an SMB_COM_WRITE_PRINT_FILE request message as defined in
section 2.2.4.68.1.

 TRANS_RAW_WRITE_NMPIPE

The client MUST construct the TRANS_RAW_WRITE_NMPIPE subcommand as defined in section
2.2.5.7. The request MUST be transported to the server using the Transaction subprotocol.
TRANS_RAW_WRITE_NMPIPE allows for a raw write of data to a named pipe. This method of

writing data to a named pipe ignores message boundaries even if the pipe was set up as a
message mode pipe.

 TRANS_WRITE_NMPIPE

The client MUST construct the TRANS_WRITE_NMPIPE subcommand as defined in section
2.2.5.9.1. The request MUST be transported to the server using the Transaction subprotocol.
TRANS_WRITE_NMPIPE allows data to be written to a named pipe in the mode set on the named

pipe. If the named pipe is in message mode, this subcommand MUST write a message from the
pipe.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.15.1 Client Requests Raw Write

SMB_COM_WRITE_RAW is a specialized write command intended to maximize the performance of
writing large blocks of data to an open regular file, a named pipe, device, or spooled output (printer).

The command permits a client to send a large unformatted data (raw byte) message over the SMB
transport without requiring the usual SMB request format. It also permits a client to send messages in
excess of the maximum buffer size (Client.Connection.ServerMaxBufferSize) that was established

during session setup. To accomplish this, the client and the server enter into a dialog. For the dialog
to begin, the client MUST perform the following steps:

 The client MUST compose the SMB_COM_WRITE_RAW request as described in section 2.2.4.25.1.
This request informs the server of the total number of bytes that the client designates to send

over the course of the dialog. For the dialog to begin, the request MUST be sent to the server as
described in section 3.2.4.1, with the exception that SMB_COM_WRITE_RAW and message signing
are mutually exclusive. Message signing MUST be disabled in order to perform a raw write. When
the SMB_COM_WRITE_RAW request is received, the server MUST validate the request and
attempt to write the initial data contained within the request. If an error is detected, the server
returns a Final Server Response (section 2.2.4.25.3), which completes the dialog. Otherwise, the

server MUST respond with an Interim Server Response (section 2.2.4.25.2) to indicate that the
message was received and that the server is ready for the unformatted raw data. The server
MUST then begin waiting for the unformatted data message to arrive.

 The client MUST send the unformatted data message to the server. Because the message contains

unformatted raw bytes, the server MUST rely on the SMB transport to determine whether the
message was received successfully, and to determine the message size.

 If the WritethroughMode bit was set in the WriteMode field of the original request, then

the server MUST send a Final Server Response following receipt of the raw data from the
client.

514 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If the WritethroughMode bit was clear in the WriteMode field of the original request, then
the server MUST NOT send a Final Server Response following receipt of the raw data from the

client.

A sample dialog flow is:

Figure 8: Write Raw request/response message flow

Because the client sends a raw data message that does not include the typical request data, the SMB

Protocol cannot guarantee that the server can associate the client's raw data message with the correct
corresponding client's SMB_COM_WRITE_RAW command. Therefore, the client MUST guarantee that
there are no other SMB requests from the client to the server for the duration of the
SMB_COM_WRITE_RAW command's dialog processing.

Server support of SMB_COM_WRITE_RAW is optional. This command is not supported over
connectionless SMB transports. If SMB_COM_WRITE_RAW is supported by the server, the

CAP_RAW_MODE flag MUST be set in the Capabilities field in the response to the

SMB_COM_NEGOTIATE SMB. If the Client.Connection.SelectedDialect is NT LAN Manager or later,
and the response to the SMB_COM_NEGOTIATE SMB has CAP_LARGE_FILES set in the Capabilities
field, an additional request format is allowed that accommodates very large files having 64-bit offsets
(see the OffsetHigh field in the command description in section 2.2.4.25.1).<206>

3.2.4.15.2 Client Requests Multiplexed Write

SMB_COM_WRITE_MPX is used to maximize the performance of large block writes of data from the
client to the server. This command is valid only when using a multiplexed session (multiple transport
connections bound to a single SMB connection) over a connectionless transport. To perform a

515 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

multiplexed write, the client MUST send multiple SMB_COM_WRITE_MPX requests (each containing
data to be written and the offset, in the ByteOffsetToBeginWrite field, at which the packet data is

to be written) before the server responds with a single SMB_COM_WRITE_MPX response.

The client identifies the last request in the write sequence by also setting the SMB Header

SecurityFeatures.SequenceNumber field to a nonzero value. This indicates to the server that the
client indicates that it has completed sending all of the requests that need to be processed. After
receiving the nonzero SMB Header SecurityFeatures.SequenceNumber, the server MUST respond
with a single SMB_COM_WRITE_MPX response.

The client request RequestMask values are saved by the server and bitwise OR-ed into a value that
is returned to the client in the ResponseMask field of the server's SMB_COM_WRITE_MPX response.
If a problem occurred with the SMB transport and one or more of the client's SMB_COM_WRITE_MPX

requests was not successfully received and processed by the server, the bit for that request MUST
NOT be set in the server's SMB_COM_WRITE_MPX response ResponseMask field. The client MUST
use the ResponseMask received in the SMB_COM_WRITE_MPX response to determine which client
requests, if any, MUST be retransmitted. The client MUST use this behavior to send only the missing
parts in the next write sequence when resending the lost requests.

When all of the request messages have been successfully received by the server, and a final

SMB_COM_WRITE_MPX response received, the client MAY perform another write operation using the
SMB_COM_WRITE_MPX request. The next SMB_COM_WRITE_MPX sequence sent MUST use a new
SMB Header SecurityFeatures.SequenceNumber value to uniquely identify the set of requests, or
the server can incorrectly respond with the mask from the previous SMB_COM_WRITE_MPX command.
The server MUST NOT impose any restrictions on the value of RequestMask, nor upon the order or
contiguity of the requests being sent.

The FID MUST be identical in all requests in a given SMB_COM_WRITE_MPX exchange. The TID, PID,

UID, MID, and CID MUST be identical in all requests and responses in a given
SMB_COM_WRITE_MPX exchange.

Other requests MAY be issued on the same session while the SMB_COM_WRITE_MPX exchange is in
progress.

An example dialog flow is:

516 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 9: Multiplexed Write request/response message flow

At the time of the request, the client designates the number of data bytes to be sent and passes this
information to the server in TotalByteCount field of the request. The server MAY use this information
to reserve buffer space.

Some systems provide no way for a process to block until the local file cache has actually flushed to
the disk, but simply indicate that a flush has been scheduled and MUST complete soon. A server
SHOULD nonetheless take steps to maximize the probability that the data is truly on disk before the
client is notified.

517 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server support of this command is optional. If the server supports this command it MUST set the
CAP_MPX_MODE (0x00000002) bit in the Capabilities field of the response to SMB Protocol

negotiation. Support for MPX mode excludes support for SMB signing and RAW read/write SMBs.

This command is supported on connectionless transports only; consequently, bit 0x0080 of

WriteMode in all request messages in the exchange MUST be set. The FID in the request(s) MUST
refer to either a regular file or a spooled printer file. This command does not support named pipes or
I/O devices.

3.2.4.16 Application Requests a Byte-Range Lock on a File

The application provides:

 The Client.Open representing the file to be locked.

 An array of byte ranges to be locked. For each range, the application provides:

 A starting offset, in bytes.

 A length, in bytes.

 The number of byte ranges to be locked.

 The type of lock requested.

 The new oplock level, if this is a request from the server in response to a change.

 The length of time (in milliseconds) that the server is requested to wait for the locks to become
available.

 An optional Boolean indicating whether the byte ranges are to be locked or shared.

 An optional Timeout.

Any of the following commands can be used to explicitly lock a contiguous range of bytes in a regular

file:

 SMB_COM_LOCK_BYTE_RANGE (deprecated)

The client MUST construct the SMB_COM_LOCK_BYTE_RANGE request as defined in section
2.2.4.13.1. This command is limited to 32-bit offsets, and is considered deprecated. The
SMB_COM_LOCKING_ANDX command SHOULD be used instead.

 SMB_COM_LOCK_AND_READ (deprecated)

This command combines the byte range lock with a read operation. The bytes locked by the
request are also the bytes to be read. The application can provide an indication of the number of
additional bytes immediately following the locked bytes that it designates to read. The client
MUST construct the SMB_COM_LOCK_AND_READ (section 2.2.4.20.1) request.

 SMB_COM_LOCKING_ANDX

Multiple non-overlapping byte ranges can be locked with this command. The client MUST
construct the SMB_COM_LOCKING_ANDX request as defined in section 2.2.4.32.1. This client

request is atomic. If the area to be locked is already locked or the lock request otherwise fails,
no other ranges specified in the client request are locked. This command is capable of using 64-
bit file offsets. If CAP_LARGE_FILES is set in Client.Connection.ServerCapabilities, 64-bit
offsets SHOULD be used.

The SMB_COM_LOCKING_ANDX command supports requests for shared locks. The preceding
deprecated locking commands do not support shared locks. The application can request a shared

518 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

lock. If the application does not specify the lock type, an exclusive read/write lock is requested
by default. The request for a shared lock is specified by setting the SHARED_LOCK bit in the

TypeOfLock field (see section 2.2.4.32.1).

Locks prevent attempts by other PIDs to lock, read, or write the locked portion of the file.

Overlapping exclusive locks are not permitted. Offsets beyond the current end of file can be locked.
Such locks MUST NOT cause allocation of additional file space. A lock MUST be unlocked only by the
PID that performed the lock.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.17 Application Requests the Release of a Byte-Range Lock on a File

The application provides:

 The Client.Open representing the file to be unlocked.

 An array of byte ranges to be unlocked. For each range, the application provides:

 A starting offset, in bytes.

 A length, in bytes.

 The number of byte ranges to be unlocked.

 The type of lock requested.

 The new oplock level, if this is a request from the server in response to a change.

 The length of time (in milliseconds) for the server to wait for the locks to become available.

Any of the following commands can be used to explicitly unlock a contiguous range of bytes in a
regular file:

 SMB_COM_UNLOCK_BYTE_RANGE (section 2.2.4.14) (deprecated)

 This command is used to explicitly unlock a contiguous range of bytes in an open regular file. The
byte range specified MUST be exactly the same as that specified in a previous successful lock
request from the same CIFS client and process; the FID, PID, and UID MUST be the same as those
used in the lock request. The client MUST construct the SMB_COM_UNLOCK_BYTE_RANGE
Request (section 2.2.4.14.1), as defined in section 2.2.4.14.1.

 SMB_COM_WRITE_AND_UNLOCK (section 2.2.4.21) (deprecated)

 This command is used to write to a locked byte range in the file, and then unlock the range. The
application MAY provide an indication of the number of additional bytes immediately following the
bytes written and unlocked that it designates to write. The client MUST construct the
SMB_COM_WRITE_AND_UNLOCK Request (section 2.2.4.21.1) as defined in section 2.2.4.21.1.

 SMB_COM_LOCKING_ANDX (section 2.2.4.32)

 Multiple non-overlapping byte ranges can be unlocked with this command. The client MUST
construct the SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1). The client request is

atomic. Failure to unlock or lock a byte range specified results in all ranges in the request being
left in their previous state. This command is capable of using 64-bit file offsets. If
CAP_LARGE_FILES is set in Client.Connection.ServerCapabilities, 64-bit offsets SHOULD be
used.

Closing the file releases all locks associated with the FID. The
SMB_COM_PROCESS_EXIT (section 2.2.4.18) command closes all file handles (FIDs) that were
opened by the specified PID, and therefore releases all locks held on those FIDs.

519 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.18 Application Requests an Opportunistic Lock on a File

The application requests an OpLock when opening or creating a file. See sections 3.2.4.5 and 3.2.4.6
for information on opening and creating files. The following SMB commands can be used to obtain an
OpLock:

 SMB_COM_OPEN (section 2.2.4.3)

 SMB_COM_CREATE (section 2.2.4.4)

 SMB_COM_CREATE_NEW (section 2.2.4.16)

 SMB_COM_OPEN_ANDX (section 2.2.4.41)

 SMB_COM_NT_CREATE_ANDX (section 2.2.4.64)

 TRANS2_OPEN2 (section 2.2.6.1)

 NT_TRANSACT_CREATE (section 2.2.7.1)

The application can request either an exclusive OpLock or a batch exclusive OpLock on a file. The
server indicates the type of OpLock granted in the response. The server MUST grant the requested

OpLock, a read-only (Level II) OpLock, or no OpLock. If an exclusive OpLock is not available, Level II
OpLocks are granted only in response to SMB_COM_NT_CREATE_ANDX (section 2.2.4.64) or
NT_TRANSACT_CREATE Requests (section 2.2.7.1.1).

 If a Level II OpLock is granted, the server guarantees that no other process is modifying the file
and that the client can perform read caching.

 If an exclusive OpLock is granted, read caching, write caching, and byte-range lock caching can be
performed on the client side.

 If an exclusive batch OpLock is granted, the client can additionally cache file close operations,

delaying sending file close operations to the server indefinitely and thus maintaining the client-
side cache.

An OpLock remains in effect until the server revokes it or the file is closed by the client. For a batch
OpLock, the client MAY cache file close operations from the application. The batch OpLock is released
when the client performs the close operation.

Detailed information regarding OpLock semantics is provided in [FSBO].

3.2.4.19 Application Requests Verifying a Directory Path

The application provides:

 A Client.TreeConnect indicating the share within which the directory resides.

 The pathname of the directory, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

The client MUST construct an SMB_COM_CHECK_DIRECTORY Request (section 2.2.4.17.1) message.
The SMB_Data.Bytes DirectoryName field MUST be set to the value that was supplied by the
application.

The request MUST be sent to the server as described in section 3.2.4.1.

http://go.microsoft.com/fwlink/?LinkId=140636

520 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.20 Client Notifies the Server of a Process Exit

The SMB_COM_PROCESS_EXIT command MAY be used to indicate to the server that a client process,
represented by a PID value, has failed and that all resources allocated to that PID MUST be freed. The

semantics of this command are deprecated, however, and it SHOULD NOT be used by new client
implementations.

The client MUST construct the SMB_COM_PROCESS_EXIT request message as defined in section
2.2.4.18.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.21 Application Requests to Seek to a Location in a File

The file MUST be held open by the application, and the application MUST provide a Client.Open as
well as the desired offset and seek mode.

If the seek mode is 1 (meaning seek from the current position) and the offset is zero, then the
application is requesting that the server report the current position of the file pointer (the current
offset). Otherwise, the application is attempting to set the current file pointer. SMB_COM_SEEK

handles 32-bit offsets only. Also, all Read and Write operations in the protocol set the file pointer, so it
is not necessary to use SMB_COM_SEEK for that purpose. SMB_COM_SEEK is listed as obsolescent.

The client MUST construct the SMB_COM_SEEK request message as defined in section 2.2.4.19.1. The
request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.22 Application Requests Sending an IOCTL to a File or Device

The application MUST supply a Client.Open representing the open file or device, as well as the IOCTL
category and function. The client MUST use either of the following commands to transfer the IOCTL to
the server:

 SMB_COM_IOCTL (obsolescent) (section 2.2.4.35)

The client MUST construct the SMB_COM_IOCTL Request (section 2.2.4.35.1) message.

 NT_TRANSACT_IOCTL

The application provides the following:

 An input buffer, _NT_Trans_Data, to be passed to the fsctl or ioctl function.

The client MUST construct the NT_TRANSACT_IOCTL Request (section 2.2.7.2.1) message, with
the following additional requirements:

 The SMB_Parameters.Words.Setup.IsFsctl flag is set to 0x01.

 The SMB_Parameters.Words.Setup.IsFlags flag is set to 0x01 if

Client.TreeConnect.IsDfsShare is TRUE; otherwise, it is set to 0x00.

 The SMB_Data.Bytes.NT_Trans_Data field contains NT_Trans_Data supplied by the
application.

The request MUST be transported to the server using the NT Transaction subprotocol.

The format of the IOCTL data and parameters are determined by the specific IOCTL function being
called. The request MUST be sent to the server as described in section 3.2.4.1.

521 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.23 Application Requests Testing Transport Layer Connection

The client MUST have an established SMB connection and MUST have performed an SMB Protocol
negotiation. No SMB session is necessary.

The application MUST provide:

 The Client.Connection that identifies the connection on which to send the request.

 The number of responses that the application designates to receive from the server. This number
SHOULD be greater than zero.

 A block of data, which might be random, to be echoed by the server.

The client MUST construct an SMB_COM_ECHO request message as defined in section 2.2.4.39.1. The
data block provided by the application MUST be sent in the SMB_Data.Bytes.Data field; otherwise,

the field MUST be empty.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.24 Application Requests a Tree Disconnect (Unmount Share)

The application MUST provide the Client.TreeConnect of the tree connect to be closed. The client
MUST construct an SMB_COM_TREE_DISCONNECT request as defined in section 2.2.4.51.1. The
request MUST be sent to the server as described in section 3.2.4.1. All locks associated with open files
within the share represented by the Client.TreeConnect.TID are released. All open search and file
handles that represent objects within the TID are closed.

3.2.4.25 Application Requests an SMB Session Logoff

The application MUST provide the Client.Session of the SMB session to be closed.

The client MUST traverse the Client.Connection.TreeConnectTable, and for each entry in which

Client.TreeConnect.Session matches the application-provided Client.Session, the TreeConnect
MUST be closed, as specified in section 3.2.4.24.

The client MUST construct an SMB_COM_LOGOFF_ANDX Request (section 2.2.4.54.1). The request

MUST be sent to the server as specified in section 3.2.4.1. The user represented by the
Client.Session.SessionUID value, presented in the SMB Header (section 2.2.3.1), is logged off as
follows:

 The server cancels any outstanding command requests for this UID.

 The server releases all locks and closes all files opened by this UID; the associated FIDs are
invalidated.

 The server closes all searches currently held open by this UID; the associated SIDs are
invalidated.

 The server disconnects all tree connects created by this UID; the associated TIDs are invalidated.

 The server invalidates the UID.

3.2.4.26 Application Requests Querying File System Attributes

The application provides:

 A Client.TreeConnect.TreeID (TID) of the share to be queried.

522 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The information level that describes the format of the information being queried, as specified in
[MS-FSCC] section 2.5.

The client requests the retrieval of attributes from a file system using either of the two following
commands. The client MUST map the application-provided information level to the QUERY_FS

Information Levels, as specified in section 2.2.8.

 SMB_COM_QUERY_INFORMATION_DISK (section 2.2.4.57) (deprecated)

This command MUST be sent by a client to obtain the capacity and remaining free space on the
volume hosting the subtree indicated by the TID in the SMB Header (section 2.2.3.1). It MUST
be constructed as defined in section 2.2.4.57.1.

 TRANS2_QUERY_FS_INFORMATION (section 2.2.6.4)

The client MUST construct the TRANS2_QUERY_FS_INFORMATION Request (section 2.2.6.4.1)

message. The request MUST be transported to the server using the Transaction2 subprotocol.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.27 Application Requests a Directory Enumeration

The application provides the following:

 A Client.TreeConnect indicating the share within which the directory resides.

 The pathname of the directory to query, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

 A wildcard qualifier to select the file names to return.

 A set of attribute flags that further qualify the list of file names to return.

 An Information Level that defines the format of the data to return.

 The number of results to return.

 A set of flags used to request that the server manage the transaction state based on how the
client attempts to traverse results.

 A MASK specifying whether the search is for directories or for files.

 If the Information Level provided is SMB_INFO_QUERY_EAS_FROM_LIST, the application
provides a list of extended attributes.

The client can use any of the following commands to enumerate the directory entries matching the
application's criteria:

 SMB_COM_SEARCH (deprecated) (section 2.2.4.58)

The client MUST construct the SMB_COM_SEARCH request message as defined in section
2.2.4.58.1. The FileName field is the full directory path (relative to the TID) of the file(s) being
sought. The final component of the path MAY contain wildcards. This string MAY be the empty
string. The SearchAttributes field is an attribute mask used to specify the standard attributes

that a file MUST have to match the search. If the value of this field is 0x0000, only normal files
are returned. If the Volume Label attribute is set, then the volume label MUST be the only name
returned (the Volume Label attribute is exclusive). If the Directory, System, or Hidden attributes
are specified, those entries are requested in addition to the normal files.

%5bMS-FSCC%5d.pdf

523 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

There is no Close operation associated with the SMB_COM_SEARCH. The client provides the
server with no direct indication that the search is complete unless the client continues the

search until the last matching entry has been returned.

An SMB_COM_PROCESS_EXIT request from the client closes an incomplete search.

Disconnecting the Client.TreeConnect within which the search is active also closes the search.

 SMB_COM_FIND (deprecated)

The client MUST construct the SMB_COM_FIND request message as defined in section
2.2.4.59.1. The format and operation of SMB_COM_FIND is identical to that of
SMB_COM_SEARCH, except that the search MAY be closed using the SMB_COM_FIND_CLOSE
command, which provides a specific indication to the server that the search has been
completed.

 SMB_COM_FIND_UNIQUE (deprecated)

The client MUST construct the SMB_COM_FIND_UNIQUE request message as defined in section
2.2.4.60.1. The format and operation of SMB_COM_FIND_UNIQUE is identical to that of

SMB_COM_FIND. The former performs an implicit close on the search operation so that no
SMB_COM_FIND_CLOSE is needed. The SMB_COM_FIND_UNIQUE returns only the results that
can fit within a single response.

 TRANS2_FIND_FIRST2

The client MUST construct the TRANS2_FIND_FIRST2 request message as defined in section
2.2.6.2.1. If the search is incomplete following the first response from the server, the client MAY
continue the search using a TRANS2_FIND_NEXT2 request as defined in section 2.2.6.3.1. These
requests MUST be transported to the server using the Transaction2 subprotocol. If the search
finds no names that match the client request, or if the continuation of the search finds no more
names that match the client request:

 The server returns STATUS_NO_MORE_FILES as a 32-bit error code if the client set
SMB_FLAGS2_NT_STATUS in the Flags2 field of the client request.

 The server returns ERRDOS/ERRnofiles as an SMBSTATUS if SMB_FLAGS2_NT_STATUS is NOT
set in the Flags2 field of the client request.

Note that these return codes are not considered errors in this case.

The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.28 Application Requests Canceling Pending Operations

The application MUST provide the UID, TID, PID, and MID of the operation or operations to be
canceled. If a connectionless transport is in use, then the application MUST also provide the CID
(Connection ID) of the SMB connection.

The client MUST issue the cancel by sending an SMB_COM_NT_CANCEL request message. This
message MUST be constructed as defined in section 2.2.4.65.1. The server MUST attempt to complete

pending operations that match the UID, TID, PID, and MID (and CID, if required) in the request.
Any matching pending operation that cannot be completed successfully MUST fail with an
implementation-specific error status.

In particular, the SMB_COM_NT_CANCEL operation completes any Directory Change Notify operations
(NT_TRANSACT_NOTIFY_CHANGE) on the server, causing the server to send an

NT_TRANSACT_NOTIFY_CHANGE response message.

The request MUST be sent to the server as described in section 3.2.4.1, particularly the special
handling required for SMB_COM_NT_CANCEL.

524 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.29 Application Requests to Print a File

The application MUST provide the Client.Session and MUST provide the Client.TreeConnect
representing a connection to the printer share to which the data will be printed.

The client MUST create a print spool file using the SMB_COM_OPEN_PRINT_FILE command. The
command request MUST be constructed as defined in section 2.2.4.67.1. The application MUST
provide any printer-specific control data and the length, in bytes, of that data, which is copied into the
SMB_Parameters.Words.SetupLength field. The application MUST indicate whether the data to be
printed is to be handled in Text or Binary mode. See the description of the
SMB_Parameters.Words.Mode field in section 2.2.4.67.1.

The application optionally provides printer-specific control data. If provided, it MUST be written to the

spool file first, followed by the print file data itself.

The request MUST be sent to the server as described in section 3.2.4.1. If successful, the command
MUST return a valid FID representing the opened spool file.

Any command capable of writing to an open FID, including SMB_COM_WRITE_PRINT_FILE, can be
used to write the data to the print spool file. The file is queued for printing when the FID is closed. The
FID can be closed using SMB_COM_CLOSE_PRINT_FILE (deprecated) or SMB_COM_CLOSE. The client

can also use SMB_COM_WRITE_AND_CLOSE (deprecated) to write spool file data and close the file.

3.2.4.30 Application Requests Setting Named Pipe State

A client requests setting the state of a named pipe by issuing an SMB_COM_TRANSACTION Request
with the subcommand TRANS_SET_NMPIPE_STATE. The application MUST provide a Client.Open of

the named pipe to which the state change is to be applied. The application provides the pipe state as
specified in section 2.2.5.1.1.

The client MUST construct the TRANS_SET_NMPIPE_STATE request message. The request MUST be
sent to the server as specified in section 3.2.4.1.

If the ReadMode bits (see section 2.2.1.3) of the PipeState field in the TRANS_SET_NMPIPE_STATE

Request (section 2.2.5.1.1) are zero, the client MUST set Client.Open.NamedPipeMessageMode to
FALSE; otherwise, the client MUST set Client.Open.NamedPipeMessageMode to TRUE.

3.2.4.31 Application Requests Querying Named Pipe Handle State

A client queries named pipe state by issuing an SMB_COM_TRANSACTION request (section 2.2.4.33.1)
with the subcommand TRANS_QUERY_NMPIPE_STATE. The application MUST provide a FID indicating

the open named pipe for which the state is being queried.

The client MUST construct the TRANS_QUERY_NMPIPE_STATE request message. The request MUST be
sent to the server as specified in section 3.2.4.1.

A client queries named pipe state by issuing an SMB_COM_TRANSACTION
Request (section 2.2.4.33.1) with the subcommand TRANS_QUERY_NMPIPE_STATE (section 2.2.5.3).
The application MUST provide a Client.Open identifying the open to the named pipe.

The client MUST construct the TRANS_QUERY_NMPIPE_STATE Request message, using the

Client.Open.FID from the supplied open. The request MUST be sent to the server as specified in
section 3.2.4.1. The TRANS_QUERY_NMPIPE_STATE Response (section 2.2.5.3.2) MUST be processed
as specified in section 3.2.5.38.3. If the ReadMode bits (see section 2.2.1.3) of the NMPipeStatus
field in the TRANS_QUERY_NMPIPE_STATE Response are zero, the client MUST set
Client.Open.NamedPipeMessageMode to FALSE; otherwise, the client MUST set
Client.Open.NamedPipeMessageMode to TRUE.

525 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.32 Application Requests Querying Named Pipe Information

A client requests querying named pipe information by issuing an SMB_COM_TRANSACTION request
(section 2.2.4.33.1) with the subcommand TRANS_QUERY_NMPIPE_INFO. The application MUST

provide a Client.Open indicating the open named pipe from which the information is to be queried.
Available information includes:

 Input and Output buffer sizes.

 Maximum and current number of instances of the named pipe.

 The name and the length of the name of the named pipe.

The client MUST construct the TRANS_QUERY_NMPIPE_INFO request message as specified in section
2.2.5.4.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.33 Application Requests Peeking at Named Pipe Data

A client requests peeking into pipe data on a named pipe by issuing an SMB_COM_TRANSACTION
request (section 2.2.4.33.1) with the subcommand TRANS_PEEK_NMPIPE. The application MUST

provide a Client.Open indicating the open named pipe from which data is to be read and the number
of bytes to attempt to read.

The client MUST construct the TRANS_PEEK_NMPIPE request message as specified in section
2.2.5.5.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.34 Application Requests Executing a Transaction on a Named Pipe

A client executes a transaction on a named pipe by issuing an SMB_COM_TRANSACTION
Request (section 2.2.4.33.1) with the subcommand TRANS_TRANSACT_NMPIPE (section 2.2.5.6). The
application MUST provide a Client.Open indicating the open named pipe on which to perform the
transaction, a buffer of data to write into the pipe, and the maximum number of bytes to read out of
the pipe.

The client MUST construct the TRANS_TRANSACT_NMPIPE Request (section 2.2.5.6.1) message and

MUST send it to the server as specified in section 3.2.4.1.

3.2.4.35 Application Requests Waiting for Named Pipe Availability

A client requests to wait for named pipe availability by issuing an SMB_COM_TRANSACTION (section

2.2.4.33.1) request with the subcommand TRANS_WAIT_NMPIPE. The application MUST provide the
following:

 A Client.TreeConnect indicating the share within which the named pipe resides.

 The pathname of the named pipe, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

 A time-out value indicating how long to wait for named pipe availability.

The client MUST construct the TRANS_WAIT_NMPIPE request message as specified in section

2.2.5.10.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.36 Application Requests Named Pipe Exchange (Call)

A client executes a call on a named pipe by issuing an SMB_COM_TRANSACTION (section 2.2.4.33.1)

request with the subcommand TRANS_CALL_NMPIPE. The Call operation is similar to the operation

526 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

performed by TRANS_TRANSACT_NMPIPE, except that the pipe is opened and closed by the Call
operation.

The application MUST provide:

 A Client.TreeConnect indicating the share within which the named pipe resides.

 The pathname of the named pipe, relative to Client.TreeConnect.ShareName.

 A valid Client.Session.

 A buffer containing the data to be written into the pipe.

 The number of bytes to be written.

 The maximum number of bytes to read from the pipe.

 A priority value in the range 0..9; higher values indicate higher priority.

The client MUST construct the TRANS_CALL_NMPIPE request message as specified in section

2.2.5.11.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.37 Application Requests to Read from a Named Pipe

A client can request to read from a named pipe by issuing an SMB_COM_TRANSACTION Request with

the subcommand TRANS_READ_NMPIPE. The application MUST provide a Client.Open indicating the
open named pipe from which data is to be read. The application provides the maximum number of
bytes that the client attempts to read from the named pipe.

Named pipes can be in raw mode or message mode (see TRANS_SET_NMPIPE_STATE). If the named
pipe is in raw mode, as indicated by a Client.Open.NamedPipeMessageMode value of FALSE, it can
be read by any of several Read operations (see section 3.2.4.14). If the pipe is in message mode, as
indicated by a Client.Open.NamedPipeMessageMode value of TRUE, TRANS_READ_NMPIPE MUST

be used to read discrete messages.

The client MUST construct the TRANS_READ_NMPIPE Request message and MUST send it to the server
as specified in section 3.2.4.1.

3.2.4.38 Application Requests Writing to a Named Pipe

A client can write to a named pipe by issuing an SMB_COM_TRANSACTION request with the
subcommand TRANS_WRITE_NMPIPE. The application MUST provide a Client.Open indicating the
open named pipe to which data is to be written.

Named pipes can be in raw mode or message mode (see TRANS_SET_NMPIPE_STATE). If the named
pipe is in raw mode, as indicated by a Client.Open.NamedPipeMessageMode value of FALSE, it can
be written to using any of several Write operations (see section 3.2.4.15). If the pipe is in message

mode, as indicated by a Client.Open.NamedPipeMessageMode value of TRUE,
TRANS_WRITE_NMPIPE MUST be used to write discrete messages.

The client MUST construct the TRANS_WRITE_NMPIPE request message and MUST send it to the
server as specified in section 3.2.4.1.

3.2.4.39 Application Requests Notification of Change in Directory Contents

A client requests waiting for directory change notification by issuing an SMB_COM_NT_TRANSACT
(section 2.2.4.62.1) request with the subcommand NT_TRANSACT_NOTIFY_CHANGE. The application
provides the following:

527 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 A Client.Open indicating a directory within a connected share.

 A Completion Filter indicating the changes needed in order to complete the command.

 A Boolean indicating whether or not subtrees of the specified directory are also to be monitored
for changes.

 The size of the buffer that the server MUST use to collect file change information.

The command MUST NOT be completed until one of the following events occurs:

 A change matching one of the change events in the Completion Filter occurs.

 An SMB_COM_NT_CANCEL with matching UID, TID, PID, MID, and (depending upon the
transport type) CID is received. See section 3.2.4.28.

The SMB_Parameters.Words.MaxParameterCount field in the SMB_COM_NT_TRANSACT request
determines the size of the buffer that is used by the server to buffer directory change information. The

SMB_Parameters.Words.MaxParameterCount field in the SMB_COM_NT_TRANSACT request is set

to the size supplied by the application.

The client MUST construct the NT_TRANSACT_NOTIFY_CHANGE request message as specified in
section 2.2.7.4.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.40 Application Requests Querying Security Descriptors

A client requests to query security descriptors by issuing an SMB_COM_NT_TRANSACT (section
2.2.4.62.1) request with the subcommand NT_TRANSACT_QUERY_SECURITY_DESC. The application
MUST provide the Client.Open of the file that is the target of the query, the maximum number of
data bytes the client accepts in the response, and a list of the security information fields being
requested.

The client MUST construct the NT_TRANSACT_QUERY_SECURITY_DESC request message as specified
in section 2.2.7.6.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.41 Application Requests Setting Security Descriptors

A client requests to set security descriptors by issuing an SMB_COM_NT_TRANSACT (section
2.2.4.62.1) request with the subcommand NT_TRANSACT_SET_SECURITY_DESC. The application
MUST provide the Client.Open of the target file. The application MUST also provide a list of the
security descriptor fields to be set and the security descriptors to be updated.

The client MUST construct the NT_TRANSACT_SET_SECURITY_DESC request message as specified in
section 2.2.7.3.1. The request MUST be sent to the server as described in section 3.2.4.1.

3.2.4.42 Application Requests a Named RAP Transaction

An application can perform Remote Administration Protocol (RAP) operations from CIFS. The
application MUST provide Client.Session and Client.TreeConnect.

Client.TreeConnect.ShareName MUST indicate the IPC$ interprocess communications share.

The SMB Transaction subprotocol (SMB_COM_TRANSACTION and

SMB_COM_TRANSACTION_SECONDARY) is used to transfer RAP operations. RAP uses the
\PIPE\LANMAN named pipe in the IPC$ share. RAP has its own set of function codes and does not use
the Transaction subcommands listed in section 2.2.5. For a full decryption, see [MS-RAP].

%5bMS-RAP%5d.pdf

528 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.4.43 DFS Subsystem Notifies That It Is Active

If the DFS subsystem is available to the CIFS client, it MUST notify the client. After this event, the
client is able to set the CAP_DFS flag in the Capabilities field of an

SMB_COM_SESSION_SETUP_ANDX request.<207>

3.2.4.44 Application Requests Querying DFS Referrals

The application provides the following:

 ServerName: The name of the server from which to query referrals.

 UserCredentials: An opaque implementation-specific entity that identifies the credentials to be
used when authenticating to the remote server.

 The maximum response size, in bytes.

 An input buffer containing the application-provided REQ_GET_DFS_REFERRAL structure.

The client MUST search for an existing Session and TreeConnect to any share on the server
identified by ServerName for the user identified by UserCredentials. If no Session and

TreeConnect are found, the client MUST establish a new Session and TreeConnect to IPC$ on the
target server, as specified in section 3.2.4.2 using the supplied ServerName and UserCredentials.

The client MUST construct a TRANS2_GET_DFS_REFERRAL Request and MUST set ReferralRequest to
the application-provided input buffer.

The client MUST construct a TRANS2_GET_DFS_REFERRAL Request (section 2.2.6.16.1) and MUST set
ReferralRequest to the application-provided input buffer. The MaxDataCount field of the
SMB_COM_TRANSACTION2 Request (section 2.2.4.46.1) MUST be set to the maximum response size

supplied by the caller. The client MUST issue the TRANS2_GET_DFS_REFERRAL Request using the
Client.TreeConnect.TreeID of the IPC$ share.

3.2.4.45 Application Requests Querying Cryptographic Session Key

The application MUST provide:

 Open: A valid Open identifying an open instance of a file or pipe.

The client MUST find the application-supplied Open in Client.Connection.OpenTable. It MUST then
return Client.Open.Session.SessionKey to the calling application.

3.2.4.46 Application Requests Number of Opens on a Tree Connect

The application provides:

 Client.TreeConnect: A valid tree connect to be queried.

The client MUST query the total number of opens on Client.TreeConnect by looking up the

Client.Connection.OpenTable where Client.Open.TreeConnect matches the application-supplied
Client.TreeConnect, and return the matching count to the calling application.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Receiving Any Message

Upon receiving any SMB message, the client MUST associate the message received with the correct
client process and thread, as identified by the PID and MID values in the

529 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Client.Connection.PIDMIDList. If the MID value is the reserved value 0xFFFF ((USHORT)(-1)), the
message can be an OpLock break sent by the server. Otherwise, if the PID and MID values of the

received message are not found in the Client.Connection.PIDMIDList, the message MUST be
discarded.

If an SMB_COM_RAW_READ is in progress and the message is a raw data transfer, the message MUST
be handled as described in section 3.2.5.16.

Unless otherwise noted, the client MUST return the status received in the SMB_Header.Status field
of a response message to the application that issued the corresponding request.

For the response messages of the following commands, there are no other processing rules required
on the client:

 SMB_COM_CREATE_DIRECTORY (section 2.2.4.1)

 SMB_COM_DELETE_DIRECTORY (section 2.2.4.2)

 SMB_COM_FLUSH (section 2.2.4.6)

 SMB_COM_DELETE (section 2.2.4.7)

 SMB_COM_RENAME (section 2.2.4.8)

 SMB_COM_SET_INFORMATION (section 2.2.4.10)

 SMB_COM_LOCK_BYTE_RANGE (section 2.2.4.13)

 SMB_COM_UNLOCK_BYTE_RANGE (section 2.2.4.14)

 SMB_COM_CHECK_DIRECTORY (section 2.2.4.17)

 SMB_COM_PROCESS_EXIT (section 2.2.4.18)

 SMB_COM_SET_INFORMATION2 (section 2.2.4.30)

 SMB_COM_LOCKING_ANDX (section 2.2.4.32)

 SMB_COM_TREE_DISCONNECT (section 2.2.4.51)

 SMB_COM_FIND_CLOSE (section 2.2.4.61)

 SMB_COM_NT_RENAME (section 2.2.4.66)

 SMB_COM_WRITE_PRINT_FILE (section 2.2.4.68)

 SMB_COM_CLOSE_PRINT_FILE (section 2.2.4.69)

 Transaction Subcommands (section 2.2.5)

 TRANS_SET_NMPIPE_STATE (section 2.2.5.1)

 TRANS_WAIT_NMPIPE (section 2.2.5.10)

 Transaction2 Subcommands (section 2.2.6)

 TRANS2_SET_PATH_INFORMATION (section 2.2.6.7)

 TRANS2_SET_FILE_INFORMATION (section 2.2.6.9)

 NT Transact Subcommands (section 2.2.7)

 NT_TRANSACT_SET_SECURITY_DESC (section 2.2.7.3)

530 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

A client that has outstanding OpLocks can receive an OpLock Break Notification at any time from the
server. This is the only unsolicited message that the server is permitted to send.

3.2.5.1.1 Command Processing

Upon receiving a message, the client MUST determine whether the message is the final step in the
processing of a command. If so, the Client.Connection.PIDMIDList entry for the command MUST
be removed and discarded. Unless otherwise stated, the processing of an SMB command is complete
when the results are returned to the application.

3.2.5.1.2 Message Signing

If a message is received and Client.Connection.IsSigningActive is TRUE for the connection, the

signature MUST be verified, as specified in section 3.1.5.1, unless the message is an OpLock Break
Notification. OpLock Break Notification messages are exempt from signing.

The client is responsible for providing the expected sequence number for signature verification. The
sequence number for the incoming response is determined by what was stored in the

Client.Connection.ClientResponseSequenceNumber table. The client MUST look up the expected
sequence number in that table based on the PID and MID of the response. The client uses

Client.Connection.ClientResponseSequenceNumber [PID, MID] as the sequence number in
signature verification, as specified in section 3.1.5.1. If signature verification fails, the message MUST
be discarded and not processed. The client SHOULD choose to disconnect the underlying connection
and tear down all state associated with this connection.<208>

3.2.5.1.3 Receiving any Batched ("AndX") Response

When a client receives an AndX Response, the client MUST process the batched responses

sequentially. Each individual response is processed as specified in its respective Message Processing
subsection.

The client MUST use the information in the AndX Response header as the header information for each
response, with the exception of the SMB_Header.Status field. The status field indicates only the

error status of the last response in the chain. All other responses in the chain MUST be interpreted as
having completed successfully. If processing a response in the AndX Chain causes a change in state
that would affect the information in the header, the updated header information MUST be used when

the client processes the subsequent response in the chain.

3.2.5.1.4 Receiving Any Transaction Response

When a client receives an SMB transaction response, it MUST first determine whether it is an interim
response or a final response by looking up the TransactionState for this request in
Client.Connection.PIDMIDList. If the TransactionState is "TransmittedPrimaryRequest", and if
the SMB_Parameters.WordCount and SMB_Data.ByteCount values are 0 in the transaction

response, the client MUST consider the received response an interim response.

 If the interim response indicates an error, then the transaction is canceled. The client MUST NOT
send any secondary transaction request messages.

 If the interim response indicates success, then the client MUST set the TransactionState for this
request (in Client.Connection.PIDMIDList) to "ReceivedInterimResponse" and send as many
secondary requests as are needed to complete the transfer of transaction parameters and data.

After transmitting all the secondary requests, the client MUST set the TransactionState for this
request to "TransmittedAllRequests".

If the TransactionState is not "TransmittedPrimaryRequest", or if the
SMB_Parameters.WordCount and SMB_Data.ByteCount values are not both 0 in the transaction
response, the client MUST consider the received response as a final transaction response. The server
can send multiple final SMB transaction response messages in order to transfer the entire transaction

531 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

response. If multiple final SMB transaction response messages are needed, the client MUST
reconstruct the transaction response parameters and transaction response data from the contents of

the SMB response messages before processing the completed transaction response.

3.2.5.2 Receiving an SMB_COM_NEGOTIATE Response

If the Status field of the response does not contain STATUS_SUCCESS, or if the server refused the
SMB dialects offered by the client, the client MUST propagate the error to the application that initiated
the SMB connection. In either case, protocol negotiation has failed and the SMB connection SHOULD

be closed.

Otherwise, protocol negotiation has succeeded and the SMB connection has been established.
Processing of the SMB_COM_NEGOTIATE Response (section 2.2.4.52.2) proceeds as follows:

Storing the selected dialect

The selected dialect MUST be retrieved and stored as described in section 3.2.4.2.2.

Storing authentication settings

The server's access control level is indicated by the NEGOTIATE_USER_SECURITY (0x01) bit of the

SecurityMode field in the SMB_COM_NEGOTIATE Response. If this bit is clear (0),
Client.Connection.ShareLevelAccessControl (which was initialized to FALSE in section 3.2.3)
MUST be set to TRUE.

Support for challenge/response authentication is indicated by the NEGOTIATE_ENCRYPT_PASSWORDS
(0x02) bit of the SecurityMode field in the SMB_COM_NEGOTIATE Response. If this bit is set (1),
Client.Connection.ServerChallengeResponse (which was initialized to FALSE in section 3.2.3)
MUST be set to TRUE.

Determining the server signing mode

The server response indicates whether the server has message signing enabled and, if so, whether or
not message signing is expected:

 If the server supports only Share Level Access Control or plaintext passwords, signing is not
available and Client.Connection.ServerSigningState MUST be Disabled.

 If NEGOTIATE_SECURITY_SIGNATURES_ENABLED bit in the SecurityMode field of the

SMB_COM_NEGOTIATE response is not set, Client.Connection.ServerSigningState MUST be
Disabled.

 If the NEGOTIATE_SECURITY_SIGNATURES_ENABLED bit in the SecurityMode field of the
SMB_COM_NEGOTIATE Response is set, but NEGOTIATE_SECURITY_SIGNATURES_REQUIRED is
not set, the client MUST set Client.Connection.ServerSigningState to Enabled.

 If both the NEGOTIATE_SECURITY_SIGNATURES_ENABLED and
NEGOTIATE_SECURITY_SIGNATURES_REQUIRED bits in the SecurityMode field of the

SMB_COM_NEGOTIATE response are set, the client MUST set
Client.Connection.ServerSigningState to Required.

Once Client.Connection.ServerSigningState is set, the client MUST consult the table under
"Signing" in User Authentication (section 3.2.4.2.4) to determine whether or not signing is blocked. If
signing is blocked, the connection SHOULD be terminated by disconnecting the underlying transport
and tearing down any state associated with the connection.

Storing server parameters

The client MUST store the Capabilities returned in the SMB_COM_NEGOTIATE Response in
Client.Connection.ServerCapabilities.

532 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The client MUST set Client.Connection.ServerSessionKey to the value received in the SessionKey
field of the SMB_COM_NEGOTIATE Response.

The client MUST set the Client.Connection.NTLMChallenge to the value returned in the Challenge
field of the SMB_COM_NEGOTIATE server response. This value is used for all future

challenge/response authentication operations performed on the connection.

The client MUST set Client.Connection.ServerMaxBufferSize to the value received in the
MaxBufferSize field of the negotiate response.

The client MUST assign the minimum of Client.Connection.MaxMpxCount and the MaxMpxCount
field to Client.Connection.MaxMpxCount.

If the SMB_COM_NEGOTIATE Response is being processed as part of a connect attempt, the client
continues to user authentication, as specified in section 3.2.4.2.4. The only other options are

SMB_COM_ECHO (section 2.2.4.39) or termination of the connection.

3.2.5.3 Receiving an SMB_COM_SESSION_SETUP_ANDX Response

If the Status field of the response does not contain STATUS_SUCCESS, the client MUST propagate the

error to the application that initiated the authentication. The connection MUST remain open for the
client to attempt another authentication.

If the Status field of the response contains STATUS_SUCCESS, then authentication was successful,
and a new Client.Session MUST be initialized and stored in Client.Connection.SessionTable.

The client MUST retain the UID returned in the SMB Header (section 2.2.3.1) of the response in
Client.Session.SessionUID. The client MUST also set the value of the Client.Session.SessionKey
based upon the SMB_SETUP_USE_LANMAN_KEY (0x02) bit of the Action field in the

SMB_COM_SESSION_SETUP_ANDX response. If the bit is set, and if LM challenge/response was used
instead of LMv2 challenge/response, the server indicates that LM challenge/response succeeded and
the LM Session Key MUST be used to set Client.Session.SessionKey. If the bit is clear or if the LMv2
response was sent, the NT Session Key MUST be used to set Client.Session.SessionKey. If the LM
Session Key or NT Session Key is equal to or greater than 16 bytes, only the least significant 16 bytes

MUST be stored in Client.Session.SessionKey. Otherwise, the session key MUST be stored in

Client.Session.SessionKey and MUST be padded with zeros up to 16 bytes.

Activating Signing

If authentication has just completed successfully, Client.Connection.IsSigningActive is FALSE, and
the targeted behavior for this connection is Signed based on the description in section 3.2.4.2.4, then
the client MUST determine whether signing needs to be activated. This is done by determining the
user's security context that completed authentication:

 If the user authenticated as a guest (the SMB_SETUP_GUEST flag is set in the Action field of the

SMB_COM_SESSION_SETUP_ANDX response) or is anonymous (did not provide credentials),
signing MUST NOT be activated.

 If the user authenticated as a regular user, the client MUST activate signing. If
Client.Connection.SigningSessionKey is Empty:

 The client MUST copy the entire cryptographic session key obtained from authentication
subsystem, as specified in [MS-NLMP], and store it as
Client.Connection.SigningSessionKey. If the length of

Client.Connection.SigningSessionKey is less than 16, the client SHOULD pad it with zeros
up to 16 bytes.

 The value of Client.Connection.SigningChallengeResponse MUST be set based upon the
SMB_SETUP_USE_LANMAN_KEY (0x02) bit of the Action field in the

%5bMS-NLMP%5d.pdf

533 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_COM_SESSION_SETUP_ANDX response sent from the server to the client. If the bit is
set, the server indicates that the LM or LMv2 challenge/response succeeded and the challenge

response sent in the OEMPassword field MUST be used. Otherwise, the challenge response
sent in the UnicodePassword field MUST be used.

Once these steps are done, the client MUST verify the signature of this response. The client follows the
steps specified in section 3.1.5.1, passing in a sequence number of 1 because this is the first signed
packet.

3.2.5.4 Receiving an SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX

Response

The response MUST be received as specified in section 3.2.5.1.

If the tree connect was successful, a new Client.TreeConnect entry is initialized and stored in
Client.Connection.TreeConnectTable. The TID returned in the SMB Header (section 2.2.3.1) of the
response can now be used for other operations. The client MUST set Client.TreeConnect.Session to

Client.Session, where Client.Session.SessionUID matches the UID field in the response. The

client MUST return the new Client.TreeConnect and the Client.Session to the application that
invoked the Application Requests Connecting to a Share (section 3.2.4.2) event to connect to the
share. The client sets the share type based on the Service string in the response.

Share type Service string

Disk Share "A:"

Printer Share "LPT1:"

Named Pipe "IPC"

Serial Communications Device "COMM"

unknown None of the above

3.2.5.5 Receiving an SMB_COM_OPEN Response

The SMB_COM_OPEN Response (section 2.2.4.3.2) MUST be processed as specified in section 3.2.5.1.

If the SMB_COM_OPEN (section 2.2.4.3) command was successful, a new Client.Open MUST be
entered into the Client.Connection.OpenTable. Client.Open.FID is set to the returned FID, and

Client.Open.OpLock is set based on the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags. Client.Open.TreeConnect MUST be set to a Client.TreeConnect
where Client.TreeConnect.TreeID matches the TID sent by the server in the SMB Header of the
SMB_COM_OPEN Response. Client.Open.Session MUST be set to a Client.Session where
Client.Session.SessionUID matches the UID sent by the server in the SMB Header of the
SMB_COM_OPEN Response. Client.Open.Connection MUST be set to

Client.Open.Session.Connection.

The FID returned in the SMB_COM_OPEN response MUST be returned to the application along with
the access mode granted by the server. The Client.Open that matches the FID in the response MUST
be returned to the application. The additional metadata returned in the command MUST be returned to
the application, if requested.

534 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.6 Receiving an SMB_COM_CREATE Response

The SMB_COM_CREATE Response (section 2.2.4.4.2) MUST be processed as specified in section
3.2.5.1.

If the SMB_COM_CREATE was successful, a new Client.Open MUST be entered into the
Client.Connection.OpenTable. Client.Open.FID is set to the returned FID, and
Client.Open.OpLock is set based on the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags. Client.Open.TreeConnect MUST be set to a Client.TreeConnect
where Client.TreeConnect.TreeID matches the TID sent by the server in the SMB Header of the
SMB_COM_CREATE Response. Client.Open.Session MUST be set to a Client.Session where
Client.Session.SessionUID matches the UID sent by the server in the SMB Header of the

SMB_COM_CREATE Response. Client.Open.Connection MUST be set to
Client.Open.Session.Connection.

The Client.Open matching the FID provided in the response MUST be returned to the application.

3.2.5.7 Receiving an SMB_COM_CLOSE Response

The SMB_COM_CLOSE response MUST be processed as specified in section 3.2.5.1.

If the request was successful, then the FID sent in the request is no longer valid and the client MUST
discard the FID. The matching Client.Open entry in the Client.Connection.OpenTable MUST be
removed and discarded.

3.2.5.8 Receiving an SMB_COM_QUERY_INFORMATION Response

The SMB_COM_QUERY_INFORMATION response MUST be processed as specified in section 3.2.5.1.

If the request was successful, the requested metadata MUST be returned to the application. The
metadata returned by this command is also returned in the SMB_COM_OPEN response.

3.2.5.9 Receiving an SMB_COM_READ Response

The SMB_COM_READ response MUST be processed as specified in section 3.2.5.1.

If the request is successful, the number of bytes returned is specified in the CountOfBytesReturned
field. The data read from the file are returned in a Data Buffer (see section 2.2.2.5), which also
specifies the number of bytes returned. Both the count of bytes returned and the read bytes

themselves MUST be passed to the application. An end-of-file condition is indicated if the number of
bytes returned is less than the number of bytes requested.

In the event of a STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) error, the server MUST return
a complete SMB_COM_READ response (not an error response). The CountOfBytesReturned field
indicates the number of bytes successfully read.

3.2.5.10 Receiving an SMB_COM_WRITE Response

The SMB_COM_WRITE response MUST be processed as specified in section 3.2.5.1.

If the request is successful, the number of bytes written to the file is returned. This number MUST be
reported to the application.

3.2.5.11 Receiving an SMB_COM_CREATE_TEMPORARY Response

The SMB_COM_CREATE_TEMPORARY Response (section 2.2.4.15.2) MUST be processed as specified in
section 3.2.5.1.

535 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the SMB_COM_CREATE_TEMPORARY was successful, a new Client.Open must be entered into the
Client.Connection.OpenTable. Client.Open.FID is set to the returned FID, and

Client.Open.OpLock is set based on the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags. Client.Open.TreeConnect MUST be set to a Client.TreeConnect

where Client.TreeConnect.TreeID matches the TID sent by the server in the SMB Header of the
SMB_COM_CREATE_TEMPORARY Response. Client.Open.Session MUST be set to a Client.Session
where Client.Session.SessionUID matches the UID sent by the server in the SMB Header of the
SMB_COM_CREATE_TEMPORARY Response. Client.Open.Connection MUST be set to
Client.Open.Session.Connection.

The Client.Open matching the FID provided in the response MUST be returned to the application. In
addition, the name of the temporary file created by the server can be returned to the application, if

requested.

3.2.5.12 Receiving an SMB_COM_CREATE_NEW Response

The SMB_COM_CREATE_NEW response MUST be processed as specified in section 3.2.5.1.

If the SMB_COM_CREATE_NEW was successful, a new Client.Open must be entered into the
Client.Connection.OpenTable. Client.Open.FID is set to the retuned FID, and
Client.Open.OpLock is set based on the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags.

The Client.Open matching the FID provided in the response MUST be returned to the application.

3.2.5.13 Receiving an SMB_COM_SEEK Response

The SMB_COM_SEEK response MUST be processed as specified in section 3.2.5.1.

If the request was successful, the current offset within the specified file is returned. The offset value
MUST be passed to the application. If an error status is returned (see section 2.2.4.19.2 for a list of
possible errors and their causes), the error status MUST be passed to the application.

If the CAP_LARGE_FILES capability has been negotiated, then the client and server support 64-bit file
offsets. The SMB_COM_SEEK command, however, supports only 32-bit offset values. The server MUST
return only the lower order 32 bits of the actual 64-bit offset. If the file is larger than 2 ** 32 - 1
bytes in size, the offset returned by the server MAY be an invalid value.<209>

3.2.5.14 Receiving an SMB_COM_LOCK_AND_READ Response

The SMB_COM_LOCK_AND_READ response MUST be processed as specified in section 3.2.5.1.

If the request is successful, the number of bytes returned is specified in the CountOfBytesReturned
field. The data read from the file are returned in a Data Buffer (see section 2.2.2.5), which also
specifies the number of bytes returned. Both the count of bytes returned and the read bytes
themselves MUST be passed to the application. An end-of-file condition is indicated if the number of
bytes returned is less than the number of bytes requested.

The range of bytes indicated in the corresponding request message is also locked by the application.

3.2.5.15 Receiving an SMB_COM_WRITE_AND_UNLOCK Response

The SMB_COM_WRITE_AND_UNLOCK response MUST be processed as specified in section 3.2.5.1.

If the request is successful, the number of bytes written to the file is returned and the byte range is
unlocked. The number of bytes written MUST be reported to the application.

536 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.16 Receiving an SMB_COM_READ_RAW Response

The SMB_COM_READ_RAW response is a transfer of raw bytes from the server to the client. There is
no SMB header, parameter block, or data block. Therefore, the SMB_COM_READ_RAW response MUST

NOT be processed as specified in section 3.2.5.1. Instead, the client MUST query the SMB transport to
determine the number of bytes received:

 If the request was made to read from a regular file and the number of bytes received is less than
the number requested, then the end of file has been reached.

 If the number of bytes returned is zero, then the read began at or beyond the end of file (for a
regular file) or an error occurred.

It is possible that an OpLock break event on the server can cause the server to send an OpLock Break

Notification request to the client at approximately the same time that the client sends an
SMB_COM_READ_RAW request. If this happens, the OpLock Break Notification request can arrive
before the Raw Read response from the server. In order to avoid confusing the OpLock break with the
Raw Read response, the client MUST perform the following tests:

 If the client currently holds an OpLock on an open file on the server, and

 If the message received is the size of an OpLock Break Notification request (51 bytes), and

 If the first four bytes of the data received are equal to '\x0', 'S', 'M', 'B', and

 If the fifth byte in the data received is equal to the value of SMB_COM_LOCKING_ANDX (0x24),
and

 If the value at the correct offsets for MID is 0xFFFF ((USHORT)(-1)), then

The likelihood that the message received is an OpLock Break Notification request is very high. The
client MAY apply these further tests to minimize the chance of a false positive:

 The SMB_FLAGS_REPLY bit in an OpLock break MUST be clear in the appropriate location for the

SMB_Header.Flags field.

 The NumberOfRequestedUnlocks and NumberOfRequestedLocks fields MUST both be zero in
an OpLock break.

If these conditions are met, the client MUST perform as if it has received an OpLock Break Notification
and MUST process the message accordingly. The server, having received the Raw Read request while
an OpLock break is still outstanding, responds to the Raw Read request by sending a zero-length
response.

After responding to the OpLock break, the client SHOULD use a different READ command to retry the
failed Raw Read request.

3.2.5.17 Receiving an SMB_COM_READ_MPX Response

A single SMB_COM_READ_MPX request can generate multiple response messages. If there is one

SMB_COM_READ_MPX response, it either contains all of the data read from the FID, or it indicates an
error return.

The SMB_COM_READ_MPX response MUST be processed as specified in section 3.2.5.1, with the
exception that the SMB_COM_READ_MPX command is supported only over connectionless transports,
and signing is supported only over connection-oriented transports. Therefore, SMB_COM_READ_MPX
messages are not signed.

The client MUST verify that all of the replies have the same MID, PID, and FID values, indicating that
they are all responses to the same request. The response messages MAY be received in any order, so

537 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

the client MUST use the Offset and DataLength fields to reorder the read data correctly. The client
MUST check the Count field in every response. The lowest Count value received indicates the total

number of bytes that the server returns to the client. When the sum of all DataLength fields is equal
to the lowest Count value received, all replies have been received.

3.2.5.18 Receiving an SMB_COM_WRITE_RAW Response

After sending an SMB_COM_WRITE_RAW request, the client expects one of two possible responses:
an Initial Server Response or a Final Server Response.

 If the client receives a Final Server Response (section 2.2.4.25.3), the command has completed,
possibly with an error. The client MUST extract the Status and Count fields. The client MUST
return the status information and the number of bytes successfully written by the command to the
application. Response processing is then complete.

 If the client receives an Interim Server Response (section 2.2.4.25.2), the command is has been
processed successfully and the server is waiting for the remainder of the data to be sent in raw
mode. The client MUST transfer the remaining data in raw mode (no SMB header, parameters, or

data block) via the SMB transport.

 If WritethroughMode was set in the WriteMode field of the original request, the client MUST
expect a Final Server Response following the Initial Server Response and the transfer of raw data.
The Final Server Response can indicate an error. The client MUST return the status information
and the number of bytes successfully written by the command to the application. Response
processing is then complete.

 If WritethroughMode was not set in the WriteMode field of the original request, then the client

MUST NOT expect a Final Server Response. The client MUST return a status value of Success to
the application, and indicate that all bytes sent were successfully written.

 If an error occurred on the server while writing the raw data, the error MUST be returned on the
next client command request that makes use of the same FID. The client MAY retrieve a pending
error code by sending, for example, a Seek request that seeks to the current file position

(effectively, a null operation).

3.2.5.19 Receiving an SMB_COM_WRITE_MPX Response

Upon receipt of an SMB_COM_WRITE_MPX response, the client MUST compare the ResponseMask
against the RequestMask of each SMB_COM_WRITE_MPX request that was sent as part of the same
exchange. Any request that is not indicated as having been received in the ResponseMask MUST be

resent. The last request to be resent MUST include the same nonzero SequenceNumber that was
previously used in this exchange.

The server MUST send another SMB_COM_WRITE_MPX response upon receipt of the resent request
with the nonzero SequenceNumber. The client MUST compare the ResponseMask against the
RequestMask of each resent SMB_COM_WRITE_MPX request. Again, any request that is not
indicated as having been received in the ResponseMask MUST be resent, and the last resent request
MUST include the nonzero SequenceNumber that was previously used in this exchange. This cycle

continues until an error return is received, or until all of the requests are successfully acknowledged.

If WritethroughMode was not set in the WriteMode field of the request(s), then an error in
processing the command MAY occur after the final SMB_COM_WRITE_MPX response has been sent by
the server. The server MUST return the error on the next client command request that makes use of
the same FID.

If an error response is received in an SMB_COM_WRITE_MPX response, the Write MPX exchange is

concluded and the client MUST inform the application of the error received.

538 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SMB_COM_WRITE_MPX response(s) MUST be processed as specified in section 3.2.5.1 with the
exception that the SMB_COM_WRITE_MPX command is supported only over connectionless transports,

and signing is supported only over connection-oriented transports. Therefore, SMB_COM_WRITE_MPX
messages are not signed.

3.2.5.20 Receiving an SMB_COM_QUERY_INFORMATION2 Response

The SMB_COM_QUERY_INFORMATION2 response MUST be processed as specified in section 3.2.5.1.

If the request is successful, the file attribute information MUST be reported to the application.

3.2.5.21 Receiving an SMB_COM_TRANSACTION Response

The SMB_COM_TRANSACTION Response is processed as described in section 3.2.5.1.4.

3.2.5.22 Receiving an SMB_COM_IOCTL Response

The SMB_COM_IOCTL response MUST be processed as described in section 3.2.5.1.

If the Status field indicates an error, the error MUST be passed to the application. Otherwise, the
SMB_COM_IOCTL MUST be unpacked as described in section 2.2.4.35.2, and the results MUST be
returned to the application. The format of the results of the IOCTL are specific to the platform, device
type, and function called.

3.2.5.23 Receiving an SMB_COM_ECHO Response

The SMB_COM_ECHO response MUST be processed as described in section 3.2.5.1. If no SMB session
has yet been established (no SMB_COM_SESSION_SETUP_ANDX command has been executed) then

Client.Connection.IsSigningActive MUST be FALSE, and the SMB_COM_ECHO response is not
signed.

Any error received as a result of this command MUST be returned to the application (Note, however,

that an error response is a response from the server, which verifies that the connection is still active.)

Multiple responses may be received, each of which MUST be made available to the application. The
application can discard the responses, or count them, or verify that the data returned matches the
data originally transmitted.

3.2.5.24 Receiving an SMB_COM_WRITE_AND_CLOSE Response

The SMB_COM_WRITE_AND_CLOSE Response (section 2.2.4.40.2) MUST be processed as specified in
section 3.2.5.1.

If the request succeeds, the FID sent in the request is no longer valid, and the client MUST discard the
FID. The matching Client.Open entry in the Client.Connection.OpenTable MUST be removed and
discarded.

3.2.5.25 Receiving an SMB_COM_OPEN_ANDX Response

The SMB_COM_OPEN_ANDX Response (section 2.2.4.41.2) MUST be processed as specified in section
3.2.5.1.

If the command fails, the error status MUST be passed to the application.

If the request succeeds, the FID field returned in the SMB_COM_OPEN_ANDX Response MUST be
returned to the application, along with the access mode granted by the server. If an OpLock was
requested, the OpLock status MUST be returned to the application. If the REQ_ATTRIB flag was set in

539 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

the SMB_Parameters.Flags field of the request, the following values MUST be returned to the
application:

 FileAttrs

 LastWriteTime

 FileDataSize

 AccessRights

 ResourceType

 NMPipeStatus

 OpenResult

Other attributes returned in the command can be passed to the application, if requested.

In addition, the FID MUST be used to create new Open entry in the Client.Connection.OpenTable.

If an OpLock was requested, the value of Client.Open.OpLock MUST be set to indicate the type of
OpLock that was granted, if any. The newly-created Client.Open MUST be returned to the application.
Client.Open.TreeConnect MUST be set to Client.Connection.TreeConnectTable[TID], where the
TID matches the TID field sent by the server in the SMB Header (section 2.2.3.1) of the
SMB_COM_OPEN_ANDX Response. Client.Open.Session MUST be set to a Client.Session where
Client.Session.SessionUID matches the UID sent by the server in the SMB Header of the

SMB_COM_OPEN_ANDX Response. Client.Open.Connection MUST be set to
Client.Open.Session.Connection.

3.2.5.26 Receiving an SMB_COM_READ_ANDX Response

The SMB_COM_READ_ANDX response MUST be processed as specified in section 3.2.5.1.

If the Status of the response indicates either success or that a time-out occurred, the client MUST

forward any available data returned in the Data field to the application, along with the number of
bytes returned, as indicated in the DataLength field.

If the application requested it, the client MUST forward the information in the Available field to the
calling application.

In the event of a STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) error, the server MUST return

a complete SMB_COM_READ_ANDX response (not an error response). The DataLength field indicates
the number of bytes successfully read.

3.2.5.27 Receiving an SMB_COM_WRITE_ANDX Response

The SMB_COM_WRITE_ANDX response MUST be processed as specified in section 3.2.5.1.

If the Status of the response indicates either success or that a time-out occurred, the client MUST
return the Status and the number of bytes written to the application.

If the application requested it, the client MUST also forward the information in the Available field to
the calling application.

3.2.5.28 Receiving an SMB_COM_TRANSACTION2 Response

The SMB_COM_TRANSACTION Response MUST be processed as specified in section 3.2.5.1.4.

540 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.29 Receiving an SMB_COM_FIND_CLOSE2 Response

The SMB_COM_FIND_CLOSE2 response MUST be processed as specified in section 3.2.5.1.

If the SMB_COM_FIND_CLOSE2 request succeeds, the SID that was indicated in the SearchHandle

field of the initial request is closed and MUST be discarded. The
Client.Connection.SearchOpenTable entry with a SearchOpen.FindSID matching the closed SID
MUST be removed from Connection.SearchOpenTable and discarded.

3.2.5.30 Receiving an SMB_COM_TREE_DISCONNECT Response

The SMB_COM_TREE_DISCONNECT response MUST be processed as specified in section 3.2.5.1.

If the SMB_COM_TREE_DISCONNECT succeeds, the TID that was indicated in the SMB
Header (section 2.2.3.1) of the initial request is no longer valid and MUST be discarded.

The Client MUST traverse the Client.Connection.OpenTable and remove all Opens for which the
Client.Open.TreeConnect matches the TID in the request. The client MUST also traverse the

Client.Connection.SearchOpenTable and release all SearchOpens for which the

Client.SearchOpen.TreeConnect matches the TID in the request. The client MUST also traverse the
Client.Connection.TreeConnectTable and remove the TreeConnect for which the
Client.TreeConnect matches the TID in the request.

3.2.5.31 Receiving an SMB_COM_LOGOFF_ANDX Response

The SMB_COM_LOGOFF_ANDX Response (section 2.2.4.54.2) MUST be processed as specified in
section 3.2.5.1.

If the SMB_COM_LOGOFF_ANDX (section 2.2.4.54) succeeds, the UID that was indicated in the SMB
Header (section 2.2.3.1) of the initial request is no longer valid and MUST be discarded. The
Client.Session entry for the UID in the Client.Connection.SessionTable MUST be removed.

3.2.5.32 Receiving an SMB_COM_QUERY_INFORMATION_DISK Response

The SMB_COM_QUERY_INFORMATION_DISK response MUST be processed as specified in section
3.2.5.1.

If the command succeeds, the file system attributes in the response MUST be returned to the
application.

3.2.5.33 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Response

The SMB_COM_SEARCH and SMB_COM_FIND response messages MUST be processed as specified in
section 3.2.5.1.

Upon receiving an SMB_COM_SEARCH or SMB_COM_FIND response from the server, the client MUST

determine whether the response indicates success or an error. If an error Status is returned, it MUST
be passed to the application. Otherwise, the client MUST return the number of entries retrieved, as

well as the array of entries.

The application MUST determine whether to issue another request for the next set of entries, if any. If
so, the client MUST create a new Client.SearchOpen and store it in
Client.Connection.SearchOpenTable. If the command is SMB_COM_FIND, the application MUST

determine when to send the SMB_COM_FIND_CLOSE to free the search context.

541 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.34 Receiving an SMB_COM_FIND_UNIQUE Response

The handling of this response is identical to the handling of an SMB_COM_FIND, except that the
search is completed after a single response. It is not possible to continue to search, because no search

context is stored on the server. No SMB_COM_FIND_CLOSE is needed, because it is implied in the
request.

3.2.5.35 Receiving an SMB_COM_NT_TRANSACT Response

The SMB_COM_NT_TRANSACT response MUST be processed as specified in section 3.2.5.1.4.

3.2.5.36 Receiving an SMB_COM_NT_CREATE_ANDX Response

The SMB_COM_NT_CREATE_ANDX Response (section 2.2.4.64.2) MUST be processed as specified in
section 3.2.5.1.

If the command fails, the error status MUST be passed to the application.

If the request succeeds, the FID returned in the SMB_COM_NT_CREATE_ANDX Response MUST be
returned to the application, along with the access mode granted by the server. If an OpLock was
requested, the OpLock status, including the OpLock level granted, MUST be returned to the
application.

Other attributes returned in the command can be passed to the application, if requested.

In addition, the FID MUST be used to create new Open entry in the Client.Connection.OpenTable.

If an OpLock was requested, the value of Client.Open.OpLock MUST be set to indicate the type of
OpLock that was granted, if any. The newly-created Client.Open MUST be returned to the application.
Client.Open.TreeConnect MUST be set to Client.Connection.TreeConnectTable[TID], where the
TID matches the TID field sent by the server in the SMB Header (section 2.2.3.1) of the
SMB_COM_NT_CREATE_ANDX Response. Client.Open.Session MUST be set to a Client.Session
where Client.Session.SessionUID matches the UID sent by the server in the SMB Header of the
SMB_COM_NT_CREATE_ANDX Response. Client.Open.Connection MUST be set to

Client.Open.Session.Connection.

If the open is to a named pipe, Client.Open.NamedPipeMessageMode MUST be initialized to TRUE,
indicating a message mode named pipe.

3.2.5.37 Receiving an SMB_COM_OPEN_PRINT_FILE Response

The SMB_COM_OPEN_PRINT_FILE Response (section 2.2.4.62.2) MUST be processed as specified in
section 3.2.5.1.

If the SMB_COM_OPEN_PRINT_FILE (section 2.2.4.67) command fails, the error status MUST be
passed to the application.

If the request succeeds, the FID returned in the SMB_COM_OPEN_PRINT_FILE Response MUST be
returned to the application. The FID MUST also be used to create a new entry in

Client.Connection.OpenTable. If an OpLock was requested, the value of Client.Open.OpLock
MUST be set to indicate the type of OpLock that was granted, if any. Client.Open.TreeConnect
MUST be set to Client.Connection.TreeConnectTable[TID], where the TID matches the TID field
sent by the server in the SMB Header (section 2.2.3.1) of the SMB_COM_OPEN_PRINT_FILE Response.
Client.Open.Session MUST be set to a Client.Session where Client.Session.SessionUID matches
the UID sent by the server in the SMB Header of the SMB_COM_OPEN_PRINT_FILE Response.

Client.Open.Connection MUST be set to Client.Open.Session.Connection.

The Client.Open matching the FID provided in the response MUST be returned to the application.

542 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.38 Receiving any SMB_COM_TRANSACTION Subcommand Response

SMB_COM_TRANSACTION and SMB_COM_TRANSACTION_SECONDARY provide a transport mechanism
for extended sets of commands, known as subcommands. Transaction subcommand responses MUST

be extracted from the SMB_COM_TRANSACTION final response message or from messages returned
by the server. The use of transactions to transport subcommands is described in sections 3.2.4.1.4
and 3.2.5.1.4.

The client MUST propagate the success or failure code in the SMB_COM_TRANSACTION response to
the application that initiated the call. If additional information is returned by the subcommand, the
handling of that information is described below.

3.2.5.38.1 Receiving a RAP Transaction Response

If the RAP request succeeds, the parameters and data returned in the RAP response MUST be passed
to the application. See [MS-RAP] for RAP request and response information.

3.2.5.38.2 Receiving a TRANS_RAW_READ_NMPIPE Response

Upon receipt of a TRANS_RAW_READ_NMPIPE subcommand response, the client MUST forward the
BytesRead buffer and the number of bytes read from the named pipe to the application. The number

of bytes read (the size of BytesRead) is returned in the TotalDataCount field.

3.2.5.38.3 Receiving a TRANS_QUERY_NMPIPE_STATE Response

If the response indicates that the operation is successful, the client MUST return the information
received in the NMPipeStatus field in the Trans_Parameters block of the response to the
application that initiated the call.

3.2.5.38.4 Receiving a TRANS_QUERY_NMPIPE_INFO Response

If the response indicates that the operation is successful, the client MUST return the information
received in the Trans_Data block of the response to the application that initiated the call.

3.2.5.38.5 Receiving a TRANS_PEEK_NMPIPE Response

Upon receipt of a TRANS_PEEK_NMPIPE subcommand response, the client MUST forward the

ReadData buffer from within the Trans_Data block, along with the number of bytes read from the
named pipe, to the application. The number of bytes read (the size of ReadData) is returned in the
TotalDataCount field.

If the response indicates that the operation is successful, the client MUST return the information
received in the Trans_Parameters block of the response to the application that initiated the call.

3.2.5.38.6 Receiving a TRANS_TRASACT_NMPIPE Response

Upon receipt of a TRANS_TRANSACT_NMPIPE subcommand response, the client MUST forward the
ReadData buffer from within the Trans_Data block, along with the number of bytes read from the
named pipe, to the application. The number of bytes read (the size of ReadData) is returned in the

TotalDataCount field.

In the event of a STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) error, the server MUST return
a complete SMB_COM_TRANSACTION response (not an error response). The TotalDataCount in the
TRANS_TRANSACT_NMPIPE contained in the SMB_COM_TRANSACTION response indicates the number

of bytes successfully read.

3.2.5.38.7 Receiving a TRANS_RAW_WRITE_NMPIPE Response

%5bMS-RAP%5d.pdf

543 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Upon receipt of a TRANS_RAW_WRITE_NMPIPE subcommand response, the client MUST return the
number of bytes successfully written to the calling application. The number of bytes written is

returned in the BytesWritten field in the Trans_Parameters block of the response.

3.2.5.38.8 Receiving a TRANS_READ_NMPIPE Response

Upon receipt of a TRANS_READ_NMPIPE subcommand response, the client MUST forward the
ReadData buffer and the number of bytes read from the named pipe to the application. The number
of bytes read (the size of ReadData) is returned in the TotalDataCount field.

In the event of a STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) error, the server MUST return
a complete SMB_COM_TRANSACTION response (not an error response) indicating that a message was
incompletely read. The TotalDataCount in the TRANS_READ_NMPIPE contained in the

SMB_COM_TRANSACTION response indicates the number of bytes successfully read.

3.2.5.38.9 Receiving a TRANS_WRITE_NMPIPE Response

Upon receipt of a TRANS_WRITE_NMPIPE subcommand response, the client MUST return the number

of bytes successfully written to the calling application. The number bytes written is returned in the
BytesWritten field in the Trans_Parameters block of the response.

3.2.5.38.10 Receiving a TRANS_CALL_NMPIPE Response

Upon receipt of a TRANS_CALL_NMPIPE subcommand response, the client MUST forward the
ReadData buffer from within the Trans_Data block, along with the number of bytes read from the
named pipe, to the application. The number of bytes read (the size of ReadData) is returned in the
TotalDataCount field.

In the event of a STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) error, the server MUST return

a complete SMB_COM_TRANSACTION response (not an error response). The TotalDataCount in the
TRANS_CALL_NMPIPE contained in the SMB_COM_TRANSACTION response indicates the number of
bytes successfully read.

3.2.5.39 Receiving any SMB_COM_TRANSACTION2 Subcommand Response

3.2.5.39.1 Receiving a TRANS2_OPEN2 Response

If the TRANS2_OPEN2 subcommand response indicates an error, the Status MUST be passed to the
application. If the error was caused by an attempt to set extended attribute name/value pairs, the
client MUST also return the ExtendedAttributeErrorOffset returned in the TRANS2_OPEN2
response.

If the Open portion of the request succeeds, the FID returned in the TRANS2_OPEN2 subcommand

response MUST be passed to the application, along with the access modes granted by the server. If an
OpLock was requested, the OpLock level granted MUST be returned to the application.

Other attributes returned in the command can be passed to the application, if requested.

In addition, the FID MUST be used to create new Open entry in the Client.Connection.OpenTable.
If an OpLock was requested, the value of Client.Open.OpLock MUST be set to indicate the type of
OpLock that was granted, if any. The newly-created Client.Open MUST be returned to the application.

Client.Open.TreeConnect MUST be set to Client.Connection.TreeConnectTable[TID], where the
TID matches the TID field sent by the server in the SMB Header (section 2.2.3.1) of the
SMB_COM_TRANSACTION2 Response (section 2.2.4.46.2). Client.Open.Session MUST be set to a
Client.Session where Client.Session.SessionUID matches the UID sent by the server in the SMB
Header of the SMB_COM_TRANSACTION2 Response. Client.Open.Connection MUST be set to
Client.Open.Session.Connection.

544 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.39.2 Receiving a TRANS2_FIND_FIRST2 or TRANS2_FIND_NEXT2 Response

Upon receipt of a TRANS2_FIND_FIRST2 or TRANS2_FIND_NEXT2 subcommand response, the client
MUST forward any errors to the application. If the search succeeds, or if the Status indicates an error

in the processing of the GetExtendedAttributeList in the request, the client MUST determine
whether the search has been closed by the server or is still active.

If the search is still active, the client MUST forward the SID, EndOfSearch, and LastNameOffset
values to the application. Otherwise, the client MUST notify the application that the search has been
closed.

If the search is still active, and the message is a TRANS2_FIND_FIRST2 subcommand response, the
client MUST create a new SearchOpen entry in the Server.Connection.SearchOpenTable to store

the returned SID and the associated TreeConnect.

Whether the search is closed or not, the client MUST also pass the SearchCount value to the
application, along with the list of search entries returned in the Trans2_Data block of the response. If
the value of EaErrorOffset is nonzero and the Status field indicates an error in the processing of the

GetExtendedAttributeList in the request, the client MUST pass the value of EaErrorOffset to the
application.

3.2.5.39.3 Receiving a TRANS2_QUERY_FS_INFORMATION Response

If the response indicates that an error occurred, the client MUST propagate the error to the application
that initiated the call.

If the response indicates that the operation was successful, the client MUST return the information
received in the Trans2_Data block of the response to the application that initiated the call.

3.2.5.39.4 Receiving a TRANS2_QUERY_PATH_INFORMATION or

TRANS2_QUERY_FILE_INFORMATION Response

If the response indicates that an error occurred, the client MUST propagate the error to the application
that initiated the call.

If the response indicates that the operation was successful, the client MUST return the information
received in the Trans2_Data block of the response to the application that initiated the call.

3.2.5.39.5 Receiving a TRANS2_CREATE_DIRECTORY Response

The client MUST propagate the success or failure of the operation to the application that initiated the
call.

If the Status field indicates that an error was generated when setting Extended Attributes on the
directory, and the response message is not an error response, then the creation of the directory was
successful, and MUST be reported as such to the application. In addition, the application MUST be

informed of the failure to set EAs, and the EaErrorOffset MUST be passed back to the application.

3.2.5.39.6 Receiving a TRANS2_GET_DFS_REFERRAL Response

If the Status field indicates success, the contents of the Trans2_Data data block MUST be forwarded
to the DFS subsystem for processing.

3.2.5.40 Receiving any SMB_COM_NT_TRANSACT Subcommand Response

3.2.5.40.1 Receiving an NT_TRANSACT_CREATE Response

545 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the NT_TRANSACT_CREATE (section 2.2.7.1) subcommand response indicates an error, the Status
MUST be passed to the application. If the error was caused by an attempt to set extended attribute

name/value pairs, the client MUST also return the EAErrorOffset returned in the
NT_TRANSACT_CREATE Response.

If the request succeeds, the FID returned in the NT_TRANSACT_CREATE subcommand response MUST
be passed to the application, along with the access modes granted by the server. If an OpLock was
requested, the OpLock level granted MUST be returned to the application.

Other attributes returned in the command can be passed to the application, if requested.

In addition, the FID MUST be used to create new Open entry in the Client.Connection.OpenTable.
If an OpLock was requested, the value of Client.Open.OpLock MUST be set to indicate the type of
OpLock that was granted, if any. The newly-created Client.Open MUST be returned to the application.

Client.Open.TreeConnect MUST be set to Client.Connection.TreeConnectTable[TID], where the
TID matches the TID field sent by the server in the SMB Header (section 2.2.3.1) of the
SMB_COM_NT_TRANSACT Response (section 2.2.4.62.2). Client.Open.Session MUST be set to a
Client.Session where Client.Session.SessionUID matches the UID sent by the server in the SMB

Header of the SMB_COM_NT_TRANSACT Response. Client.Open.Connection MUST be set to
Client.Open.Session.Connection.

3.2.5.40.2 Receiving an NT_TRANSACT_IOCTL Response

If the response indicates that an error occurred, the client MUST propagate the error to the application
that initiated the call. The response MAY be a complete NT_TRANSACT_IOCTL response, including the
results of the IOCTL call that generated the error.

In any case, the client MUST return the information received in the NT_Trans_Data.Data block of
the response to the application that initiated the call. The application MUST interpret the results of the

IOCTL call. CIFS does not specify IOCTL functions; IOCTLs are platform-, device-, and
implementation-specific.

3.2.5.40.3 Receiving an NT_TRANSACT_NOTIFY_CHANGE Response

If the response to an NT_TRANSACT_NOTIFY_CHANGE request is either a status of
STATUS_NOTIFY_ENUM_DIR (ERRDOS/ERR_NOTIFY_ENUM_DIR) or success with no changed files
listed, the server indicates that it is unable to report changes that MAY have occurred within the

directory. If the client requires knowledge of the state of the directory, it MUST enumerate the
directory entries to re-establish that knowledge.

Any other error response MUST be passed to the application that initiated the call. If the subcommand
is successful, the list of changed directory entries MUST be returned to the application.

3.2.5.40.4 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Response

If the response indicates success, the security descriptors returned MUST be passed to the application

that initiated the call. If the response indicates that an error occurred, the client MUST propagate the
error to the application.

3.2.5.41 Receiving any OpLock Grant

If an open or create command response is received that indicates that an OpLock has been granted,
the client MUST update the Client.Open.OpLock state variable to indicate the type of OpLock
granted. The client can then cache file operations on the FID, as described in [FSBO].

http://go.microsoft.com/fwlink/?LinkId=140636

546 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.2.5.42 Receiving an OpLock Break Notification

If an SMB_COM_LOCKING_ANDX request is received from the server, this indicates that the server
has sent an OpLock Break Notification. This is the only event in which a client receives a request from

the server. This message MUST be processed as specified in section 3.2.5.1, except that OpLock Break
Notification messages are never signed.

If no entry in the Client.Connection.OpenTable state variable matches the FID supplied in the
request, the request is ignored by the client. Otherwise:

 The client MUST use the SMB_Parameters.NewOpLockLevel field to determine the type of
OpLock now in effect:

 If NewOpLockLevel is 0x00, the client no longer possesses an OpLock on the file and the

value of Client.Open.OpLock MUST be set to None.

 If NewOpLockLevel is 0x01, a Level II OpLock is now in effect and the value of
Client.Open.OpLock MUST be set to Level II.

 If the client previously held an exclusive or batch OpLock on the file, the client MUST flush any
dirty buffers by sending write requests to the server to write changed data to the file.

 If the client no longer requires access to the file, the client MAY close the file. (This is common if a

batch OpLock is held on the file, the application has closed the file, and the client has cached the
application's file close request.) Closing the file is sufficient to acknowledge the OpLock break.

 If the client requires continued access to the file, it MUST obtain any cached byte-range locks. This
is done by sending a lock request to the server.

 The client MUST acknowledge the OpLock Break by sending an OpLock Break Request message to
the server. This is done by constructing an SMB_COM_LOCKING_ANDX request with the
OPLOCK_RELEASE flag set in the TypeOfLock field. The NumberofRequestedUnlocks field

MUST be set to 0x0000. The client MAY use the OpLock Break Request message to request byte-
range locks, thus combining this step with the previous step. The OpLock Break Request message

is a special case of an SMB_COM_LOCKING_ANDX request used to acknowledge the OpLock Break
Notification sent by the server.

In summary, upon receipt of an OpLock Break Notification from the server, the client MUST either:

 Close the file, or

 Write any unwritten data to the file, obtain any required byte-range locks, and acknowledge the

OpLock Break by sending an OpLock Break Request message, which is an
SMB_COM_LOCKING_ANDX request with the OPLOCK_RELEASE flag set.

All messages sent to the server in response to the OpLock Break Notification MUST be sent as
described in the appropriate section. For example, the OpLock Break Request message must be sent
as described in section 3.2.4.16.

3.2.5.43 Receiving a STATUS_PATH_NOT_COVERED (ERRSRV/ERRbadpath) Error

for an Object in DFS

In response to any command request that uses a pathname, the receipt of this error indicates that the
server's DFS subsystem does not cover the part of the DFS namespace needed to resolve a DFS path

in the request.

If a DFS subsystem is present, on receiving this error the client MUST report the error to the DFS
subsystem.

547 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If no DFS subsystem is present, the client MUST report the error to the calling application that
initiated the request.

3.2.6 Timer Events

3.2.6.1 Request Expiration Timer Event

When the Request Expiration Timer (section 3.2.2.1) expires, the client MUST walk the outstanding
commands in Client.Connection.PIDMIDList for any pending commands that have exceeded
Client.SessionTimeoutValue. If a command has exceeded Client.SessionTimeoutValue,<210>
the client SHOULD<211> close the connection to the server, and all resources associated with the
connection MUST be freed, as specified in section 3.2.7.1.

The NT_TRANSACT_NOTIFY_CHANGE (section 2.2.7.4) subcommand MUST be exempt.

The following commands are exempt from the Request Expiration Timer:

 The NT_TRANSACT_NOTIFY_CHANGE (section 2.2.7.4) subcommand

 Read and write commands issued on an Open to a named pipe via the following commands:

 SMB_COM_READ (section 2.2.4.11)

 SMB_COM_WRITE (section 2.2.4.12)

 SMB_COM_READ_ANDX (section 2.2.4.42)

 SMB_COM_WRITE_ANDX (section 2.2.4.43)

 SMB_COM_WRITE_AND_CLOSE (section 2.2.4.40)

 TRANS_READ_NMPIPE (section 2.2.5.8) subcommand

 TRANS_WRITE_NMPIPE (section 2.2.5.9) subcommand

 TRANS_RAW_READ_NMPIPE (section 2.2.5.2) subcommand

 TRANS_TRANSACT_NMPIPE (section 2.2.5.6) subcommand

 TRANS_RAW_WRITE_NMPIPE (section 2.2.5.7) subcommand

 TRANS_CALL_NMPIPE (section 2.2.5.11) subcommand

 TRANS_WAIT_NMPIPE (section 2.2.5.10) subcommand

 SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1) with the Timeout field set to a nonzero
value

3.2.7 Other Local Events

3.2.7.1 Handling a Transport Disconnect

When the transport indicates a disconnection, the client MUST walk through the PIDMIDList and
return an error for each outstanding command to the calling application. All resources associated with
the connection in Client.ConnectionTable MUST be freed. Finally, the connection MUST be freed.

548 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3 Server Details

3.3.1 Abstract Data Model

This section specifies a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the
protocol behaves. This document does not mandate that implementations adhere to this model as long
as their external behavior is consistent with what is described in this document. This data model
requires elements to be synchronized with the Server Service Remote Protocol [MS-SRVS]. An

implementation that uses this data model should observe atomicity requirements in order that the
protocols always maintain an identical view of the common data.

All ADM elements maintained by the server are prefixed with "Server".

3.3.1.1 Global

The following ADM elements are globally maintained for an individual server:

Server.Enabled: A Boolean that indicates whether the CIFS server is accepting incoming connections
or requests.

Server.Paused: A Boolean that indicates whether the CIFS server is in a paused state.

Server.Statistics: Server statistical information. This contains all the members of the
STAT_SERVER_0 ([MS-SRVS] section 2.2.4.39) structure.

Server.AutodisconnectTimeout: The idle session disconnect time-out in minutes.

Server.SupportDialects: A list of server-supported dialect identifiers in order of preference from
least to most preferred.

Server.Capabilities: The set of Capabilities (as described in section 1.7 and defined in section
2.2.4.52.2) supported by the server.

Server.ConnectionTable: A list of SMB connections, as defined in section 3.3.1.3. The list MUST
allow lookups based upon Server.Connection.ClientName.

Server.EnableOplock: A Boolean value that indicates whether a server supports OpLocks.

Server.GuestOkay: A Boolean value that indicates whether or not a guest authentication is allowed if
user-level authentication fails. If Server.ShareLevelAuthentication is TRUE,
Server.GuestOkay MUST be FALSE.

Server.LMAuthenticationPolicy: A state that determines the LAN Manager challenge/response
authentication mechanism to be used. The following options are available:

 Disabled: LAN Manager and LAN Manager v2 challenge/response authentication (LM & LMv2)
are disabled.

The server MUST NOT test the LM or LMv2 response, if any, sent by the client.

 V1-Enabled: LAN Manager challenge/response authentication (LM) is enabled.

The server MUST use the LM response algorithm to test the response sent in the
OEMPassword field of the SMB_COM_SESSION_SETUP_ANDX request received from the
client.

 V2-Enabled: LAN Manager v2 challenge/response authentication (LMv2) is enabled.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

549 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server MUST use the LMv2 algorithm to test the response sent in the OEMPassword
field of the SMB_COM_SESSION_SETUP_ANDX request received from the client.

 Enabled: LAN Manager v1 and v2 challenge/response authentication is enabled.

The server MUST use the LMv2 algorithm to test the response sent in the OEMPassword

field of the SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1) received from
the client. If the LMv2 response does not match the client response, the server MUST use
the LM response algorithm to test the response sent in the OEMPassword field of the
SMB_COM_SESSION_SETUP_ANDX Request received from the client.

Server.MaxBufferSize: The size, in bytes, of the largest SMB message that the server can receive.

Server.MaxMpxCount: The maximum number of outstanding commands that each client is allowed
to have at any given time.

Server.MaxVcNumber: The maximum number of virtual circuits that can be established between the
client and the server as part of the same session.

Server.MaxRawSize: The maximum raw buffer size, in bytes, available on the server.

Server.MessageSigningPolicy: A state that determines whether this node signs messages. This
parameter has four possible values:

 Required: Message signing is required. Any connection to a node that does not use signing

MUST be disconnected.

 Enabled: Message signing is enabled. If the other node enables or requires signing, it MUST
be used.<212>

 Optional: Message signing is disabled unless the other party requires it. If the other party
requires message signing, it MUST be used. Otherwise, message signing MUST NOT be used.

 Disabled: Message signing is disabled. Message signing MUST NOT be used.

Server.NTLMAuthenticationPolicy: A state that determines the NT LAN Manager

challenge/response authentication mechanism to be used. The following options are available:

 Disabled: NT LAN Manager and NT LAN Manager v2 challenge/response authentication (NTLM
and NTLMv2) are disabled.

The server MUST NOT test the NTLM or NTLMv2 response, if any, sent by the client.

 V1-Enabled: NT LAN Manager challenge/response authentication (NTLM) is enabled.

The server MUST use the NTLM response algorithm to test the response sent in the
UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX request received from

the client.

 V2-Enabled: NT LAN Manager v2 challenge/response authentication (NTLMv2) is enabled.

The server MUST use the NTLMv2 algorithm to test the response sent in the
UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX Request received from
the client.

 Enabled: NT LAN Manager v1 and v2 challenge/response authentication is enabled.

The server MUST use the NTLMv2 algorithm to test the response sent in the
UnicodePassword field of the SMB_COM_SESSION_SETUP_ANDX request received from
the client. If the NTLMv2 response does not match the client response, the server MUST use

550 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

the NTLM response algorithm to test the response sent in the OEMPassword field of the
SMB_COM_SESSION_SETUP_ANDX request received from the client.

Server.OplockTimeout: The maximum OpLock break time-out in seconds.

If Server.PlaintextAuthenticationPolicy is set to Required, Server.LMAuthenticationPolicy

and Server.NTLMAuthenticationPolicy MUST be Disabled.

If Server.LMAuthenticationPolicy, Server.NTLMAuthenticationPolicy, and
Server.PlaintextAuthenticationPolicy are all Disabled, then no authentication is possible.

Server.PlaintextAuthenticationPolicy: A state that determines whether plaintext authentication is
permitted or required. The following options are available:

 Disabled: Plaintext authentication disabled.

The server does support challenge/response authentication. Plaintext authentication from

the client is denied.

 Enabled: Plaintext authentication enabled.

The server does support challenge/response authentication. Plaintext authentication from
the client is permitted.

 Required: Plaintext authentication required.

The server does not support challenge/response authentication. The server MUST indicate

support for challenge/response authentication using the 0x02 flag bit of the SecurityMode
field sent in the SMB_COM_NEGOTIATE Response (section 2.2.4.52.2).

Server.ShareLevelAuthentication: A Boolean that indicates whether Share-level or User-level
authentication is supported. If this is TRUE, Share-level authentication MUST be used.

Server.ShareTable: A list of available shares that are present on this server indexed by the share
name, as specified in section 3.3.1.2.

Server.SrvMaxSessionTableSize: The maximum size of the session table that maintains the list of

all SMB sessions per connection.

Server.SrvSearchMaxTimeout: The unused open search time-out in seconds.

Server.MaxSearches: The maximum number of outstanding open searches allowed on a connection.

3.3.1.2 Per Share

Server.Share: A share that is available on the server. The following ADM elements are maintained for
each share offered by a server:

Server.Share.LocalPath: A path that describes the local resource that is being shared. This MUST be
a store that either provides named pipe functionality, or a device or a volume that offers storage
and/or retrieval of files. In the case of the latter, it can be a device that accepts a file and then

processes it in some format, such as a printer.<213>

Server.Share.OptionalSupport: The optional support bits for the share. See the description of the
OptionalSupport field in the SMB_COM_TREE_CONNECT_ANDX Response (section 2.2.4.55.2)
for information on the defined bit flags.

Server.Share.ServerName: A local server name to which a shared resource attaches.

551 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.Share.Type: The type of share. The Service field in the SMB_COM_TREE_CONNECT_ANDX
Response (section 2.2.4.55.2) is matched against this element. The list of possible values is as

follows:

 Disk -- Share is a disk share.

 Named Pipe -- Share is a named pipe.

 Printer -- Share is a printer share.

 Comm -- Share is a serial communications device.

Server.Share.Name: A name for the shared resource on this server.

Share.FileSecurity: An authorization policy of type SECURITY_DESCRIPTOR ([MS-DTYP] section
2.4.6), such as an access control list that describes what actions users that connect to this share
are allowed to perform on the shared resource.<214> If the value of this ADM element is NULL,

no access limits are enforced.

Server.Share.Remark: A pointer to a null-terminated Unicode UTF-16 string that specifies an
optional comment about the shared resource.

Server.Share.MaxUses: The value indicates the maximum number of concurrent connections that
the shared resource can accommodate.

Server.Share.CurrentUses: The value indicates the number of current tree connects to the shared

resource.

3.3.1.3 Per SMB Connection

Server.Connection: An established SMB connection between the client and the server. The following
ADM elements are maintained for each SMB connection established to a server:

Server.Connection.ClientCapabilities: The Capabilities flags of the client, as specified in the

description of the SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1).

Server.Connection.ClientMaxBufferSize: The negotiated maximum size, in bytes, for SMB
messages sent to the client. This limit applies to all SMB messages sent to the client unless
otherwise specified for a particular message type.

Server.Connection.MaxMpxCount: The negotiated maximum number of outstanding commands

that a given connection can have. This value MUST be less than or equal to
Server.MaxMpxCount.

Server.Connection.ClientName: A client identifier. For NetBIOS-based transports, this is the
NetBIOS name of the client. For other transports, this is a transport-specific identifier that
provides a unique name or address for the client.

Server.Connection.ConnectionlessSessionID: Used only if the underlying transport is
connectionless. This is a 16-bit unsigned SMB Connection identifier: a server-unique identifier for

the connection between the client and the server.

Server.Connection.FileOpenTable: A list of open files, as specified in section 3.3.1.7. This list MUST
allow lookup by file handle (FID), and each FID MUST be unique within the connection.

 Each entry MUST include the process identifier (PID) of the process that opened or created the FID
so that all files opened by a specified PID can be listed.

 Each entry MUST include the Tree Connect ID (TID) used to open the file, so that all files opened
within a specified TID can be listed.

%5bMS-DTYP%5d.pdf

552 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Each entry MUST include the user ID (UID) used to open the file, so that all files opened by a
specified UID can be listed.

 If an OpLock has been granted on a particular FID, the entry MUST include the type of OpLock
granted.

Server.Connection.IdleTime: The time that the connection received its most recent request.

Server.Connection.IsSigningActive: A Boolean that indicates whether or not message signing is
active for this SMB connection.

Server.Connection.NativeLanMan: A string that represents the native LAN manager type of the
client, as reported by the client.

Server.Connection.NativeOS: A string that represents the native operating system of the CIFS
client, as reported by the client.

Server.Connection.NTLMChallenge: A byte array containing the cryptographic challenge sent to
the client during protocol negotiation. The challenge is sent in the SMB_COM_NEGOTIATE

Response (section 2.2.4.52.2).

Server.Connection.OpLockSupport: A Boolean value that indicates whether or not the server
supports granting OpLocks on this connection.

Server.Connection.PendingRequestTable: A list of command requests, as specified in section

3.3.1.4, that are currently being processed by the server. This list is indexed on a combination of
the UID, TID, PID, and MID. If the transport is connectionless, the entry SHOULD<215> include
the Connection.ConnectionlessSessionID (CID). For each command request that is sent to the
object store, the server MUST store Server.SMBRequest.CancelRequestID into
Server.Connection.PendingRequestTable.

Server.Connection.SearchOpenTable: A list of open searches. It MUST be possible to list all
searches by:

 A specified Search ID (SID),

 The PID that opened the search,

 The UID that opened the search,

 The TID within which the search is taking place,

 or by a combination of UID, TID, PID, MID, and ResumeKey.

Server.Connection.SelectedDialect: A variable that stores the SMB Protocol dialect selected for use
on this connection. Details of dialects prior to NT LAN Manager ("NT LM 0.12") are described in

other documents. See the table in section 1.7 for a list of dialects and implementation references.

Server.Connection.ServerNextReceiveSequenceNumber: A sequence number for the next signed
request being received.

Server.Connection.ServerSendSequenceNumber: A list of the expected sequence numbers for
the responses of outstanding signed requests, indexed by PID/MID pair.

Server.Connection.SessionKey: A token generated by the server for each SMB connection.

Server.Connection.SessionSetupReceived: A Boolean value that indicates whether the server has
received an SMB_COM_SESSION_SETUP_ANDX Request on this SMB connection.

553 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.Connection.SessionTable: A table that maintains the list of all SMB sessions. The table
MUST allow lookup by either the UID of the session or the security context of the user that

established the session.

Server.Connection.SigningChallengeResponse: A variable-length byte array containing the

challenge response to use for signing, if signing is active. If SMB signing is activated on the
connection (Server.Connection.IsSigningActive becomes TRUE), the client response to the
server challenge from the first non-null, non-guest session is used for signing all traffic on the
SMB connection. The Server.Connection.SigningChallengeResponse is set to one of several
possible values:

 Empty -- If Server.Connection.IsSigningActive is FALSE, no connection signing challenge
response is used.

 LM or LMv2 response -- The response passed from client to server in the OEMPassword field of
the SMB_COM_SESSION_SETUP_ANDX Request.

 NTLM or NTLMv2 response -- The response passed from client to server in the UnicodePassword

field of the SMB_COM_SESSION_SETUP_ANDX Request.

Server.Connection.SigningSessionKey: A variable-length byte array containing the session key
that is used for signing packets, if signing is active.

If SMB signing is activated on the connection (Server.Connection.IsSigningActive becomes
TRUE), the session key from the first non-null, non-guest session is used for signing all traffic on
the SMB connection. The Server.Connection.SigningSessionKey is set to one of three values:

 Empty -- If Server.Connection.IsSigningActive is FALSE, no connection signing session
key is used.

 LM Session Key -- The LM hash, generated from the user's password using the LMOWFv1()
function defined in [MS-NLMP] section 3.3.1.

 NT Session Key -- The NTLM hash, generated from the user's password using the NTOWFv1()
function defined in [MS-NLMP] section 3.3.1.

Server.Connection.TreeConnectTable: A list of the tree connects over this SMB connection
established to shares on the server, containing the TID for the tree connect and the UID of the
user that established the Tree Connect, as well as the share service type returned in the
SMB_COM_TREE_CONNECT Response (section 2.2.4.50.2) or the
SMB_COM_TREE_CONNECT_ANDX Response (section 2.2.4.55.2).See the description of the

Service field in the SMB_COM_TREE_CONNECT_ANDX Response for information on the permitted
values. It MUST be possible to look up entries by either the TID or the UID.

Server.Connection.TransportName: An implementation-specific name of the transport used by this
connection.

Server.Connection.CreationTime: The time at which at the connection was established.

3.3.1.4 Per Pending SMB Command

Server.SMBRequest: A pending SMB command request on the server. The following ADM elements
are maintained for each pending SMB command request on a server:

Server.SMBRequest.ConnectionlessSessionID: If a connectionless transport is in use, this is the
value of the CID field in the SecurityFeatures field from the SMB Header (section 2.2.3.1) of the

client request.

Server.SMBRequest.MID: The value of the MID from the SMB Header of the client request.

%5bMS-NLMP%5d.pdf

554 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.SMBRequest.PID: The value of the PID from the SMB Header of the client request.

Server.SMBRequest.TID: The value of the TID from the SMB Header of the client request.

Server.SMBRequest.UID: The value of the UID from the SMB Header of the client request.

Server.SMBRequest.CancelRequestID: An implementation-dependent identifier of type HANDLE

generated by the server to support cancellation of pending requests that are sent to the object
store. The identifier MUST uniquely identify this Server.SMBRequest ADM element among all
requests currently being processed by the server.

3.3.1.5 Per SMB Session

Server.Session: An established session between the client and server. The following ADM elements
are maintained for each SMB session established to a server:

Server.Session.Connection: The SMB connection associated with this session.

Server.Session.IsAnonymous: A Boolean that, if set, indicates that the session is for an anonymous
user.

Server.Session.SessionKey: The session key associated with this session, as obtained from the

authentication packages after successful authentication.

Session.UID: The 2-byte UID for this session, representing the user that established the session.
The UID is returned by the server in the SMB Header (section 2.2.3.1) of the session setup
response. All subsequent SMB requests from the client for this user on this connection MUST use
this UID.

There can be multiple UIDs generated per SMB connection, each representing a unique user.

Server.Session.UserSecurityContext: The security context of the user that established the session,

as obtained from the authentication subsystem after successful authentication.

Server.Session.SessionGlobalId: A numeric 32-bit value obtained by registration with the Server
Service Remote Protocol.

Server.Session.CreationTime: The time that the session was established.

Server.Session.IdleTime: The time that the session processed its most recent request.

Server.Session.UserName: The name of the user who established the session.

3.3.1.6 Per Tree Connect

Server.TreeConnect: An established tree connect between the client and the share on the server.
The following ADM elements are maintained for each tree connect established to a share on a
server:

Server.TreeConnect.Share: A reference to the Share (section 3.3.1.2) to which this TreeConnect

connects.

Server.TreeConnect.TID: A numeric value that uniquely identifies a tree connect represented as a
16-bit TID in the SMB Header (section 2.2.3.1).

Server.TreeConnect.Session: A pointer to the authenticated session that established this tree
connect.

Server.TreeConnect.OpenCount: A numeric value that indicates the number of files that are

currently opened on TreeConnect.

555 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.TreeConnect.TreeGlobalId: A numeric value obtained by registration with the Server
Service Remote Protocol.

Server.TreeConnect.CreationTime: The time that the tree connect was established.

3.3.1.7 Per Unique Open

Server.Open: A file or named pipe on the server opened through the established
Server.TreeConnect. The following ADM elements are maintained for each open on a server
held by a client:

Server.Open.Connection: The SMB connection associated with this open.

Server.Open.Locks: A list of byte-range locks on this open. Each entry MUST include the PID that
created the lock. Each entry MUST indicate whether it is a shared (read-only) or an exclusive
(read-write) lock. Each entry MUST also indicate if it is using 32- or 64-bit file offsets and MUST be
accordingly formatted as either LOCKING_ANDX_RANGE32 or LOCKING_ANDX_RANGE64.

Server.Open.OpLock: An element indicating the type of OpLock, if any, that has been granted on
this open. This value MUST be one of None, Exclusive, Batch, or Level II.

Server.Open.OplockState: The current Oplock state of the Open. This value MUST be Held,
Breaking, or None.

Server.Open.OplockTimeout: The time value that indicates when an Oplock that is breaking and
has not received an acknowledgment from the client will be acknowledged by the server.

Server.Open.PathName: A variable-length string that contains the Unicode path name on which the
open is performed.

Server.Open.Session: The SMB session associated with this open. SMB sessions are identified by

UID, as described in section 2.2.1.6.8.

Server.Open.FID: The unique (per-connection) 16-bit FID identifying this open, as described in

section 2.2.1.6.1. The FID MUST be unique on this connection.

Server.Open.PID: The unique (per connection) 32-bit PID provided in the client request that created
this open. The PID is described in section 2.2.1.6.3.

Server.Open.TreeConnect: The tree connect associated with this open. Tree connects are identified

by TID, as described in section 2.2.1.6.7.

Server.Open.FileGlobalId: A numeric value obtained by registration with the Server Service Remote
Protocol.

Server.Open.GrantedAccess: The access granted on this open.

Server.Open.MpxMask: The accumulated mask value from all successfully received
SMB_COM_WRITE_MPX Requests (section 2.2.4.26.1) on this open.

3.3.1.8 Per Unique Open Search

Server.SearchOpen: A search operation that is being performed through the established
Server.TreeConnect. The following ADM elements are maintained for each search request to a
server held open by a client:

Server.SearchOpen.FindSID: The Search ID (SID) associated with the SearchOpen.

Server.SearchOpen.PathName: A variable-length string that contains the full directory path
(relative to the share path) being searched.

556 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.SearchOpen.MID: The Multiplex ID (MID) of the client process that opened the search.

Server.SearchOpen.PID: The Process ID (PID) of the client process that opened the search.

Server.SearchOpen.TID: The TreeConnect ID (TID) of the tree connect within which the search
takes place.

Server.SearchOpen.UID: The Session identified by the User ID (UID) that initiated the search.

3.3.2 Timers

3.3.2.1 OpLock Break Acknowledgment Timer

This timer controls the amount of time that the server waits for an OpLock break acknowledgment
from the client after sending an OpLock break request to the client. The server MUST wait for an
interval of time greater than or equal to the OpLock break acknowledgment timer.<216>

3.3.2.2 Idle Connection Timer

This timer controls the amount of time that a session can be idle before the server disconnects the
session. An idle session is one on which no open handles exist (no open files, directories, search
contexts, etc.), and no operations have been issued within an implementation-specific period of
time.<217>

3.3.2.3 Unused Open Search Timer

This optional timer controls the amount of time that an open search can stay unused before the server
closes the open search context.

3.3.2.4 Unused Connection Timer

This timer controls the amount of time that a connection can stay unused; that is, without a session
ever established, before the server closes it. The server MUST schedule this timer periodically with an
implementation-specific interval.

3.3.3 Initialization

When the CIFS server is started, the following values MUST be initialized:

 Server.Enabled MUST be set to FALSE.

 Server.Paused MUST be set to FALSE.

 All of the members in the Server.Statistics ADM element MUST be set to zero.

 Server.ShareLevelAuthentication MUST be set based on system policy and implementation
capabilities.<218>

 Server.SupportDialects MUST be set to the list of dialects identifiers that the server supports,
presented in section 1.7.<219>

 Values for Server.PlaintextAuthenticationPolicy, Server.LMAuthenticationPolicy, and

Server.NTLMAuthenticationPolicy MUST be set based on system policy and implementation
capabilities, and MUST be one of the possible values listed in Server Global (section
3.3.1.1).<220>

 Server.ConnectionTable MUST be initialized to an empty list.

557 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Server.ShareTable SHOULD be initialized to an empty list.

 Server.MaxBufferSize MUST be initialized based on local policy or implementation configuration.

Server.MaxBufferSize MUST have a minimum value of 1024 (0x00000400) bytes
(1Kbyte).<221>

 Server.MaxMpxCount MUST be initialized based on local policy or implementation
configuration.<222>

 Server.MessageSigningPolicy MUST be initialized based on local policy or implementation
capabilities and configuration.<223>

 Server.AutodisconnectTimeout MUST be set to zero.

 Server.MaxVcNumber MUST be set to zero.

 Server.MaxRawSize MUST be initialized based on local policy or implementation

configuration.<224>

 Server.OplockTimeout MUST be set to zero.

 Server.EnableOplock MUST be set to FALSE.

 Server.SrvSearchMaxTimeout MUST be set to zero.

 Server.SrvMaxSessionTableSize MUST be set to zero.

 Server.MaxSearches MUST be initialized based on local policy or implementation

configuration.<225>

The CIFS server MUST notify the server service that initialization is complete by invoking the Server
Notifies Completion of Initialization ([MS-SRVS] section 3.1.6.14) event, providing the string "CIFS" as
the input parameter.

3.3.4 Higher-Layer Triggered Events

3.3.4.1 Sending Any Message

This event is invoked within the SMB server itself for processing each request. It is not exposed

externally.

The caller provides the following:

 Connection: The SMB connection on which the response is to be sent.

 Payload: The payload to be sent, including the SMB Header (section 2.2.3.1).

Unless otherwise noted, the server MUST NOT send any message that exceeds the limit set by
Server.Connection.ClientMaxBufferSize.

If the message is an error reply or any other message that indicates the completion of a command,

the server MUST remove the corresponding entry, if any, from the
Server.Connection.PendingRequestTable.

Unless otherwise specified, the server MUST return both the client-supplied PID and MID to the client
in any response to a client request.

The SMB_FLAGS_REPLY bit in the SMB Header MUST be set, unless the message is an OpLock Break
Notification request initiated by the server.

%5bMS-SRVS%5d.pdf

558 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the server sends a message to the client, and signing is active for the SMB connection, the message
MUST be signed, as specified in section 3.1.4.1, by providing the sequence number in

Server.Connection.ServerSendSequenceNumber[PID,MID]. The sequence number is calculated
and populated into the table Server.Connection.ServerSendSequenceNumber, as specified in

section 3.3.5.2. OpLock Break Notification messages are exempt from signing.

If signing is not active, the SecuritySignature field of the SMB Header for all messages sent, except
the SMB_COM_SESSION_SETUP_ANDX Response (section 2.2.4.53.2), MUST be set to
0x0000000000000000. For the SMB_COM_SESSION_SETUP_ANDX Response, the SecuritySignature
field of the SMB Header SHOULD<226> be set to the SecuritySignature received in the
SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1).

For every outgoing message, the server MUST calculate the total number of bytes in the message and

MUST update the values of Server.Statistics.sts0_bytessent_low and
Server.Statistics.sts0_bytessent_high.

3.3.4.1.1 Processing Options

The server MUST set the SMB_Header.Flags2 field of the response equal to the
SMB_Header.Flags2 value received in the request. These flags are described in section 2.2.3.1.

The server SHOULD set the SMB_Header.Reserved field to 0x0000.<227>

3.3.4.1.2 Sending Any Error Response Message

In response to an error in the processing of any SMB request, the CIFS server MUST return the
correct response message for the request as specified in the command definition in section 2.2.4. The
error code MUST be placed into the SMB_Header.Status field. If the use of NT Status codes has
been negotiated, the error code MUST be a 32-bit NTSTATUS code. Otherwise, the error code MUST be

an SMBSTATUS code.<228>

Unless otherwise specified, all response messages that indicate an error MUST include:

 The command code of the request that generated the error.

 The UID, TID, PID, MID, and (if a connectionless transport is in use) CID of the request.

 No parameters and no data; that is, SMB_Parameters.WordCount = 0x00 and
SMB_Data.ByteCount = 0x0000.

This format is referred to as an "error response" message.

The error response message format MUST be used unless otherwise specified.

If the client request is part of an AndX chain, processing of the AndX request chain terminates with
the request that generated the error. The error response MUST be the last response in the returned
AndX chain.

3.3.4.2 Object Store Indicates an OpLock Break

The underlying object store indicates an OpLock break to the SMB server by providing the following
(see [MS-FSA] and [FSBO]):

 Server.Open: The open on which the OpLock is being broken.

 NewOpLockLevel: The level to which the OpLock was broken.

 AcknowledgementRequired: A Boolean indicating whether the underlying object store needs an

acknowledgement to complete the OpLock break.

%5bMS-FSA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140636

559 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 ReturnStatus: The status code indicating the reason for the break.

If ReturnStatus is STATUS_SUCCESS, the server MUST notify the client identified by

Server.Open.Connection by sending an asynchronous OpLock Break Notification message to the
client as described later in this section. Otherwise, the OpLock break MUST be ignored.

The server MUST construct an SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1) and initialize
the fields as follows:

 The server MUST set the OPLOCK_RELEASE flag in the TypeOfLock field to indicate to the client
that the OpLock is being broken.

 The server MUST set the NewOpLockLevel field to the value returned by the underlying object
store <229> to indicate the type of OpLock now in effect for the Server.Open. A value of 0
indicates that no OpLock is now held; 1 indicates that a Level II OpLock is now held.

 The server SHOULD<230> set the Timeout, NumberOfUnlocks, NumberofLocks, and
ByteCount fields to zero.

The server MUST send an SMB_COM_LOCKING_ANDX Request to the client.

If AcknowledgementRequired is TRUE, the server MUST start an OpLock Break Acknowledgment
Timer (section 3.3.2.1) to fire in Server.OplockTimeout seconds if the timer is not already active,
MUST set Server.Open.OplockState to Breaking, and MUST set Server.Open.OplockTimeout to

the current time plus Server.OplockTimeout.

If AcknowledgementRequired is FALSE, the server MUST set Server.Open.OplockState to None.

Refer to section 3.2.5.42 for details on how the client processes an OpLock break notification.

Refer to section 3.3.5.30 for details on how a server responds to an OpLock break acknowledgment
from the client.

3.3.4.3 DFS Subsystem Notifies That It Is Active

If the DFS subsystem is available to the CIFS server, it MUST notify the server. The server SHOULD
then set the CAP_DFS flag in Server.Capabilities. After this event, the server is able to set the
CAP_DFS flag in the Capabilities field of an SMB_COM_NEGOTIATE
Response (section 2.2.4.52.2).<231>

3.3.4.4 DFS Subsystem Notifies That a Share Is a DFS Share

If the DFS subsystem claims a share as part of the DFS namespace, it MUST notify the CIFS server via
this event. In response to this event, the CIFS server MUST set the SMB_SHARE_IS_IN_DFS bit in the
Server.Share OptionalSupport attribute of the share.

3.3.4.5 DFS Subsystem Notifies That a Share Is Not a DFS Share

If the DFS subsystem removes its claim for a share as part of the DFS namespace, it MUST notify the

CIFS server via this event. In response to this event, the CIFS server MUST clear the
SMB_SHARE_IS_IN_DFS bit in the Server.Share.OptionalSupport attribute of the share.

3.3.4.6 Application Requests the Session Key Associated with a Client Session

The application provides the following:

 Open -- A Server.Open that identifies an open instance of a file or pipe.

560 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server MUST provide a 16-byte session key described by Server.Open.Session.SessionKey to
the caller. An implementation-specific error MUST be returned to the caller if the session key is not

available.

3.3.4.7 Application Requests the Security Context Associated with a Client Session

The application provides the following:

 Open - A Server.Open that identifies an open instance of a file or pipe.

The server MUST provide the implementation-specific user security context described by

Server.Open.Session.UserSecurityContext to the caller. An implementation-specific error MUST be
returned to the caller if the security context is not available.

3.3.4.8 Server Application Requests Closing a Session

The calling application MUST provide the GlobalSessionId of the session to be closed. The server

MUST enumerate all Connections in Server.ConnectionTable and MUST look up Session from the
Connection.SessionTable where Session.SessionGlobalId is equal to GlobalSessionId. The
server MUST remove Session from the Connection.SessionTable, MUST decrease
Server.Statistics.sts0_sopens by 1, and MUST release every lock in Server.Open.Locks. If there
is no matching session, the call MUST return.

The server MUST deregister the session by invoking the event Server Deregisters a Session ([MS-
SRVS] section 3.1.6.3), providing GlobalSessionId as the input parameter.

The server MUST close every Open in the Session.Connection.FileOpenTable as specified in
section 3.3.4.13 where Open.Session matches Session.

For each TreeConnect in Session.Connection.TreeConnectTable where TreeConnect.Session
matches Session, the server MUST perform the following:

 Deregister the Treeconnect ([MS-SRVS] section 3.1.6.7), providing the tuple

<TreeConnect.Share.ServerName, TreeConnect.Share.Name> and

TreeConnect.TreeGlobalId as the input parameters.

 Decrement TreeConnect.Share.CurrentUses by 1.

 Disconnect and remove the TreeConnect from Session.Connection.TreeConnectTable.

The session MUST be torn down and freed.

3.3.4.9 Server Application Registers a Share

The calling application provides a share in a SHARE_INFO_503_I structure ([MS-SRVS] section
2.2.4.27) to register a share. The server MUST validate the SHARE_INFO_503_I structure as
specified in [MS-SRVS] section 3.1.4.7. If any member in the structure is invalid, the server MUST
return STATUS_INVALID_PARAMETER to the calling application. The server MUST look up the Share in
the Server.ShareTable, where shi503_servername matches Share.ServerName and

shi503_netname matches Share.Name. If a matching Share is found, the server MUST fail the call

with an implementation-dependent error. Otherwise, the server MUST create a new Share with the
following values set, insert it into Server.ShareTable, and return STATUS_SUCCESS.

 Share.Name MUST be set to shi503_netname.

 Share.Type MUST be set to shi503_type.

 Share.Remark MUST be set to shi503_remark.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

561 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Share.LocalPath MUST be set to shi503_path.

 Share.ServerName MUST be set to shi503_servername.

 Share.FileSecurity MUST be set to shi503_security_descriptor.

 Share.MaxUses MUST be set to shi503_max_uses.

 Share.CurrentUses MUST be set to zero.

3.3.4.10 Server Application Updates a Share

To update an existing Share, the calling application provides a share in the SHARE_INFO_503_I

([MS-SRVS] section 2.2.4.27) and SHARE_INFO_1005 ([MS-SRVS] section 2.2.4.29) structures as
input parameters. The server MUST validate the SHARE_INFO_503_I and SHARE_INFO_1005
structures as specified in [MS-SRVS] section 3.1.4.11. If any member in the structures is invalid, the
server MUST return STATUS_INVALID_PARAMETER to the calling application. The server MUST look up
the Share in Server.ShareTable through the tuple <shi503_servername, shi503_netname>. If

the matching Share is found, the server MUST update the Share by setting the following values and
MUST return STATUS_SUCCESS to the calling application; otherwise, the server MUST return an

implementation-specific error.

 Share.Remark MUST be set to shi503_remark.

 Share.MaxUses MUST be set to shi503_max_uses.

 Share.FileSecurity MUST be set to shi503_security_descriptor.

3.3.4.11 Server Application Deregisters a Share

The calling application MUST provide the tuple <ServerName, ShareName> of the share that is
being deregistered. The server MUST look up the share in Server.ShareTable, MUST remove it from
the list if the share is found, and MUST return STATUS_SUCCESS to the calling application; otherwise,

the server MUST return an implementation-specific error.

For each Connection in Server.ConnectionTable, the server MUST perform the following:

 For each Open in Connection.FileOpenTable where Open.TreeConnect.Share matches the
current share:

 Close the Open as specified in section 3.3.4.13.

 For each TreeConnect in Connection.TreeConnectTable where TreeConnect.Share matches
the current share:

 Deregister the TreeConnect by invoking the event specified in [MS-SRVS] section 3.1.6.7
with the tuple <TreeConnect.Share.ServerName, TreeConnect.Share.Name> and

TreeConnect.TreeGlobalId as input parameters.

 Remove the TreeConnect entry from Connection.TreeConnectTable.

3.3.4.12 Server Application Requests Querying a Share

The calling application MUST provide the tuple <ServerName, ShareName> of the share that is

being queried. The server MUST look up the Share in Server.ShareTable. If the matching Share is
found, the server MUST return a share in the SHARE_INFO_503_I ([MS-SRVS] section 2.2.4.27)
and SHARE_INFO_1005 ([MS-SRVS] section 2.2.4.29) structures with the following values set and
MUST return STATUS_SUCCESS to the calling application; otherwise, the server MUST return an
implementation-dependent error.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

562 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Output parameters [MS-CIFS] share properties

SHARE_INFO_503_I.shi503_netname Server.Share.Name

SHARE_INFO_503_I.shi503_type Server.Share.Type

SHARE_INFO_503_I.shi503_remark Server.Share.Remark

SHARE_INFO_503_I.shi503_permissions 0x00000000

SHARE_INFO_503_I.shi503_max_uses Server.Share.MaxUses

SHARE_INFO_503_I.shi503_current_uses Server.Share.CurrentUses

SHARE_INFO_503_I.shi503_path Server.Share.LocalPath

SHARE_INFO_503_I.shi503_passwd Empty string

SHARE_INFO_503_I.shi503_servername Server.Share.ServerName

SHARE_INFO_503_I.shi503_security_descriptor NULL

SHARE_INFO_1005.shi1005_flags 0x00000000

3.3.4.13 Server Application Requests Closing an Open

The calling application MUST provide GlobalFileId as an identifier for the Open. The server MUST
enumerate all connections in Server.ConnectionTable and MUST look up Open in
Server.Connection.FileOpenTable where Server.Open.FileGlobalId is equal to GlobalFileId. If

the Open is found, the server MUST remove it from Server.Connection.FileOpenTable, MUST
decrease Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens by 1, MUST release
every lock in Server.Open.Locks, and MUST return STATUS_SUCCESS to the calling application;
otherwise, the call MUST return an implementation-dependent error.

The server MUST provide GlobalFileId to deregister the Open by invoking the event Server
Deregisters an Open ([MS-SRVS] section 3.1.6.5).

The Open object MUST be closed.

3.3.4.14 Server Application Queries a Session

The calling application MUST provide GlobalSessionId as an identifier for the Session. The server
MUST enumerate all connections in Server.ConnectionTable and MUST look up a Session in

Server.Connection.SessionTable where GlobalSessionId is equal to
Server.Session.SessionGlobalId. If a Session is found, the server MUST return the Session in a
SESSION_INFO_502 structure ([MS-SRVS] section 2.2.4.15) with the following values set and MUST
return STATUS_SUCCESS to the calling application.

SESSION_INFO_502
parameters [MS-CIFS] Session properties

sesi502_cname Session.Connection.ClientName

sesi502_username Server.Session.UserName

sesi502_num_opens The count of entries in Session.Connection.FileOpenTable where
Open.Session matches the current session.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

563 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SESSION_INFO_502
parameters [MS-CIFS] Session properties

sesi502_time Current time minus Session.CreationTime.

sesi502_idle_time Current time minus Session.IdleTime.

sesi502_user_flags MUST be set to SESS_GUEST if Session.UserName represents a Guest
account; otherwise, MUST be set to 0x00000000.

sesi502_cltype_name An empty string.

sesi502_transport Session.Connection.TransportName

If no Session is found, the server MUST return an implementation-dependent error.

3.3.4.15 Server Application Queries a TreeConnect

The calling application MUST provide GlobalTreeConnectId as an identifier for the TreeConnect. The
server MUST enumerate all connection entries in Server.ConnectionTable and MUST look up all
TreeConnect entries in Server.Connection.TreeConnectTable where GlobalTreeConnectId is equal

to TreeConnect.TreeGlobalId. If a TreeConnect is found, the server MUST return ServerName
and a CONNECTION_INFO_1 structure ([MS-SRVS] section 2.2.4.2) with the following values set
and MUST return STATUS_SUCCESS to the calling application.

Output parameters [MS-CIFS] TreeConnect properties

coni1_id TreeConnect.TreeGlobalId

coni1_type TreeConnect.Share.ShareType

coni1_num_opens TreeConnect.OpenCount

coni1_num_users 0x00000001

coni1_time Current time minus TreeConnect.CreationTime.

coni1_username TreeConnect.Session.UserName

coni1_netname TreeConnect.Share.Name

ServerName TreeConnect.Share.ServerName

If no TreeConnect is found, the server MUST return an implementation-dependent error.

3.3.4.16 Server Application Queries an Open

The calling application MUST provide GlobalFileId as an identifier for the Open. The server MUST
enumerate all connections in Server.ConnectionTable and MUST look up the Open in
Server.Connection.FileOpenTable where Server.Open.FileGlobalId is equal to GlobalFileId. If the

Open is found, the server MUST return it in a FILE_INFO_3 structure ([MS-SRVS] section 2.2.4.7),
with the following values set and MUST return STATUS_SUCCESS to the calling application.

FILE_INFO_3 parameters [MS-CIFS] Open properties

fi3_id Open.FileGlobalId

fi3_permissions Open.GrantedAccess

fi3_num_locks Count of entries in Open.Locks

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

564 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FILE_INFO_3 parameters [MS-CIFS] Open properties

fi3_path_name Open.PathName

fi3_username Open.Session.UserName

If no Open is found, the server MUST return an implementation-dependent error.

3.3.4.17 Server Application Requests Transport Binding Change

The application provides:

 TransportName: A string containing an implementation-dependent name of the transport.

 ServerName: An optional string containing the name of the server to be used for binding the
transport.

 EnableFlag: A Boolean flag indicating whether to enable or disable the transport.

The server MUST use implementation-specific<232> means to determine whether TransportName is
an eligible transport entry as specified in section 2.1, and if not, the server MUST return
ERROR_NOT_SUPPORTED to the caller.

If EnableFlag is TRUE, the server SHOULD<233> obtain ServerName, SHOULD obtain binding
information for the transport from the appropriate standards assignments as specified in section 2.1,
and MUST attempt to start listening on the requested transport endpoint.<234>

If EnableFlag is FALSE, the server MUST attempt to stop listening on the transport indicated by
TransportName.

If the attempt to start or stop listening on the transport succeeds, the server MUST return
STATUS_SUCCESS to the caller; otherwise, it MUST return an implementation-dependent error.

3.3.4.18 Server Service Enables the CIFS Server

The server MUST verify in an implementation-specific manner that the caller of this interface is the
server service [MS-SRVS], and only if so, MUST set the Server.Enabled ADM element to TRUE.

3.3.4.19 Server Services Disables the CIFS Server

The server MUST verify in an implementation-specific manner that the caller of this interface is the
server service [MS-SRVS], and only if so, MUST take the following actions:

 The server MUST set Server.Enabled to FALSE to prevent accepting new connections.

 The server MUST disconnect each Connection in Server.ConnectionTable as specified in section
3.3.7.2.

 The server MUST remove and free all the shares in Server.ShareTable.

3.3.4.20 Server Service Pauses the CIFS Server

The server MUST verify in an implementation-specific manner that the caller of this interface is the
server service [MS-SRVS], and, only if so, MUST set the Server.Paused ADM element to TRUE.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

565 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.4.21 Server Services Resumes (Continues) the CIFS Server

The server MUST verify in an implementation-specific manner that the caller of this interface is the
server service [MS-SRVS], and, only if so, MUST set the Server.Paused ADM element to FALSE.

3.3.4.22 Server Application Requests Updating the Server Configuration

The calling application provides SERVER_INFO_103 ([MS-SRVS] section 2.2.4.43) and
SERVER_INFO_599 ([MS-SRVS] section 2.2.4.46) structures as input parameters to update the
server configuration. The following values MUST be set by the server:

 Server.AutodisconnectTimeout MUST be set to sv103_disc.

 Server.MaxVcNumber MUST be set to sv599_sessvcs.

 Server.OplockTimeout MUST be set to sv599_oplockbreakresponsewait.

 Server.EnableOplock MUST be set to sv599_enableoplocks.

 Server.MaxMpxCount MUST be set to sv599_maxmpxct.

 Server.SrvSearchMaxTimeout MUST be set to sv599_maxkeepsearch.

 Server.SrvMaxSessionTableSize MUST be set to sv599_sessusers.

3.3.4.23 Server Application Requests Server Statistics

The server MUST return the Server.Statistics ADM element in a STAT_SERVER_0 ([MS-SRVS]
section 2.2.4.39) structure to the server application with the following values:

STAT_SERVER_0 member CIFS Server.Statistics Property

sts0_start zero

sts0_fopens Server.Statistics.sts0_fopens

sts0_devopens zero

sts0_jobsqueued Server.Statistics.sts0_jobsqueued

sts0_sopens Server.Statistics.sts0_sopens

sts0_stimedout Server.Statistics.sts0_stimedout

sts0_serrorout zero

sts0_pwerrors Server.Statistics.sts0_pwerrors

sts0_permerrors Server.Statistics.sts0_permerrors

sts0_syserrors zero

sts0_bytessent_low Server.Statistics.sts0_bytessent_low

sts0_bytessent_high Server.Statistics.sts0_bytessent_high

sts0_bytesrcvd_low Server.Statistics.sts0_bytesrcvd_low

sts0_bytesrcvd_high Server.Statistics.sts0_bytesrcvd_high

sts0_avresponse zero

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

566 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

STAT_SERVER_0 member CIFS Server.Statistics Property

sts0_reqbufneed zero

sts0_bigbufneed zero

3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Accepting an Incoming Connection

When the server accepts an incoming remote client connection as specified in section 3.3.7.3, the
server MUST allocate a Server.Connection ADM element and initialize it as follows:

 Server.Connection.ClientCapabilities is set to zero (0x00000000).

 Server.Connection.TransportName is set to the implementation-specific name of the transport
provided with the connection.<235>

 Server.Connection.IsSigningActive is set to FALSE.

 Server.Connection.SessionSetupReceived is FALSE.

 Server.Connection.SessionTable is an empty list.

 Server.Connection.ClientMaxBufferSize is set to zero (0x00000000).

 Server.Connection.PendingRequestTable is empty.

 Server.Connection.TreeConnectTable is an empty list.

 Server.Connection.OpLockSupport is set to the value of Server.EnableOplock.

 Server.Connection.FileOpenTable is an empty list.

 Server.Connection.SearchOpenTable is an empty list.

 Server.Connection.ConnectionlessSessionID is set to zero (0x0000) unless the transport is
connectionless, in which case a valid value is assigned.

 Server.Connection.ServerNextReceiveSequenceNumber is set to 2.

 Server.Connection.ServerSendSequenceNumber is set to an empty list.

 Server.Connection.SigningChallengeResponse is a zero-length array.

 Server.Connection.SigningSessionKey is zeroed.

 Server.Connection.SessionKey SHOULD<236> be set to a token generated by the server for

this connection, as specified in SessionKey Generation (section 2.2.1.6.6).

 Server.Connection.IdleTime is set to the current time plus Server.AutoDisconnectTimeout.

 Server.Connection.SelectedDialect is set to empty.

 Server.Connection.CreationTime is set to the current time.

The server MUST invoke the event specified in [MS-SRVS] section 3.1.6.16, providing the input tuple

<Server.Connection.TransportName,TRUE>, to update the connection count.

%5bMS-SRVS%5d.pdf

567 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server MUST start Idle Connection Timer (section 3.3.2.2) if it has not been started.

The server MUST start Unused Connection Timer (section 3.3.2.4) if it has not been started.

3.3.5.2 Receiving Any Message

For every message received, the server MUST calculate the total number of bytes in the message and
MUST update the values of Server.Statistics.sts0_bytesrcvd_low and
Server.Statistics.sts0_bytesrcvd_high. The server MUST update Server.Connection.IdleTime as
the current time plus Server.AutoDisconnectTimeout.

Upon receiving any client request, the server SHOULD perform basic message validation. The following
tests SHOULD be performed on all received messages, with exceptions as noted:

 Validate the length of the message.

If the message is a standard SMB message, as opposed to a raw data transfer, the total byte
length of the message as reported by the SMB transport MUST be a minimum of 35 bytes:

 35 = 32 + 1 + 2 = sizeof(SMB_Header) + sizeof(WordCount) + sizeof(ByteCount);

The total byte length of any SMB message MUST be at least:

 sizeof(SMB_Header) + sizeof(WordCount) + (2 x WordCount) + sizeof(ByteCount) +
ByteCount;

If the total number of bytes transferred by the SMB transport is less than specified by the
preceding formula, then the message was either incorrectly formatted by the client, or it was

truncated in transit. The client SHOULD send an error response with the Status code set to
STATUS_INVALID_SMB (ERRSRV/ERRerror). It is not a protocol error for the client to transfer

excess data; however, the excess data MUST be ignored.

Raw data transfers from client to server are generated by the SMB_COM_WRITE_RAW
command.

 Validate the SMB Header (section 2.2.3.1) Protocol identifier and the command code.

The four-byte Protocol identifier at the start of the SMB Header MUST contain the octet values
'\xFF', 'S', 'M', 'B'. Otherwise, the server MUST return an error response with the Status code

set to STATUS_INVALID_SMB (ERRSRV/ERRerror).

The command code MUST be one of the valid command codes listed in section 2.2.2.1.

 If the command code in the SMB_Header.Status field is listed as "Unused" or "Reserved" in

the first column of the table in section 2.2.2.1, or if the command code is either
SMB_COM_INVALID (section 2.2.4.74) or SMB_COM_NO_ANDX_COMMAND (section 2.2.4.75),
the server MUST return an error response with the Status code set to
STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

 If the command is listed in the table in section 2.2.2.1 as Obsolete (as shown by an X in the
Status column) or Not Implemented (as shown by an N in the Status column), the server
SHOULD return an error response with a Status code of STATUS_NOT_IMPLEMENTED
(ERRDOS/ERRbadfunc). See the descriptions of the individual commands in section 2.2.4 for
more information.<237>

568 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If the command code represents a valid command, but the command has not been
implemented by the server, the server MUST return STATUS_NOT_IMPLEMENTED

(ERRDOS/ERRbadfunc).

 Validate the UID and TID.

With three exceptions, all SMB requests sent by the client MUST have valid UIDs. The
exceptions are:

 SMB_COM_NEGOTIATE

 SMB_COM_ECHO

 SMB_COM_SESSION_SETUP_ANDX

To be valid, a Server.Connection.SessionTable entry for the UID MUST exist, such that the
Server.Session.UID matches the SMB_Header.UID received in the request. If the UID is not

valid, the server MUST return STATUS_SMB_BAD_UID (ERRSRV/ERRbaduid).

If the UID is valid, the server MUST enumerate all connections in the Server.ConnectionTable
and MUST look up Session in the Server.Connection.SessionTable where UID is equal to
Server.Session.UID. If a session is found, Server.Session.IdleTime MUST be set to the
current time. If no session is found, no action regarding idle time is taken.

With five exceptions, all SMB requests sent by the client MUST have valid TIDs. The exceptions

are:

 SMB_COM_NEGOTIATE

 SMB_COM_SESSION_SETUP_ANDX

 SMB_COM_TREE_CONNECT

 SMB_COM_TREE_CONNECT_ANDX

 SMB_COM_LOGOFF_ANDX

To be valid, a Server.Connection.TreeConnectTable entry for the TID MUST exist, such that

the Server.TreeConnect.TID matches the SMB_Header.TID received in the request. If the
TID is not valid, the server MUST return STATUS_SMB_BAD_TID (ERRSRV/ERRinvtid).

The SMB_COM_ECHO command requires either a valid TID or the value 0xFFFF. The latter MAY
be used if no tree connect has been established.<238>

 This list of validation tests is not exhaustive.

3.3.5.2.1 Command Processing

If the message received is a command request that initiates processing of a command, the UID, TID,
PID, and MID of the command MUST be used to create an entry in the
Server.Connection.PendingRequestTable. If the SMB transport is connectionless, the CID

(Connectionless Connection ID) SHOULD also be used to create the entry. All of these fields are
located in the request header. The server MUST assign a CancelRequestID for the request and MUST
store it in the Server.Connection.PendingRequestTable. For a batched request, the entire batched

request MUST be registered as a single entry in the Server.Connection.PendingRequestTable.

If the message received represents a further step in processing an existing command (for example, a
secondary transaction message), the entry in the Server.Connection.PendingRequestTable
SHOULD be updated by the request. The key values (UID, TID, PID, MID, and SID) MUST NOT be
altered by the update.

569 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.2.2 Processing Options

If the message received is a command request that initiates processing of a command, the server
SHOULD use the SMB_Header.Flags2 field of the message to determine the capabilities from the

Server.Connection.ClientCapabilities list that the client has requested to use for processing the
command.

3.3.5.2.3 Message Signing

If a message is received and Connection.IsSigningActive is TRUE for the SMB connection, the
signature MUST be verified as specified in section 3.1.5.1.

The server is responsible for providing the expected sequence number for signature validation. The

sequence number for the next incoming request is stored in
Server.Connection.ServerNextReceiveSequenceNumber. The server MUST remember the
appropriate sequence number for the response to this request and does so by inserting it into the
Server.Connection.ServerSendSequenceNumber table with the PID and MID that identify the
request/response pair.

If the signature on the received packet is incorrect, the server MUST return STATUS_ACCESS_DENIED

(ERRDOS/ERRnoaccess) and MUST increase Server.Statistics.sts0_permerrors by 1. After verifying
that the signature on the current message is correct, the server MUST take the following steps.

 IF request command EQUALS SMB_COM_NT_CANCEL THEN
 INCREMENT ServerNextReceiveSequenceNumber
 ELSE IF request has no response THEN
 INCREMENT ServerNextReceiveSequenceNumber BY 2
 ELSE
 SET ServerSendSequenceNumber[PID,MID] TO ServerNextReceiveSequenceNumber + 1
 INCREMENT ServerNextReceiveSequenceNumber BY 2
 END IF

3.3.5.2.4 Receiving any Batched ("AndX") Request

When a server receives an AndX Request message, the server MUST process the batched requests
sequentially. Each request is processed as specified in its respective Message Processing subsection,
with the exception that if a response is generated, it MUST NOT be sent immediately. Instead, the
server MUST batch the response into an AndX Response chain.

The server MUST use the information in the request header as the header information for each

batched request. If processing a batched request causes a change in state that would affect the
information in the header, the updated header information MUST be used when the server processes
the subsequent request in the chain. If any of the requests in the AndX Request chain generate an
error, the error MUST be stored in the SMB_Header.Status field of the response, the AndX Response
chain MUST be terminated at that response, and any further requests in the AndX Request chain (if
any) MUST NOT be processed.

Once the AndX Response chain is terminated, an AndX Response message MUST be constructed as

follows:

 The server MUST construct the SMB Header (section 2.2.3.1) using the header information as it
was at the termination of the AndX Request chain.

 The AndX Response chain of Parameter and Data block pairs MUST be sequentially appended to
the response message.

 If Connection.IsSigningActive is TRUE, the entire batched message is signed as specified in
section 3.1.4.1.

570 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The server MUST send the completed batch response to the client.

3.3.5.2.5 Receiving Any Transaction Request

Upon receipt of an SMB_COM_TRANSACTION Request (section 2.2.4.33.1),

SMB_COM_TRANSACTION2 Request (section 2.2.4.46.1), or SMB_COM_NT_TRANSACT
Request (section 2.2.4.62.1), the server MUST verify that it can process the transaction. In particular,
the server MUST allocate sufficient space to accept the transaction subcommand parameters and data.
The server MUST also be able to allocate MaxParameterCount plus MaxDataCount bytes for the
results of the transaction. If the server is unable to allocate these resources, it SHOULD<239> return
STATUS_INSUFF_SERVER_RESOURCES (ERRDOS/ERRnomem).

The server SHOULD perform initial validation of the transaction itself and return an error response if

an error is detected. An error response terminates the transaction.

If no initial errors are detected, the server MUST determine whether the entire transaction is
contained within the initial request message. If the value of the ParameterCount field is less than
that of the TotalParameterCount and/or the value of the DataCount field is less than that of the

TotalDataCount, then the server MUST send an Interim Response message, setting the
SMB_Parameters.WordCount and SMB_Data.ByteCount fields to 0, and prepare to receive one or

more secondary requests from the client in order to complete the transfer of the transaction.

The transaction is completely transferred to the server when:

 The total number of transaction parameter bytes received equals the smallest value of
TotalParameterCount reported by the client across all of the transaction request messages sent,
and

 The total number of transaction data bytes received equals the smallest value of TotalDataCount
reported by the client across all of the transaction request messages sent.

When these conditions are met, the transaction can be processed.

If the processing of the transaction results in an error, the server MUST return an error response,

which cancels the transaction.

If the transaction response, which includes the response parameters and data, is greater than
permitted by Server.Connection.ClientMaxBufferSize, the server MUST send multiple final
response messages in order to transfer the entire transaction response.

3.3.5.2.6 Supporting Shares in the DFS Namespace

If the DFS subsystem has indicated that it is active (section 3.3.4.3) and that a particular share is a
DFS share (section 3.3.4.3), message processing MUST include the following:

If a request:

 Has the SMB_FLAGS2_DFS flag set;

 Contains a pathname field.

All pathname fields in the message MUST be DFS paths. The server MUST forward the DFS paths to
the DFS subsystem for name resolution as specified in [MS-DFSC] section 3.1.4.1.

If the DFS subsystem can resolve the DFS path to local storage, the local storage MUST be accessed
and message processing continues. If the DFS subsystem returns an error, the error MUST be sent to
the client in an error response.

3.3.5.2.7 Granting OpLocks

%5bMS-DFSC%5d.pdf

571 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the message received is an open or create and includes a request for an OpLock, the following
additional steps MUST be taken:

 If the Server.Connection.OpLockSupport state variable is FALSE, then an OpLock MUST NOT
be granted.

 If the open or create is on a directory file, then an Oplock MUST NOT be granted.

 If the file is not open by any other process and Server.Connection.OpLockSupport is TRUE,
then the requested OpLock type MUST be granted.

 If the file is open for read-only access by one or more other processes, and:

 The open or create command specifies read-only access to the file;

 The open or create command supports Level II OpLocks;

 Server.Connection.OpLockSupport is true;

Then a Level II OpLock MUST be granted.

 Otherwise, an OpLock MUST NOT be granted.

See [FSBO] section 2.2, Granting OpLocks. For more information, see [MS-FSA], Server Requests an
OpLock.

The server MUST also request that the underlying file system notify the server when the granted
OpLock is broken. See [FSBO] section 2.3, Breaking OpLocks. For more information, see [MS-FSA],

Server Acknowledges an OpLock Break.

3.3.5.3 Receiving an SMB_COM_CREATE_DIRECTORY Request

Upon receipt of an SMB_COM_CREATE_DIRECTORY Request (section 2.2.4.1.1) from the client, the
server MUST verify the following:

 The TID in the SMB_Header.TID field MUST be a valid TID for this SMB connection, as defined
in section 3.3.5.2.

 If the last element of the pathname in the SMB_Data.Bytes.DirectoryName field is removed,
the remaining pathname MUST represent a valid directory within the share indicated by the TID.

 The full pathname from the SMB_Data.Bytes.DirectoryName field MUST NOT resolve to an
existing file or directory or other file system object.

 The UID in the SMB_Header.UID field MUST be valid, as defined in section 3.3.5.2, and MUST
represent the security context of a user with permission to create the directory. If the user does
not have permission to create the directory, the server MUST return an error response with
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase
Server.Statistics.sts0_permerrors by 1.

 If the designated directory already exists, the server MUST return an error response with

STATUS_OBJECT_NAME_COLLISION (ERRDOS/ ERRfilexists).

If these conditions are met, the server MUST attempt to create the directory.<240> If directory
creation fails, the server MUST provide an error response to the client (see section 2.2.4.1.2 for the
list of expected error codes). Otherwise, the server the server MUST increase
Server.Statistics.sts0_fopens by 1 and MUST return Success in the Status field. A new Open
object MUST be allocated and inserted into Server.Connection.FileOpenTable with the following
default values:

http://go.microsoft.com/fwlink/?LinkId=140636
%5bMS-FSA%5d.pdf

572 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 A new FID MUST be created to uniquely identify this Open request in
Server.Connection.FileOpenTable.

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount MUST be incremented by 1.

The server MUST register the Open request by invoking the Server Registers a New Open event ([MS-
SRVS] section 3.1.6.4) and MUST assign the return value to Server.OpenFileGlobalId.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.4 Receiving an SMB_COM_DELETE_DIRECTORY Request

Upon receipt of an SMB_COM_DELETE_DIRECTORY Request (section 2.2.4.2.1) from the client, the
server MUST verify the following:

 The TID in the SMB_Header.TID field MUST be a valid TID for this SMB connection, as defined
in section 3.3.5.2.

 The pathname in the SMB_Data.Bytes.DirectoryName field MUST represent a valid directory
within the share indicated by the TID.

 The UID in the SMB_Header.TID field MUST be valid, as defined in section 3.3.5.2 and MUST
represent the security context of a user with permission to delete the directory. If the user does
not have permission to delete the directory, the server MUST return an error response with
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase
Server.Statistics.sts0_permerrors by 1.

 The specified directory MUST NOT be the root directory of the share (which cannot be deleted by
the client).

 The specified directory MUST be empty.

If any of the preceding conditions is not met, the server MUST return an error message with the

appropriate status code, as listed in section 2.2.4.2.2. Otherwise, the server MUST attempt to delete
the directory. If the deletion fails, the server MUST return an error message with a status code
indicating the cause of the failure.<241> If the directory is not empty, deletion MUST fail with
STATUS_DIRECTORY_NOT_EMPTY (ERRDOS/ERRnoaccess).

If the deletion succeeds, the server MUST perform a lookup in
Server.Connection.SearchOpenTable for Server.SearchOpens with Server.SearchOpen.TIDs
that match SMB_Header.TID and SHOULD<242> close any such Server.SearchOpen that
represents a search on the deleted directory, as determined by a comparison of
Server.SearchOpen.PathName and SMB_Data.Bytes.DirectoryName. The server MUST construct
an SMB_COM_DELETE_DIRECTORY Response (section 2.2.4.2.2) message and MUST set
SMB_Header.Status to indicate success.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.5 Receiving an SMB_COM_OPEN Request

Upon receipt of an SMB_COM_OPEN Request, the server MUST validate the TID field and the UID
field, as specified in section 3.3.5.2.

If the ShareType property of the Server.Share specified by the SMB_Header.TID is equal to
Named Pipe and if Server.Session.IsAnonymous is TRUE, the server MUST invoke the event
specified in [MS-SRVS] section 3.1.6.17 by providing the SMB_Data.Bytes.FileName field with the
"\PIPE\" prefix removed as input parameter. If the event returns FALSE, indicating that no matching
named pipe is found that allows an anonymous user, the server MUST fail the request with

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

573 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

STATUS_ACCESS_DENIED and MUST increase Server.Statistics.sts0_permerrors by 1. Otherwise,
the server MUST continue the open processing.

The server MUST search for a file with a name matching the name given in the request's
SMB_Data.Bytes FileName field and SHOULD search based on SearchAttributes.<243> If no

matching file is found, or if the file is found but cannot be opened, the server MUST return an error
response with a Status indicating the error as listed in the error code table in section
2.2.4.3.2.<244> If the underlying object store returns STATUS_ACCESS_DENIED, the server MUST
increase Server.Statistics.sts0_permerrors by 1. Otherwise, the server MUST allocate a new FID,
format an SMB_COM_OPEN response message as specified in section 2.2.4.3, and set
SMB_Header.Status to indicate success. If the command is successful, the server MUST increase
Server.Statistics.sts0_fopens by 1 and MUST allocate an Open object and insert it into

Server.Connection.FileOpenTable with the following default values:

 A new FID MUST be created to uniquely identify this Open in
Server.Connection.FileOpenTable.

 If Server.EnableOplock is TRUE and a requested OpLock was granted, the type of OpLock MUST

be set in Server.Open.OpLock and Server.Open.OplockState MUST be set to Held; otherwise,
Server.Open.OpLock MUST be set to None and Server.Open.OplockState MUST be set to

None.

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount MUST be increased by 1.

 Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.

 Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

 Server.Open.Locks MUST be set to an empty list.

 Server.Open.PID MUST be set to the PID provided in the request.

 Server.Open.PathName MUST be set to the FileName field of the request.

 Server.Open.GrantedAccess MUST be set to the AccessMode field of the request.

The server MUST register the Open by invoking the event Server Registers a New Open ([MS-SRVS]
section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.6 Receiving an SMB_COM_CREATE Request

Upon receipt of an SMB_COM_CREATE Request (section 2.2.4.4.1), the server MUST attempt to create
or overwrite the file named in the FileName field of the request. If the file does not already exist (is
being created), the server MUST also attempt to set the attributes of the file to those provided in the
FileAttributes field. The server MAY<245> set the creation time of the file from the CreationTime

field.

 The user indicated by the UID MUST have write permission on the file's parent directory in order
to create a new file; otherwise, the server MUST increase Server.Statistics.sts0_permerrors by
1, fail the request, and return an error response with STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess).

 The user indicated by the UID MUST have write permission on the file itself in order to truncate it;
otherwise, the server MUST increase Server.Statistics.sts0_permerrors by 1, fail the request,

and return an error response with STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess).

574 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The server MUST grant read/write permission for the creator if the file is created. Access
permissions for truncated files are not modified. The newly created or truncated file is opened for

read/write in Compatibility Mode (see section 3.2.4.5.1).

If the Create operation fails, the server MUST return an error response with a Status code from the

list provided in section 2.2.4.4.2. Otherwise, the server MUST allocate a new FID, format an
SMB_COM_CREATE response message as defined in section 2.2.4.4.2, and set SMB_Header.Status
to indicate success. Server.Statistics.sts0_fopens MUST be increased by 1, and an Open
containing the new FID MUST be created, initialized, and entered into the
Server.Connection.FileOpenTable.<246> If Server.EnableOplock is TRUE and a requested
OpLock was granted, the type of OpLock MUST be set in Server.Open.OpLock and
Server.Open.OplockState MUST be set to Held; otherwise, Server.Open.OpLock MUST be set to

None and Server.Open.OplockState MUST be set to None. Server.Open.TreeConnect MUST be
set to the TreeConnect on which the request was performed, and
Server.Open.TreeConnect.OpenCount MUST be increased by 1. .Server.Open.Session MUST be
set to the Server.Open.TreeConnect.Session. Server.Open.Connection MUST be set to the
Server.Open.Session.Connection. Server.Open.Locks MUST be set to an empty list.
Server.Open.PID MUST be set to the PID provided in the request. Server.Open.PathName MUST

be set to the FileName field of the request. Server.Open.GrantedAccess MUST be set to
(GENERIC_READ | GENERIC_WRITE).<247>

The server MUST register the Open by invoking the Server Registers a New Open event ([MS-SRVS]
section 3.1.6.4), and it MUST assign the return value to Server.Open.FileGlobalId.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.7 Receiving an SMB_COM_CLOSE Request

Upon receipt of an SMB_COM_CLOSE Request (section 2.2.4.5.1), the server MUST confirm that the
supplied FID is valid and that it represents a file system object held open by the client. This is done
by looking up the FID in Server.Connection.FileOpenTable to find the corresponding Open.

If the Open is not found, the FID is not valid, and the server MUST return an error response to the

client with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid). The server SHOULD<248>
update the last modification time for the file if the value of the
SMB_Parameters.Word.LastTimeModified field is neither 0x00000000 nor 0xFFFFFFFF, and the
client has write/append access to the file. Then the server MUST decrease
Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens by 1, release the OpLocks by
closing the Open indicated by the FID,<249> release every lock in Server.Open.Locks,<250> and
invalidate the FID by removing the Open entry from Server.Connection.FileOpenTable. The server

MUST provide Open.FileGlobalId as an input parameter and MUST deregister the Open by invoking
the Server Deregisters an Open event ([MS-SRVS] section 3.1.6.5).

Once the FID has been invalidated, it is available to be reused by future open or create operations.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.8 Receiving an SMB_COM_FLUSH Request

Upon receipt of an SMB_COM_FLUSH Request (section 2.2.4.6.1), the server MUST confirm that the
supplied FID is either the value 0xFFFF ((USHORT)(-1)) or a valid FID representing a file system
object held open by the client. The FID is validated by performing a look-up in the
Server.Connection.FileOpenTable to find the corresponding Open. If the FID is 0xFFFF, the
Server.Connection.FileOpenTable MUST be scanned for all files that were opened by the PID listed

in the request header. The server MUST attempt to flush each Server.Open so listed. If the FID is
invalid, the server MUST return STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid) to the client.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

575 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the FID is valid, the server MUST ensure that all written data and additional file allocations are
committed to each referenced file by the underlying object store. The server MUST NOT respond to

the flush request prior to committing all written data and ensuring that additional file allocations have
been committed. At minimum, the server MUST ensure that all other clients or local processes that are

reading from the file can read the same information as the process performing the flush operation.

The server MUST then attempt to flush each referenced file by invoking the underlying object store
using implementation-dependent<251> functionality. If an error Status is generated by any flush
operation, the Status is returned in an error response message, and no further processing occurs (no
more files are flushed).

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.9 Receiving an SMB_COM_DELETE Request

Upon receipt of an SMB_COM_DELETE Request (section 2.2.4.7.1), the server MUST attempt to delete
all files that match both the FileName and SearchAttributes fields from the request. The final
component of the FileName field can contain wildcard characters, allowing multiple files to be

deleted.

The precise effect of the SMB_COM_DELETE command is server implementation-dependent. The
following criteria SHOULD be observed:

 If Server.Connection.OpLockSupport is TRUE, and another client has been granted a batch
OpLock on the file, then the server MUST send an OpLock break notification request via
SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1) to the client that owns the batch
OpLock, as specified in section 3.3.4.2. The server MUST have the OPLOCK_RELEASE flag set on

the TypeOfLock. The server MUST set the NewOpLockLevel field to 0x00. The
SMB_COM_DELETE command request being processed MUST block until the OpLock is either
acknowledged by the client or the OpLock Break Acknowledgement Timer has expired.<252>

 The user initiating the request MUST have write permission in the target file's parent directory for
the operation to succeed.

If a wildcard pathname matches more than one file, the server SHOULD search for and delete all files

matching the search criteria. The server SHOULD delete matching files sequentially and, if an error
occurs, immediately return an error response with the Status field set to indicate the error. In this
case, some files that match the search criteria and can be deleted will not be deleted.<253>

The SearchAttributes field specifies the types of files that are to be deleted:

 If SearchAttributes is 0x0000 (SMB_FILE_ATTRIBUTE_NORMAL), the server MUST match only
normal files.

 If the SMB_FILE_ATTRIBUTE_HIDDEN or SMB_FILE_ATTRIBUTE_SYSTEM are specified, the delete

operation MUST include the type or types specified in addition to normal files.

 Read-only files MUST NOT be deleted.

 All other search attributes are ignored by the server.

 This command cannot delete directories or volumes.

 The archive bit is not considered when selecting files.

The following conditions MUST generate an error response (see the error code list in section 2.2.4.7.2
for additional error conditions):

 Within the share indicated by the TID, no files are found that match both the SearchAttributes
and the pathname specified by FileName (STATUS_NO_SUCH_FILE (ERRDOS/ERRbadfile)).

576 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The TID is invalid (STATUS_SMB_BAD_TID (ERRSRV/ERRinvtid)).

 The user represented by the UID does not have permission to delete any of the selected files

(STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess)) and the server MUST increase
Server.Statistics.sts0_permerrors by 1.

 The pathname specified by FileName is an invalid path (STATUS_OBJECT_PATH_SYNTAX_BAD
(ERRDOS/ERRbadpath)).

Another process has the file open in a sharing mode that does not permit the file to be deleted.<254>

If any of the above conditions is true, or any other error is generated that prevents completion of the
operation, the server MUST return an error response message to the client. Otherwise, the server
MUST format an SMB_COM_DELETE response message as defined in section 2.2.4.7 and MUST set
SMB_Header.Status to indicate success.<255>

The response MUST be sent to the client as described in section 3.3.4.1.

3.3.5.10 Receiving an SMB_COM_RENAME Request

Upon receipt of an SMB_COM_RENAME Request (section 2.2.4.8.1), the server MUST enumerate the

set of files that matches both the OldFileName pathname and the SearchAttributes field in the
request. Each matching file name MUST be renamed according to the format of the NewFileName
pathname. If the target name already exists, the Rename operation MUST fail with a Status of
STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists).<256>

Other considerations:

 Only a single TID is supplied, so the OldFileName and NewFileName pathnames MUST be
within the same share on the server.

 If SearchAttributes is 0x0000 (SMB_FILE_ATTRIBUTE_NORMAL), the server MUST match only
normal files.

 If the SMB_FILE_ATTRIBUTE_HIDDEN or SMB_FILE_ATTRIBUTE_SYSTEM attributes are specified,
the rename operation MUST include the type or types specified in addition to normal files.

 This command cannot rename read-only files.

 This command cannot rename directories.

 This command MUST NOT rename volume labels.

 This command cannot rename hidden and/or system files if the appropriate bits are set in
SearchAttributes.

A file to be renamed might currently be open. If it is opened by the requesting process, it MUST be
open in compatibility mode (see section 3.2.4.5.1). If it is not open in compatibility mode, the rename
MUST fail with STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and
Server.Statistics.sts0_permerrors MUST be increased by 1.<257>

 If another process has the file open, and that process has an OpLock on the file, and the process
has asked for extended notification (Batch OpLock), the rename request MUST block until the
server has sent an OpLock break request to the owner of the OpLock, as specified in section
3.3.4.2, and either received a response or the OpLock break time-out has expired.<258> The
server MUST have the OPLOCK_RELEASE flag set in the TypeofLock field of the request. The
server MUST set the NewOplockLevel field of the request to 0x00. If the process holding the
OpLock closes the file (thus freeing the OpLock) the rename takes place. If not, the rename MUST

fail with STATUS_SHARING_VIOLATION.

577 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If there is an existing file with the new name, the rename MUST fail with
STATUS_OBJECT_NAME_COLLISION. If wildcards are used in a rename operation, and only some

of the renames fail for any reason, the request MUST fail silently; that is, an error MUST NOT be
returned if at least one of the rename operations was successful.

A server may be processing multiple requests on the same resource concurrently. As a result, there
may be interactions between the execution of the Rename operation and other operations such as
ongoing searches (SMB_COM_SEARCH, SMB_COM_FIND, TRANS2_FIND_FIRST2, and so on).
Although renaming a directory or files within a directory that is actively being searched is not
prohibited, the interaction can disrupt the search, causing it to complete before all directory entries
have been returned.

Renaming files using wildcards is supported. Only the final path element of each of the provided

pathnames is permitted to contain wildcard characters. Wildcard characters MUST NOT be used in the
rest of the path. When wildcard characters are in use, the translation from the old name to the new
name proceeds as described in [FSBO].

If a directory is renamed, it MUST NOT have a destination located within itself or any subdirectory

within the source directory. The source and destination MUST be at or below the current TID within
the file system namespace. If these conditions are not met, the server MUST return

STATUS_OBJECT_PATH_SYNTAX_BAD (ERRDOS/ERRbadpath).

If the operation is successful, the server MUST construct an SMB_COM_RENAME
Response (section 2.2.4.8.2) message. The response MUST be sent to the client as specified in section
3.3.4.1.

3.3.5.11 Receiving an SMB_COM_QUERY_INFORMATION Request

When the server receives an SMB_COM_QUERY_INFORMATION Request (section 2.2.4.9.1), it MUST
query the file system metadata of the file identified in the FileName field of the request. The
FileName field MUST be the full path, relative to the supplied TID, of the file being queried. The
server MUST query the file information through the FILE_NETWORK_OPEN_INFORMATION
OutputBuffer from the underlying object store with information level FileNetworkOpenInformation

([MS-FSCC] section 2.4.27).<259>

If the file exists and the operation is successful, the server MUST construct an
SMB_COM_QUERY_INFORMATION response message as specified in section 2.2.4.9.2. The server
MUST return the following information:

 FileAttributes in SMB_FILE_ATTRIBUTES format, as specified in section 2.2.1.2.4.

 The LastWriteTime of the file, presented in UTIME format.

 FileSize, which is the size of the file in bytes. FileSize is a 32-bit value. If the file is larger than 2

** 32 - 1 bytes in size, only the lower 32 bits of the file size are returned. No error message is
sent to indicate this condition.

 If the query fails, the Status is set to the error code received from the object store and is
returned in an Error Response, and processing is complete. Otherwise, the response message

fields are populated as follows:

 SMB_Parameters.Words.FileAttributes is set to OutputBuffer.FileAttributes.

 SMB_Parameters.Words.LastWriteTime is set to OutputBuffer.LastWriteTime.

 SMB_Parameters.Words.FileSize is set to OutputBuffer.EndOfFile.

The response MUST be sent to the client as specified in section 3.3.4.1.

http://go.microsoft.com/fwlink/?LinkId=140636
%5bMS-FSCC%5d.pdf

578 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.12 Receiving an SMB_COM_SET_INFORMATION Request

When the server receives an SMB_COM_SET_INFORMATION Request (section 2.2.4.10.1), it MUST
verify that the file indicated by the FileName field in the request exists. If the file does not exist, the

server MUST fail the request with STATUS_OBJECT_NAME_NOT_FOUND (ERRDOS/ERRbadfile). If the
file exists and the user indicated by the UID field in the request header does not have permission to
modify file metadata, the server MUST fail the request with STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess) and MUST increase Server.Statistics.sts0_permerrors by 1.

Otherwise, the server MUST attempt to set the file attributes provided in the request:

 FileAttributes, in SMB_FILE_ATTRIBUTES (section 2.2.1.2.4) format.

 LastWriteTime: the time of the last write to the file, in UTIME (section 2.2.1.4.3) format. If this

field contains 0x00000000, the last write time of the file MUST NOT be changed.<260>

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.13 Receiving an SMB_COM_READ Request

When the server receives an SMB_COM_READ request, it MUST perform the following actions:

 Verify the FID, which represents an Open of a file. If the Open is not found in
Server.Connection.FileOpenTable, the server MUST return an error response with a Status of
STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid).

 Verify the UID as described in section 3.3.5.2, and ensure that the user has permission to read
from the file. If the user does not have permission to read the file, the server MUST send an error
response with a Status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase

Server.Statistics.sts0_permerrors by 1.

 If the UID presented is different from the UID that opened the file, the server MUST send the error
response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

 The server MUST attempt to read data from the underlying object store for the file identified by
the FID in the request. It MUST provide the ReadOffsetInBytes and CountOfBytesToRead
fields from the request.<261>

 If the EstimateOfRemainingBytesToBeRead field is nonzero, the server MAY use the

EstimateOfRemainingBytesToBeRead field as a hint for read ahead.

If the request is to read from a named pipe in message mode, the message is larger than
CountOfBytesToRead bytes, and the underlying object store returned STATUS_BUFFER_OVERFLOW
(ERRDOS/ERRmoredata), the server MUST respond with a complete SMB_COM_READ response not an
error response. Any other error MUST generate an error response message 2.

Otherwise, the server MUST construct an SMB_COM_READ Response (section 2.2.4.22.2) message.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.14 Receiving an SMB_COM_WRITE Request

Upon receipt of an SMB_COM_WRITE Request (section 2.2.4.12.1), the server MUST perform the
following actions:

 Verify the FID, which represents an open regular file. If the Open is not found in
Server.Connection.FileOpenTable, the server MUST return an error response with a Status of
STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid).

579 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Verify the UID as described in section 3.3.5.2, and ensure that the user has permission to write to
the file. If the user does not have permission to write to the file, the server MUST send an error

response with a status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase
Server.Statistics.sts0_permerrors by 1.

 If the UID presented is different from the UID that opened the file, the server MUST send the
error response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

 In the file identified by the FID, the server MUST perform a seek to the offset specified in the
WriteOffsetInBytes field in the request.

 The server MUST write CountOfBytesToWrite bytes sequentially from the Data field in the
request to the file. Any failure that causes less than CountOfBytesToWrite bytes to be written
SHOULD result in an error response to the client.<262>

 If the EstimateOfRemainingBytesToBeWritten field is nonzero in the request, the server MAY
use the value provided to perform implementation-specific optimizations, such as preallocating
disk space or preparing additional buffers to receive the remaining data.

If FID represents a disk file, and the request specifies a byte range beyond the current end of file, the
file MUST be extended. If Offset is beyond the end of file, the "gap" between the current end of file
and Offset is filled with null padding bytes. If CountOfBytesToWrite is zero, the file is truncated or

extended to the length specified by Offset.

In the event of an error, the server MUST send an error response message. Otherwise, the server
MUST construct an SMB_COM_WRITE Response (section 2.2.4.12.2) message. The
CountOfBytesWritten field MUST contain the number of bytes written to the file. This value SHOULD
be equal to CountOfBytesToWrite. If the number of bytes actually written (CountOfBytesWritten)
differs from the number of bytes requested to be written (CountOfBytesToWrite), and no error is
indicated, the server has no resources available with which to satisfy the complete write.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.15 Receiving an SMB_COM_LOCK_BYTE_RANGE Request

Upon receipt of an SMB_COM_LOCK_BYTE_RANGE Request (section 2.2.4.20.1), the server MUST

verify the FID and the UID and MUST verify that the user has, at minimum, read permission on the
file.

 The FID is verified by performing a looking up in the Server.Connection.FileOpenTable to find
the corresponding Open. If the Open is not found, the FID is not valid and the server MUST
return an error response to the client with a Status of STATUS_INVALID_HANDLE
(ERRDOS/ERRbadfid).

 The UID is validated as described in section 3.3.5.2.

 If the user does not have permission to perform a byte range lock, the server MUST return an
error response to the client with a Status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess)
and MUST increase Server.Statistics.sts0_permerrors by 1.

 If the UID that is presented is different from the UID that opened the file, the server MUST send
the error response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

The server MUST then attempt to obtain a byte-range exclusive lock from the underlying object store
on a contiguous range of bytes in the file specified by the FID in the request starting at

LockOffsetInBytes and extending for CountOfBytesToLock bytes.<263>

This command is used to explicitly lock a contiguous range of bytes in an open regular file. Locks
prevent attempts to lock, read, or write the locked portion of the file by other clients or PIDs from the
same client.

580 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Adjacent locks cannot be combined.

 Locks MUST NOT overlap.

 Offsets beyond the current end of file can be locked. Such locks MUST NOT cause allocation of
additional file space.

 Locks can be unlocked only by the PID that obtained the lock.

See [FSBO] section 3 for details of byte range lock semantics.

In the event of an error, including failure to grant the lock on the byte range, the server MUST send
an error response message. If the server cannot immediately grant the lock, the server
SHOULD<264> reattempt the lock request for a brief interval, returning an error response with a
Status of STATUS_FILE_LOCK_CONFLICT (ERRDOS/ERRlock) to the client if the lock cannot be
granted.

If the lock is successful, the server MUST construct an SMB_COM_LOCK_BYTE_RANGE
Response (section 2.2.4.13.2) message. The response MUST be sent to the client as specified in

section 3.3.4.1. An entry for the newly-granted byte-range lock MUST be added to
Server.Open.Locks. The type of the lock MUST be exclusive, and the entry MUST be formatted with
a 32-bit offset (LOCKING_ANDX_RANGE32).

3.3.5.16 Receiving an SMB_COM_UNLOCK_BYTE_RANGE Request

Upon receipt of an SMB_COM_UNLOCK_BYTE_RANGE Request (section 2.2.4.14.1), the server MUST
verify the FID in the request by looking it up in the Server.Connection.OpenTable (see section
3.3.5.2). The FID and the byte range being unlocked MUST exactly match a range that was previously
locked by the same PID, and stored as an entry in Server.Open.Locks; otherwise, the server MUST

send an error response message with status set to STATUS_RANGE_NOT_LOCKED
(ERRDOS/ERROR_NOT_LOCKED). See [FSBO] section 3 for details of byte range lock
semantics.<265>

If the unlock is successful, the server MUST construct an SMB_COM_UNLOCK_BYTE_RANGE response

message as defined in section 2.2.4.14. The response MUST be sent to the client as specified in
section 3.3.4.1. The server MUST remove the matching entry from the Server.Open.Locks list.

3.3.5.17 Receiving an SMB_COM_CREATE_TEMPORARY Request

When the server receives an SMB_COM_CREATE_TEMPORARY Request (section 2.2.4.15.1), it MUST
verify that the DirectoryName passed in the request identifies a directory within the supplied TID,
verify the UID and ensure that the user has the necessary permissions to create a file in the directory.

If the underlying object store returns STATUS_ACCESS_DENIED, the server MUST increase
Server.Statistics.sts0_permerrors by 1.

The server MUST then create the file:

 The name of the newly created file MUST NOT be the same as the name of any other file in the
directory; otherwise, the server MUST return an error response with Status set to

STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists).

 The creation time of the file MAY be set to the value of the CreationTime field in the request.

 The file is opened for read/write in Compatibility Mode (see section 3.2.4.5.1).

 If the command is successful, the server MUST increase Server.Statistics.sts0_fopens by 1 and
MUST allocate an Open object and insert it into Server.Connection.FileOpenTable with the
following default values:

http://go.microsoft.com/fwlink/?LinkId=140636
http://go.microsoft.com/fwlink/?LinkId=140636

581 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 A new FID MUST be created to uniquely identify this Open in
Server.Connection.FileOpenTable.

 If Server.EnableOplock is TRUE and a requested OpLock was granted, the type of OpLock MUST
be set in Server.Open.OpLock and Server.Open.OplockState MUST be set to Held; otherwise,

Server.Open.OpLock MUST be set to None and Server.Open.OplockState MUST be set to
None.<266>

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount MUST be increased by 1.

 The server MUST construct an SMB_COM_CREATE_TEMPORARY Response (section 2.2.4.15.2)
message.

 Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.

 Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

 Server.Open.Locks MUST be set to an empty list.

 Server.Open.PID MUST be set to the PID provided in the request.

 Server.Open.PathName MUST be set to the name of the newly created file.

 Server.Open.GrantedAccess MUST be set to (GENERIC_READ | GENERIC_WRITE).

The server MUST register the Open by invoking the event Server Registers a New Open ([MS-SRVS]

section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

If an error occurred, the server MUST send an error response message.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.18 Receiving an SMB_COM_CREATE_NEW Request

This command is used to create a new file. It MUST NOT truncate or overwrite an existing file. If a file
with the requested pathname already exists within the share represented by the TID, the command
MUST fail with STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists). This command MUST be
used only to create regular files.

When the server receives an SMB_COM_CREATE_NEW Request, it MUST verify the TID and the
directory path portion of the FileName field. The server MUST verify the UID and ensure that the

user has write permission on the file's parent directory in order to create a new file. If the underlying
object store returns STATUS_ACCESS_DENIED, the server MUST increase
Server.Statistics.sts0_permerrors by 1. If the file is created successfully, it is opened for
read/write access in Compatibility Mode (see section 3.2.4.5.1).

If the command is successful, the server MUST increase Server.Statistics.sts0_fopens by 1 and
MUST allocate an Open object and insert it into Server.Connection.FileOpenTable with the
following default values:

 A new FID MUST be created to uniquely identify this Open in
Server.Connection.FileOpenTable.

 If Server.EnableOplock is TRUE and a requested OpLock was granted, the type of OpLock MUST
be set in Server.Open.OpLock and Server.Open.OplockState MUST be set to Held; otherwise,
Server.Open.OpLock MUST be set to None and Server.Open.OplockState MUST be set to
None.

%5bMS-SRVS%5d.pdf

582 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount MUST be increased by 1.

 Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.

 Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

 Server.Open.Locks MUST be set to an empty list.

 Server.Open.PID MUST be set to the PID provided in the request.

 Server.Open.PathName MUST be set to the FileName field of the request.

 Server.Open.GrantedAccess MUST be set to (GENERIC_READ | GENERIC_WRITE).

The server MUST register the Open by invoking the event Server Registers a New Open ([MS-SRVS]
section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

The server MUST construct an SMB_COM_CREATE_NEW Response (section 2.2.4.16.2) message and

return the newly-created FID.<267>

If an error occurred, the server MUST send an error response message.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.19 Receiving an SMB_COM_CHECK_DIRECTORY Request

When a server receives an SMB_COM_CHECK_DIRECTORY Request (section 2.2.4.17.1), it MUST
verify that DirectoryName points to a valid directory. The user indicated by the UID MUST have read
access to the directory path. If the user does not have read access to the directory path, the server
MUST return an error response with status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and
MUST increase Server.Statistics.sts0_permerrors by 1.

If DirectoryName points to a valid directory, the server MUST construct an

SMB_COM_CHECK_DIRECTORY Response (section 2.2.4.17.2) message with a Status indicating

success. Otherwise, the server MUST send an error response with a Status of
STATUS_OBJECT_PATH_NOT_FOUND (ERRDOS/ERRbadpath). See the error code list in section
2.2.4.17.2 for additional error conditions.<268>

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.20 Receiving an SMB_COM_PROCESS_EXIT Request

When the server receives an SMB_COM_PROCESS_EXIT Request (section 2.2.4.18.1), it MUST:

 Enumerate all of the FIDs in Server.Connection.FileOpenTable that were opened by the PID
indicated in the request header. For each FID:

 The server MUST release all locks held on the FID.

 The server MUST release OpLocks by closing the Open represented by each FID <269> and
MUST decrease Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens by 1
for each FID.

 The server MUST invalidate the FID by removing the Open entry from
Server.Connection.FileOpenTable.

 The server MUST provide the corresponding Open.FileGlobalId as an input parameter and
MUST deregister the Open by invoking the event Server Deregisters an Open ([MS-SRVS]

section 3.1.6.5).

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

583 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Enumerate all of the Search IDs (SID)s in the Server.Connection.SearchOpenTable that were
opened by the PID indicated in the request header. For each SID:

 The server MUST close the search indicated by the SID.

 The server MUST invalidate the SID by removing the SearchOpen entry from

Server.Connection.SearchOpenTable.

The server MUST search the Server.Connection.PendingRequestTable for any pending commands
that have the same UID, TID, PID, and MID as presented in the request. If the SMB transport is
connectionless, the header CID field value SHOULD<270> also be used. For each matching entry, the
server MUST abort the pending operation. The client process that made the aborted command request
no longer exists to receive the response.

If the Process Exit operation completes successfully, the server MUST construct an

SMB_COM_PROCESS_EXIT response message as specified in section 2.2.4.18.2. The Status returned
MUST indicate success. Otherwise, the server MUST send an error response.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.21 Receiving an SMB_COM_SEEK Request

Upon receipt of an SMB_COM_SEEK command Request (section 2.2.4.19.1), the server MUST first
validate the FID in the request. If the FID is valid, the server MUST update the file pointer associated
with the FID according to the instructions in the SMB_COM_SEEK Request (section 2.2.4.19.2). The
new offset is returned in the response. The SMB_COM_SEEK Response message MUST be constructed.
If an error was generated by the request, the server MUST send an error response.

The Offset field in the SMB_COM_SEEK (section 2.2.4.19) request and response is a 32-bit value. If

the CAP_LARGE_FILES capability has been negotiated, then 64-bit offsets are supported. The server
MUST return only the lower order 32 bits of the actual 64-bit offset.<271>

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.22 Receiving an SMB_COM_LOCK_AND_READ Request

When the server receives an SMB_COM_LOCK_AND_READ Request (section 2.2.4.20.1), if the request
is on a named pipe, the server MUST fail the request with an NT status code of
STATUS_INVALID_DEVICE_REQUEST (0xC0000010); otherwise, the server MUST treat the request as
if it is an SMB_COM_LOCK_BYTE_RANGE Request (section 2.2.4.13.1) followed by an
SMB_COM_READ Request (section 2.2.4.11.1). Processing MUST proceed as specified in sections
3.3.5.15 and 3.3.5.13, with the following exceptions:

 Their triggering requests will be the SMB_COM_LOCK_AND_READ Request of this event.

 If processing results in an error during the process specified in section 3.3.5.15, the server MUST
construct an SMB_COM_LOCK_AND_READ (section 2.2.4.20.1) error response and MUST NOT
continue to the process indicated in section 3.3.5.13.

 If processing results in an error during the process specified in section 3.3.5.13, the server MUST
construct an SMB_COM_LOCK_AND_READ Request error response.

 The server MUST construct an SMB_COM_LOCK_AND_READ Response (section 2.2.4.20.2) instead

of the messages indicated in 3.3.5.15 and 3.3.5.13.

 The response fields MUST be populated with the data that would go in the corresponding fields of
both SMB_COM_LOCK_BYTE_RANGE Request (section 2.2.4.13.1) and SMB_COM_READ
Response (section 2.2.4.11.2) messages.

584 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

An entry for the newly-granted byte-range lock MUST be added to Server.Open.Locks. The type of
the lock MUST be exclusive, and the entry MUST be formatted with a 32-bit offset

(LOCKING_ANDX_RANGE32).<272>

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.23 Receiving an SMB_COM_WRITE_AND_UNLOCK Request

The SMB_COM_WRITE_AND_UNLOCK (section 2.2.4.21) command combines the behavior of
SMB_COM_WRITE (section 2.2.4.12) with that of

SMB_COM_UNLOCK_BYTE_RANGE (section 2.2.4.14).
SMB_COM_WRITE_AND_UNLOCK (section 2.2.4.21) is intended to be paired with
SMB_COM_LOCK_AND_READ (section 2.2.4.20) to perform record updates to a file.

The FID provided in the command request MUST indicate a file held open by the client with, at
minimum, write access. The server MUST first perform the write operation and then release the lock.
The bytes to be written are passed in the Data field of the request, and MUST be written starting at
the file position indicated by the WriteOffsetInBytes field. Once the data has been successfully

written, the server MUST attempt to unlock the byte range specified by WriteOffsetInBytes (offset)
and CountOfBytesToWrite (length).<273>

It is possible that the actual number of bytes available in the request, as indicated by the DataLength
field, is less than CountOfBytesToWrite. If this occurs, the server MUST write DataLength bytes
from the Data field to the file indicated by the FID starting at the position indicated by
WriteOffsetInBytes. When the byte range is unlocked, however, the full range as specified by
WriteOffsetInBytes and CountOfBytesToWrite MUST be unlocked.

In the event of an error, the server MUST send an error response message. If the write and unlock are
successful, the server MUST construct an SMB_COM_WRITE_AND_UNLOCK response message as
specified in section 2.2.4.21.2. The response MUST be sent to the client as specified in section 3.3.4.1
The server MUST remove the matching entry from the Server.Open.Locks list.

3.3.5.24 Receiving an SMB_COM_READ_RAW Request

Upon receipt of an SMB_COM_READ_RAW Request (section 2.2.4.22.1) from the client, the server
MUST verify that the Server.Capabilities include CAP_RAW_MODE, and that
Connection.IsSigningActive is FALSE (no SMB frame is sent in the response; therefore, this
command is not compatible with SMB signing). If those conditions are met, the server MUST also
verify the FID and the UID and MUST verify that the user has, at minimum, read permission on the

file, named pipe, or device indicated by the FID. If any of these conditions is not met, the server
MUST send a zero-length reply over the SMB transport to indicate failure of the request.

The server response to an SMB_COM_READ_RAW request is not a standard SMB response. Instead,
the server sends raw data to the client via the underlying transport. The server relies upon the
transport to ensure that the data is transferred in sequence; that the entire message is sent
contiguously; that transmission errors are detected; and that the number of bytes transferred is
reported to the receiving client.

Because there is no SMB Header (section 2.2.3.1) included in the response, there is no mechanism for

reporting specific errors. If an error occurs, the server MUST send a zero-length response to the client
via the SMB transport. A zero-length reply can also indicate that the requested offset is at or beyond
end of file (EOF) and that no bytes are available to be returned. The client can then use a different
SMB command to perform a Read. The alternate Read request either fails, providing the client with an
actionable status code, or it succeeds, allowing the client to read the data that it had originally

attempted to read.

If the server receives an SMB_COM_READ_RAW request after having sent an OpLock Break
Notification to the client and is actively waiting for the client's response to the OpLock Break

585 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Notification, the server MUST send a zero-length reply. The server might then re-issue the OpLock
Break Notification. This is done because the OpLock Break Notification sent by the server can arrive at

the client after the client has issued the SMB_COM_READ_RAW request. In this situation, the client
could mistake the OpLock Break Notification request for the Raw Read response. See Receiving Any

OpLock Break Notification (section 3.2.5.42) for steps that the client MUST take to handle this
situation.

If there are no errors and the FID indicates a regular file, processing is as follows:

 The server MUST attempt to read from the underlying object store for the file indicated by the FID
in the response. It MUST start reading from the file at the offset indicated by the Offset field in
the request, or by the combination of Offset and OffsetHigh if CAP_LARGE_FILES was
negotiated. The client MUST read BytesToReturn bytes or until EOF, whichever comes

first.<274>

 If the offset is at or beyond EOF, the server MUST send a zero-length message to the client via the
SMB transport.

 If the client requests to read more bytes than the file contains, or to read beyond EOF, the
number of bytes returned by the server message MUST be the number of bytes actually read from
the file. A response message containing fewer bytes than were requested from a regular file

indicates that EOF was encountered.

If there are no errors, and the FID indicates a named pipe or device, the following additional
processing applies:

 The offset value is used only if it is relevant to the object from which the data is read.

 If the Timeout value is -1 (0xFFFFFFFF, "wait forever") or the server does not implement
Timeout processing,<275> the server SHOULD wait until there are at least
MinCountOfBytesToReturn bytes of data read from the device before returning a response to

the client.

 If the Timeout value is -2 (0xFFFFFFFE, "default"), the server SHOULD wait for the default time-

out associated with the named pipe or I/O device.

 If the Timeout value is zero and no data is currently available, the server SHOULD send a
successful response with the DataLength field set to zero.

 Otherwise, the server SHOULD wait to send the response until either MinCountOfBytesToReturn
or more bytes of data become available or the Timeout in milliseconds elapses. If Timeout

elapses before MinCountOfBytesToReturn bytes are read, the server SHOULD send a response
with an error status indicating that the Timeout occurred and SHOULD also respond with any
bytes already read.

The server MUST NOT respond as specified in section 3.3.4.1. The server MUST add the total number
of bytes in the message to the Server.Statistics.sts0_bytessent_low and
Server.Statistics.sts0_bytessent_high abstract data model elements (section 3.3.1.1). The server

MUST respond by sending the bytes read to the client via the SMB transport.

3.3.5.25 Receiving an SMB_COM_READ_MPX Request

CIFS permits the use of the SMB_COM_READ_MPX (section 2.2.4.23) command over connectionless
transports only. SMB message signing is not supported over connectionless transports.

Upon receiving an SMB_COM_READ_MPX Request (section 2.2.4.23.1), the server MUST validate the
FID and UID to ensure that the client has sufficient privilege to read the file. If no errors occur, the
server MUST then attempt to read from the underlying object store for the file indicated by the FID of
the request.<276>

586 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

As is true in SMB_COM_READ, the total number of bytes returned can be less than the number
requested only if a read specifies bytes beyond the current file size, and FID refers to a disk file. In

this case, the server MUST return only the bytes that exist. A read that begins at or beyond the end of
file MUST result in a single response with a zero value in Count. If the total number of bytes returned

is less than the number of bytes requested, this indicates end of file (if reading other than a standard
blocked disk file, only zero bytes returned indicates end of file).

Once started, the Read Block Multiplexed operation MUST run to completion. The client MUST receive
all of the responses generated by the server. Conflicting commands (such as file close) MUST NOT be
sent to the server while a multiplexed operation is in progress.

Server support of this command is optional.<277>

If the read request was made to a named pipe or I/O device, the following additional rules apply:

 If the Timeout value is -1 (0xFFFFFFFF, "wait forever") or the server does not implement
Timeout processing,<278> the server SHOULD wait until there are at least
MinCountOfBytesToReturn bytes of data read from the device before returning a response to

the client.

 If the Timeout value is -2 (0xFFFFFFFE, "default"), the server SHOULD wait for the default time-
out associated with the named pipe or I/O device.

 If the Timeout value is zero and no data is currently available, the server SHOULD send a
successful response with the DataLength field set to zero.

 Otherwise, the server SHOULD wait to send the response until either MinCountOfBytesToReturn
or more bytes of data become available or the Timeout in milliseconds elapses. If Timeout
elapses before MinCountOfBytesToReturn bytes are read, the server SHOULD send a response
with an error status indicating that the Timeout occurred and SHOULD also respond with any
bytes already read.

If an error is detected, the server MUST send a single error response message to the client.
Otherwise, the server MUST respond to the request with one or more SMB_COM_READ_MPX response

messages (constructed as specified in section 2.2.4.23.2) until the requested amount of data has been
returned or an error occurs. Each server response MUST contain the PID and MID of the original
client request, as well as the Offset and Count describing the returned data. The client has received
all of the data bytes when the sum of the DataLength fields received in each response equals the
total amount of data bytes expected (smallest Count received). This allows the protocol to work even

if the responses are received out of sequence.

The response MUST be sent to the client as described in section 3.3.4.1, with the exception that SMB
signing and connectionless protocols are mutually exclusive.

3.3.5.26 Receiving an SMB_COM_WRITE_RAW Request

Upon receipt of an SMB_COM_WRITE_RAW Request (section 2.2.4.25.1) from the client, the server
MUST verify that the Server.Capabilities include CAP_RAW_MODE, and that
Connection.IsSigningActive is FALSE. If those conditions are met, the server MUST also verify the

following:

 FID MUST be valid.

 UID MUST be valid, and the user MUST have, at minimum, write permission on the file, named

pipe, or device indicated by the FID.

 DataLength MUST be less than or equal to CountOfBytes.

 The number of bytes provided in the SMB_Data.Bytes.Data field MUST be equal to DataLength.

587 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If an error is detected when verifying any of the fields listed above (or when performing any other
basic validation of the message), the Write Raw operation MUST fail and the server MUST return a

Final Server Response, as described in section 2.2.4.25.3, with the Count field set to zero (0x0000).

If the DataOffset field value is less than the offset of SMB_Data.Bytes.Data, or if the DataOffset

field value is greater than the offset of the SMB_Data.Bytes.Data +
SMB_Parameters.Words.DataLength, the server SHOULD<279> fail the request with
STATUS_INVALID_SMB.

If the server has no resources available to process the Raw Mode portion of the command
(implementation-dependent), the server MUST fail the command. The server can first write the initial
data provided in the request. Whether or not the initial data is written, the server MUST return a Final
Server Response message with a Status of STATUS_SMB_USE_STANDARD (ERRSRV/ERRusestd) and

a Count set to the number of bytes written, which can be zero (0x0000).<280>

If the write request was made to a named pipe or I/O device, the following additional rules apply:

 If the Timeout value is -1 (0xFFFFFFFF, "wait forever") or the server does not implement

Timeout processing,<281> then the server SHOULD wait until DataLength bytes have been
written to the device before returning a response to the client.

 If the Timeout value is -2 (0xFFFFFFFE, "default") the server SHOULD wait for the default time-

out associated with the named pipe or I/O device.

 If the Timeout value is zero, the write SHOULD NOT block.

 Otherwise, the server SHOULD wait to send the response until either DataLength bytes are
written to the device or the Timeout in milliseconds elapses. If Timeout is greater than zero and
it elapses before DataLength bytes are written, the server SHOULD send a response with an
error status indicating that the time-out occurred and SHOULD also include the count of bytes
written.

If validation of the request is successful, and there are sufficient resources available to process the
request, the server MUST attempt to write the initial data provided in the SMB_COM_WRITE_RAW

request.

If the initial write operation succeeds and there is no additional data to be sent (CountOfBytes and
DataLength are equal in the request), the server MUST send a Final Server Response indicating
success, with the Count field set to the number of bytes that were written (the same as
CountOfBytes and DataLength).<282>

If the initial write operation succeeds and additional data is pending (CountOfBytes greater than
DataLength), the server MUST send an Interim Server Response as shown in section 2.2.4.25.2. If,
however, the initial write operation fails, the server MUST return a Final Server Response. The Final
Server Response MUST return a Status value indicating the cause of the error and a Count field set
to the number of bytes successfully written. If the Interim Server Response was sent, the client MUST
send any additional data in Raw Mode (meaning, the data to be written to the file MUST be written

directly to the SMB transport for delivery to the server). The server MUST forward the raw data to the
file, named pipe, or device indicated by the FID. The client can send less than the number of bytes
expected (CountOfBytes minus DataLength). In that case, the server MUST write only the data

sent. The client MUST NOT send more bytes than expected in Raw Mode.

As described above, if an error is detected prior to sending the Interim Server Response, then a Final
Server Response MUST be sent to indicate the error and provide the count of the number of bytes
successfully written. Once the Interim Server Response has been sent, the setting of the

WritethroughMode bit in the WriteMode field of the original request determines whether or not a
Final Server Response is sent to complete the Write Raw operation.

 If WritethroughMode is set, a Final Server Response is expected following the transfer of raw
data from the client. The server MUST complete writing the raw data to its final destination (file,

588 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

named pipe, or device) and then MUST return the Final Server Response, indicating any errors as
well as the total number of bytes written.

 If WritethroughMode is clear, the server can perform write-behind. The Final Server Response
MUST NOT be sent, even if an error occurs. The server MUST store the error and return it on the

next access to the FID. When the client has completed sending the raw write data, it can continue
normal operation.

Raw mode transfers are not supported on connectionless transports.

The interim and final response messages MUST be sent to the client as described in section 3.3.4.1,
with the exception that SMB signing is not supported for raw mode commands.

3.3.5.27 Receiving an SMB_COM_WRITE_MPX Request

Upon receipt of an SMB_COM_WRITE_MPX Request (section 2.2.4.26.1), the server MUST validate the
following fields:

 TID: The tree ID MUST indicate a connected disk share.

 UID: The user ID MUST indicate an active SMB session. The UID MUST be listed in

Server.Connection.SessionTable.

 CID: The SMB transport MUST be connectionless, and the Connection ID field MUST be valid for
the transport.

 PID and MID: These are used to identify a single Write MPX operation that can consist of multiple
Write MPX request messages.

 SequenceNumber: This field MUST be zero for all but the final Write MPX request sent in the
operation. The requests can arrive in any order.

 SMB_Parameters.Words.FID: Indicates the file to which the transmitted data is to be written.
The FID MUST represent a regular file or a printer spool file.

The TID, UID, PID, MID, and CID values MUST be the same for all
SMB_COM_WRITE_MPX (section 2.2.4.26) messages sent as part of the same operation. The FID
MUST be the same for all SMB_COM_WRITE_MPX Request messages sent as part of the same
operation.

The server MUST rely on the SMB transport to determine whether each client request was successfully
received. If the transport indicates an error on the receipt of the request, the request MUST be
discarded. If this SMB command request is received over a connection-oriented transport, the server
MUST respond immediately with an error response; the error code MUST be
STATUS_SMB_USE_STANDARD (ERRSRV/ERRusestd).

When the server receives the first SMB_COM_WRITE_MPX in a Write MPX exchange, it MUST initialize
the Server.Open.MpxMask that it returns to the client to zero (0x00000000).

For each request received as part of the SMB_COM_WRITE_MPX operation, the server MUST attempt

to write the data in the SMB_Data.Bytes.Buffer field to the file indicated by FID at the location
indicated by SMB_Parameters.Words.ByteOffsetToBeginWrite. If the write is successful, the
Server.Open.MpxMask is updated by performing a bitwise OR with the RequestMask in the
request. The result is stored in Server.Open.MpxMask:

Server.Open.MpxMask |= RequestMask

When the server receives an SMB_COM_WRITE_MPX request that has a nonzero SequenceNumber

in the SMB Header (section 2.2.3.1), the server takes one of two actions:

589 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If WritethroughMode is set, the server writes all of the accumulated data and ensures (if
possible) that the data is flushed to disk. ResponseMask MUST be set to

Server.Open.MpxMask. The server then returns the SMB_COM_WRITE_MPX
Response (section 2.2.4.26.2). The ResponseMask indicates the set of SMB_COM_WRITE_MPX

messages in this exchange that were received by the server.

 If WritethroughMode is clear, the server responds immediately and sets ResponseMask as
Server.Open.MpxMask; write operations that are in-progress complete asynchronously.

The client MUST resend any SMB_COM_WRITE_MPX requests that were not indicated as having been
received in the ResponseMask. The last message resent MUST have the same nonzero
SequenceNumber in the SMB Header as was previously used in this exchange. The server, once
again, responds with an SMB_COM_WRITE_MPX Response containing the cumulative ResponseMask.

This process continues until all request messages in the exchange have been acknowledged.

The SMB_COM_WRITE_MPX Response messages MUST be sent to the client as specified in section
3.3.4.1, with the exception that SMB signing is not supported over connectionless transports.

3.3.5.28 Receiving an SMB_COM_QUERY_INFORMATION2 Request

Upon receiving an SMB_COM_QUERY_INFORMATION2 Request (section 2.2.4.31.1) from the client,
the server MUST validate the FID provided by looking up the FID in
Server.Connection.FileOpenTable. The FID MUST indicate a regular file. If an error occurs, an error
response message MUST be generated. If an open is found and Open.GrantedAccess does not
include FILE_READ_ATTRIBUTES access, the server MUST send an error response with a status of
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase

Server.Statistics.sts0_permerrors by 1. If the UID presented is different from the UID that opened
the file, the server MUST send the error response with a Status of STATUS_INVALID_HANDLE
(ERRDOS/ERRbaduid). Otherwise, the server MUST obtain the required attribute information, as listed
in section 2.2.4.31.2. The SMB_COM_QUERY_INFORMATION2 response MUST be formatted as
described in that section, and the response messages MUST be sent to the client as specified in
section 3.3.4.1.<283>

3.3.5.29 Receiving an SMB_COM_SET_INFORMATION2 Request

Upon receiving an SMB_COM_SET_INFORMATION2 Request (section 2.2.4.30.1), the server MUST
validate the FID by looking up the FID in Server.Connection.FileOpenTable, which MUST indicate a
regular file. The UID MUST be used to find the Server.Session.UserSecurityContext, which MUST

have sufficient privilege to set file attribute information. If the user does not have sufficient privileges,
the server MUST send an error response with a status of STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess) and MUST increase Server.Statistics.sts0_permerrors by 1. If the UID
presented is different from the UID that opened the file, the server MUST send the error response with
a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

The server MUST attempt to set the attribute on the file indicated by the FID. If an error is detected,
the Status field of the response MUST be set to the error; otherwise, Status MUST be set to success.

The response messages MUST be sent to the client as described in section 3.3.4.1.<284>

3.3.5.30 Receiving an SMB_COM_LOCKING_ANDX Request

Upon receiving an SMB_COM_LOCKING_ANDX Request (section 2.2.4.32.1), the server MUST validate

the FID and PID by finding a matching Server.Open entry in the
Server.Connection.FileOpenTable and a Server.SMBRequest entry in the
Server.Connection.PendingRequestsTable, respectively.

SMB_COM_LOCKING_ANDX Request is processed in three parts, all of which are executed:

590 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

1. If NumberOfRequestedUnlocks is nonzero, the Unlocks array contains
NumberOfRequestedUnlocks entries. Each entry requests that a lock be released.<285>

2. If NumberOfRequestedLocks is nonzero, the Locks array contains
NumberOfRequestedLocks entries. Each entry requests the acquisition of a lock.<286>

3. If the OPLOCK_RELEASE flag is set in the TypeOfLock field of the request, the request is an
OpLock Break Request sent by the client in response to an OpLock Break Notification from the
server. The server MUST release the OpLock on the Open, after which it MUST allow pending
operations that were waiting for the OpLock release to proceed, in an implementation-specific
fashion.<287> The server MUST set Server.Open.Oplock to NONE and MUST set
Server.Open.OplockState to NONE.

The release or creation of a byte-range lock MUST follow these rules:

 Overlapping locks are not allowed.

 Offsets beyond the current end of file can be locked; the server MUST NOT allocate additional file
space as a result of such locks.

 The server MUST NOT allow a range to be unlocked by any PID other than the PID that
performed the lock. If the PID in the unlock request does not match Server.Open.Locks in the
Open, the server MUST send an error response message with status set to

STATUS_RANGE_NOT_LOCKED (ERRDOS/ERROR_NOT_LOCKED). See [FSBO] section 3 for details
of byte range lock semantics.

 All locks are held based upon the FID used to create the lock. That is, any process (PID) using
the FID specified in the creation of the lock has access to the locked bytes. If the lock is an
exclusive lock, other FIDs indicating a separate Open of the same file MUST be denied access to
the same bytes. If the lock is a shared read lock, other FIDs indicating a separate Open of the
same file MUST be denied write access to the same bytes.

The release of an OpLock follows these rules:

 If there are no outstanding OpLock breaks, or if the FID in the request does not match the FID of

an outstanding OpLock Break Notification, then no OpLock is released. This does not generate an
error.

 If NumberOfRequestedUnlocks and NumberOfRequestedLocks are both zero (0x0000) in
the SMB_COM_LOCKING_ANDX Request, the server MUST NOT send an
SMB_COM_LOCKING_ANDX Response (section 2.2.4.32.2).

 Note that NumberOfRequestedUnlocks SHOULD always be zero (0x0000) in an OpLock Break
Request, because an OpLock is an exclusive file lock. A client holding an OpLock on a file has no
need to request byte-range locks from the server. There SHOULD, therefore, be no existing byte-
range locks to be unlocked by the OpLock Break Request message. No error is generated by a
nonzero NumberOfRequestedUnlocks value in an OpLock Break Request.<288><289>

Locking a range of bytes MUST fail with STATUS_LOCK_NOT_GRANTED(ERRDOS/ERRlock) if any

subranges or overlapping ranges are locked, even if they are currently locked by the PID requesting

the new lock.

This client request is atomic. If any of the lock ranges times out because the area to be locked is
already locked, or the lock/unlock request otherwise fails, the lock state of the file MUST NOT be
changed.

The server response indicates only success or failure. If failure, the response message is an error
response, including the status code indicating the cause of the failure. The response messages MUST

be sent to the client as specified in section 3.3.4.1.

http://go.microsoft.com/fwlink/?LinkId=140636

591 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

For each byte-range lock that is granted, an entry MUST be added to Server.Open.Locks. The type
of the lock MUST match the type indicated in the TypeOfLock field. If the LARGE_FILES bit of the

TypeOfLock field is set, the entry MUST be formatted as a LOCKING_ANDX_RANGE64; otherwise, it
MUST be formatted as a LOCKING_ANDX_RANGE32.

For each byte-range lock that is released, the corresponding entry in Server.Open.Locks MUST be
removed.

3.3.5.31 Receiving an SMB_COM_TRANSACTION Request

The SMB_COM_TRANSACTION is processed as specified in sections 3.3.5.2.5 and 3.3.5.57.
Additionally, the server MUST validate the contents of the SMB_DATA.Bytes.Name field. The
subcommand transported by the transaction is interpreted based upon the object receiving the
message.

3.3.5.32 Receiving an SMB_COM_IOCTL Request

Upon receipt of an SMB_COM_IOCTL request, the server MUST verify that the FID is valid (by locating
an Open with a matching Open.FID in the Server.Connection.FileOpenTable). The UID MUST
indicate a Server.Session.UserSecurityContext with sufficient permission to perform the IOCTL.
The IOCTL request MUST be unpacked as specified in section 2.2.4.35.1, and the server MUST call the
IOCTL function indicated by the Category and Function fields in the request.<290>

If the IOCTL is successful, the server MUST construct an SMB_COM_IOCTL response message as

specified in section 2.2.4.35.2. The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.33 Receiving an SMB_COM_ECHO Request

When the server receives an SMB_COM_ECHO Request (section 2.2.4.39.1), message handling

proceeds as follows:

The value of the TID field MUST be either a valid TID (see section 3.3.5.2) or 0xFFFF.<291>

If EchoCount is zero, a response MUST NOT be sent. If EchoCount is nonzero, the server SHOULD
reply with the requested number of responses. The server MAY enforce any nonzero limit in the
number of responses that it returns.

The server MUST construct an SMB_COM_ECHO response message as specified in section 2.2.4.39
and initialize it as follows:

 The SMB_Parameters.Words.SequenceNumber field MUST be set to 1.

 The SMB_Data.Bytes.Data field MUST be the same as that received in the request.

While SMB_Parameters.Words.SequenceNumber is less than or equal to EchoCount:

 The response MUST be sent to the client as described in section 3.3.4.1.

 The SMB_Parameters.Words.SequenceNumber field MUST be incremented.

Note that SMB_Parameters.Words.SequenceNumber is not the signing sequence number. If
signing is enabled, each outgoing Echo response message is signed individually. The same signing

sequence number, provided by the Server.Connection.ServerSendSequenceNumber table, is
used for all Echo response messages to the same Echo request.

If the server receives an SMB_COM_NT_CANCEL Request (section 2.2.4.65.1) that matches the
SMB_COM_ECHO (section 2.2.4.39) during Processing of the Echo, the Echo operation is canceled and
no further responses are sent.

592 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.34 Receiving an SMB_COM_WRITE_AND_CLOSE Request

Upon receipt of an SMB_COM_WRITE_AND_CLOSE Request (section 2.2.4.40.1), the server MUST
perform the following actions:

 The server MUST verify the FID, which MUST represent an open regular file.

 The server MUST verify the UID as described in section 3.3.5.2 and ensure that the user has
permission to write to the file. If the user does not have permission to write to the file, the server
MUST send an error response with a status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess)
and MUST increase Server.Statistics.sts0_permerrors by 1.

 If the UID presented is different from the UID that opened the file, the server MUST send the
error response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

 In the file identified by the FID, the server MUST perform a seek to the offset specified in the
WriteOffsetInBytes field in the request.

 The server MUST write CountOfBytesToWrite bytes sequentially from the Data field in the

request to the file. Any failure that causes less than CountOfBytesToWrite bytes to be written
SHOULD result in an error response to the client.

 If the LastWriteTime field is nonzero in the request, the server SHOULD set the last write time of

the file to this value.

In the event of an error, the server MUST send an error response message. Otherwise, the server
MUST close the file indicated by the FID. The server MUST release every lock in Open.Locks. The
FID MUST be invalidated by removing the Open entry from Server.Connection.FileOpenTable.
Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens MUST be decreased by
1.<292> The server MUST provide Open.FileGlobalId as an input parameter and MUST deregister
the Open by invoking the event Server Deregisters an Open ([MS-SRVS] section 3.1.6.5).

Again, an error MUST result in an error response message being sent to the client. Otherwise, the
server MUST construct an SMB_COM_WRITE_AND_CLOSE Response (section 2.2.4.40.2) message.

The CountOfBytesWritten field MUST contain the number of bytes written to the file. This value
SHOULD be the equal to CountOfBytesToWrite. If the number of bytes written differs from the
number of bytes requested to be written, and no error is indicated, the server has no resources
available with which to satisfy the complete write. The response MUST be sent to the client as
specified in section 3.3.4.1.

3.3.5.35 Receiving an SMB_COM_OPEN_ANDX Request

Upon receipt of an SMB_COM_OPEN_ANDX Request (section 2.2.4.41.1), the server MUST validate the
TID and UID, as defined in section 3.3.5.2.

If the ShareType property of the Server.Share specified by the SMB_Header.TID is equal to
Named Pipe and if Server.Session.IsAnonymous is TRUE, the server MUST invoke the event
specified in [MS-SRVS] section 3.1.6.17 by providing the SMB_Parameters.Words.FileName field
with the "\PIPE\" prefix removed as input parameter. If the event returns FALSE, indicating that no
matching named pipe is found that allows an anonymous user, the server MUST fail the request with

STATUS_ACCESS_DENIED and MUST increase Server.Statistics.sts0_permerrors by 1. Otherwise,
the server MUST continue the open processing.

The server MUST search within the share indicated by the Server.Share identified by the
SMB_Header.TID for an object with matching SMB_Parameters.Words.FileName.<293>

If a matching file is found and:

 The user indicated by the Server.Session.UserSecurityContext identified by UID has sufficient
privileges to open the file with AccessMode access;

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

593 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The file is not currently open in a conflicting mode, and:

 The FileExistsOpts flag in the OpenMode field is 0, the server SHOULD fail the request with

error code STATUS_OBJECT_NAME_COLLISION.

 The FileExistsOpts flag is 1, the server permits opening the file in append mode.

 The FileExistsOpts flag is 2, the server permits overwriting the file.

If no matching file is found, but:

 Server.Share represents a disk share;

 Server.Session.UserSecurityContext has sufficient privileges to create and open the file with
AccessMode access;

 The CreateFile flag in the OpenMode field is 0, the server SHOULD<294> fail the file creation and
return STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 The CreateFile flag in the OpenMode field is 1, the server permits file creation.

The server MUST attempt to create the file with the attributes specified in FileAttrs. If CreationTime
is nonzero, then the creation time of the file MUST be set to the value of CreationTime.

If the underlying object store returns STATUS_ACCESS_DENIED, the server MUST increase
Server.Statistics.sts0_permerrors by 1.

If the file cannot be opened, the server MUST return an error response.<295>

If the command is successful, the server MUST increase Server.Statistics.sts0_fopens by 1 and
MUST allocate an Open object and insert it into Server.Connection.FileOpenTable with the
following default values:

 A new FID MUST be created to uniquely identify this Open in
Server.Connection.FileOpenTable.

 If Server.EnableOplock is TRUE and a requested OpLock was granted, the type of OpLock MUST
be set in Server.Open.OpLock and Server.Open.OplockState MUST be set to Held; otherwise,

Server.Open.OpLock MUST be set to None and Server.Open.OplockState MUST be set to
None.

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount MUST be increased by 1.

 Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.

 Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

 Server.Open.Locks MUST be set to an empty list.

 Server.Open.PID MUST be set to the PID provided in the request.

 Server.Open.PathName MUST be set to the FileName field of the request.

 Server.Open.GrantedAccess MUST be set to the AccessMode field of the request.

The server MUST register the Open by invoking the event Server Registers a New Open ([MS-SRVS]
section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

The server MUST instantiate an SMB_COM_OPEN_ANDX Response (section 2.2.4.41.2) message and

MUST set SMB_Header.Status to indicate success.<296>

594 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the REQ_ATTRIB flag is set in the SMB_Parameters.Words.Flags field of the request, the values
of the following response fields MUST be filled in by the server; otherwise, they SHOULD be set to zero

and MUST be ignored by the client:

 FileAttrs

 LastWriteTime

 FileDataSize

 AccessRights

 ResourceType

 NMPipeStatus

 OpenResults

If the REQ_OPLOCK flag is set in the SMB_Parameters.Words.Flags field of the request, the client

requests an exclusive OpLock. If REQ_OPLOCK_BATCH is also set, the client requests a batch OpLock.
If the OpLock is granted, the LockStatus bit in the OpenResults field of the response MUST be set.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.36 Receiving an SMB_COM_READ_ANDX Request

When a server receives an SMB_COM_READ_ANDX request, message handling proceeds as follows:

The server MUST verify that the FID represents a valid Server.Open (has an entry in the SMB
connection's Server.Connection.FileOpenTable). If the FID is not valid, the server MUST return an
error response with a status of STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid).

The server MUST verify that the user represented by the UID in the request has permission to read
from the file as described in section 3.3.5.2. If the user does not have sufficient permissions, the

server MUST send an error response with a status of STATUS_ACCESS_DENIED

(ERRDOS/ERRnoaccess) and MUST increase Server.Statistics.sts0_permerrors by 1. If the UID
that is presented is different from the UID that opened the file, the server MUST send the error
response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

The server MUST attempt to read from the underlying object store for the Server.Open identified by
the FID in the request. The server MUST start reading at the offset indicated by either the 32-bit

offset in Offset or the 64-bit offset formed by combining OffsetHigh and Offset. If WordCount is 10
(0x0A), the client is using 32-bit offsets; if it is 12 (0x0C), the client is using 64-bit offsets.

The server MUST attempt to read MaxCountOfBytesToReturn number of bytes from the file.<297>

The server might read fewer than MaxCountOfBytesToReturn bytes if an end of file (EOF) event is
encountered. A read request starting at or beyond the end of the file returns zero bytes.

If reading the requested number of bytes would lead to a response message size larger than the
established Server.Connection.ClientMaxBufferSize and Server.Connection.ClientCapabilities

does not have CAP_LARGE_READX set, the server MUST abort the connection to the client. If
Server.Connection.ClientCapabilities has CAP_LARGE_READX set, the response message can
exceed the negotiated buffer size if the FID refers to a disk file.

If the read request was made to a named pipe or I/O device, the following additional rules apply:

 The server MUST NOT read a number of bytes from named pipes or I/O devices greater than can
be transmitted in a message less than or equal to Server.Connection.ClientMaxBufferSize in
size, even if CAP_LARGE_READX was negotiated.

595 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The server MUST wait to send a response until MinCountOfBytesToReturn are read from the
named pipe or I/O device.

 If Timeout is greater than zero, the server SHOULD<298> wait to send the response until either
MinCountOfBytesToReturn are read or the Timeout (in milliseconds) elapses. If Timeout is

greater than zero and it elapses before MinCountOfBytesToReturn bytes are read, the server
SHOULD send a response with an error status indicating that the time-out occurred and SHOULD
also respond with any bytes already read. If Timeout is zero and no data is currently available,
the server SHOULD send a successful response with the DataLength field set to zero.

 If the Timeout value is -1 (0xFFFFFFFF, "wait forever") then the server MUST wait until there are
at least MinCountOfBytesToReturn bytes of data read from the device before returning a
response to the client.

 If the Timeout value is -2 (0xFFFFFFFE, "default") the server MUST wait for the default time-out
associated with the named pipe or I/O device.

If the operation is successful, the server MUST construct an SMB_COM_READ_ANDX

Response (section 2.2.4.42.2) message with the following additional requirements:

 If the request was to a named pipe, Available MUST be set to the number of bytes remaining to
be read from the named pipe, which can be zero. Otherwise, the server MUST set the Available

field to -1(0xFFFF).

 The DataLength field MUST be set to the length, in bytes, of the data read by the server.

 The DataOffset field MUST be set to the offset, in bytes and relative to the start of the SMB
Header (section 2.2.3.1), of the data read by the server.

 The Pad field MUST pad the SMB_Data.Data field to an appropriate boundary.

 The Data field MUST contain the data that was read from the requested file.

If the request is to read from a named pipe in message mode, and the message is larger than

MaxCountOfBytesToReturn bytes, the server MUST respond with a complete

SMB_COM_READ_ANDX response (not an error response) and the Status field of the response MUST
contain STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata). Any other error MUST generate an
error response message.

The response MUST be sent to the client as described in section 3.3.4.1.

3.3.5.37 Receiving an SMB_COM_WRITE_ANDX Request

When the server receives an SMB_COM_WRITE_ANDX Request (section 2.2.4.43.1), message
handling proceeds as follows.

The server MUST verify that the FID field represents a valid Open (has an entry in the SMB
connection's Server.Connection.FileOpenTable).

The server MUST verify the UID as described in section 3.3.5.2, and ensure that the user has

permission to write to the file. If the user does not have permission to write to the file, the server
MUST send an error response with a Status of STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and
MUST increase Server.Statistics.sts0_permerrors by 1.

If the UID that is presented is different from the UID that opened the file, the server MUST send the
error response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbaduid).

The server MUST attempt to write the data received in the request to the specified file at the offset

indicated in the request. If WordCount is 12 (0x0C), the server MUST use the offset in the 32-bit

596 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Offset field. If WordCount is 14 (0x0E), the server MUST use the 64-bit offset formed by combining
OffsetHigh and Offset.

If the DataOffset field value is less than the offset of the SMB_Data.Bytes.Data field, or if the
DataOffset field value is greater than the offset of SMB_Data.Bytes.Data +

SMB_Parameters.Words.DataLength, the server SHOULD<299> fail the request with
STATUS_INVALID_SMB.

A write request starting at or beyond the end of the file appends to the end of the file. Any "gaps"
caused by writing past the end of file MUST be filled with null (0x00) padding bytes. A request to write
zero bytes causes no change to the target file and MUST return a success. If the size of the
SMB_Data.Bytes.Data field is greater than the value of the SMB_Parameters.Words.DataLength
field, the server SHOULD<300> fail the request and return ERRSRV/ERRerror.

If the client has set WritethroughMode in WriteMode, all written data MUST be flushed to disk
before the response is sent.

If the write request is made to a named pipe or I/O device, the following additional rules apply:

 If Timeout is greater than zero, the server SHOULD<301> wait to send the response until either
the number of bytes specified by DataLength are written to the device or the Timeout in
milliseconds elapses. If Timeout is greater than zero and it elapses before is the number of

DataLength bytes are written, the server SHOULD send a response with an error status indicating
that the time-out occurred and MUST also include the count of bytes written. This is not a normal
error response; it uses the full SMB_COM_WRITE_ANDX response format. If Timeout is zero, the
write SHOULD NOT block.

 If the Timeout value is -1 (0xFFFF, "wait forever"), the server SHOULD wait until the number of
DataLength bytes have been written to the device before returning a response to the client.

 If the Timeout value is -2 (0xFFFE, "default"), the server SHOULD wait for the default time-out

associated with the name pipes or I/O device.

 If the Remaining field is nonzero, and the pipe is a message mode pipe, it indicates that the pipe

write spans over multiple requests. The Remaining field SHOULD contain the number of bytes
remaining to be written.<302>

If the operation is successful, the server MUST construct an SMB_COM_WRITE_ANDX Response
message as specified in section 2.2.4.43.2, with the following additional requirements:

 If the request is to a named pipe or an I/O device and ReadBytesAvailable is set in the

WriteMode field, Available MUST be set to the number of bytes available to be read from the
named pipe or device, which MAY be zero.

 The Count field MUST be set to the count, in bytes, of data written.<303>

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.38 Receiving an SMB_COM_TRANSACTION2 Request

The SMB_COM_TRANSACTION2 is processed as specified in sections 3.3.5.2.5 and 3.3.5.58.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.39 Receiving an SMB_COM_FIND_CLOSE2 Request

The SMB_COM_FIND_CLOSE2 command is used to close a directory search handle that was created by
a TRANS2_FIND_FIRST2 subcommand. Upon receipt, the server MUST verify the UID by performing a
lookup in the Server.Connection.SessionTable, as described in section 3.3.5.2. The server must

597 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

then locate the Search ID (SID) indicated by the SearchHandle field in the request in the
Server.Connection.SearchOpenTable. If the SID is not found, the server MUST return an error

response with a Status of STATUS_INVALID_HANDLE (ERRDOS/ERRbadfid). Otherwise, the SID
MUST be closed, freeing the associated search context, if any. The SID entry MUST then be removed

from Server.Connection.SearchOpenTable.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.40 Receiving an SMB_COM_TREE_CONNECT Request

When the server receives an SMB_COM_TREE_CONNECT Request (section 2.2.4.50.1), it MUST
attempt to connect to the share indicated in the Path field. To get the updated server name, the
server MUST provide <server name, share name> parsed from the Path field and MUST invoke the
Server Normalizes a ServerName event ([MS-SRVS] section 3.1.6.8). The server MUST use <updated
server name, share name> to look up the Share in Server.ShareTable. If the share is not found, the
server MUST send an error response with a status of STATUS_OBJECT_PATH_NOT_FOUND
(ERRDOS/ERRbadpath).

Server.Paused with a value of TRUE indicates that all shares can only be accessed by an
administrator. Under these conditions, if a SMB_COM_TREE_CONNECT Request (section 2.2.4.50.1) is
received from a user that is not an administrator, the server MUST send an error response with a
status of STATUS_SHARING_PAUSED (ERRDOS/ERRpaused).<304>

If the server global variable Server.ShareLevelAuthentication is FALSE, the Password field in the
request MUST be ignored, and the UID in the header MUST be used to look up the
Server.Session.UserSecurityContext to determine access rights to the share.

If Server.ShareLevelAuthentication is TRUE, the Password field MUST be passed to the
Authentication subsystem as a share-level password.

The server MUST invoke the Server Notifies Current Uses of a Share ([MS-SRVS] section 3.1.6.15)
event with the tuple <ServerName, ShareName> to get the total number of current uses of the
share. If the number of current uses is equal to or greater than Share.MaxUses, the server MUST fail

the request with STATUS_REQUEST_NOT_ACCEPTED.

The server MUST check the validity of the SMB_Data.Bytes.Service field in the request. If the value
does not match any of those listed in section 2.2.4.50.1, the server MUST fail the request with a value
of STATUS_BAD_DEVICE_TYPE (ERRSRV/ERRinvdevice).

If the Tree Connect is successful, the server MUST allocate a TreeConnect object and MUST insert it
into Server.Connection.TreeConnectTable with the following default values:

 A new TID MUST be generated to uniquely identify this tree connect in the
Server.Connection.TreeConnectTable.

 Session MUST be set to the session found on the UID lookup.

 Share MUST be set to the share found on the lookup in the Server.ShareTable.

 OpenCount MUST be set to zero.

 CreationTime MUST be set to current time.

 Share.CurrentUses MUST be increased by 1.

The server MUST register TreeConnect by invoking the event Server Registers a New Treeconnect
([MS-SRVS] section 3.1.6.6) and MUST assign the return value to

Server.TreeConnect.TreeGlobalId.

%5bMS-SRVS%5d.pdf

598 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The TID MUST be returned in both the SMB Header.TID field and the SMB_Parameter.Words.TID
field of the response. The default Server.MaxBufferSize of the server MUST be returned in the

MaxBufferSize field.

The SMB_COM_TREE_CONNECT Response (section 2.2.4.50.2) provides no field for indicating share

characteristics such as DFS support or access rights.

If the Tree Connect is successful, a complete SMB_COM_TREE_CONNECT Response is sent. Otherwise,
an error response message MUST be sent.

The response is sent to the client as specified in section 3.3.4.1.

3.3.5.41 Receiving an SMB_COM_TREE_DISCONNECT Request

When the server receives an SMB_COM_TREE_DISCONNECT Request, the server can verify that the
user indicated by the Server.Session.UserSecurityContext identified by UID has sufficient
privileges, and it MUST:

 Validate the TID in the SMB Header (section 2.2.3.1) by verifying that it is listed in
Server.Connection.TreeConnectTable.

 List all Opens (by FID) in the Server.Connection.FileOpenTable that exist within the TID. For
each file:

 Release every lock in Open.Locks.

 Close the file, regardless of the OpLock states.

 Remove the Open entry from the Server.Connection.FileOpenTable.

 Decrease Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens by 1.

 Deregister the Open by invoking the event Server Deregisters an Open ([MS-SRVS] section

3.1.6.5), providing Open.FileGlobalId as an input parameter.

 List all open searches (by SID) in the Server.Connection.SearchOpenTable that were opened
within the specified TID. For each search:

 Close the search.

 Remove the SID from the Server.Connection.SearchOpenTable.

 Server.TreeConnect.Share.CurrentUses MUST be decreased by 1.

Upon success, the resource sharing connection identified by the TID is closed, and the TID is
invalidated by removing the TreeConnect entry from Server.Connection.TreeConnectTable.

The server MUST deregister TreeConnect by invoking the event Server Deregisters a Treeconnect
([MS-SRVS] section 3.1.6.7) with the tuple <TreeConnect.Share.ServerName,
TreeConnect.Share.Name> and Server.TreeConnect.TreeGlobalId as input parameters.

The response message indicates success or an error condition. The list of possible error codes is
specified in section 2.2.4.51.2. The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.42 Receiving an SMB_COM_NEGOTIATE Request

When the server receives an SMB_COM_NEGOTIATE Request (section 2.2.4.52.1), it MUST read
through the list of dialects offered by the client in the DialectString field of the request. If the
Server.SupportDialects ADM element does not match with any of the dialects listed in the

%5bMS-SRVS%5d.pdf

599 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

DialectString field, the server MUST set the DialectIndex value to 0xFFFF and return the Core
Protocol form of the SMB_COM_NEGOTIATE Response (section 2.2.4.52.2).

If one or more dialects in the Server.SupportDialects ADM element match the dialects listed in the
DialectString field, the index of the last matching dialect in Server.SupportDialects MUST be

placed into the DialectIndex field of the SMB_COM_NEGOTIATE Response.
Server.Connection.SelectedDialect MUST be set to an identifier, as listed in section 1.7, that
corresponds to the DialectIndex field set in the response.

If the dialect selected is "NT LM 0.12" (NT LAN Manager), then:

 The Server.Connection.NTLMChallenge is set to an 8-byte random number.

 The bits of the SecurityMode field of the response are set based upon the values of the
Server.ShareLevelAuthentication, Server.PlaintextAuthenticationPolicy, and

Server.MessageSigningPolicy server ADM elements.

 The MaxMpxCount field is set from the Server.MaxMpxCount ADM element.

 The MaxNumberVcs field is set from the Server.MaxVcNumber ADM element.

 The SessionKey field is set from the Server.Connection.SessionKey ADM element.

 The MaxRawSize field is set from the Server.MaxRawSize ADM element.

 The MaxBufferSize field is set from the Server.MaxBufferSize ADM element.

 The Capabilities field is set from the Server.Capabilities ADM element.

 The Challenge field is set from the Server.Connection.NTLMChallenge ADM element.

 The ChallengeLength field is set to the length of the Challenge field.

 Values for the remaining fields are provided as specified in section 2.2.4.52.2.

The SMB_COM_NEGOTIATE Response MUST be sent as specified in section 3.3.4.1.

3.3.5.43 Receiving an SMB_COM_SESSION_SETUP_ANDX Request

When the server receives an SMB_COM_SESSION_SETUP_ANDX request from the client, it MUST
verify the SessionKey. If the SessionKey received in the request is not equal to
Server.Connection.SessionKey, the server MAY fail the request with
STATUS_INVALID_PARAMETER.

The server MUST pass the PrimaryDomain, AccountName, OEMPassword, and
UnicodePassword fields to the authentication subsystem. If authentication fails, the server MUST
increase Server.Statistics.sts0_pwerrors by 1 and MUST reply to the client with
STATUS_LOGON_FAILURE (ERRDOS/ERRnoaccess) in an error response. The possible error codes
from the authentication subsystem and their detailed description are specified in [RFC2743] and [MS-
ERREF].

If Server.Connection.SessionSetupReceived is FALSE and:

 If authentication was successful or Server.GuestOkay is TRUE:

 If their corresponding server connection variables are empty, the server MUST save the
MaxBufferSize, MaxMpxCount, and Capabilities values reported by the client in the
corresponding server connection variables. These values MUST NOT be overridden by values
presented in future SMB_COM_SESSION_SETUP_ANDX request messages.

http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-ERREF%5d.pdf
%5bMS-ERREF%5d.pdf

600 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If Server.Connection.NativeLanMan and Server.Connection.NativeOS are empty, the server
MUST save the NativeLanMan and NativeOS values reported by the client in the

Server.Connection.NativeLanMan and Server.Connection.NativeOS variables respectively.
These values MUST NOT be overridden by values presented in future

SMB_COM_SESSION_SETUP_ANDX request messages.

 The server MUST query the authentication subsystem to determine which response value was
accepted.

If the value accepted for authentication was the value passed in the OEMPassword field:

 The server MUST set the 0x02 bit in the SMB_Parameters.Words.Action field of the response.

 Server.ConnectionSigningChallengeResponse MUST be set to the challenge response
received in the OEMPassword field in the client request.

 If LM challenge/response was used instead of LMv2 challenge/response, the entire LM Session Key
MUST be stored in Server.Connection.SigningSessionKey. If LMv2 challenge/response was
used, the entire NT Session Key MUST be stored in Server.Connection.SigningSessionKey. If

the length of Server.Connection.SigningSessionKey is less than 16, the server SHOULD pad it
with zeros up to 16 bytes.

If the value accepted for authentication was the value passed in the UnicodePassword field:

 The server MUST clear the 0x02 bit in the SMB_Parameters.Words.Action field of the response.

 Server.ConnectionSigningChallengeResponse MUST be set to the challenge response
received in the UnicodePassword field in the client request.

The entire NT Session Key MUST be stored in Server.Connection.SigningSessionKey. If the length
of Server.Connection.SigningSessionKey is less than 16, the server SHOULD pad it with zeros up
to 16 bytes.

 If authentication was successful and IsSigningActive is TRUE, message signing MUST be

initialized.

 Server.Connection.MaxMpxCount MUST be set to MaxMpxCount field in the request.

 If MaxMpxCount in the request is less than two, the server MUST set
Server.Connection.OpLockSupport to FALSE for this connection. Otherwise, a client attempting
to break its own OpLock would always time out because there would not be enough outstanding
command slots to properly revoke the OpLock. See section 3.2.5.42 for more information on
receiving an OpLock Break Notification.

 The server MUST set Server.Connection.SessionSetupReceived to TRUE.

 The server MUST set CreationTime and IdleTime to be current time.

If authentication failed but Server.GuestOkay is TRUE (allowing Guest Access), the client MUST set
the 0x01 bit in the Action field of the response to TRUE and return the response as if authentication
had succeeded.

If authentication succeeded, the Server.Session.UserSecurityContext MUST be set to a value

representing the user who successfully authenticated on the connection. The security context MUST be
obtained from the authentication subsystem. The server MUST invoke the GSS_Inquire_context call
as specified in [RFC2743] section 2.2.6, passing the Server.Session.UserSecurityContext as the
input parameter, and MUST set Server.Session.UserName to the returned "src_name". If the
returned "anon_state" is TRUE, the server MUST set Server.Session.IsAnonymous to TRUE.
Otherwise, Server.Session.IsAnonymous MUST be set to FALSE.

601 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the VcNumber field in the session setup request is 0, the server MUST perform the following
processing:

 Close all sessions in Server.Connection.SessionTable in which UserName matches
Server.Session.UserName as specified in section 3.3.4.8.

 Disconnect each Connection in Server.ConnectionTable, except the current
Server.Connection, in which ClientName matches the Server.Connection.ClientName as
specified in section 3.3.7.2.

If authentication was successful or Server.GuestOkay is TRUE, a new UID and GlobalSessionId
MUST be generated and entered into Server.Connection.SessionTable. If the size of
Server.Connection.SessionTable has reached Server.SrvMaxSessionTableSize, the server MUST
reply to the client with STATUS_TOO_MANY_SESSIONS (ERRSRV/ERRtoomanyuids) in an error

response; otherwise, Server.Statistics.sts0_sopens MUST be increased by 1. The server MUST
register the session by invoking the event Server Registers a New Session ([MS-SRVS] section
3.1.6.2) and MUST assign the return value to Session.SessionGlobalId. The server MUST fill in the
additional response fields as specified in section 2.2.4.53.2.

If authentication was successful, the server MUST query the session key from the authentication
package, as specified in [MS-NLMP]. If the session key is equal to or longer than 16 bytes, only the

least significant 16 bytes MUST be stored in Server.Session.SessionKey. Otherwise, the session key
MUST be stored in Server.Session.SessionKey and MUST be padded with zeros up to 16 bytes.

The response is sent to the client as specified in section 3.2.4.1.

3.3.5.44 Receiving an SMB_COM_LOGOFF_ANDX Request

When the server receives an SMB_COM_LOGOFF_ANDX Request (section 2.2.4.54.1), it MUST first
find the UID in the Server.Connection.SessionTable. If the UID is not found in the table, the
server MUST return an error response with STATUS_SMB_BAD_UID (ERRSRV/ERRbaduid). If the UID
is found, the server MUST release all resources that were opened by the UID specified in the SMB
Header (section 2.2.3.1) of the request.

The server MUST deregister the session by invoking the event Server Deregisters a Session ([MS-

SRVS] section 3.1.6.3), providing Session.SessionGlobalId as the input parameter.
Server.Statistics.sts0_sopens MUST be decreased by 1.

The Server.Connection.SearchOpenTable, Server.Connection.FileOpenTable, and
Server.Connection.TreeConnectTable MUST each be traversed in turn.

For each Open in Connection.FileOpenTable, where Open.Session.UID matches the UID field in
the request, the server MUST close the Open, release every lock in Open.Locks, remove the Open
entry from Server.Connection.FileOpenTable, and deregister that Open, as specified in [MS-SRVS]

section 3.1.6.5, providing Open.FileGlobalId as the input parameter. For each closed Open, the
server MUST decrease Open.TreeConnect.OpenCount and Server.Statistics.sts0_fopens by 1.

For each SearchOpen in Connection.SearchOpenTable, where SearchOpen.UID matches the
UID field in the request, the server MUST close the SearchOpen by removing it from

Server.Connection.SearchOpenTable and freeing any resources like the search context.

For each TreeConnect in Server.Connection.TreeConnectTable, where
TreeConnect.Session.UID matches the UID field in the request, the server MUST remove the

TreeConnect entry from Server.Connection.TreeConnectTable and MUST deregister the
TreeConnect by invoking the event specified in [MS-SRVS] section 3.1.6.7 with the tuple
<TreeConnect.Share.ServerName, TreeConnect.Share.Name> and TreeConnect.TreeGlobalId
as input parameters. For each deregistered TreeConnect, TreeConnect.Share.CurrentUses MUST
be decreased by 1.

%5bMS-SRVS%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

602 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Resources opened by the specified UID MUST be closed, and the resource entry MUST be removed
from the table in which it was found. When all search handles, file handles, and tree connects owned

by the UID have been closed, the Server.Session with the matching UID is invalidated and removed
from the Server.Connection.SessionTable.

3.3.5.45 Receiving an SMB_COM_TREE_CONNECT_ANDX Request

When the server receives an SMB_COM_TREE_CONNECT_ANDX Request (section 2.2.4.55.1), it MUST
attempt to connect to the share indicated in the Path field. The server MUST provide <server name,

share name> parsed from the Path field to invoke the event Server Normalizes a ServerName ([MS-
SRVS] section 3.1.6.8) and to get the updated server name. The server MUST use <updated server
name, share name> to look up the Share in Server.ShareTable. If the share is not found, the server
MUST send an error response with a status of STATUS_BAD_NETWORK_NAME
(ERRSRV/ERRinvnetname).

Server.Paused with a value of TRUE indicates that all shares can only be accessed by an
administrator. Under these conditions, if an SMB_COM_TREE_CONNECT Request (section 2.2.4.50.1)

is received from a user that is not an administrator, the server MUST send an error response with a
status of STATUS_SHARING_PAUSED (ERRDOS/ERRpaused).<305>

If the server global variable Server.ShareLevelAuthentication is FALSE, the Password field in the
request MUST be ignored, and the UID field in the header MUST be used to look up the
Server.Session.UserSecurityContext to determine access rights to the share. If the user is not
granted access in Share.FileSecurity, the server MAY fail the request with
STATUS_ACCESS_DENIED.<306>

If Server.ShareLevelAuthentication is TRUE, PasswordLength bytes of the Password field MUST
be passed to the authentication subsystem as a share-level password. If authentication fails, the
server MUST send an error response with a status of STATUS_LOGON_FAILURE
(ERRDOS/ERRnoaccess).

The server MUST check the validity of the SMB_Data.Bytes.Service field in the request. If the value
does not match any of those listed in section 2.2.4.55.1, the server MUST fail the request with a value

of STATUS_BAD_DEVICE_TYPE (ERRSRV/ERRinvdevice).

The server MUST invoke the Server Notifies Current Uses of a Share ([MS-SRVS] section 3.1.6.15)
event with the tuple <ServerName, ShareName> to get the total number of current uses of the
share. If the number of current uses is equal to or greater than Share.MaxUses, the server MUST fail
the request with STATUS_REQUEST_NOT_ACCEPTED. If the Tree Connect is successful, the server
MUST allocate a TreeConnect object and insert it into Server.Connection.TreeConnectTable with
the following default values:

 A new TID MUST be generated to uniquely identify this tree connect in
Server.Connection.TreeConnectTable.

 Session MUST be set to the session found on the UID lookup.

 Share MUST be set to the share found on the lookup in the Server.ShareTable.

 OpenCount MUST be set to zero.

 CreationTime MUST be set to current time.

 Share.CurrentUses MUST be increased by 1.

The server MUST register TreeConnect by invoking the Server Registers a New Treeconnect ([MS-
SRVS] section 3.1.6.6) event and MUST assign the return value to
Server.TreeConnect.TreeGlobalId.

The TID MUST be returned in the SMB_Header.TID field of the response.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

603 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SMB_Parameters.Words.OptionalSupport field of the response MUST be set from
Server.Share.OptionalSupport:

 If Server.Share.OptionalSupport indicates support for exclusive search attributes in directory
search operations, the server MUST set the SMB_SUPPORT_SEARCH_BITS (0x01) bit in the

OptionalSupport field of the response.

 If Server.Share.OptionalSupport indicates that the share is in a DFS namespace, the server
MUST set the SMB_SHARE_IS_IN_DFS (0x02) bit in the OptionalSupport field of the response.

The SMB_Data.Bytes.Service field of the response MUST be set from Server.Share.Type.

If the TREE_CONNECT_ANDX_DISCONNECT_TID flag is set in the SMB_Parameter.Words.Flags
field, continue the processing for the Opens and open searches, as specified in section 3.3.5.41. If
this operation fails, no error is sent to the client.

If the Tree Connect is successful, a complete SMB_COM_TREE_CONNECT_ANDX
Response (section 2.2.4.55.2) is sent. Otherwise, an error response message MUST be sent.

The response is sent to the client as specified in section 3.3.4.1.

3.3.5.46 Receiving an SMB_COM_QUERY_INFORMATION_DISK Request

When the server receives an SMB_COM_QUERY_INFORMATION_DISK Request (section 2.2.4.57.2), it
MUST look up the Server.TreeConnect.Share to find the Server.Share.LocalPath. The
Server.Share.Type MUST be Disk; otherwise, the server MUST return STATUS_SMB_BAD_TID
(ERRSRV/ERRinvtid).

The server MUST determine the following:

 Blocksize -- The number of bytes in a block.

 BlocksPerUnit -- The number of blocks in a "unit".

 TotalUnits -- The total size, in units, of the file system.

 FreeUnits -- The number of unused units within the file system.

<307>

In the event of an error, an error response is returned. Otherwise, the
SMB_COM_QUERY_INFORMATION_DISK response is formatted as specified in section 2.2.4.57.2. The

response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.47 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Request

The SMB_COM_SEARCH (section 2.2.4.58) and SMB_COM_FIND (section 2.2.4.59) commands are
identical in format and behavior, with the exception that SMB_COM_FIND allows the use of

SMB_COM_FIND_CLOSE (section 2.2.4.61) to close the search context.

Upon receiving either of these commands, the server MUST first determine whether the request is a
continuation of a previous search, or a new search. If the ResumeKeyLength field is zero, then this
is a new search. A new search proceeds as follows:

 The server MUST perform a directory search using the FileName field as the pattern with which to
search. If the FileName field is an empty string, the server SHOULD<308> return all the files
that are present in the directory. The path indicated in the FileName field MUST exist within the

specified TID.

604 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The SMB_Parameters.Words.SearchAttributes field is used to further refine the search. See
the tables in section 2.2.1.2.4 for a list of possible values.

 If the SMB_FILE_ATTRIBUTE_VOLUME attribute is set, the volume label MUST be returned
(the Volume Label attribute is exclusive).

 If the value of this field is zero, only "normal" files are returned. Normal files include files with
no attributes, the SMB_FILE_ATTRIBUTE_READONLY attribute, and/or the
SMB_FILE_ATTRIBUTE_ARCHIVE attribute.

 The "inclusive search attributes" are:

 SMB_FILE_ATTRIBUTE_READONLY

 SMB_FILE_ATTRIBUTE_HIDDEN

 SMB_FILE_ATTRIBUTE_SYSTEM

 SMB_FILE_ATTRIBUTE_DIRECTORY

 SMB_FILE_ATTRIBUTE_ARCHIVE

If any of these bits is included in the SearchAttributes field, files with matching attributes are
also included in the results. (Specifying SMB_FILE_ATTRIBUTE_READONLY or
SMB_FILE_ATTRIBUTE_ARCHIVE has no effect, because files with those attributes are included
in "normal" searches by default.)

 The "exclusive search attributes" are:

 SMB_SEARCH_ATTRIBUTE_READONLY

 SMB_SEARCH_ATTRIBUTE_HIDDEN

 SMB_SEARCH_ATTRIBUTE_SYSTEM

 SMB_SEARCH_ATTRIBUTE_DIRECTORY

 SMB_SEARCH_ATTRIBUTE_ARCHIVE

These attributes are used in search operations (SMB_COM_SEARCH, SMB_COM_FIND,

SMB_COM_FIND_UNIQUE (section 2.2.4.60), and TRANS2_FIND_FIRST2 (section 2.2.6.2)) to
select the specific set of attributes that a file needs to have in order to be included in the results
of the search. A file MUST have all of the attributes that match (by name) in order to be listed in
the search results. For example:

 If SMB_SEARCH_ATTRIBUTE_HIDDEN is set in the SearchAttributes field, then files
without the SMB_FILE_ATTRIBUTE_HIDDEN atttribute will be rejected.

 If SMB_SEARCH_ATTRIBUTE_READONLY and SMB_SEARCH_ATTRIBUTE_ARCHIVE are set,

files that do not have both the SMB_FILE_ATTRIBUTE_READONLY and the
SMB_FILE_ATTRIBUTE_ARCHIVE attributes set will be rejected.

If no exclusive search attributes are set, then no files are rejected from being listed.

 The response is formatted as specified in 2.2.4.58. The number of search result entries sent in the
response is the minimum of:

 The number of entries found.

 The value of the MaxCount field in the request.

605 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The number of entries that can be fit into the response without exceeding the
Server.Connection.ClientMaxBufferSize ADM element limit.

 If, after composing the response, there are still additional entries available to be sent, the server
MUST create a search context. If the number of entries in the

Server.Connection.SearchOpenTable ADM element is greater than or equal to the
Server.MaxSearches ADM element, the server MUST fail the request with
STATUS_OS2_NO_MORE_SIDS. Otherwise, the server MUST allocate a SearchOpen object and
insert it into the Server.Connection.SearchOpenTable ADM element. The following values
MUST be set by the server:

 Server.SearchOpen.MID: The value of the MID field from the SMB Header of the client
request.

 Server.SearchOpen.PID: The value of the PID from the SMB Header of the client request.

 Server.SearchOpen.TID: The value of the TID field from the SMB Header of the client
request.

 Server.SearchOpen.UID: The value of the UID field from the SMB Header of the client
request.

 Server.SearchOpen.FindSID: A newly generated Search ID (SID) value, as specified in

section 2.2.1.6.5.

 Server.SearchOpen.PathName: The FileName field from the client request with its final
component removed.

The response MUST be sent to the client as specified in section 3.3.4.1.

If this is the continuation of a previous search:

 Using the UID, TID, PID, and MID, the Server.Connection.SearchOpenTable ADM element is
scanned for a matching search context. If no matching search context is found, the server returns

an error response with a Status value of STATUS_NO_MORE_FILES (ERRDOS/ERRnofiles). This

indicates that the end of the search has been reached.

 If the search context is found, then a new response is created containing the next set of entries to
be sent to the client. The search is resumed based upon search location indicated by the
ResumeKey field in the request. The response MUST be sent to the client as specified in section
3.3.4.1.

Unlike the SMB_COM_FIND command, the SMB_COM_SEARCH command has no matching Close

operation to allow the client to explicitly close an incomplete search. Search contexts created by the
SMB_COM_SEARCH command MUST be closed and removed from the
Server.Connection.SearchOpenTable ADM element when the end of the search is reached (no
more matching files are found), and whenever the PID that created the context is closed. A PID is
closed with an SMB_COM_PROCESS_EXIT (section 2.2.4.18). If the TID in which the search is being
performed is closed (with an SMB_COM_TREE_DISCONNECT (section 2.2.4.51) or a similar

command), the search context MUST also be closed. The server SHOULD also periodically purge

unused search contexts by using the Unused Open Search Timer (section 3.3.2.3), if implemented, or
close the least recently used search context when a new search is received and the server is out of
resources to process it.<309>

If a search continuation request arrives after the search context has been purged, the client receives
an error response with a Status of STATUS_NO_MORE_FILES (ERRDOS/ERRnofiles), which is the
same as the value returned if the end of search has been reached.<310>

606 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.48 Receiving an SMB_COM_FIND_UNIQUE Request

Processing of the SMB_COM_FIND_UNIQUE (section 3.3.5.48) request is identical to the processing of
SMB_COM_FIND, except that the Find Unique operation includes an implicit close. After the response

is sent, the search context is not stored, and further requests MUST NOT be made using a
ResumeKey.

The response is formatted as specified in 2.2.4.60.2. The response MUST be sent to the client as
specified in section 3.3.4.1.<311>

3.3.5.49 Receiving an SMB_COM_FIND_CLOSE Request

The SMB_COM_FIND_CLOSE (section 3.3.5.49) command is used to terminate a search operation.
Using the UID, TID, PID, MID, and ResumeKey from the request, the
Server.Connection.SearchOpenTable is scanned for a matching search context. If the matching
context is found, it is closed and the entry is removed from Server.Connection.SearchOpenTable.

The response is formatted as specified in 2.2.4.61.2. The response MUST be sent to the client as

specified in section 3.3.4.1.

3.3.5.50 Receiving an SMB_COM_NT_TRANSACT Request

The SMB_COM_NT_TRANSACT (section 3.3.5.50) is processed as specified in Receiving any
Transaction Request (section 3.3.5.2.5). The processing of NT_Trans subcommands is specified in

section 3.3.5.59. In addition, the Function field of the request MUST be validated.

If the Function code is not defined, the server MUST return STATUS_INVALID_SMB
(ERRSRV/ERRerror). If the Function code is defined but not implemented, the server MUST return
STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.51 Receiving an SMB_COM_NT_CREATE_ANDX Request

This command can be used by the client to create a new file, open or truncate an existing file, create a
directory, or open a named pipe or device. It is similar to other SMB Open and Create commands,
except that the variety of options is much greater.

Upon receipt of an SMB_COM_NT_CREATE_ANDX Request (section 2.2.4.64.1), the server MUST

follow the steps as specified in section 3.3.5.2 and MUST determine the pathname of the object to
open or create. This involves the interaction of three fields:

 If the RootDirectoryFID is nonzero, it represents a directory within the share represented by the
TID. The FileName MUST be evaluated relative to the RootDirectoryFID, not the TID.

 If the RootDirectoryFID is zero, the FileName MUST be evaluated relative to the TID.

When opening a named pipe, the FileName field MUST contain only the relative name of the pipe.
That is, the "\PIPE\" prefix MUST NOT be present. This is in contrast with other commands, such as

SMB_COM_OPEN_ANDX and TRANS2_OPEN2, which require that the "\PIPE" prefix be present in the
path name. If Server.Session.IsAnonymous is TRUE, the server MUST invoke the event specified in
[MS-SRVS] section 3.1.6.17 by providing the FileName field with the "\PIPE\" prefix removed as
input parameter. If the event returns FALSE, indicating that no matching named pipe is found that
allows an anonymous user, the server MUST fail the request with STATUS_ACCESS_DENIED and MUST
increase Server.Statistics.sts0_permerrors by 1. Otherwise, the server MUST continue the create

processing.

%5bMS-SRVS%5d.pdf

607 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If Server.EnableOplock is TRUE, the Flags field in the request allows the client to request an
exclusive or batch OpLock. The level of OpLock granted (or not) MUST be returned in the

OpLockLevel field in the response. The Flags field also allows the user to request opening a
directory.

If the object opened is a directory, the server MUST set the Directory field of the response to a
nonzero value (TRUE); a zero value (FALSE) indicates that the object is not a directory.

The DesiredAccess field is used to indicate the access modes that the client requests. If
DesiredAccess is not granted in Share.FileSecurity for the user indicated by the UID, the server
MUST fail the request with STATUS_ACCESS_DENIED. If the user's security context indicated by the
UID does not have appropriate privileges, the server SHOULD fail the request with
STATUS_PRIVILEGE_NOT_HELD or STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess).<312> If no

access is granted for the client on this file, the server MUST increase
Server.Statistics.sts0_permerrors by 1 and MUST fail the open with STATUS_ACCESS_DENIED
(ERRDOS/ERRnoaccess).

The ImpersonationLevel field in the request MUST be set to one of the values specified in section

2.2.4.64.1; otherwise, the server MUST fail the request with STATUS_BAD_IMPERSONATION_LEVEL
(0xC00000A5).

If the object is a regular file and it is being created or overwritten, the AllocationSize indicates the
number of bytes to pre-allocate.

ShareAccess provides the set of sharing modes that the client has requested. If any of these sharing
modes is unavailable, the server MUST fail the open with STATUS_SHARING_VIOLATION
(ERRDOS/ERRbadshare). If ShareAccess values of FILE_SHARE_READ, FILE_SHARE_WRITE, or
FILE_SHARE_DELETE are set for a printer file or a named pipe, the server SHOULD ignore these
values.

If the object already exists, the action that the server SHOULD attempt is determined by interpreting
the CreateDisposition field as follows:<313>

 FILE_SUPERSEDE, FILE_OVERWRITE, FILE_OVERWRITE_IF: Overwrite the file.

 FILE_OPEN, FILE_OPEN_IF: Open the existing file.

 FILE_CREATE: Fail.

If the object does not already exist, the action the server MUST attempt is determined by interpreting
the CreateDisposition field as follows:

 FILE_SUPERSEDE, FILE_CREATE, FILE_OPEN_IF, FILE_OVERWRITE_IF: Create the file.

 FILE_OPEN, FILE_OVERWRITE: Fail.

If the object is a regular file and it is being created or overwritten, the AllocationSize indicates the
number of bytes to pre-allocate.

If the object is being created, ExtFileAttributes represents a set of requested attributes to be
assigned to the object. The set of attributes actually assigned is returned to the client in the

ExtFileAttributes field of the response.

The server MUST include FILE_READ_ATTRIBUTES in the DesiredAccess field of the request.

If the open or create is successful,<314> the server MUST provide additional file attribute
information, including:

 The type of the object that has been opened.

 The creation, last write, last change, and last access times of the object.

608 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The file size (determined by the EndOfFile field) and file allocation size, if the object is a file.

 The named pipe state, if the object is a named pipe.

If the command is successful, the server MUST increase Server.Statistics.sts0_fopens by 1 and
MUST allocate an Open object and insert it into Server.Connection.FileOpenTable with the

following default values:

 A new FID MUST be created to uniquely identify this Open in
Server.Connection.FileOpenTable.

 If a requested OpLock was granted, the type of OpLock MUST be set in Server.Open.OpLock and
Server.Open.OplockState MUST be set to Held; otherwise, Server.Open.OpLock MUST be set
to None and Server.Open.OplockState MUST be set to None.

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was

performed, and Server.Open.TreeConnect.OpenCount MUST be increased by 1.

 Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.

 Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

 Server.Open.Locks MUST be set to an empty list.

 Server.Open.PID MUST be set to the PID provided in the request.

 Server.Open.PathName MUST be set to the FileName field of the request.

 Server.Open.GrantedAccess MUST be set to the DesiredAccess field of the request.

The server MUST register the Open by invoking the event Server Registers a New Open ([MS-SRVS]
section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

The FID MUST be placed into an SMB_COM_NT_CREATE_ANDX Response (section 2.2.4.64.2)
message. If an error is generated, an error response MUST be used instead.

If the SMB_COM_NT_CREATE_ANDX is successful, this information, along with the FID generated by
the command, MUST be placed into an SMB_COM_NT_CREATE_ANDX Response message. The PID

and TID from the request header and new FID MUST be entered into the
Server.Connection.FileOpenTable. If an error is generated, an error response MUST be used
instead.

The response MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.52 Receiving an SMB_COM_NT_CANCEL Request

Upon receipt of an SMB_COM_NT_CANCEL Request (section 2.2.4.65.1), the server MUST search the
Server.Connection.PendingRequestTable for any pending commands that have the same UID,
TID, PID, and MID as presented in the SMB_COM_NT_CANCEL Request. If the SMB transport is
connectionless, the header CID value SHOULD<315> also be used.

For each matching entry, the server MUST pass the CancelRequestID to the object store to request

cancellation of the pending operation, as described in the Server Requests Canceling an Operation
section in [MS-FSA]. The canceled commands MUST return an error result or, if they complete
successfully, a response message. The SMB_COM_NT_CANCEL (section 2.2.4.65) command MUST
NOT send a response; there is no response message associated with SMB_COM_NT_CANCEL.<316>

SMB_COM_NT_CANCEL is commonly used to force completion of operations that can potentially wait
for an unbounded period of time, such as an NT_TRANSACT_NOTIFY_CHANGE (section 2.2.7.4).

%5bMS-FSA%5d.pdf

609 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.53 Receiving an SMB_COM_NT_RENAME Request

Upon receipt of an SMB_COM_NT_RENAME Request (section 2.2.4.66.1), the server MUST verify that
a file exists matching both the OldFileName pathname field and the SearchAttributes field in the

request. OldFileName MUST NOT contain wildcard characters; otherwise, the server MUST return an
error response with a Status of STATUS_OBJECT_PATH_SYNTAX_BAD (ERRDOS/ERRbadpath).

The processing of the request depends on the information level provided in the InformationLevel
field of the request:

 If the InformationLevel field value is SMB_NT_RENAME_RENAME_FILE (0x0104), the request is
treated as if it is an SMB_COM_RENAME Request (section 2.2.4.8.1). Message processing follows
as specified in section 3.3.5.10, with the exception that the command code returned in the

response SMB Header (section 2.2.3.1) MUST be SMB_COM_NT_RENAME (0xA5).

 If the InformationLevel field value is neither SMB_NT_RENAME_RENAME FILE (0x104) nor
SMB_NT_RENAME_SET_LINK_INFO (0x103), the server SHOULD fail the request with
STATUS_INVALID_SMB (ERRSRV/ERRerror).<317>

 If the InformationLevel field value is SMB_NT_RENAME_SET_LINK_INFO (0x0103), the original
file MUST NOT be renamed. Instead, the server MUST attempt to create a hard link at the target

specified in NewFileName. The processing information below applies to receiving a request with
an information level of SMB_NT_RENAME_SET_LINK.<318>

If the target name already exists, the hard linking operation MUST fail with
STATUS_ACCESS_DENIED(ERRDOS/ERRnoaccess) and Server.Statistics.sts0_permerrors MUST be
increased by 1.

Other considerations:

 Only a single TID is supplied, so the OldFileName and NewFileName pathnames MUST be

within the same share on the server. If OldFileName is a directory, NewFileName MUST NOT be
a destination located within OldFileName or any of its subdirectories. If these conditions are not
met, the server MUST return STATUS_OBJECT_PATH_SYNTAX_BAD (ERRDOS/ERRbadpath).

 The UID supplied in the request MUST be used to look up the
Server.Session.UserSecurityContext of the user. The user MUST have at least read access to
the file for the hard linking operation to succeed. If the user does not have read access to the file,
the server MUST return STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase

Server.Statistics.sts0_permerrors by 1.

 Only the SMB_FILE_ATTRIBUTE_HIDDEN and SMB_FILE_ATTRIBUTE_SYSTEM attributes are
tested against the SearchAttributes field. This command can hard link normal, hidden, and/or
system files if the appropriate bits are set in SearchAttributes.

 This command MUST NOT hard link volume labels.

 If a file to be renamed is currently open:

 If the file is opened by the requesting process, it MUST be open in compatibility mode (see

section 3.2.4.5.1). If it is not open in compatibility mode, the hard linking MUST fail with
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and Server.Statistics.sts0_permerrors
MUST be increased by 1.<319>

 If another process has the file open, and that process has an opportunistic lock (OpLock) on
the file, and the process has asked for extended notification (Batch OpLock), the hard link
request MUST block until the server has sent an OpLock break request to the owner of the

OpLock and either received a response or the OpLock break time-out has expired. If the
process holding the OpLock closes the file (thus freeing the OpLock), the hard linking takes

610 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

place. If not, the request MUST fail with STATUS_SHARING_VIOLATION
(ERRDOS/ERRbadshare).

 It is possible for a server to be processing multiple requests on the same resource concurrently.
As a result, there may be interactions between the execution of the hard link operation and other

operations, such as ongoing searches (SMB_COM_SEARCH (section 2.2.4.58),
SMB_COM_FIND (section 2.2.4.59), TRANS2_FIND_FIRST2 (section 2.2.6.2), and so on).
Although creating a hard link within a directory that is actively being searched is not prohibited,
the interaction can disrupt the search, causing it to complete before all directory entries have been
returned.<320>

If the operation is successful, the server MUST construct an SMB_COM_NT_RENAME
Response (section 2.2.4.66.2) message. The response MUST be sent to the client as specified in

section 3.3.4.1.

3.3.5.54 Receiving an SMB_COM_OPEN_PRINT_FILE Request

Upon receipt of an SMB_COM_OPEN_PRINT_FILE Request (section 2.2.4.67.1), the server MUST

perform the following actions:

 Verify the TID as described in section 3.3.5.2.

 Verify that the Server.Share identified by the SMB_Header.TID has a Server.Share.Type of
Printer. If the share is not a printer share, the server MUST return an error response with Status
set to STATUS_INVALID_DEVICE_REQUEST (ERRDOS/ERRbadfunc).

 Verify the UID as described in section 3.3.5.2.

 Verify that the Server.Session identified by the SMB_Header.UID in the request has a

Server.Session.UserSecurityContext with sufficient privileges to create a new print spool file. If
the underlying object store returns STATUS_ACCESS_DENIED, the server MUST increase
Server.Statistics.sts0_permerrors by 1.

 Create a temporary file on the server to receive the spool file data.

<321>

If the spool file cannot be created, an error response MUST be sent to the client.

Otherwise, Server.Statistics.sts0_jobsqueued and Server.Statistics.sts0_fopens MUST be
incremented by 1, and a new FID MUST be allocated and assigned to the newly created spool file. A
new Open object MUST be created with the TID, UID and PID fields from the request header and the
new FID. This Open MUST be entered into the Server.Connection.FileOpenTable with the following
default values:

 If Server.EnableOplock is TRUE and a requested OpLock was granted, the type of OpLock MUST
be set in Server.Open.OpLock; otherwise, Server.Open.OpLock MUST be set to None.

 Server.Open.TreeConnect MUST be set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount must be incremented by 1.

The server MUST register the Open by invoking the Server Registers a New Open event ([MS-SRVS]
section 3.1.6.4) and MUST assign the return value to Server.Open.FileGlobalId.

The FID MUST be returned to the client in the response, which is formatted as specified in section
2.2.4.67.2. The response MUST be sent to the client as specified in section 3.3.4.1.

The first SetupLength bytes of Data written to the spool file MUST be passed to the spool file without

modification. If the Mode is set to Text Mode in the Open request, the server might perform minimal

%5bMS-SRVS%5d.pdf

611 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

processing on the data in the file, starting at the offset indicated by SetupLength. Several SMB
commands, including SMB_COM_WRITE_ANDX, can be used to write data to the file.

3.3.5.55 Receiving an SMB_COM_WRITE_PRINT_FILE Request

Upon receipt of an SMB_COM_WRITE_PRINT_FILE Request (section 2.2.4.68.1), the Data field in the
request MUST be written to the file indicated by the FID field, which MUST indicate a print spool file.
The response MUST be sent to the client as specified in section 3.3.4.1.<322>

3.3.5.56 Receiving an SMB_COM_CLOSE_PRINT_FILE Request

Upon receipt of an SMB_COM_CLOSE_PRINT_FILE Request (section 2.2.4.69.1), the server MUST
verify the UID as in section 3.3.5.2.

The server MUST perform a lookup of the FID in Server.Connection.FileOpenTable. If the FID is
not found, the server MUST return an error response with a Status of STATUS_INVALID_HANDLE

(ERRDOS/ERRbadfid). Otherwise, the Open indicated by the FID MUST be closed, every lock in

Open.Locks MUST be released, and Open.TreeConnect.OpenCount,
Server.Statistics.sts0_jobsqueued, and Server.Statistics.sts0_fopens MUST be decreased by 1.
The server MUST provide Open.FileGlobalId as an input parameter and MUST deregister the Open
by invoking the event Server Deregisters an Open ([MS-SRVS] section 3.1.6.5). Once the file has
been closed, the server MUST queue it for printing. The server SHOULD delete the file once it has
been printed.<323>

If the file is successfully closed, the FID MUST be invalidated by removing the Open entry from
Server.Connection.FileOpenTable. Once the FID has been invalidated, it is available to be reused
by future open or create operations. The response MUST be sent to the client as specified in section
3.3.4.1.

3.3.5.57 Receiving any SMB_COM_TRANSACTION Subcommand Request

SMB_COM_TRANSACTION and SMB_COM_TRANSACTION_SECONDARY implement the original

transaction subprotocol created for the LAN Manager 1.0 dialect. The purpose of these transactions
is to transfer requests and associated data to mailslots or to and from named pipes. With respect to
CIFS, the operations sent to mailslots and exchanged with named pipes are known as subcommands.

The subcommands are not defined by the transaction subprotocol itself. Transactions simply provide a

means for delivery and retrieval of the results. Support for and interpretation of an
SMB_COM_TRANSACTION subcommand are specified by the mailslot or named pipe to which the
subcommand is sent.

For example, the Remote Administration Protocol (RAP, also known as Remote API Protocol) is defined
for use with the \PIPE\LANMAN named pipe. That is, if the Name field passed in the initial
SMB_COM_TRANSACTION request contains the string "\PIPE\LANMAN", the message is designated to
be delivered to the RAP subsystem, which listens on the \PIPE\LANMAN named pipe. The RAP

subsystem interprets and processes the contents of the transaction request and provides the
response. The RAP subsystem is documented in [MS-RAP]. Additional information is provided below.

Other than the \PIPE\LANMAN named pipe used by RAP, all named pipes accessed via the SMB
transaction subprotocol support the set of subcommands specified in section 2.2.5 of this document,
and in the following sections. These are commonly known as the SMB Trans subcommands. Each SMB
Trans subcommand is identified by a subcommand code, which is specified in the first Setup word--

Setup[0]--of the SMB_COM_TRANSACTION_SECONDARY request.

Mailslots typically support only the TRANS_MAILSLOT_WRITE subcommand. TRANS_MAILSLOT_WRITE
requests are formatted as SMB_COM_TRANSACTION request messages, but they are not sent over an
SMB connection. Instead, mailslot transactions are sent as individual datagrams outside of the context
of any SMB connection. The transaction subprotocol allows for the reliable transmission of mailslot

%5bMS-SRVS%5d.pdf
%5bMS-RAP%5d.pdf

612 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

requests (Class 1 mailslot messages) within the CIFS Protocol, but no operations make use of this
type of exchange and no such usage has been specified or implemented. Mailslot subcommands are,

therefore, not covered in this document. See [MS-MAIL] for the mailslot subprotocol specification.

The transaction processing subsystems can be implemented in a variety of ways:

 As an integral part of the CIFS server.

 As a loadable library module.

 As a separate process running independently.

 Via some other mechanism not listed here.

If a transaction processing subsystem is independent of the CIFS server, the CIFS server MUST verify
that transaction processing is available. The mechanism for doing so is implementation-dependent. If
the transaction processing subsystem (RAP or SMB Trans) is not available, the server MUST return an

error response with Status set to STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

Named pipes MUST exist within the IPC$ share on the server. The TID in the
SMB_COM_TRANSACTION request MUST represent a connection to the IPC$ share.

A named pipe can be opened, just as a file or device can be opened. The resulting FID is used by
some of the SMB Trans subcommands to identify the pipe.

The SMB_COM_TRANSACTION request, when received by the server, is handled as specified in

sections 3.3.5.31 and 3.3.5.2.4. Transfer of the full transaction request might require one or more
SMB_COM_TRANSACTION_SECONDARY messages, as specified in section 3.2.4.1.4. When the
transaction is received in full, the Setup, Trans_Parameters, and Trans_Data are passed to the
subsystem that supports operations on the named pipe. In the case of a RAP request, the transaction
is passed to the RAP subsystem. Otherwise, the transaction is passed to the subsystem that
implements the SMB Trans calls specified in section 2.2.5.

When processing of the transaction has been completed, the subsystem returns the transaction

response to the CIFS server, which returns the transaction response to the client. If the transaction

response is too large to fit within a single SMB_COM_TRANSACTION response message (based upon
the value of Server.Connection.ClientMaxBufferSize), the server MUST send multiple
SMB_COM_TRANSACTION Final Transaction Response messages, as specified in section 3.2.4.1.4, in
order to transport the entire transaction response to the client.

3.3.5.57.1 Receiving a RAP Transaction Request

As described previously, the CIFS server determines that a request is a RAP request by examining the
Name field in the SMB_COM_TRANSACTION Request (section 2.2.4.33.1) message. If Name is
"\PIPE\LANMAN", the transaction MUST be passed to the RAP processing subsystem.

RAP subcommands do not make use of the Setup field in the SMB_COM_TRANSACTION request, so
no Setup values are passed to the RAP subsystem:

The CIFS server MUST pass the following information to the RAP subsystem (see [MS-RAP]):

 The final TotalParameterCount indicating the number of transaction parameter bytes.

 The transaction parameter block (Trans_Parameters).

 The final TotalDataCount indicating the number of transaction data bytes.

 The transaction data block (Trans_Data).

 The MaxParameterCount field from the request, indicating the maximum size, in bytes, of the
transaction parameter block permitted in the transaction response.

%5bMS-MAIL%5d.pdf
%5bMS-RAP%5d.pdf

613 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The MaxDataCount field from the request, indicating the maximum size, in bytes, of the
transaction data block permitted in the transaction response.

The response parameter buffer filled in by the RAP subsystem MUST be returned to the client via the
parameter block of the SMB_COM_TRANSACTION Response (section 2.2.4.33.2). The

TotalParameterCount of the transaction response MUST be set to the number of bytes in the
response parameter buffer.

The response data buffer filled in by the RAP server MUST be returned to the client via the data block
of the SMB_COM_TRANSACTION response. The TotalDataCount of the transaction response MUST be
set to the number of bytes in the response data buffer.

3.3.5.57.2 Receiving a TRANS_SET_NMPIPE_STATE Request

Upon receipt of a TRANS_SET_NMPIPE_STATE (section 2.2.5.1) subcommand request, the SMB Trans
subsystem MUST attempt to apply the state indicated by the Trans_Parameters.PipeState field to
the named pipe indicated by the Server.Open identified by the
SMB_Parameters.Words.Setup.FID field of the request.<324>

If the request fails, the status code indicating the error is returned in an
SMB_COM_TRANSACTION (section 2.2.4.33) error response message. If successful, the server MUST

construct a TRANS_SET_NMPIPE_STATE Response (section 2.2.5.1.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).

3.3.5.57.3 Receiving a TRANS_RAW_READ_NMPIPE Request

This method of reading data from a named pipe ignores message boundaries even if the pipe is set up
as a message mode pipe.<325>

Upon receipt of a TRANS_RAW_READ_NMPIPE subcommand request, the SMB Trans subsystem MUST
read data from the open named pipe specified by the FID, which is contained in Setup[1] in the
request. The amount of data to be read is specified by the MaxDataCount value of the

SMB_COM_TRANSACTION request. The data MUST be read without regard to message boundaries
(raw mode). If the named pipe is not set to non-blocking mode, and there is no data in the named
pipe, the read operation on the server MUST wait indefinitely for data to become available (or until it
is canceled).

If the request fails, the status code indicating the error is returned in an SMB_COM_TRANSACTION
error response message. If successful, the retrieved data is returned in the Trans_Data section of the
TRANS_RAW_READ_NMPIPE transaction response. The actual number of bytes read is returned in
TotalDataCount in the response, and can be less than the MaxDataCount value specified in the
request.

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION response.

3.3.5.57.4 Receiving a TRANS_QUERY_NMPIPE_STATE Request

Upon receipt of a TRANS_QUERY_NMPIPE_STATE subcommand request, the SMB Trans subsystem
MUST attempt to query the pipe state of the named pipe indicated by the Server.Open identified by
the SMB_Parameters.Words.Setup.FID field of the request.<326>

If the request fails, the status code indicating the error is returned in an SMB_COM_TRANSACTION
error response message. If successful, the server MUST construct a TRANS_QUERY_NMPIPE_STATE

response, as specified in section 2.2.5.3.2.

 The CIFS server passes the results to the client in the SMB_COM_TRANSACTION response.

614 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.5.57.5 Receiving a TRANS_QUERY_NMPIPE_INFO Request

Upon receipt of a TRANS_QUERY_NMPIPE_INFO (section 2.2.5.4) subcommand request, the SMB
Trans subsystem MUST attempt to query state information for the named pipe indicated by the

Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the request.<327>

If the request fails, the status code indicating the error is returned in an SMB_COM_TRANSACTION
error response message. The CIFS server passes the results to the client in the
SMB_COM_TRANSACTION Response (section 2.2.4.33.2).

3.3.5.57.6 Receiving a TRANS_PEEK_NMPIPE Request

Upon receipt of a TRANS_PEEK_NMPIPE (section 2.2.5.5) subcommand request, the SMB Trans

subsystem MUST attempt to peek at information from the named pipe indicated by the Server.Open
identified by the SMB_Parameters.Words.Setup.FID field of the request. Data MUST be read from
the named pipe without removing the data from the pipe queue. The maximum amount of data to be
read is specified by the SMB_Parameters.Words.MaxDataCount field of the request.<328>

If the request fails, the status code indicating the error is returned in an
SMB_COM_TRANSACTION (section 2.2.4.33) error response message. If successful, the server MUST

construct a TRANS_PEEK_NMPIPE Response (section 2.2.5.5.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).

3.3.5.57.7 Receiving a TRANS_TRANSACT_NMPIPE Request

Upon receipt of a TRANS_TRANSACT_NMPIPE (section 2.2.5.6) subcommand request, the SMB Trans
subsystem MUST attempt to write data to and read data from the named pipe indicated by the

Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the request. The data to
be written is contained in the Trans_Data.WriteData field of the request.

The maximum number of bytes to be read is specified by the
SMB_Parameters.Words.MaxDataCount field of the request.

 If the pipe is not a message mode pipe, the Trans subsystem MUST fail the request with
STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).<329>

If the operation fails, the status code indicating the error is returned in an

SMB_COM_TRANSACTION (section 2.2.4.33) error response message. If the operation returns either
STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) or success, the server MUST construct a
TRANS_TRANSACT_NMPIPE Response (section 2.2.5.6.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION
Response (section 2.2.4.46.2).

3.3.5.57.8 Receiving a TRANS_RAW_WRITE_NMPIPE Request

This method of writing data to a named pipe ignores message boundaries, even if the pipe is set up as
a message mode pipe.

Upon receipt of a TRANS_RAW_WRITE_NMPIPE subcommand request, the SMB Trans subsystem
MUST write the contents of the WriteData field to the open named pipe specified by the FID, which is
contained in Setup[1] in the request. The write SHOULD<330> be performed in blocking mode and
byte mode, even if these modes are not set on the pipe (see the description of the PipeState field of

TRANS_SET_NMPIPE_STATE for more information). The amount of data to be written is specified by
the TotalDataCount value of the SMB_COM_TRANSACTION request.

615 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the request fails, the status code indicating the error is returned in an SMB_COM_TRANSACTION
error response message. If successful, the number of bytes written MUST be returned in the

BytesWritten field of the transaction response. The CIFS server passes the results to the client in the
SMB_COM_TRANSACTION response.<331>

3.3.5.57.9 Receiving a TRANS_READ_NMPIPE Request

Upon receipt of a TRANS_READ_NMPIPE (section 2.2.5.8) subcommand request, the SMB Trans
subsystem MUST attempt to read data from the named pipe indicated by the Server.Open identified
by the SMB_Parameters.Words.Setup.FID field of the request. The amount of data to be read is
specified by the SMB_Parameters.Words.MaxDataCount field of the request. The data MUST be
read with respect to the current I/O state of the pipe (see

TRANS_SET_NMPIPE_STATE (section 2.2.5.1) and TRANS_QUERY_NMPIPE_STATE (section 2.2.5.3)).
If the named pipe is not set to non-blocking mode, and there is no data in the named pipe, the read
operation on the server MUST wait indefinitely for data to become available (or until it is
canceled).<332>

If the operation fails, the status code indicating the error is returned in an SMB_COM_TRANSACTION

Response (section 2.2.4.33.2) error message. If the operation returns either

STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) or success, the server MUST construct a
TRANS_READ_NMPIPE Response (section 2.2.5.8.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION Response.

3.3.5.57.10 Receiving a TRANS_WRITE_NMPIPE Request

Upon receipt of a TRANS_WRITE_NMPIPE (section 2.2.5.9) subcommand request, the SMB Trans
subsystem MUST attempt to write data to the underlying object store for the open named pipe

identified by the SMB_Parameters.Words.Setup.FID field of the request. The data to be written is
contained in the Trans_Data.WriteData field of the request. The write MUST be performed with
respect to the current I/O state of the pipe (see TRANS_SET_NMPIPE_STATE (section 2.2.5.1) and
TRANS_QUERY_NMPIPE_STATE (section 2.2.5.3)).<333>

If the operation fails, the status code indicating the error is returned in an
SMB_COM_TRANSACTION (section 2.2.4.33) error response message. If the operation is successful,
the server MUST construct a TRANS_WRITE_NMPIPE Response (section 2.2.5.9.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).

3.3.5.57.11 Receiving a TRANS_WAIT_NMPIPE Request

Upon receipt of a TRANS_WAIT_NMPIPE (section 2.2.5.10) subcommand request, the SMB Trans
subsystem MUST test the underlying object store for availability of the named pipe identified in the
SMB_Data.Bytes.Name field of the request. If the named pipe cannot be opened, the SMB Trans

subsystem MUST NOT respond to the TRANS_WAIT_NMPIPE subcommand request. Instead, it MUST
enter an implementation-dependent<334> wait until the named pipe becomes available or
SMB_Parameters.Words.Timeout milliseconds have passed.

If the request fails, the status code indicating the error is returned in an
SMB_COM_TRANSACTION (section 2.2.4.33) error response message. If successful, the server MUST
construct a TRANS_WAIT_NMPIPE Response (section 2.2.5.10.2).

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION
Response (section 2.2.4.33.2).<335>

3.3.5.57.12 Receiving a TRANS_CALL_NMPIPE Request

616 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Upon receipt of a TRANS_CALL_NMPIPE (section 2.2.5.11) subcommand request, the SMB Trans
subsystem MUST attempt to obtain an Open on the named pipe specified by the

SMB_Data.Bytes.Name field in the request from the underlying object store. If successful, the Trans
subsystem MUST attempt to write data to and then read data from the underlying object store as

specified in section 3.3.5.57.7, with the following exceptions:

 The Trans subsystem MUST use the FID of the returned Open to the named pipe.

 The Trans subsystem MUST use the Trans_Data.WriteData of the request (using
SMB_Parameters.Words.TotalDataCount as its length) as the data to be written.

If the operation returns either STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) or success, the
Trans subsystem MUST NOT construct a TRANS_TRANSACT_NMPIPE response, but instead continue
processing as follows.

If successful, the Trans subsystem MUST then attempt to close the Open on the underlying object
store to the named pipe before sending a response.

If the operation fails, the status code indicating the error is returned in an error response. If the

operation returns either STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata) or success, the server
MUST construct a TRANS_CALL_NMPIPE response, as specified in section 2.2.5.11.2.

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION response.

3.3.5.58 Receiving Any SMB_COM_TRANSACTION2 Subcommand Request

SMB_COM_TRANSACTION2 (section 2.2.4.46) and
SMB_COM_TRANSACTION2_SECONDARY (section 2.2.4.47) were introduced in the LAN Manager 1.2
dialect. They provide a second transaction subprotocol, known as the Trans2 subprotocol, which

operates primarily on file system metadata. Unlike the SMB Trans subprotocol, the Trans2 subprotocol
defines a specific set of subcommands; the Trans2 subcommands are not defined by the object upon
which the subcommand operations are being performed.

Trans2 subcommands generally perform metadata operations on file systems (accessed via the TID

representing the connection to the share), directories, and files. The Trans2 subcommands are always
identified by a function code that is specified in Setup[0] (the first entry in the Setup[] array) in the

SMB_COM_TRANSACTION2 request.

3.3.5.58.1 Receiving Any Information Level

Upon receipt of a Trans2 subcommand request with a Trans2_Parameters.InformationLevel field,
the information level value MUST be passed to the underlying object store for processing. If the
information level includes any request data, the data MUST also be passed to the underlying object
store.<336>

The returned status and response data, if any, are sent to the client in a Trans2 subcommand
response message corresponding to the same subcommand that initiated the request.

3.3.5.58.2 Receiving a TRANS2_OPEN2 Request

The TRANS2_OPEN2 (section 2.2.6.1) subcommand is used to open or create a file and set extended
attributes on the file. The parameters for the Open operation are passed in the Trans2_Parameters
block. The list of extended attribute name/value pairs is passed in the Trans2_Data block.

When opening a named pipe, if Server.Session.IsAnonymous is TRUE, the server MUST invoke the
event specified in [MS-SRVS] section 3.1.6.17 by providing the FileName field with the "\PIPE\"
prefix removed as input parameter. If the event returns FALSE, indicating that no matching named
pipe is found that allows an anonymous user, the server MUST fail the request with

%5bMS-SRVS%5d.pdf

617 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

STATUS_ACCESS_DENIED and MUST increase Server.Statistics.sts0_permerrors by 1. Otherwise,
the server MUST continue the create processing.

When the Trans2 subsystem receives a TRANS2_OPEN2 Request (section 2.2.6.1.1), it MUST first
attempt to open or create the named file. The name of the file to be opened is provided as a null-

terminated string in the FileName field in the Trans2_Parameters block of the transaction. The
requested access modes are listed in the DesiredAccess field of the request. If DesiredAccess is not
granted in Share.FileSecurity for the user indicated by the UID, the server MUST fail the request
with STATUS_ACCESS_DENIED. The OpenMode field indicates the action to be taken depending on
whether the file does or does not already exist. If the underlying object store returns
STATUS_ACCESS_DENIED, Server.Statistics.sts0_permerrors MUST be increased by 1.

If the file is created or overwritten (truncated), the AllocationSize field specifies the number of bytes

that the server MUST pre-allocate for the file. If the file is created, the FileAttributes field provides a
set of standard file attributes to be applied. The response also includes a FileAttributes field, which
indicates the actual attributes of the file (those successfully applied if the file is created, or the existing
attributes of the file if it is opened or truncated).

The Trans2_Parameters.Flags field MAY be used by the client to request an exclusive or a batch
OpLock on the file. If the Open or Create operation is successful, the server MUST indicate whether

the OpLock was granted in the ActionTaken field of the response. The ActionTaken field also
indicates the action taken to open the file (create, open, or truncate).

The Trans2_Parameters.Flags field MAY also be used by the client to request additional information
from the server. If the client requests additional information, the server MUST include the requested
values, as specified in section 2.2.6.1.1; otherwise, the server SHOULD zero-fill the additional
information fields.

If the file is successfully opened, and a set of extended attributes is included in the request, the server

MUST attempt to apply the extended attributes to the file. If an error is generated when the extended
attributes are applied, the offset in bytes from the start of the extended attribute list of the attribute
that caused the error MUST be returned in the ExtendedAttributeErrorOffset field. A full
SMB_COM_TRANSACTION2 Response (section 2.2.4.46.2) (not an error response) MUST be sent to
the client. The error code is returned in the Status field of the final SMB_COM_TRANSACTION2

Response.<337>

If the TRANS2_OPEN2 successfully opens the file, Server.Statistics.sts0_fopens MUST be increased

by 1, and the FID MUST be returned to the client. A new Server.Open object with the PID, UID,
TID from the request header, and the new FID MUST be entered into the
Server.Connection.FileOpenTable. Server.Open.TreeConnect MUST be set to the TreeConnect
on which the request was performed, and Server.Open.TreeConnect.OpenCount MUST be
increased by 1. Server.Open.Session MUST be set to Server.Open.TreeConnect.Session.
Server.Open.Connection MUST be set to the Server.Open.Session.Connection.

Server.Open.Locks MUST be set to an empty list. Server.Open.PathName MUST be set to the
FileName field of the request. Server.Open.GrantedAccess MUST be set to the AccessMode field
of the request.

The server MUST register the new FID by invoking the Server Registers a New Open event ([MS-
SRVS] section 3.1.6.4), and it MUST assign the return value to Server.Open.FileGlobalId.

The completed TRANS2_OPEN2 subcommand response MUST be returned to the client via the
SMB_COM_TRANSACTION2 (section 2.2.4.46) transaction mechanism.

3.3.5.58.3 Receiving a TRANS2_FIND_FIRST2 Request

The server MUST perform a directory search using the FileName field as the pattern with which to
search. If the FileName field is an empty string, the server MUST return all the files that are present
in the directory. The path indicated in the FileName field MUST exist within the specified TID, and
the TID MUST indicate a file system share.

618 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SearchAttributes and Flags fields are used to further refine the search, as specified in section
2.2.6.2.1.

If the InformationLevel parameter field in the request is set to
SMB_INFO_QUERY_EAS_FROM_LIST (section 2.2.8.1.3), the server MUST scan the EA list of each

matching file and return the EAs that match the AttributeName field values specified in the
GetExtendedAttributeList field of the request. Any errors in reading the list of requested EAs MUST
be reported by sending a full response (not an error response) with the Status field set to indicate the
error. The offset of the EA that caused the error is measured in bytes from the start of the
GetExtendedAttributeList.GEAList field in the Trans2_Data block of the request and is reported in
the EAErrorOffset field of the response.

The response format is dependent upon the InformationLevel requested, as specified in 2.2.8.1. The

number of search result entries sent in the response is the minimum of:

 The number of entries found.

 The value of the SearchCount field in the request.

 The number of entries that can fit into the response without exceeding the MaxDataCount field
limit sent in the client's SMB_COM_TRANSACTION2 Request (section 2.2.4.46.1).

If no matching entries are found, the server SHOULD<338> fail the request with

STATUS_NO_SUCH_FILE.

If the entire list of file system objects found by the search fit within a single response and
SMB_FIND_CLOSE_AT_EOS is set in the Flags field, or if SMB_FIND_CLOSE_AFTER_REQUEST is set
in the request, the server SHOULD<339> return a SID field value of zero. This indicates that the
search has been closed and is no longer active on the server.<340>

Otherwise, if the number of entries in Server.Connection.SearchOpenTable is greater than or
equal to Server.MaxSearches, the server MUST fail the request with STATUS_OS2_NO_MORE_SIDS.

If not, the search remains open and can be continued with a TRANS2_FIND_NEXT2
Request (section 2.2.6.3.1) or closed using an SMB_COM_FIND_CLOSE2 Request (section 2.2.4.48.1).

If the search is to remain open, the server MUST allocate a SearchOpen object and insert it into
Server.Connection.SearchOpenTable. The following values MUST be set by the server:

 Server. SearchOpen.MID: The value of the MID from the SMB Header of the client request.

 Server.SearchOpen.PID: The value of the PID from the SMB Header of the client request.

 Server.SearchOpen.TID: The value of the TID from the SMB Header of the client request.

 Server.SearchOpen.UID: The value of the UID from the SMB Header of the client request.

 Server.SearchOpen.FindSID: A newly generated Search ID (SID) value, as specified in section
2.2.1.6.5.

 Server.SearchOpen.PathName: The FileName in the client request, with its final component
removed.

The search results MUST be returned to the client in a TRANS2_FIND_FIRST2

Response (section 2.2.6.2.2), which MUST be sent to the client as specified in section 3.3.4.1.

3.3.5.58.4 Receiving a TRANS2_FIND_NEXT2 Request

Upon receipt of a TRANS2_FIND_NEXT2 Request (section 2.2.6.3.1), the server MUST continue
processing of the search indicated by the SID field in the request.

619 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The SearchAttributes field from the original TRANS2_FIND_FIRST2 (section 2.2.6.2) MUST NOT be
overridden by the TRANS2_FIND_NEXT2 Request. The SearchCount, Flags, and InformationLevel

field values MUST override those used in previous requests that are part of the same search.

If the SMB_FIND_CONTINUE_FROM_LAST bit is set in the Flags field, the search MUST resume from

the point immediately following the last entry previously returned. Otherwise, the search MUST be
restarted based upon the ResumeKey field in the request.

Other than the modifications described preceding, search results are gathered and returned exactly as
is done for the TRANS2_FIND_FIRST2. As specified for TRANS2_FIND_FIRST2 (section 2.2.6.2), if the
remaining list of file system objects found by the search fits within the response and
SMB_FIND_CLOSE_AT_EOS is set in the Flags field, or if SMB_FIND_CLOSE_AFTER_REQUEST is set
in the request, the server MUST close the search.

Otherwise, the search remains open and can be continued with another TRANS2_FIND_NEXT2
Request or closed using an SMB_COM_FIND_CLOSE2 Request (section 2.2.4.48.1).<341>

3.3.5.58.5 Receiving a TRANS2_QUERY_FS_INFORMATION Request

Upon receipt of a TRANS2_QUERY_FS_INFORMATION subcommand request, the SMB Trans2
subsystem MUST query the object store underlying the share identified by the TID in the SMB

Header (section 2.2.3.1) of the request. The Trans2 subsystem MUST use the value in the request's
Trans2_Parameters.InformationLevel field to determine the type and format of the information
that the client requests. Valid information levels are specified in section 2.2.8.2.

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION2
Response (section 2.2.4.46.2).

3.3.5.58.6 Receiving a TRANS2_QUERY_PATH_INFORMATION Request

Upon receipt of a TRANS2_QUERY_PATH_INFORMATION (section 2.2.6.6) subcommand request, the
SMB Trans2 subsystem MUST query the file or directory identified by the
Trans2_Parameters.FileName field in the request. The Trans2 subsystem MUST use the value in
the request's Trans2_Parameters.InformationLevel field to determine the type and format of the

information that the client requests. Valid information levels are specified in section 2.2.8.3.

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION2
Response (section 2.2.4.46.2).<342>

3.3.5.58.7 Receiving a TRANS2_SET_PATH_INFORMATION Request

Upon receipt of a TRANS2_SET_PATH_INFORMATION Request (section 2.2.6.7.1), the Trans2
subsystem MUST validate the path specified in the FileName field in the Trans2_Parameters block
of the request. FileName is specified relative to the TID supplied in the SMB
Header (section 2.2.3.1). FileName MUST be a valid path, and the object identified by FileName
MUST exist and MUST be a file or directory. The file or directory does not need to be opened by the

client before sending the transaction request; no FID is required.

The set of file attribute information included in the request is determined by the InformationLevel

field. Section 2.2.8.4 specifies the formats and descriptions of valid information levels.

The setting of attribute information for the root directory of the share MUST NOT be supported. If the
client attempts to set attributes on the root directory of the share, the server MUST return
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase

Server.Statistics.sts0_permerrors by 1.

3.3.5.58.8 Receiving a TRANS2_QUERY_FILE_INFORMATION Request

620 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Upon receipt of a TRANS2_QUERY_FILE_INFORMATION (section 2.2.6.6) subcommand request, the
SMB Trans2 subsystem MUST query the file or directory identified by the Trans2_Parameters.FID

field in the request. The Trans2 subsystem MUST use the value in the request's
Trans2_Parameters.InformationLevel field to determine the type and format of information that

the client requests, which are specified in section 2.2.8.3.

The CIFS server passes the results to the client in the SMB_COM_TRANSACTION2
Response (section 2.2.4.46.2).<343>

3.3.5.58.9 Receiving a TRANS2_SET_FILE_INFORMATION Request

Upon receipt of a TRANS2_SET_FILE_INFORMATION Request (section 2.2.6.9.1), the Trans2
subsystem MUST validate the file handle specified in the FID field in the Trans2_Parameters block of

the request. The file indicated by FID MUST be a directory or regular file, and MUST exist within the
share indicated by the TID supplied in the SMB Header (section 2.2.3.1).

The set of standard and extended attribute information included in the request is identical to the set
supported by TRANS2_SET_PATH_INFORMATION. The information level to use is specified in the

InformationLevel field. Section 2.2.8.4 provides the formats and descriptions of valid information
levels.

The setting of attribute information for the root directory of the share MUST NOT be supported. If the
client attempts to set attributes on the root directory of the share, the server MUST return
STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess) and MUST increase
Server.Statistics.sts0_permerrors by 1.

3.3.5.58.10 Receiving a TRANS2_CREATE_DIRECTORY Request

Upon receipt of a TRANS2_CREATE_DIRECTORY (section 2.2.6.14) subcommand request, the Trans2

subsystem MUST validate the path provided in the DirectoryName field of the Trans2_Parameters
block. All elements of the path indicated by DirectoryName, except for the final element of the path,
MUST exist within the share indicated by the TID in the SMB Header (section 2.2.3.1). The final
element of the path MUST NOT exist, otherwise, the request MUST fail and the server MUST return an

error response with Status set to STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists). If the
underlying object store returns STATUS_ACCESS_DENIED, Server.Statistics.sts0_permerrors
MUST be increased by 1.

If the DirectoryName is valid, the server MUST attempt to create the directory. Any error in creating
the directory MUST be returned in an error response.

If the directory is successfully created, and if the client provided a list of Extended Attributes (EAs) in
the Trans2_Data block of the request, the server MUST attempt to set the EAs on the newly created
directory. If an error is generated when setting the EAs, the offset of the EA that caused the error
relative to the start of the ExtendedAttributeList.FEAList MUST be returned in the EaErrorOffset

of the response. In this case, a full response (not an error response) MUST be sent to the
client.<344>

If the command is successful, Server.Statistics.sts0_fopens MUST be increased by 1.

3.3.5.58.11 Receiving a TRANS2_GET_DFS_REFERRAL Request

If the DFS subsystem has not indicated that it is active, the request MUST be failed with a
STATUS_NO_SUCH_DEVICE error. If the TID in the SMB Header (section 2.2.3.1) does not match

with the TID of an active connection to the IPC$ share, the server MUST fail the request with
STATUS_ACCESS_DENIED and MUST increase Server.Statistics.sts0_permerrors by 1. Otherwise,
the CIFS server MUST pass the contents of the Trans2_Parameters data block to the DFS subsystem,
as specified in [MS-DFSC] section 3.2.5.1.

%5bMS-DFSC%5d.pdf

621 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The response returned by the DFS subsystem after it processes the request (a
RESP_GET_DFS_REFERRAL data structure) MUST be copied into the Trans2_Data data block of

the TRANS2_GET_DFS_REFERRAL Response (section 2.2.6.16.2) and returned to the client. The
TotalDataCount field of the SMB_COM_TRANSACTION2 Response (section 2.2.4.46.2) MUST be set

to the size in bytes of the response data block.

3.3.5.59 Receiving any SMB_COM_NT_TRANSACT Subcommand Request

The SMB_COM_NT_TRANSACT subprotocol defines a specific set of subcommands that are used to

perform actions on files and file attributes. The NT Trans subcommands, as they are known, perform
operations on TIDs and FIDs.

The specific NT Trans subcommand to be executed is identified by the code in the Function field of
the SMB_COM_NT_TRANSACT Request (section 2.2.4.62.1).

3.3.5.59.1 Receiving an NT_TRANSACT_CREATE Request

This subcommand can be used by the client to create a new file, to open or truncate an existing file,

or to create a directory. The semantics of this subcommand are similar to those of the
SMB_COM_NT_CREATE_ANDX (section 2.2.4.64) SMB command, with the exception that
NT_TRANSACT_CREATE (section 2.2.7.1) can be used to set security descriptors and/or extended
attribute name/value pairs on the file.

If the MaxParameterCount field of the SMB_COM_NT_TRANSACT request contains a value that is
less than the size of the NT_TRANSACT_CREATE Response as specified in section 2.2.7.1.2, the server
MUST fail the request with STATUS_INVALID_SMB (ERRSRV/ERRerror).

Upon receipt of an NT_TRANSACT_CREATE subcommand request, the NT Trans subsystem MUST
determine the pathname of the file or directory to open or create. This involves the interaction of
three fields:

 If the RootDirectoryFID is nonzero, it represents a directory within the share represented by the
TID specified in the SMB Header (section 2.2.3.1). The Name MUST be evaluated relative to the

directory specified by RootDirectoryFID.

 If the RootDirectoryFID is zero, then the Name MUST be evaluated relative to the root of the

share specified by the TID.

If Server.EnableOplock is TRUE, the Flags field in the subcommand request allows the client to ask
for an exclusive or batch OpLock. The level of OpLock granted (if any) MUST be returned in the
OpLockLevel field in the subcommand response. The Flags field also allows the user to request
opening a directory. If the object opened is a directory, the Directory field of the response MUST be
nonzero; a zero value (FALSE) indicates that the object is not a directory.

The DesiredAccess field is used to indicate the access modes that the client requests. If
DesiredAccess is not granted in Share.FileSecurity for the user indicated by the UID, the server
MUST fail the request with STATUS_ACCESS_DENIED. If the user's security context that is indicated
by the UID does not have the appropriate privileges, the server SHOULD fail the request with
STATUS_PRIVILEGE_NOT_HELD or STATUS_ACCESS_DENIED (ERRDOS/ERRnoaccess).<345> If no

access is granted for the client on this file, the server MUST increase
Server.Statistics.sts0_permerrors by 1 and MUST fail the open with STATUS_ACCESS_DENIED

(ERRDOS/ERRnoaccess).

The ImpersonationLevel field in the request MUST be set to one of the values specified in section
2.2.7.1.1; otherwise, the server MUST fail the request with STATUS_BAD_IMPERSONATION_LEVEL
(0xC00000A5).

If the object is a regular file and it is being created or overwritten, the AllocationSize indicates the
number of bytes to pre-allocate.

622 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

ShareAccess provides the set of sharing modes that the client requests. If any of these sharing
modes is unavailable, the server MUST fail the open with STATUS_SHARING_VIOLATION

(ERRDOS/ERRbadshare).

The CreateDisposition field is used to determine the action the server attempts if the object already

exists:

 FILE_SUPERSEDE, FILE_OVERWRITE, FILE_OVERWRITE_IF: Overwrite the file.

 FILE_OPEN, FILE_OPEN_IF: Open the existing file or directory.

 FILE_CREATE: Fail with STATUS_OBJECT_NAME_COLLISION (ERRDOS/ERRfilexists).

The CreateDisposition field is used to determine the action that the server attempts if the object
does not already exist:

 FILE_SUPERSEDE, FILE_CREATE, FILE_OPEN_IF, FILE_OVERWRITE_IF: Create the file or

directory.

 FILE_OPEN, FILE_OVERWRITE: Fail.

CreateOptions specifies the options that should be used by the server when it attempts to open or
create the object. If the object is being created, ExtFileAttributes represents a set of requested
attributes to be assigned to the object. The set of attributes actually assigned is returned to the client
in the ExtFileAttributes field of the response.

The server MUST include FILE_READ_ATTRIBUTES in the DesiredAccess field of the request.

If the open or create is successful, the server MUST apply the SecurityDescriptor provided in the
NT_Trans_Data buffer of the NT_TRANSACT_CREATE Request (section 2.2.7.1.1). Likewise, the
server MUST apply the set of Extended Attribute (EA) name/value pairs provided in the request. If an
error is detected while applying the EAs, the server MUST return a complete NT_TRANSACT_CREATE
Response (section 2.2.7.1.2) (not an SMB error response) and MUST set the Status field in the SMB
Header with the implementation-specific error code.

Once the file has been successfully opened, and the SecurityDescriptor and EAs applied, the server
MUST collect additional file attribute information, including:

 The type of the object that has been opened.

 The creation, last write, last change, and last access times of the object.

 The file size and file allocation size, if the object is a file.

 The named pipe state, if the object is a named pipe.

If the NT_TRANSACT_CREATE is successful, this information, along with the FID that is generated by

the command, MUST be placed into an NT_TRANSACT_CREATE Response (section 2.2.7.1.2)
subcommand message. A new Server.Open object with the PID, UID, TID from the request header,
and the new FID MUST be entered into the Server.Connection.FileOpenTable, and
Server.Statistics.sts0_fopens MUST be increased by 1. Server.Open.TreeConnect MUST be set

to the TreeConnect on which the request was performed, and
Server.Open.TreeConnect.OpenCount MUST be increased by 1. Server.Open.Session MUST be

set to Server.Open.TreeConnect.Session. Server.Open.Connection MUST be set to the
Server.Open.Session.Connection. Server.Open.Locks MUST be set to an empty list.
Server.Open.PathName MUST be set to the Name field of the request.
Server.Open.GrantedAccess MUST be set to the DesiredAccess field of the request.

The server MUST register the new FID by invoking the event Server Registers a New Open ([MS-
SRVS] section 3.1.6.4) and MUST assign the return value to FileGlobalId.

%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf

623 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If an error is generated, other than an Extended Attribute error as specified preceding, an error
response MUST be generated. The NT Trans subsystem MUST return the NT transaction response to

the CIFS server for transmission to the client.<346>

3.3.5.59.2 Receiving an NT_TRANSACT_IOCTL Request

The FunctionCode and FID are taken from the NT_TRANSACT_IOCTL (section 2.2.7.2) subcommand
request. The input to the IOCTL is contained in the NT_Trans_Data.Data buffer of the request. The
server MUST pass the IOCTL or FSCTL request to the underlying file system. If an error is returned
from the underlying file system, the server MUST NOT send an error response message. Instead, the
server MUST return a complete NT_TRANSACT_IOCTL response and MUST include the error in the
Status field of the SMB_COM_NT_TRANSACT Response (section 2.2.4.62.2). The server MUST return

the output buffer in the NT_Trans_Data.Data buffer of the NT_TRANSACT_IOCTL response.<347>

3.3.5.59.3 Receiving an NT_TRANSACT_SET_SECURITY_DESC Request

Upon receipt of an NT_TRANSACT_SET_SECURITY_DESC (section 2.2.7.3) subcommand request, the
NT Trans subsystem MUST attempt to set the security descriptors provided in the request to the file

specified by the FID. The SecurityDescriptor field indicates which security descriptors are to be set.

The FID and SecurityInformation fields are passed in the NT_Trans_Parameters block of the
request. The security descriptors are passed in the SecurityDescriptor array in the NT_Trans_Data
section of the request.<348>

The response indicates either success or, if the request failed, the error that was generated.

3.3.5.59.4 Receiving an NT_TRANSACT_NOTIFY_CHANGE Request

Upon receipt of an NT_TRANSACT_NOTIFY_CHANGE Request (section 2.2.7.4.1), the NT Trans

subsystem MUST verify the TID and UID as described in section 3.3.5.2. The server MUST perform a
lookup in the Server.Connection.FileOpenTable to verify that the FID, which is passed in the
NT_Trans_Parameters block of the request, represents an opened directory within the
TreeConnect given by TID.

If the client has not issued any NT_TRANSACT_NOTIFY_CHANGE Requests on this FID previously, the
server SHOULD allocate an empty change notification buffer and associate it with the open directory.
The size of the buffer SHOULD be at least equal to the MaxParameterCount field in the

SMB_COM_NT_TRANSACT Request (section 2.2.4.62.1) used to transport the
NT_TRANSACT_NOTIFY_CHANGE Request. If the client previously issued an
NT_TRANSACT_NOTIFY_CHANGE Request on this FID, the server SHOULD already have a change
notification buffer associated with the FID. The change notification buffer is used to collect directory
change information in between NT_TRANSACT_NOTIFY_CHANGE (section 2.2.7.4) calls that reference
the same FID.

The CompletionFilter indicates the set of change events for which the client requests notification. If

WatchTree is TRUE, all of the subdirectories below the directory specified by FID are also watched. If
there is a change notification buffer associated with the FID, the changes listed in the buffer are
compared against the CompletionFilter. If there is a match, the NT_TRANSACT_NOTIFY_CHANGE
Request is complete; otherwise, the request MUST wait asynchronously until a change event occurs to

complete the request.

The NT_TRANSACT_NOTIFY_CHANGE Request is entered into the

Server.Connection.PendingRequestTable, as is any other command that is processed
asynchronously by the server. The request is completed when one of the following events occurs:

 A modification matching the CompletionFilter occurs within the directory or directories indicated
by FID. This is the expected completion of the request.

 The request is canceled by an SMB_COM_NT_CANCEL Request (section 2.2.4.65.1).

624 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 The FID is closed, either by an explicit Close operation or another cause, such as an
SMB_COM_PROCESS_EXIT (section 2.2.4.18) or

SMB_COM_TREE_DISCONNECT (section 2.2.4.51) of the TID in which the directory indicated by
FID exists.

Once the request has completed, it is removed from the Server.Connection.PendingRequestTable,
and an NT_TRANSACT_NOTIFY_CHANGE Response (section 2.2.7.4.2) is composed. The response
MUST contain the names of the files that changed, as well as an indication of the type of change that
occurred. All changed files within the directory or directories indicated by the FID are returned, not
just those matching CompletionFilter. If the operation completed because the FID was closed, or
due to an SMB_COM_NT_CANCEL (section 2.2.4.65), there may be no changes listed.

Any changes that occur within the directory or directories indicated by FID following the completion of

the NT_TRANSACT_NOTIFY_CHANGE Request are recorded in the change notification buffer on the
server. This is done on the assumption that the client will reissue the NT_TRANSACT_NOTIFY_CHANGE
Request upon receipt of the response. In the event that the number of changes exceeds the size of
the change notify buffer, or the maximum size of the NT_Trans_Parameter block in the response
(as indicated by the MaxParameterCount field in the most recent request), the NT Trans subsystem

MUST return an error response with a Status value of STATUS_NOTIFY_ENUM_DIR

(ERRDOS/ERR_NOTIFY_ENUM_DIR). This indicates to the client that more changes have occurred on
the server than the transaction has the capacity to report.

The server can also send an NT_TRANSACT_NOTIFY_CHANGE Response with a success Status and no
changes listed (TotalParameterCount is zero) to cause the client to enumerate the directory and/or
post a new NT_TRANSACT_NOTIFY_CHANGE Request.

If the server does not support the NT_TRANSACT_NOTIFY_CHANGE subcommand, it can return an
error response with STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc) in response to an

NT_TRANSACT_NOTIFY_CHANGE Request. Alternatively, it can send STATUS_NOTIFY_ENUM_DIR
(ERRDOS/ERR_NOTIFY_ENUM_DIR) to cause the client to enumerate the directory.<349>

3.3.5.59.5 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Request

Upon receipt of an NT_TRANSACT_QUERY_SECURITY_DESC Request (section 2.2.7.6.1), the NT Trans

subsystem MUST query the underlying file system to retrieve the security descriptors indicated by
SecurityInfoFields for the file indicated by FID. SecurityInfoFields and FID are passed in the

NT_Trans_Parameters block of the request.<350>

If the request fails, the server MUST return an error response indicating the error that caused the
failure; otherwise, the server MUST return an NT_TRANSACT_QUERY_SECURITY_DESC
Response (section 2.2.7.6.2). The NT_Trans_Data.SecurityInformation field of the response
contains the security descriptors retrieved from the file system.

3.3.6 Timer Events

3.3.6.1 OpLock Break Acknowledgment Timer Event

When the Oplock Break Acknowledgment timer expires, the server MUST enumerate all connections in

Server.ConnectionTable and MUST find all Server.Opens in each Server.Connection where
Server.Open.OplockState is Breaking and Server.Open.OplockTimeout is earlier than the
current time. For each matching Server.Open, the server MUST acknowledge the OpLock break to
the underlying object store. The server MUST set Server.Open.Oplock to the type of Oplock that was
granted during the Oplock Break Notification, as specified in section 3.3.4.2, and MUST set
Server.Open.OplockState to None.

If at least one Server.Open has a Server.Open.OplockState equal to Breaking, the Oplock Break
Acknowledgment Timer (section 3.3.2.1) MUST be restarted to expire again at the time of the next
Oplock timeout; otherwise, the Oplock Break Acknowledgment Timer MUST NOT be restarted.

625 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.3.6.2 Idle Connection Timer Event

The Idle Connection Timer (section 3.3.2.2) SHOULD periodically trigger a scan of existing SMB
connections and disconnect, as specified in section 3.3.7.1, those on which no opens exist

(Server.Connection.FileOpenTable and Server.Connection.SearchOpenTable are both empty)
and no operations have been issued in the last Server.AutoDisconnectTimeout minutes
(Server.Connection.IdleTime has passed). For each session in the disconnected connection,
Server.Statistics.sts0_stimedout MUST be increased by 1.

3.3.6.3 Unused Open Search Timer Event

The Unused Open Search Timer (section 3.3.2.3), if implemented, SHOULD periodically trigger a scan
of all open searches in existing active SMB connections and SHOULD close those open searches on
which no search operations have been issued in the preceding time period specified by the value of
the Server.SrvSearchMaxTimeout abstract data model element (section 3.3.1.1).

3.3.6.4 Unused Connection Timer Event

When the Unused Connection Timer (section 3.3.2.4) expires, the server MUST look up all connections
in global Server.ConnectionTable, where Server.Connection.SessionTable is empty and current
time minus Server.Connection.CreationTime is more than an implementation-specific timeout, and
SHOULD <351>disconnect them, as specified in section 3.3.7.1.

3.3.7 Other Local Events

3.3.7.1 Handling a Transport Disconnect

When the transport indicates a disconnection<352>, the server MUST disconnect the Connection as
specified in section 3.3.7.2.

3.3.7.2 Server Disconnects a Connection

The caller provides a Connection to be disconnected. The server MUST perform the following
processing:

 The server MUST close the associated transport connection.<353>

 For each Session in Connection.SessionTable, the server MUST close the session as specified in
section 3.3.4.8, providing Session.SessionGlobalId as the input parameter.

 For each SearchOpen entry in Connection.SearchOpenTable, the server MUST remove the

SearchOpen entry from the Connection.SearchOpenTable and MUST free the SearchOpen.

 The server MUST invoke the event specified in [MS-SRVS] section 3.1.6.16 to update the
connection count by providing the tuple <Connection.TransportName, FALSE>.

 The Connection object MUST be removed from Server.ConnectionTable and MUST be freed.

3.3.7.3 Handling an Incoming Transport Connection

When a remote client connects, the transport invokes this event, providing a new connection. If
Server.Enabled is FALSE, the server MUST reject the incoming connection. Otherwise, the server
MUST accept the connection, and if successful, MUST invoke the processing in section 3.3.5.1, passing
the new connection as the parameter.<354>

%5bMS-SRVS%5d.pdf

626 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.4 Local Interface Details for RPC Client Applications

The content in this section provides a unified interface for RPC client applications that use named
pipes and other local applications that similarly employ the SMB family of protocols. Because such

traffic can flow over the protocols specified in [MS-CIFS] and [MS-SMB2], these interfaces are written
so that the higher-layer client application is isolated from the specifics of the underlying protocol.
Implementations that support such local client applications SHOULD support one or more of the
interfaces defined in this section.

This section provides an abstraction for the necessary connection establishment and negotiation
operations and redirects to the equivalent higher-layer events specified in [MS-CIFS] and [MS-SMB2].

To simplify this interface, a composite structure ClientGenericContext is defined to encapsulate the

underlying protocol and the protocol-specific client side context. The structure has the following fields:

ClientGenericContext.ProtocolDialect: The protocol dialect associated with an open.

ClientGenericContext.ProtocolSpecificOpen: Either the protocol-specific Client.Open, as specified

in section 3.2.1.5 and in [MS-SMB2] section 3.2.1.6, or the protocol-specific Client.Session, as
specified in section 3.2.1.3 and in [MS-SMB2] secton 3.2.1.3.

This structure MUST be considered opaque to the caller.

3.4.1 Abstract Data Model

None.

3.4.2 Timers

None.

3.4.3 Initialization

None.

3.4.4 Higher-Layer Triggered Events

3.4.4.1 An RPC Client Application Opens a Named Pipe

The RPC client application provides:

 The name of the server.

 The name of the pipe.

 Credentials to be used to connect to the server.

The client MUST first connect to the server as specified in section 3.2.4.2.1.

Next, the client MUST negotiate the protocol by any of the methods specified in [MS-SMB2] section
3.2.4.2.2, initially offering the highest protocol supported by the local client implementation.

If the negotiated protocol dialect is covered in [MS-CIFS] or in [MS-SMB], the client MUST:

 Authenticate the user by invoking the processing logic specified in section 3.2.4.2.4, providing the
credentials supplied by the caller; next, connect to the IPC$ share by invoking the processing logic

specified in 3.2.4.2.5.

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf

627 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Open the named pipe by invoking the processing logic specified in section 3.2.4.5, supplying the
following input parameters:

 Client.TreeConnect: The ClientGenericContext.ProtocolSpecificOpen obtained in a
preceding step.

 Pathname: The name of the pipe supplied by the calling application.

 Client.Session: The ClientGenericContext.ProtocolSpecificOpen obtained after the user
authentication in a preceding step.

 Access mode: Allow read and write operations.

 Share Access: Allow read and write sharing.

 Create disposition: If the file exists, open; otherwise, fail.

 Create options: If the file is a directory, fail.

 (Optional): Return the attributes and time stamps of the file in the response: FALSE.

 (Optional): Return the total length of the file's extended attributes in the response: FALSE.

 Open parent directory: FALSE.

 Impersonation level: Impersonate.

 Security flags: zero.

 Optional allocation size: Not provided.

 Timeout: zero.

 Security descriptor: NULL

 Request for an exclusive or batch OpLock: None.

If the negotiated protocol is that specified by [MS-SMB2], the client MUST:

 Authenticate the user by invoking the processing logic specified in [MS-SMB2] section 3.2.4.2.3;
next, connect to the IPC$ share by invoking the processing logic specified in [MS-SMB2] section
3.2.4.2.4.

 Open the named pipe by invoking the processing logic specified in [MS-SMB2] section 3.2.4.3.1,
supplying the following input parameters:

 Client.TreeConnect: The ProtocolSpecificOpen obtained from ClientGenericContext in a
preceding step.

 Pathname: The name of the pipe supplied by the caller.

 Client.Session: The ProtocolSpecificOpen obtained from ClientGenericContext in a

preceding step.

 Access mode: Allow read and write operations.

 Sharing Mode: Allow read and write sharing.

 Create disposition: If the file exists, open; otherwise, fail.

 Create options: If the file is a directory, fail.

 File attributes and flags: zero.

628 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Impersonation level: Impersonate.

 Security flags: zero.

 OpLock or Lease state: None.

 Create Contexts: None.

Any error incurred during the processing of the preceding steps MUST be returned to the caller.

Upon successful completion, a new ClientGenericContext structure MUST be initialized as follows
and returned to the caller.

The ClientGenericContext.ProtocolDialect field MUST be set to an implementation-specific
identifier indicating the protocol (either that specified by [MS-CIFS] or by [MS-SMB2]).

The ClientGenericContext.ProtocolSpecificOpen field MUST be set to the protocol-specific
Client.Open returned from the processing logic specified in section 3.2.4.5 or in [MS-SMB2] section

3.2.4.3.1.

3.4.4.2 An RPC Client Application Writes to a Named Pipe

The caller supplies the following:

 The ClientGenericContext structure returned by the interface specified in section 3.4.4.1.

 The buffer to be written to the named pipe.

If the ClientGenericContext.ProtocolDialect is that specified in [MS-CIFS] or in [MS-SMB], the
request MUST be handled as specified in section 3.2.4.15 with the following as input parameters:

 Client.Open: The ProtocolSpecificOpen field from the ClientGenericContext structure
supplied by the caller.

 Offset: zero.

 A buffer supplied by the caller.

 Write-through mode: TRUE.

 Timeout: zero.

If the ClientGenericContext.ProtocolDialect is that specified in [MS-SMB2], the request MUST be
handled as specified in [MS-SMB2] section 3.2.4.7 with the following as input parameters:

 Open: The ProtocolSpecificOpen field from the ClientGenericContext structure supplied by

the caller.

 Offset: zero.

 The size of the caller-supplied buffer, in bytes.

 A buffer supplied by the caller.

3.4.4.3 An RPC Client Application Reads from a Named Pipe

The caller supplies the following:

 The ClientGenericContext structure returned by the interface specified in section 3.4.4.1.

 The buffer to be filled with data read from the named pipe.

%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf

629 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the ClientGenericContext.ProtocolDialect is that specified in [MS-CIFS] or in [MS-SMB], the
request MUST be handled as specified in section 3.2.4.14 with the following as input parameters:

 Client.Open: The ProtocolSpecificOpen field from the ClientGenericContext structure
supplied by the caller.

 Offset: zero.

 The size of the caller-supplied buffer, in bytes.

 The minimum number of bytes to read, which is the same as the size of the caller-supplied buffer.

 Timeout: zero.

If the ClientGenericContext.ProtocolDialect is that specified in [MS-SMB2], the request MUST be
handled as specified in [MS-SMB2] section 3.2.4.6 with the following as input parameters:

 Open: The ProtocolSpecificOpen field from the ClientGenericContext structure supplied by

the caller.

 Offset: zero.

 The size of the caller-supplied buffer, in bytes.

 An optional minimum number of bytes to read: Not provided.

3.4.4.4 An RPC Client Application Issues a Named Pipe Transaction

The caller supplies the following:

 The ClientGenericContext structure returned by the interface specified in section 3.4.4.1.

 The buffer to be written to the named pipe.

 The number of bytes to be read from the named pipe.

Based on the ClientGenericContext.ProtocolDialect field value, the request MUST be handled as

specified in section 3.2.4.34 or in [MS-SMB2] section 3.2.4.20.4, providing the following input
parameters:

 Client.Open: The ProtocolSpecificOpen field from the ClientGenericContext structure
supplied by the caller.

 The size of the caller-supplied buffer, in bytes.

 A buffer supplied by the caller.

 The number of bytes to read, as supplied by the caller.

3.4.4.5 An RPC Client Application Closes a Named Pipe

The caller supplies the ClientGenericContext structure returned by the interface specified in section
3.4.4.1.

If the ClientGenericContext.ProtocolDialect is that specified in [MS-CIFS] or in [MS-SMB], the
request MUST be handled as specified in section 3.2.4.7, with the following as input parameters:

 Client.Open: The ProtocolSpecificOpen field from the ClientGenericContext structure
supplied by the caller.

 File creation time: zero.

%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf

630 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the ClientGenericContext.ProtocolDialect is that specified in [MS-SMB2], the request MUST be
handled as specified in [MS-SMB2] section 3.2.4.5, with the following as input parameters:

 Client.Open: The ProtocolSpecificOpen field from the ClientGenericContext structure
supplied by the caller.

 File attributes required: FALSE.

3.4.4.6 An RPC Client Application Requests the Session Key for an Authenticated

Context

The caller supplies the ClientGenericContext structure returned by the interface specified in section
3.4.4.1.

Based on the ClientGenericContext.ProtocolDialect field value, the request MUST be handled as
specified in section 3.2.4.45 or in [MS-SMB2] section 3.2.4.25, providing
ClientGenericContext.ProtocolSpecificOpen as the input parameter.

3.4.4.7 A Local Client Application Initiates a Server Session

The local client application provides:

 The name of the server.

 Credentials to be used to connect to the server.

The client MUST first connect to the server as specified in section 3.2.4.2.1.

Next, the client MUST negotiate the protocol by any of the methods specified in [MS-SMB2] section
3.2.4.2.2, initially offering the highest protocol supported by the local client implementation.

If the negotiated protocol dialect is covered in [MS-CIFS] or in [MS-SMB], the client MUST:

 Authenticate the user by invoking the processing logic specified in section 3.2.4.2.4, providing the

credentials supplied by the caller; next, the client MUST connect to the IPC$ share by invoking the
processing logic specified in section 3.2.4.2.5

Any error incurred during the processing of the preceding steps MUST be returned to the caller.

Upon successful completion, a new ClientGenericContext structure MUST be initialized as follows
and returned to the caller.

The ClientGenericContext.ProtocolDialect field MUST be set to an implementation-specific
identifier indicating the protocol (either that specified by [MS-CIFS] or by [MS-SMB2]).

The ClientGenericContext.ProtocolSpecificOpen field MUST be set to the protocol-specific
Client.Session obtained by the processing logic specified in section 3.2.4.2.4.

3.4.4.8 A Local Client Application Terminates a Server Session

The caller supplies the ClientGenericContext structure returned by the interface specified in [MS-
CIFS] section 3.4.4.7.

Based on the ClientGenericContext.ProtocolDialect field value, the session represented by the

ClientGenericContext.ProtocolSpecificOpen MUST be closed as specified in section 3.2.4.25 or in
[MS-SMB] section 3.2.4.23.

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf

631 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.4.4.9 A Local Client Application Queries DFS Referrals

The local client application provides:

 ClientGenericContext: An opaque blob encapsulating the underlying protocol and the protocol-

specific client side context.

 ServerName: The name of the server from which to query referrals.

 UserCredentials: An opaque implementation-specific entity that contains the credentials to be
used when authenticating to the remote server.

 MaxOutputSize: The maximum output buffer response size, in bytes.

 An input buffer containing the application-provided REQ_GET_DFS_REFERRAL or
REQ_GET_DFS_REFERRAL_EX structure.

 FSCTL Code

If ClientGenericContext.ProtocolSpecificOpen.Connection.ServerCapabilities does not have the
CAP_DFS flag set, the client SHOULD<355> return STATUS_DFS_UNAVAILABLE to the caller.

If ClientGenericContext.ProtocolDialect indicates the CIFS or the SMB protocol, the client MUST
invoke the Application Requests Querying DFS Referrals (section 3.2.4.44) event, providing
ServerName, UserCredentials, MaxOutputSize, and the input buffer as the parameters.

If the Application Requests Querying DFS Referrals event returns success, the client MUST return the
RESP_GET_DFS_REFERRAL structure from the Trans2_Data block of the
TRANS2_GET_DFS_REFERRAL Response (section 2.2.6.16.2) and MUST return success to the calling
application; otherwise, the client MUST return the status code received from the event.

If ClientGenericContext.ProtocolDialect indicates the SMB2 protocol, the client MUST invoke the
Application Requests DFS Referral Information ([MS-SMB2] section 3.2.4.20.3) event, providing
ServerName, UserCredentials, MaxOutputSize, input buffer, and an FSCTL code as the

parameters.

If the Application Requests DFS Referral Information event returns success, the client MUST return the
buffer ([MS-SMB2] section 3.2.5.14.4) received from the server and MUST return success to the
calling application; otherwise, the client MUST return the status code received from the event.

3.4.4.10 A Local Client Application Requests a Connection to a Share

The RPC client application provides:

 The name of the server.

 The name of the share.

 Credentials to be used to connect to the server.

The client MUST first connect to the server as specified in section 3.2.4.2.1.

Next, the client MUST negotiate the protocol by any of the methods specified in [MS-SMB2] section
3.2.4.2.2, initially offering the highest protocol supported by the local client implementation.

If the negotiated protocol dialect is covered in [MS-CIFS] or in [MS-SMB], the client MUST
authenticate the user by invoking the processing logic specified in section 3.2.4.2.4; next, the client
MUST connect to the application-supplied share by invoking the processing logic specified in section
3.2.4.2.5.

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf

632 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the negotiated protocol is that specified by [MS-SMB2], the client MUST authenticate the user by
invoking the processing logic specified in [MS-SMB2] section 3.2.4.2.3, providing the credentials

supplied by the caller; next, the client MUST connect to the application-supplied share by invoking the
processing logic specified in [MS-SMB2] section 3.2.4.2.4.

Any error incurred during the processing of the preceding steps MUST be returned to the caller.

Upon successful completion, a new ClientGenericContext structure and ShareType MUST be
initialized.

The ClientGenericContext.ProtocolDialect field MUST be set to an implementation-specific
identifier indicating the protocol (either that specified by [MS-CIFS] or that specified by [MS-SMB2]).

The ClientGenericContext.ProtocolSpecificOpen field MUST be set to the protocol-specific
Client.TreeConnect obtained by the processing logic specified in section 3.2.5.4 or in [MS-SMB]

section 3.2.4.2.4.

ShareType MUST be set to the share type obtained by the processing logic specified in section
3.2.5.4 or in [MS-SMB2] section 3.2.4.2.4.

ClientGenericContext and ShareType MUST be returned to the caller.

3.4.4.11 A Local Client Application Requests a Tree Disconnect

The caller supplies the ClientGenericContext structure returned by the interface specified in section
3.4.4.10 and the optional ForceLevel to disconnect the connection.

If the ForceLevel value is 0x00000002, then based on the ClientGenericContext.ProtocolDialect
field value and the tree connect represented by the ClientGenericContext.ProtocolSpecificOpen,
the client MUST invoke the event specified in section 3.2.4.24 or in [MS-SMB2] section 3.2.4.22 and

disconnect the tree connection.

If the ForceLevel value is 0x00000000 or 0x00000001, then based on the
ClientGenericContext.ProtocolDialect field value and the tree connect represented by the

ClientGenericContext.ProtocolSpecificOpen, the client MUST invoke the event specified in section
3.2.4.46 or in [MS-SMB2] section 3.2.4.26 for number of open files on the tree connect.

 If the number of open files on the connection is equal to zero, based on the

ClientGenericContext.ProtocolDialect field value and the tree connect represented by the
ClientGenericContext.ProtocolSpecificOpen, the client MUST invoke the event specified in
section 3.2.4.24 or in [MS-SMB2] section 3.2.4.22 and disconnect the tree connection.

 Otherwise, the server MUST fail the call with an implementation-specific error code.

3.4.4.12 A Local Client Application Queries the Extended DFS Referral Capability

This is an optional interface to be implemented by the client.

The caller supplies the ClientGenericContext structure returned by the interface specified in section

3.4.4.7.

If ClientGenericContext.ProtocolDialect indicates the CIFS or the SMB protocol, or either of SMB2
dialects 2.002 or 2.100, the client MUST return FALSE; otherwise, it MUST return TRUE.

3.4.5 Message Processing Events and Sequencing Rules

None.

%5bMS-SMB2%5d.pdf

633 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

3.4.6 Timer Events

None.

3.4.7 Other Local Events

None.

3.5 Local Interface Details for RPC Server Applications

The content in this section provides a unified interface for RPC server applications that use named
pipes over the SMB family of protocols. Because named pipe traffic can flow over the protocols
specified in [MS-CIFS] or [MS-SMB2], these interfaces are written so that the higher-layer RPC server
application is isolated from the specifics of the underlying protocol. Implementations that support RPC
server applications SHOULD support the interfaces defined in this section.

This section provides a protocol-independent abstraction for RPC servers running over named pipes. It

does not introduce any new semantics or state to the protocol specified in [MS-CIFS].

To simplify this interface, a composite structure RPCServerGenericNamedPipeOpen is defined to
encapsulate the underlying protocol and the protocol-specific server side open to a named pipe. The
structure has the following fields:

RPCServerGenericNamedPipeOpen.ProtocolDialect: The protocol dialect associated with the
open.

RPCServerGenericNamedPipeOpen.ProtocolSpecificOpen: The protocol-specific Server.Open, as
specified in section 3.3.1.7 and in [MS-SMB2] section 3.3.1.10.

This structure MUST be considered opaque to the caller.

3.5.1 Abstract Data Model

None.

3.5.2 Timers

None.

3.5.3 Initialization

None.

3.5.4 Higher-Layer Triggered Events

3.5.4.1 An RPC Server Application Waits for Clients to Open a Named Pipe

The RPC application provides:

 The name of the pipe.

The server MUST wait on the underlying named pipe object store for clients to open the specified
named pipe. When a client opens the pipe as specified in sections 3.3.5.5, 3.3.5.35 or 3.3.5.51, or in
[MS-SMB2] section 3.3.5.9, the server MUST initialize a new RPCServerGenericNamedPipeOpen
structure as follows:

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

634 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The RPCServerGenericNamedPipeOpen.ProtocolDialect field MUST be set to an implementation-
specific identifier indicating the protocol (either that specified by [MS-CIFS] or by [MS-SMB2]) on

which the client opened the pipe. The value derived from Connection.NegotiateDialect specified in
[MS-SMB2] section 3.3.1.7 or from Server.Connection.SelectedDialect specified in section 3.3.1.3

can be used as a protocol identifier.

The RPCServerGenericNamedPipeOpen.ProtocolSpecificOpen field MUST be set to the protocol-
specific Server.Open constructed as specified in sections 3.3.5.6 or 3.3.5.51, or in [MS-SMB2]
section 3.3.5.9.

The server MUST return the newly-constructed RPCServerGenericNamedPipeOpen structure to the
caller.

3.5.4.2 An RPC Server Application Closes its Open to a Named Pipe

The caller supplies the RPCServerGenericNamedPipeOpen structure returned by the interface
specified in section 3.5.4.1.

The server MUST call into the underlying object store to close the named pipe identified by the

RPCServerGenericNamedPipeOpen.ProtocolSpecificOpen field.

3.5.4.3 An RPC Server Application Requests the Security Context of a Client

The caller supplies the RPCServerGenericNamedPipeOpen structure returned by the interface
specified in section 3.5.4.1.

Based on the value of the RPCServerGenericNamedPipeOpen.ProtocolDialect field, the request
MUST be handled as specified in section 3.3.4.7 or in [MS-SMB2] section 3.3.4.10.

3.5.4.4 An RPC Server Application Requests the Session Key of a Client

The caller supplies the RPCServerGenericNamedPipeOpen structure returned by the interface

specified in section 3.5.4.1.

Based on the value of the RPCServerGenericNamedPipeOpen.ProtocolDialect field, the request
MUST be handled as specified in section 3.3.4.6 or in [MS-SMB2] section 3.3.4.5.

3.5.5 Message Processing Events and Sequencing Rules

None.

3.5.6 Timer Events

None.

3.5.7 Other Local Events

None.

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

635 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4 Protocol Examples

The following sections describe common scenarios that indicate normal traffic flow on the wire in order
to illustrate the function of the CIFS Protocol.

4.1 Negotiate and Tree Connect Example

This example illustrates a simple scenario of protocol negotiation and connecting to a share.

Figure 10: Protocol negotiation and connecting to a share

This capture was produced by mapping a drive letter on a Microsoft Windows 98 operating system
client to a share served by Windows NT Server 4.0 operating system Service Pack 6a (SP6a). The
content was produced by executing the following command at an MS-DOS prompt on a Windows 98
client:

 C:\> net use y: \\10.9.9.47\testshare1

4.2 Disconnect Example

This example illustrates a client disconnecting from a share. An SMB connection and an SMB session

are already assumed to have been successfully completed.

636 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 11: Disconnecting from a share

The share used here was served from Windows NT Server 4.0 SP6a. It was mapped as drive Y: on a

Windows 98 client.

The user operation performed was:

 C:\> net use y: /d

4.3 Message Signing Example

This example illustrates the use of the CIFS message signing capability when connecting to a share.

637 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 12: Message signing when connecting to a share

The example is a result of configuring a server running Windows NT Server 4.0 SP6a both to allow and
require message signing (see [ENSIGN] for information on configuring the registry for this feature),
and likewise configuring a Windows NT Workstation 4.0 operating system Service Pack 6a (SP6a)
client for message signing. A share from the server was then mapped to a drive letter on the client
machine:

 C:\> net use y: \\10.9.9.47\testshare1

FRAME 1. The first step is the negotiation request. This is the usual offer of dialects and exchange of
the Flags and Flags2 fields in the SMB Header (section 2.2.3.1) of the SMB_COM_NEGOTIATE

Request (section 2.2.4.52.1). The SMB_FLAGS2_SMB_SECURITY_SIGNATURE bit in the Flags2 field
is cleared, and the SecuritySignature field is set to 0x0000000000000000. No security signature is

generated at this stage.

FRAME 2. The negotiate response has the SMB_FLAGS2_SMB_SECURITY_SIGNATURE bit in the
Flags2 field cleared, and the SecuritySignature field is set to 0x0000000000000000. No signature is
generated at this stage.

FRAME 3. The next exchange takes advantage of ANDX message batching. Two requests are sent
together; the first SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1) is sent along with

http://go.microsoft.com/fwlink/?LinkId=161959

638 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

an SMB_COM_TREE_CONNECT_ANDX Request (section 2.2.4.55.1). The
SMB_FLAGS2_SMB_SECURITY_SIGNATURE bit in the Flags2 field is cleared in this request, and the

SecuritySignature field is set to 0x0000000000000000. The tree connect attempt is to IPC$.

FRAME 4. The ANDX response contains a SecuritySignature field set to 0x0000000000000000, and

the SMB_FLAGS2_SMB_SECURITY_SIGNATURE bit in the Flags2 field bit is cleared.

FRAME 5. Next, another ANDX request consisting of an SMB_COM_SESSION_SETUP_ANDX Request
and another SMB_COM_TREE_CONNECT_ANDX Request is sent. This is the attempt to connect to the
share.

FRAME 6. Note that this time, the SMB_FLAGS2_SMB_SECURITY_SIGNATURE bit in the Flags2 field is
set, and the SecuritySignature field contains a valid signature. From this point on, all messages will
be signed.

4.4 Get File Attributes Example

This example illustrates the process of getting the attributes information from a file. An SMB

connection and an SMB session are already assumed to have been successfully completed.

639 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 13: Getting file attributes information

The share used here was served from Windows NT Server 4.0 SP6a. It was mapped as drive Y: on a
Windows 98 client. The following operation was performed in an MS-DOS window:

 C:\> attrib y:\text.txt

4.5 Set File Attributes Example

This example illustrates the process of setting attribute information for a file. An SMB connection and
an SMB session are already assumed to have been successfully completed.

640 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Figure 14: Setting file attribute information

The share used here was served from Windows NT Server 4.0 SP6a. It was mapped as drive Y: on a
Windows 98 client. The operation performed was in an MS-DOS window:

 C:\> attrib +r y:\text.txt

641 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4.6 Copy File from Share Example

This example illustrates the process of copying a file from a share to a client (downloading). An SMB
connection and an SMB session are already assumed to have been successfully completed.

Figure 15: Command to copy y:\text.txt to the current directory

The share used here was served from Windows NT Server 4.0 SP6a. It was mapped as drive Y: on a
Windows 98 client. The operation performed was in an MS-DOS window.

 C:\> copy y:\text.txt .

642 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

4.7 Copy File to Share Example

This example illustrates the process of copying a file from the client to a share (uploading). An SMB
connection and an SMB session are already assumed to have been successfully completed.

Figure 16: Copying a file from a client to a share

The share used here was served from Windows NT Server 4.0 SP6a. It was mapped as drive Y: on a
Windows 98 client. The operation performed was in an MS-DOS window:

 C:\> copy text.txt y:\text.txt

643 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

5 Security

The following sections specify security considerations for implementers of the CIFS Protocol.

5.1 Security Considerations for Implementers

A CIFS server can permit anonymous or guest account logons. Such unauthenticated logons can
provide access to services that need to be protected, and that can potentially expose vulnerabilities in
the implementation.<356>

Share level access control passwords are transmitted in plaintext. The server can also indicate that it
requires plaintext user level authentication. A "man-in-the-middle" attack can be used to clear the bit
in the SMB_COM_NEGOTIATE response that indicates that the server supports challenge/response

authentication, thus causing the client to assume that plaintext authentication is required.<357>

Several weaknesses in the LAN Manager (LM) challenge/response authentication scheme have been
discovered and published. CIFS usage of LM challenge/response is specified in section 3.1.5.2.

Neither the LM nor the NTLM challenge/response algorithm includes a client nonce. A client nonce is
used to protect against dictionary attacks by rogue servers. The LMv2 and NTLMv2 challenge/response
algorithms do include a client nonce.

Message signing is optional. Message signing is used to prevent connection hijacking.

The protocol does not sign OpLock break requests from the server to the client if message signing is
enabled. This can allow an attacker to affect performance but does not allow an attacker to deny
access or alter data.

The algorithm used for message signing has been shown to be subject to collision attacks. For more
information, see [MD5Collision].

The protocol does not encrypt the data that is exchanged. To provide stricter data security, the
underlying transport provides encryption. Otherwise, a different protocol is more applicable.

5.2 Index of Security Parameters

Security Parameter Section

Unauthenticated clients (anonymous and guest access) 3.2.4.2.3

Share versus user access control 3.2.4.2.4

Plain Text Authentication 3.2.4.2.3

Challenge Response 3.2.4.2.2

Message Signing 3.1.4.1

http://go.microsoft.com/fwlink/?LinkId=89937

644 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT Server 3.51 operating system

 Windows NT Server 4.0 operating system

 Windows NT Workstation 4.0 operating system

 Microsoft Windows 98 operating system

 Windows 98 operating system Second Edition

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears

with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1: On Windows, SMB transports are supported as TDI Transport Drivers, as described
in [MSDN-TrnspDrvIntfc].

<2> Section 2.1.1: On MS-DOS, OS/2, and Windows systems, NetBIOS presents a common API. The

CIFS implementations on these platforms are written to use the NetBIOS API, which makes it possible
to interchange NetBIOS-based transports without modifying the CIFS implementation itself.
Implementation of the NetBIOS API is not necessary for CIFS interoperability.

<3> Section 2.1.1: Windows NT Server operating system drops the transport connection and does not

return an error message response with an SMB error class of ERRCMD (0xFF).

<4> Section 2.1.1.2: The Windows NT operating system implementation of the NetBIOS Name
Service for NBT is known as the Windows Internet Name Service (WINS). The Windows NT

implementation of the NetBIOS Name Server (NBNS) is known as a WINS server.

Microsoft's implementation of NBT for Windows NT and Windows 98 diverges from the standard
specified in [RFC1001] and [RFC1002]. There are several modifications and additions to the prescribed
behavior of the name service, and the implementation of the datagram service is incomplete. See
[IMPCIFS] for a discussion of some of these variations. Windows-specific extensions to NBT are
documented in [MS-NBTE].

<5> Section 2.1.2: Direct TCP Transport is probably the best-known example of direct hosting. Direct
TCP Transport is described in [MS-SMB]. CIFS does not support Direct TCP Transport, because it was
developed for Windows 2000 operating system and is not supported on Windows NT or Windows 98.

<6> Section 2.1.2.1: The recommended maximum interval between SMB requests is four (4) minutes.
Windows NT Server 4.0 has a default time-out value of 15 minutes.

<7> Section 2.1.3: Windows NT Server 4.0 always sends a zero value for SessionKey.

<8> Section 2.1.3: Windows-based CIFS servers set MaxNumberVcs in the server's

SMB_COM_NEGOTIATE response to 0x0001, but do not enforce this limit. This allows a CIFS client to
establish more virtual circuits than allowed by this value.

http://go.microsoft.com/fwlink/?LinkId=214278
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NBTE%5d.pdf
%5bMS-SMB%5d.pdf

645 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<9> Section 2.1.3: Windows NT Server does disconnect all existing transport-level connections from a
client when it receives a new SMB_COM_SESSION_SETUP_ANDX request from that client with a

VcNumber value of zero.

<10> Section 2.2.1.1.3: CIFS wildcard characters are based on Windows wildcard characters, as

described in [MS-FSA] section 2.1.4.4, Algorithm for Determining if a FileName Is in an Expression.
For more information on wildcard behavior in Windows, see [FSBO] section 7.

<11> Section 2.2.1.2.1.1: Windows clients include both the size of the SizeOfListInBytes field and
the total size of the GEAList field when calculating the value passed in the SizeOfListInBytes field
for compatibility with dialects less than the LAN Manager 1.2 dialect, as implemented in OS/2 v1.2.
See [XOPEN-SMB] sections 4.3.7 and 16.1.5 for more information.

<12> Section 2.2.1.2.2: The SMB_FEA (section 2.2.1.2.2) structure originated with the LANMAN1.2

dialect and is, therefore, used in Trans2 calls, the majority of which also originated in the LANMAN1.2
dialect. See [XOPEN-SMB] section 16.1.5 for a detailed description of the SMB_FEA structure.
NT_TRANSACT_CREATE makes use of the FILE_FULL_EA_INFORMATION structure, which is similar to
SMB_FEA. See [MS-FSCC] for information on the FILE_FULL_EA_INFORMATION structure.

<13> Section 2.2.1.2.2.1: Windows clients include both the size of the SizeOfListInBytes field and
the total size of the FEAList field when calculating the value passed in the SizeOfListInBytes field.

This is required for compatibility with dialects less than the LAN Manager 1.2 dialect, as implemented
in OS/2 v1.2. See [XOPEN-SMB] sections 4.3.7 and 16.1.5 for more information.

<14> Section 2.2.1.2.3: The file attributes encoded in the
SMB_EXT_FILE_ATTR (section 2.2.1.2.3) data type are based on the native Windows file
attributes described in [MS-FSCC] section 2.6 and listed in [MSDN-CreateFile]. The following table
provides a mapping between the file attributes presented in this document and those in [MS-FSCC], as
well as unsupported values and values unique to this document.

Name or Status in [MS-CIFS] Name or Status in [MS-FSCC]

ATTR_READONLY FILE_ATTRIBUTE_READONLY

ATTR_HIDDEN FILE_ATTRIBUTE_HIDDEN

ATTR_SYSTEM FILE_ATTRIBUTE_SYSTEM

ATTR_DIRECTORY FILE_ATTRIBUTE_DIRECTORY

ATTR_ARCHIVE FILE_ATTRIBUTE_ARCHIVE

ATTR_NORMAL FILE_ATTRIBUTE_NORMAL

ATTR_TEMPORARY FILE_ATTRIBUTE_TEMPORARY

Not Supported in CIFS FILE_ATTRIBUTE_SPARSE_FILE

Not Supported in CIFS FILE_ATTRIBUTE_REPARSE_POINT

ATTR_COMPRESSED FILE_ATTRIBUTE_COMPRESSED

Not Supported in CIFS FILE_ATTRIBUTE_OFFLINE

Not Supported in CIFS FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

Not Supported in CIFS FILE_ATTRIBUTE_ENCRYPTED

POSIX_SEMANTICS Unique to CIFS/SMB

BACKUP_SEMANTICS Unique to CIFS/SMB

%5bMS-FSA%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140636
%5bMS-FSCC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=182698

646 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Name or Status in [MS-CIFS] Name or Status in [MS-FSCC]

DELETE_ON_CLOSE Unique to CIFS/SMB

SEQUENTIAL_SCAN Unique to CIFS/SMB

RANDOM_ACCESS Unique to CIFS/SMB

NO_BUFFERING Unique to CIFS/SMB

WRITE_THROUGH Unique to CIFS/SMB

<15> Section 2.2.1.2.3: Use care when using this option because files created with this flag might not

be accessible by applications written for MS-DOS, Windows 3.0 operating system, Windows NT 3.1
operating system, or Windows NT.

<16> Section 2.2.1.2.3: Windows uses this flag to optimize file caching. If an application moves the

file pointer for random access, optimum caching might not occur; however, correct operation is still
guaranteed. Specifying this flag can increase performance for applications that read large files using
sequential access. Performance gains can be even more noticeable for applications that read large files
mostly sequentially, but occasionally skip over small ranges of bytes.

<17> Section 2.2.1.4.1: The maximum value permitted in the SMB_DATE.YEAR field is 119,
resulting in a year range of 1980 to 2099.

<18> Section 2.2.1.5: Windows NT Server identifies these error codes as 32-bit values by leaving the
SMB_FLAGS2_NT_STATUS bit set in the response to a request that also had the
SMB_FLAGS2_NT_STATUS bit set.

<19> Section 2.2.1.6: Windows-based clients set the PID to the process identifier of the actual

calling process for the following commands. For all other commands, Windows-based clients set the
PID value to 0x0000FEFF.

 SMB_COM_NT_CREATE_ANDX (0xA2)

 SMB_COM_OPEN_PRINT_FILE (0xC0)

 All subcommands of SMB_COM_TRANSACTION (0x25) and
SMB_COM_TRANSACTION_SECONDARY (0x26) except TRANS_MAILSLOT_WRITE, if
Client.Connection.ServerCapabilities includes CAP_NT_SMBS.

 All subcommands of SMB_COM_TRANSACTION2 (0x32) and
SMB_COM_TRANSACTION2_SECONDARY (0x33), if Client.Connection.ServerCapabilities
includes CAP_NT_SMBS.

<20> Section 2.2.1.6.6: Windows NT Server always returns 0x00000000 and ignores the SessionKey
when it is sent by the client in an SMB_COM_SESSION_SETUP_ANDX Request (section 2.2.4.53.1).

<21> Section 2.2.1.6.8: Windows NT Server uses this value internally as part of its list management

mechanism.

<22> Section 2.2.2.3.3: Windows NT always returns this string in Unicode-encoded format.

<23> Section 2.2.2.4: Windows NT Server returns this error code if at least one command parameter
fails validation tests such as a field value being out of range or fields within a command being
internally inconsistent.

<24> Section 2.2.2.4: This error code is defined as ERRinvtid in Windows 98. Windows NT uses a
completely different naming style.

647 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<25> Section 2.2.2.4: Windows NT Server defines this class but does not return it. Windows NT client
does not test for the ERRCMD class. In many instances, Windows-based servers close transport level

connections if the incoming messages cannot be parsed.

<26> Section 2.2.3.1: This bit is ignored by Windows systems, which always handle pathnames as

case-insensitive.

<27> Section 2.2.3.1: If CAP_STATUS32 has been negotiated during the SMB connection, Windows
servers ignore the value of the SMB_FLAGS2_NT_STATUS bit in client requests. If the Status field
value to be returned in the header is STATUS_SUCCESS, Windows servers copy the value of the
SMB_FLAGS2_NT_STATUS bit from the client request into the server response.

If CAP_STATUS32 has been negotiated and an error is returned and SMB_FLAGS2_NT_STATUS is not
set in the request, the value of the SMB_FLAGS2_NT_STATUS bit and the format of the Status field in

the header in the server response is undefined.

<28> Section 2.2.4.3.1: Windows NT Server always ignores the SearchAttributes field on Open and
Create operations, and searches for files by name only.

<29> Section 2.2.4.15.2: Windows NT server temporary file names begin with "SRV" and are followed
by the character equivalents of five (5) random hexadecimal digits (0-F). There is no extension set for
the file name. The client is responsible for deleting the temporary file when it is no longer needed.

<30> Section 2.2.4.19.1: Windows NT server behavior is determined by the negotiated protocol
dialect. Clients that negotiate Core Protocol can use a negative value in the Offset field to position
the file pointer to the beginning of the file (BOF). Clients negotiating other protocol dialects receive an
error if they supply a negative value in the Offset field.

<31> Section 2.2.4.19.2: Windows NT does not check for overflow conditions. It allows the file pointer
that is maintained by the server to "wrap around".

<32> Section 2.2.4.23: Windows NT clients and Windows NT servers support this command on

connection-oriented transports. This command does not support named pipes or I/O devices.

Windows does not support the Timeout field.

<33> Section 2.2.4.24: Windows NT servers return STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd).

<34> Section 2.2.4.25.2: Windows NT servers always set Available to 0xFFFF.

<35> Section 2.2.4.26: Windows systems support this command only over connectionless transports.
Consequently, Windows 98 and Windows NT clients and all clients connected to Windows NT servers

set the 0x08 bit of the WriteMode field in the request. Windows NT servers support Write MPX only to
regular files or spooled printer files. This command does not support writing to named pipes or I/O
devices.

The Timeout field is not supported.

<36> Section 2.2.4.26.1: The Timeout field was used in earlier dialects. In the NT LAN Manager
dialect, Write MPX is not used to write to named pipes or devices, so the Timeout field is ignored.

<37> Section 2.2.4.27: Windows NT servers return STATUS_INVALID_SMB (ERRSRV/ERRerror)
instead of STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

<38> Section 2.2.4.29: Windows NT Server returns STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd) instead of STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc) if the
WordCount field in the request is set to 1; otherwise, Windows NT Server returns
STATUS_INVALID_SMB (ERRSRV/ERRerror).

648 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<39> Section 2.2.4.32.1: Windows NT Server does not support the CHANGE_LOCKTYPE flag of
TypeOfLock. A client requesting that the server atomically change the lock type from a shared lock to

an exclusive lock or vice versa results in an error being returned to the client.

<40> Section 2.2.4.32.1: If the CANCEL_LOCK bit is set, Windows NT servers cancel only the first

lock request range listed in the lock array.

<41> Section 2.2.4.33.1: One way transactions are used only when communicating with Mailslots,
which means that they never occur within CIFS sessions.

<42> Section 2.2.4.33.1: Windows NT Server honors the Timeout field only in transaction
subcommands that specifically state that the Timeout field is honored. Check the individual
subcommands for details.

<43> Section 2.2.4.33.1: Windows always sets ParameterOffset to an offset location, relative to the

start of the SMB Header (section 2.2.3.1), where the Trans Parameters field should be. This
behavior follows even if ParameterCount is zero.

<44> Section 2.2.4.33.1: Windows always sets DataCount to a value of ParameterCount +

ParameterOffset. This restricts the Trans_Data field to follow after the Trans_Parameters field,
although this is not strictly a protocol requirement.

<45> Section 2.2.4.33.2: Windows always sets ParameterOffset to an offset location, relative to the

start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

<46> Section 2.2.4.33.2: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<47> Section 2.2.4.34.1: Windows always sets ParameterOffset to an offset location, relative to the
start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This behavior

follows even if ParameterCount is zero.

<48> Section 2.2.4.34.1: Windows always sets DataCount to a value of ParameterOffset +

ParameterCount. This restricts the Trans_Data field to follow after the Trans_Parameters field,
although this is not strictly a protocol requirement.

<49> Section 2.2.4.35: Windows NT server does not implement SMB_COM_IOCTL_SECONDARY.
Therefore, all of the parameters and data for a request has to fit within the MaxBufferSize that was
established during session setup. Windows NT server does not honor the value supplied in the

Timeout field. Windows NT implementation specifics follow.

Category Function
Parameter
s Data Description

SERIAL_DEVICE

0x0001

GET_BAUD_RATE

0x0061

None USHORT BaudRate Get the baud rate on the
serial device.

SET_BAUD_RATE

0x0041

None USHORT BaudRate Set the baud rate on the
serial device

GET_LINE_CONTROL

0x0062

UCHAR
DataBits;

UCHAR
Parity;

UCHAR
StopBits;

UCHAR
TransBreak

None. Get serial device line control
information.

649 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Category Function
Parameter
s Data Description

;

SET_LINE_CONTROL

0x0042

UCHAR
DataBits;

UCHAR
Parity;

UCHAR
StopBits;

UCHAR
TransBreak
;

None. Set serial device line control
information.

GET_DCB_INFORMATIO
N

0x0073

None. USHORT
WriteTimeout;

USHORT
ReadTimeout;

UCHAR
ControlHandShake;

UCHAR FlowReplace;

UCHAR Timeout;

UCHAR
ErrorReplacementCha
r;

UCHAR
BreakReplacementCh
ar;

UCHAR XonChar;

UCHAR XoffChar;

Get serial device device
control information.

SET_DCB_INFORMATIO
N

0x0053

None. USHORT
WriteTimeout;

USHORT
ReadTimeout;

UCHAR
ControlHandShake;

UCHAR FlowReplace;

UCHAR Timeout;

UCHAR
ErrorReplacementCha
r;

UCHAR
BreakReplacementCh
ar;

UCHAR XonChar;

UCHAR XoffChar;

Get serial device device
control information.

GET_COMM_ERROR

0x006D

None. USHORT Error; Get serial device device
error information.

SET_TRANSMIT_TIMEO
UT

0x0044

 Not implemented.

SET_BREAK_OFF

0x0045

 Not implemented.

650 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Category Function
Parameter
s Data Description

SET_MODEM_CONTROL

0x0046

 Not implemented.

SET_BREAK_ON

0x004B

 Not implemented.

STOP_TRANSMIT

0x0047

 Not implemented.

START_TRANSMIT

0x0048

 Not implemented.

GET_COMM_STATUS

0x0064

 Not implemented.

GET_LINE_STATUS

0x0065

 Not implemented.

GET_MODEM_OUTPUT

0x0066

 Not implemented.

GET_MODEM_INPUT

0x0067

 Not implemented.

GET_INQUEUE_COUNT

0x0068

 Not implemented.

GET_OUTQUEUE_COUN
T

0x0069

 Not implemented.

GET_COMM_EVENT

0x0072

 Not implemented.

PRNTER_DEVIC
E

0x0005

GET_PRINTER_STATUS

0x0066

 CHAR Status Always returns
OS2_STATUS_PRINTER_HA
PPY (0x90).

SPOOLER_DEVI
CE

0x0053

GET_PRINTER_ID

0x0060

 USHORT JobId;

UCHAR Buffer[1];

Print job ID and printer
share name.

GENERAL_DEVI
CE

0x000B

 Not implemented.

<50> Section 2.2.4.35.2: [XOPEN-SMB], in section 14.3, states that ERRSRV/ERRnosupport can be
returned if the server does not support the SMB_COM_IOCTL command. Windows NT servers support
this command, although it is deprecated.

<51> Section 2.2.4.37: Windows NT servers attempt to process this command, but the
implementation is incomplete and the results are not predictable.

651 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<52> Section 2.2.4.38: Windows NT servers attempt to process this command, but the
implementation is incomplete and the results are not predictable.

<53> Section 2.2.4.39.1: Windows 98 accept only an SMB_COM_ECHO request containing a valid TID
or a TID value of 0xFFFF (-1). Windows NT ignores the TID in the SMB_COM_ECHO request.

<54> Section 2.2.4.39.2: Windows clients ignore the SequenceNumber field in the server response.

<55> Section 2.2.4.40: Windows NT and Windows 98 clients do not send
SMB_COM_WRITE_AND_CLOSE (0x2C) (section 2.2.4.40) requests.

<56> Section 2.2.4.40.2: Windows NT Server appends three null padding bytes to this message,
following the ByteCount field. These three bytes are not message data and can safely be discarded.

<57> Section 2.2.4.41.1: Windows NT Server ignores SearchAttrs in open requests.

<58> Section 2.2.4.42.2: An AndX chain can be formed by adding an SMB_COM_CLOSE command as

a follow-on to SMB_COM_READ_ANDX. SMB_COM_CLOSE is the only valid follow-on command for
SMB_COM_READ_ANDX. Windows NT Server correctly processes AndX chains consisting of

SMB_COM_READ_ANDX and SMB_COM_CLOSE, but does not correctly set the AndXCommand field in
the response message. Windows NT Server always sets the value of AndXCommand in the
SMB_COM_READ_ANDX response to SMB_COM_NO_ANDX_COMMAND (0xFF).

<59> Section 2.2.4.42.2: Windows NT Server always sets this field in this message to zero, even if

there is a chained SMB_COM_CLOSE follow-on response connected to the SMB_COM_READ_ANDX
response message. If present, the SMB_COM_CLOSE response can be seen as three null padding
bytes (representing WordCount==0x00 and ByteCount==0x0000) immediately following the
SMB_Parameters of the SMB_COM_READ_ANDX portion of the message.

<60> Section 2.2.4.42.2: Windows servers set the DataLength field to 0x0000 and return
STATUS_SUCCESS.

<61> Section 2.2.4.43.1: Windows NT and Windows 98 clients set this field to zero for non-message

mode pipe writes. This field is ignored by the server if the FID indicates a file. If a pipe write spans
multiple requests, for all pipe write requests Windows clients set this field to the total number of bytes

to be written.

<62> Section 2.2.4.43.2: Windows NT servers always set Available to 0xFFFF.

<63> Section 2.2.4.44: Windows NT Server returns STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd) if the WordCount field in the request is set to 3; otherwise, Windows NT
Server returns STATUS_INVALID_SMB (ERRSRV/ERRerror).

<64> Section 2.2.4.45: Windows NT Server has a partial implementation that treats this SMB
command as though it were an SMB_COM_CLOSE (section 2.2.4.5) followed by an
SMB_COM_TREE_DISCONNECT (section 2.2.4.51); however, the SMB_COM_TREE_DISCONNECT is
never called. The format of the command is identical to that of SMB_COM_CLOSE. This command was
never documented and is not called by Windows clients.

<65> Section 2.2.4.46.1: One way transactions are used only when communicating with Mailslots,

which means that they never occur within CIFS sessions.

<66> Section 2.2.4.46.1: Windows NT Server honors the Timeout field only in transaction
subcommands that specifically state that the Timeout field is honored. Check the individual
subcommands for details.

<67> Section 2.2.4.46.1: Windows always sets ParameterOffset to an offset location, relative to the
start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

652 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<68> Section 2.2.4.46.1: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This restricts the Trans_Data field to follow after the Trans_Parameters field,

although this is not strictly a protocol requirement.

<69> Section 2.2.4.46.2: Windows always sets ParameterOffset to an offset location, relative to the

start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

<70> Section 2.2.4.46.2: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<71> Section 2.2.4.46.2: Windows NT Server sends an arbitrary number of additional bytes beyond
the end of the SMB response message. These additional bytes can be ignored by the recipient.

<72> Section 2.2.4.47.1: Windows always sets ParameterOffset to an offset location, relative to the
start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

<73> Section 2.2.4.47.1: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<74> Section 2.2.4.50.1: Windows NT servers do not test to determine whether the strings in this
request are 16-bit Unicode or 8-bit extended ASCII. It assumes that they are 8-bit strings. Clients that
support Unicode use the SMB_COM_TREE_CONNECT_ANDX (section 2.2.4.55) command.

<75> Section 2.2.4.52.1: Windows 98 and Windows NT clients typically send a TID value of zero
(0x0000) in the SMB_COM_NEGOTIATE request. This value has no particular significance.

<76> Section 2.2.4.52.1: Windows 98 and Windows NT clients typically send a UID value of zero
(0x0000) in the SMB_COM_NEGOTIATE request. This value has no particular significance.

<77> Section 2.2.4.52.2: The name of this bit value is misleading. Encrypted passwords are used to
generate the response to the challenge, but are not sent across the network.

<78> Section 2.2.4.52.2: In some implementations of earlier dialects, this bit was used to indicate
support for the SMB_COM_SECURITY_PACKAGE_ANDX command. That usage is obsolete.

<79> Section 2.2.4.52.2: On Windows NT server the default value is 50 (0x0032). This value can be
set using the MaxMpxCt registry key.

<80> Section 2.2.4.52.2: Windows-based CIFS servers set this field to 0x0001, but do not enforce

this limit. This allows a CIFS client to establish more virtual circuits than allowed by this value.
Because this limit is not enforced on Windows, CIFS clients can ignore this limit and attempt to
establish more than the number of virtual circuits allowed by this value. The Windows behavior of the
CIFS server allows a client to exceed this limit, but other server implementations can enforce this limit
and not allow this to occur. Windows clients ignore the MaxNumberVcs field in the server response.

<81> Section 2.2.4.52.2: If more than 512 MB of memory is available, by default, Windows NT

Server, Windows 2000, Windows Server 2003 operating system, Windows Server 2008 operating

system, Windows Server 2008 R2 operating system, Windows Server 2012 operating system, and
Windows Server 2012 R2 operating system set the MaxBufferSize value to 16644 bytes. The
MaxBufferSize is configurable as described in [MSKB-320829].

<82> Section 2.2.4.52.2: Windows clients ignore the MaxRawSize field in the server response and
use a default value of 65536 bytes (64K) as the maximum raw buffer size for an
SMB_COM_WRITE_RAW Request (section 2.2.4.25.1).

http://go.microsoft.com/fwlink/?LinkId=304224

653 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<83> Section 2.2.4.52.2: Windows NT clients assume that CAP_NT_FIND is set if CAP_NT_SMBS is
set.

<84> Section 2.2.4.52.2: The CAP_BULK_TRANSFER capability was supposed to indicate server
support for the SMB_COM_READ_BULK and SMB_COM_WRITE_BULK commands, which were never

implemented. The CAP_BULK_TRANSFER capability bit was never used in Windows-based clients or
servers.

<85> Section 2.2.4.52.2: The CAP_COMPRESSED_DATA capability bit was supposed to indicate
whether a server supported compressed SMB packets. This feature was never specified, implemented,
or used. Windows-based clients and servers do not support CAP_COMPRESSED_DATA, so this
capability is never set.

<86> Section 2.2.4.52.2: The CAP_QUADWORD_ALIGNED capability bit was intended to indicate that

Windows directory InformationLevel responses were quadword-aligned. The
CAP_QUADWORD_ALIGNED capability bit was never used in released Windows-based clients or
servers.

<87> Section 2.2.4.52.2: Windows clients ignore the SystemTime field in the server response.

<88> Section 2.2.4.52.2: Windows clients ignore the ServerTimeZone field in the server response.

<89> Section 2.2.4.52.2: Windows NT servers always send the DomainName field in Unicode

characters and never add a padding byte for alignment. Windows clients ignore the DomainName
field in the server response.

<90> Section 2.2.4.53: Windows clients always issue SMB_COM_SESSION_SETUP_ANDX and
SMB_COM_TREE_CONNECT_ANDX as a batched request.

<91> Section 2.2.4.53.1: Windows NT clients and servers always use a MaxBufferSize value that is
a multiple of four (4). MaxBufferSize values, sent or received via SMB, are always rounded down to
the nearest multiple of four before they are used. This is done by masking out the two lowest-order

bits of the value: MaxBufferSize &= ~3;

The default MaxBufferSize on Windows clients is 4356 (0x1104) bytes (4KB + 260Bytes). The

MaxBufferSize can be configured through the following registry setting:

 HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\SizReqBuf

If the client's MaxBufferSize value in a session setup request is below a system-specified minimum
value, Windows CIFS servers will fail the request and return ERRSRV/ERRerror. The default minimum
acceptable MaxBufferSize value is 500 (0x1F4) bytes. This value can be modified using the following
registry setting:

 HKEY_Local_Machine\System\CurrentControlSet\Services\LanManServer\Parameters\MinClientBufferS
ize

<92> Section 2.2.4.53.1: Windows servers support a maximum

SMB_COM_READ_ANDX (section 2.2.4.42) buffer size of 61440 (0xF000 = 60K) when the

CAP_LARGE_READX capability is negotiated.

<93> Section 2.2.4.53.1: Windows-based CIFS servers set a limit for the MaxNumberVcs field in the
SMB_COM_NEGOTIATE Response (section 2.2.4.52.2) to 0x01, but do not enforce this limit. This
allows a CIFS client to establish more virtual circuits than allowed by the MaxNumberVcs field value.
Because this limit is not enforced on Windows, CIFS clients can ignore this limit and attempt to
establish more than the number of virtual circuits allowed by this value. The Windows behavior of the

654 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

CIFS server allows a client to exceed this limit, but other server implementations can enforce this limit
and not allow this to occur.

<94> Section 2.2.4.53.1: Windows NT Server ignores the client's SessionKey.

<95> Section 2.2.4.53.1: The Windows 98 client sends only CAP_RAW_MODE and CAP_UNICODE.

Windows NT clients send only CAP_NT_STATUS, CAP_UNICODE, CAP_LEVEL_II_OPLOCKS, and
CAP_NT_SMBS (the latter implies CAP_NT_FIND). Windows NT Server checks only for the following
capabilities in the client's SMB_COM_SESSION_SETUP_ANDX request: CAP_UNICODE,
CAP_LARGE_FILES, CAP_NT_SMBS, CAP_NT_FIND, CAP_NT_STATUS, and CAP_LEVEL_II_OPLOCK.

For some capabilities, it is not necessary for the client to indicate support for a server capability in
order to use that capability. For example, Windows 98 clients do not indicate support for DFS, but still
request DFS referrals from the server if the server has indicated support.

<96> Section 2.2.4.53.1: Windows NT and Windows 98 clients do not set the CAP_LARGE_FILES bit.

<97> Section 2.2.4.53.1: Windows client systems that negotiate CAP_NT_SMBS also negotiate
CAP_UNICODE. Windows NT servers expect that CAP_NT_SMBS and CAP_UNICODE will be negotiated

together. This relationship, however, is not enforced by the server. If the client negotiates one of
these capabilities but not the other, the contents of SMB_STRING fields in Windows NT server
response messages are undefined and can be malformed.

<98> Section 2.2.4.53.1: Windows 98 and Windows NT clients do not set the CAP_NT_FIND capability
bit. Windows NT Server, however, treats CAP_NT_FIND as set if CAP_NT_SMBS is set.

<99> Section 2.2.4.53.1: Windows NT Server does not support plaintext Unicode authentication.

<100> Section 2.2.4.53.1: Windows CIFS clients set this field based on the version and service pack
level of the Windows operating system. A list of possible values for this field includes the following:

Windows OS version NativeOS string

Windows NT 4.0 operating system Windows NT 1381

Windows NT 3.51 operating system Windows NT 1057

Windows 98 Second Edition Windows 4.0

<101> Section 2.2.4.53.1: Windows CIFS clients set this field based on the version of the Windows
operating system. A list of possible values for this field includes the following:

Windows OS version NativeLanMan string

Windows NT 4.0 Windows NT 4.0

Windows NT 3.51 Windows NT 3.51

Windows 98 Second Edition Windows 4.0

Windows NT clients add an extra string terminator following the NativeOS field, so the NativeLanMan
string appears to be the empty string. If ByteCount indicates that there are more bytes in the
SMB_Data.Data block, the additional bytes are the NativeLanMan string. The NativeLanMan string
also contains an extra terminating null character.

<102> Section 2.2.4.53.2: Windows-based CIFS servers set this field based on the version and
service pack level of the Windows operating system. The following table includes a list of possible
values for this field:

655 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Windows OS version NativeOS string

Windows NT 3.51 Windows NT 1057

Windows NT 4.0 Windows NT 1381

Windows 98 Second Edition Windows 4.0

Windows clients ignore the NativeOS field in the server response.

<103> Section 2.2.4.53.2: Windows-based CIFS servers set this field based on the version of the
Windows operating system. The following table lists possible values for this field:

Windows OS version NativeLanMan string

Windows NT 3.51 NT LAN Manager 3.51

Windows NT 4.0 NT LAN Manager 4.0

Windows 98 Second Edition Windows 4.0

Windows clients ignore the NativeLanMan field in the server response.

<104> Section 2.2.4.53.2: Windows clients ignore the PrimaryDomain field in the server response.

<105> Section 2.2.4.55.1: Windows 98 clients set this bit. Windows NT servers ignore the setting.

<106> Section 2.2.4.55.2: Windows clients ignore the NativeFileSystem field in the server
response.

<107> Section 2.2.4.56: This command is neither reserved nor implemented in Windows. Windows

NT servers return STATUS_SMB_BAD_COMMAND (ERRSRV/ERRbadcmd).

<108> Section 2.2.4.58.1: Windows NT systems define this UCHAR field as follows:

bit 7 (mask 0x80): Reserved for client use.

bits 5,6 (mask 0x60): Reserved for system use.

bits 0-4 (mask 0x1F): Reserved for server use.

The above definition agrees with [SMB-CORE] as well as [CIFS], and is used in Windows NT server.
[XOPEN-SMB], however, declares this field as reserved for client use. The safest course for

implementers is to avoid modifying the contents of this field, whether set by the client or the server.

<109> Section 2.2.4.58.1: Windows NT server makes use of the ServerState field as follows:

 ServerState
 {
 UCHAR FileName[8];
 UCHAR FileExt[3];
 UCHAR SearchID;
 ULONG FileIndex;
 }

FileName (8 bytes): This is the name portion of the 8.3 format file name. The name is left-justified
and space-padded.

FileExt (3 bytes): This is the file extension of the 8.3 format file name. It is left-justified and space-
padded.

http://go.microsoft.com/fwlink/?LinkId=164301
http://go.microsoft.com/fwlink/?LinkId=89836

656 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

This 11-byte representation of the 8.3 format name is known as the "packed" format.

SearchID (1 byte) : This is a one-byte search identifier used by the server to uniquely identify the

search operation. The use of a one-byte field implies that the NT server can manage a maximum of
256 concurrent searches per SMB session.

FileIndex (4 bytes): A server-specific index used to continue the search at the correct place in the
remote directory.

<110> Section 2.2.4.61.1: Windows clients set MaxCount to nonzero values. Windows servers fail
the request with STATUS_INVALID_SMB if MaxCount is 0x0000.

<111> Section 2.2.4.61.2: Windows NT servers set this field to 0x0000 and do not send the
BufferFormat and DataLength fields.

<112> Section 2.2.4.62.1: Windows always sets ParameterOffset to an offset location, relative to

the start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

<113> Section 2.2.4.62.1: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<114> Section 2.2.4.62.2: Windows always sets ParameterOffset to an offset location, relative to

the start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This
behavior follows even if ParameterCount is zero.

<115> Section 2.2.4.62.2: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<116> Section 2.2.4.63.1: Windows always sets ParameterOffset to an offset location, relative to
the start of the SMB Header (section 2.2.3.1), where the Trans_Parameters field should be. This

behavior follows even if ParameterCount is zero.

<117> Section 2.2.4.63.1: Windows always sets DataCount to a value of ParameterOffset +
ParameterCount. This action restricts the Trans_Data field to follow after the Trans_Parameters
field, although this is not strictly a protocol requirement.

<118> Section 2.2.4.64.1: Windows NT CIFS servers allow only the FILE_OPEN option on a named
pipe. All other options are ignored and considered the same as FILE_OPEN. Windows NT CIFS servers
do not allow clients to "open" or to "create" a mailslot.

<119> Section 2.2.4.65: Upon receipt of this command, the Windows NT server attempts to complete
outstanding commands such as those that are waiting for a thread context or waiting to access a busy
resource. If the outstanding command cannot be completed successfully, the server returns an
implementation-specific error.

<120> Section 2.2.4.66: Windows NT client and server both support the SMB_COM_NT_RENAME
command. However, the design and implementation of this command was never completed. The

SMB_COM_NT_RENAME command is not documented in [CIFS]; the only prior documentation covering

this command is [SNIA].

The request structure for this command includes a Reserved field that was originally intended to
access a proposed server feature that was never implemented. The SMB_DATA portion of the message
also includes Buffer Format fields, making this the only non-Core Protocol command to make use of
Buffer Format fields.

This command is superseded by newer commands in updated versions of the protocol (see [MS-

SMB]).

http://go.microsoft.com/fwlink/?LinkId=90519

657 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<121> Section 2.2.4.66: The Windows server implementation of SMB_COM_NT_RENAME does not
support moving a file within its existing path hierarchy. If such a move is requested, the server will

copy the file instead.

<122> Section 2.2.4.66.1: Windows clients never send an SMB_COM_NT_RENAME

Request (section 2.2.4.66.1) using this information level. Instead, they use
SMB_COM_RENAME (section 2.2.4.8) to perform rename operations. Windows servers process
SMB_COM_NT_RENAME Requests with this information level in the same way as an
SMB_COM_RENAME Request (section 2.2.4.8.1), with the exception that they do not allow wildcards in
the request.

<123> Section 2.2.4.66.1: Windows clients do not send SMB_COM_NT_RENAME Requests with the
SMB_NT_RENAME_MOVE_FILE information level. Windows NT servers do not fully implement this

information level, and perform a file copy instead of a rename or move if
SMB_NT_RENAME_MOVE_FILE is specified.

<124> Section 2.2.4.66.1: This field was previously designated ClusterCount (as listed in [SNIA]
section 2.4.13). ClusterCount is not implemented in Windows.

<125> Section 2.2.4.67.1: Windows NT4.SP6 server ignores the Identifier.

<126> Section 2.2.4.70: Support for this command was not implemented in Windows NT Server.

Windows 98 and Windows NT clients do not call this command.

<127> Section 2.2.4.71: Windows NT Server returns STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd) instead of STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc) if the
WordCount field in the request is set to 12; otherwise, Windows NT Server returns STATUS_
INVALID_SMB (ERRSRV/ERRerror).

<128> Section 2.2.4.72: Windows NT Server returns STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd) instead of STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc) if the

WordCount field in the request is set to 12; otherwise, Windows NT Server returns
STATUS_INVALID_SMB (ERRSRV/ERRerror).

<129> Section 2.2.4.73: Windows NT servers return STATUS_SMB_BAD_COMMAND
(ERRSRV/ERRbadcmd) instead of STATUS_NOT_IMPLEMENTED (ERRDOS/ERRbadfunc).

<130> Section 2.2.5.1: The TRANS_SET_NMPIPE_STATE subcommand was introduced to provide
support for the SetNamedPipeHandleState() system call in OS/2 and Win32. For more information,
see [MSDN-SetNmdPipeHndState]. Windows NT servers use the FilePipeInformation Information Class

to implement this named pipe transaction subcommand. For more information, see [MS-FSCC] section
2.4.29.

<131> Section 2.2.5.2: Windows NT Server does not support this transaction subcommand. It returns
a status of STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).

<132> Section 2.2.5.3: The TRANS_QUERY_NMPIPE_STATE subcommand was introduced to provide
support for the GetNamedPipeHandleState() system call in OS/2 and Win32. For more information,

see [MSDN-GetNmdPipeHndState]. Windows NT servers use the FilePipeInformation Information Class
to implement this named pipe transaction subcommand. For more information, see [MS-FSCC] section

2.4.29.

<133> Section 2.2.5.4: The TRANS_QUERY_NMPIPE_INFO subcommand was introduced to provide
support for the GetNamedPipeInfo() system call in OS/2 and Win32. For more information, see
[MSDN-GetNmdPipeInfo].Windows NT servers use the FilePipeLocalInformation Information Class to
implement this named pipe transaction subcommand. For more information, see [MS-FSCC] section

2.4.30.

<134> Section 2.2.5.5: The TRANS_PEEK_NMPIPE subcommand was introduced to provide support
for the PeekNamedPipe() system call in OS/2 and Win32. For more information, see [MSDN-

http://go.microsoft.com/fwlink/?LinkId=182918
http://go.microsoft.com/fwlink/?LinkId=182699
http://go.microsoft.com/fwlink/?LinkId=182705
http://go.microsoft.com/fwlink/?LinkId=121801

658 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

PkNmdPipe]. Windows NT servers use FSCTL_PIPE_PEEK to implement this subcommand. For more
information, see [MS-FSCC] sections 2.3.29 and 2.3.30.

<135> Section 2.2.5.5: Windows always peeks from a named pipe using the read mode that was
specified when the named pipe was created. The peek operation is not affected when the

TRANS_SET_NMPIPE_STATE subcommand is used to change the state of the named pipe. In addition,
the operation always returns immediately and is not affected by the wait mode of the named pipe. For
more information, see [MSDN-PkNmdPipe].

<136> Section 2.2.5.6: The TRANS_TRANSACT_NMPIPE subcommand was introduced to provide
support for the TransactNamedPipe() system call in OS/2 and Win32. For more information, see
[MSDN-TrnsactNmdPipe]. Windows NT servers use FSCTL_PIPE_TRANSCEIVE to implement this
subcommand. For more information, see [MS-FSCC] sections 2.3.33 and 2.3.34.

<137> Section 2.2.5.6.2: If the Windows NT Server receives a single-request transaction where the
request's DataCount field equals the TotalDataCount field and the ParameterCount field equals
the TotalParameterCount field, and if the server response indicates a STATUS_BUFFER_OVERFLOW,
the data read from the named pipe is included in the response's ReadData field, even if the amount

of data read from the pipe exceeds the MaxDataCount field of the client's request. In this case, the
response's TotalDataCount field is greater than the DataCount field and indicates the number of

remaining bytes that were not transferred to the client in the response.

<138> Section 2.2.5.7: Windows NT Server permits only a 2-byte write that contains two null padding
bytes. The pipe must also be in message mode. If these conditions are not met, NT server returns an
STATUS_INVALID_PARAMETER error.

<139> Section 2.2.5.10: The TRANS_WAIT_NMPIPE subcommand was introduced to provide support
for the WaitNamedPipe() system call in OS/2 and Win32. For more information, see [MSDN-
WaitNmdPipe]. Windows NT servers use FSCTL_PIPE_WAIT to implement this subcommand. For more

information, see [MS-FSCC] sections 2.3.31 and 2.3.32.

<140> Section 2.2.5.10.1: Windows NT server honors the Timeout field for this transaction.

<141> Section 2.2.5.10.1: Windows NT servers ignore the Priority value in the

TRANS_WAIT_NMPIPE Request (section 2.2.5.10.1), and do not provide a default priority.

<142> Section 2.2.5.11: The TRANS_CALL_NMPIPE subcommand was introduced to provide support
for the CallNamedPipe() system call in OS/2 and Win32. For more information, see [MSDN-
CallNmdPipe]. Windows NT servers use FSCTL_PIPE_TRANSCEIVE to implement this subcommand. For

more information, see [MS-FSCC] sections 2.3.33 and 2.3.34.

<143> Section 2.2.5.11.2: Windows 98 clients misread the number of data bytes returned. For more
information, see [MSKB-235717].

<144> Section 2.2.5.11.2: When the TRANS_CALL_NMPIPE (section 2.2.5.11) operation returns
STATUS_BUFFER_OVERFLOW, Windows servers set the SetupCount field value in the
TRANS_CALL_NMPIPE Response (section 2.2.5.11.2) to the SetupCount field value in the

TRANS_CALL_NMPIPE Request (section 2.2.5.11.1) * 2.

<145> Section 2.2.6.3.1: If the client sends an empty string (0x00 or 0x0000) in the FileName field

for the TRANS2_FIND_NEXT2 Request (section 2.2.6.3.1), Windows NT servers return no data in the
Trans2_Data block. The SearchCount field value in the Trans2_Parameters block is set to zero
(0x0000).

<146> Section 2.2.6.8.2: If the information level is SMB_QUERY_FILE_ALL_INFO, Windows NT
servers append 4 additional bytes at the end of the Trans2_Data block that are set to arbitrary

values and that are ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=121801
http://go.microsoft.com/fwlink/?LinkId=182709
http://go.microsoft.com/fwlink/?LinkId=182711
http://go.microsoft.com/fwlink/?LinkId=182711
http://go.microsoft.com/fwlink/?LinkId=182715
http://go.microsoft.com/fwlink/?LinkId=182715
http://go.microsoft.com/fwlink/?LinkId=182630

659 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<147> Section 2.2.7.1.1: Windows NT Server requires that this field be aligned to a 32-bit boundary.
No padding is required, however, because the NT_Trans_Data block is aligned, and the

SecurityDescriptor field is always a multiple of 32 bits.

<148> Section 2.2.7.2: Windows clients generate IOCTL and FSCTL codes that are supported only by

Windows NT Server.

<149> Section 2.2.7.3: Security descriptors are typically useful only to Windows clients.

<150> Section 2.2.7.4.2: The Windows NT Server implementation of
NT_TRANSACT_NOTIFY_CHANGE always returns the names of changed files in Unicode format.

<151> Section 2.2.7.6: Security descriptors are typically useful only to Windows clients.

<152> Section 2.2.8.1.1: Windows NT servers append a single NULL padding character to this field. If
CAP_UNICODE has been negotiated, the server appends two NULL bytes to this field; otherwise, one

NULL byte is appended. The length of the terminating NULL character is not included in the value of
the FileNameLength field.

<153> Section 2.2.8.1.2: Windows NT servers always append a single NULL padding byte to the
FileName field. The length of this additional byte is not included in the value of the FileNameLength
field.

<154> Section 2.2.8.1.3: If CAP_UNICODE has been negotiated, Windows NT servers set the

FileNameLength field to an arbitrary value.

<155> Section 2.2.8.1.3: Windows NT servers always append a single NULL padding byte to the
FileName field. The length of this additional byte is not included in the value of the
FileNameLength field.

<156> Section 2.2.8.1.4: Windows-based CIFS servers set the FileIndex field to a nonzero value if
the underlying object store supports indicating the position of a file within the parent directory.

<157> Section 2.2.8.1.4: If CAP_UNICODE has not been negotiated, Windows NT servers include the

length of the terminating NULL byte in the value of the FileNameLength field.

<158> Section 2.2.8.1.4: Windows NT servers append an arbitrary number of extra NULL padding
bytes to the FileName field. The length of these additional NULL bytes is not included in the value of
the FileNameLength field unless CAP_UNICODE has not been negotiated. If CAP_UNICODE has not
been negotiated, only the length of the first NULL byte is included in the value of the
FileNameLength field.

<159> Section 2.2.8.1.5: Windows-based CIFS servers set the FileIndex field to a nonzero value if

the underlying object store supports indicating the position of a file within the parent directory.

<160> Section 2.2.8.1.5: If CAP_UNICODE has not been negotiated, Windows NT servers include the
length of one NULL padding byte in the FileNameLength field value.

<161> Section 2.2.8.1.5: Windows NT servers append an arbitrary number of extra NULL padding
bytes to the FileName field. The length of these additional NULL bytes is not included in the value of
the FileNameLength field unless CAP_UNICODE has not been negotiated. If CAP_UNICODE has not

been negotiated, only the length of the first NULL byte is included in the value of the
FileNameLength field.

<162> Section 2.2.8.1.6: Windows-based CIFS servers set the FileIndex field to a nonzero value if
the underlying object store supports indicating the position of a file within the parent directory.

<163> Section 2.2.8.1.6: If CAP_UNICODE has not been negotiated, Windows NT servers include the
length of one NULL padding byte in the FileNameLength field value.

660 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<164> Section 2.2.8.1.6: Windows NT servers append an arbitrary number of extra NULL padding
bytes to the FileName field. The length of these additional NULL bytes is not included in the value of

the FileNameLength field unless CAP_UNICODE has not been negotiated. If CAP_UNICODE has not
been negotiated, only the length of the first NULL byte is included in the value of the

FileNameLength field.

<165> Section 2.2.8.1.7: Windows-based CIFS servers set the FileIndex field to a nonzero value if
the underlying object store supports indicating the position of a file within the parent directory.

<166> Section 2.2.8.1.7: If CAP_UNICODE has not been negotiated, Windows NT servers include the
length of one NULL padding byte in the FileNameLength field value.

<167> Section 2.2.8.1.7: Windows NT servers append an arbitrary number of extra NULL padding
bytes to the FileName field. The length of these additional NULL bytes is not included in the value of

the FileNameLength field unless CAP_UNICODE has not been negotiated. If CAP_UNICODE has not
been negotiated, only the length of the first NULL byte is included in the value of the
FileNameLength field.

<168> Section 2.2.8.2.1: Windows servers always return zero (0x00000000).

<169> Section 2.2.8.2.2: Windows NT servers use the FileFsVolumeInformation information class to
retrieve file system volume information. See [MS-FSCC], section 2.5.9.

If the VolumeLabelLength field of the FILE_FS_VOLUME_INFORMATION data element contains a
value greater than 13, an error response is returned to the client with a status of
STATUS_BUFFER_OVERFLOW (ERRDOS/ERRmoredata). Otherwise, the ulVolSerialNbr field is copied
from the VolumeSerialNumber field of the FILE_FS_VOLUME_INFORMATION data element.
VolumeLabelLength is copied to cCharCount and VolumeLabel is copied to VolumeLabel.

Windows clients request SMB_INFO_VOLUME only if CAP_NT_SMBS has not been negotiated. If
CAP_NT_SMBS has been negotiated, Windows clients request SMB_QUERY_FS_VOLUME_INFO instead

of SMB_INFO_VOLUME.

If CAP_UNICODE has been negotiated, the contents of the VolumeLabel field returned by Windows

NT servers is undefined.

If CAP_UNICODE has not been negotiated, Windows NT servers append an arbitrary number of extra
NULL padded bytes to the VolumeLabel field.

<170> Section 2.2.8.2.3: Windows NT Server servers use the FileFsVolumeInformation ([MS-FSCC]
section 2.5.9) information class to retrieve file system volume information.

<171> Section 2.2.8.2.4: Windows NT servers use the FileFsSizeInformation ([MS-FSCC] section
2.5.8) information class to retrieve file system allocation and size information.

<172> Section 2.2.8.2.5: Windows NT servers use the FileFsDeviceInformation ([MS-FSCC] section
2.5.10) information class to retrieve file system device information.

<173> Section 2.2.8.2.6: Windows NT Server use the FileFsAttributeInformation ([MS-FSCC] section
2.5.1) informationclass to retrieve file system attribute information.

 SMB_QUERY_FS_ATTRIBUTE_INFO
 {
 ULONG FileSystemAttributes;
 LONG MaxFileNameLengthInBytes;
 ULONG LengthOfFileSystemName;
 WCHAR FileSystemName[LengthOfFileSystemName/2];
 }

661 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<174> Section 2.2.8.3.6: Windows NT Server use the FileBasicInformation ([MS-FSCC] section 2.4.7)
information class to retrieve timestamp and extended file attribute information for a file.

<175> Section 2.2.8.3.7: Windows NT servers use the FileStandardInformation ([MS-FSCC] section
2.4.38) information class to retrieve the specified standard information for a file.

<176> Section 2.2.8.3.8: Windows NT Server use the FileEaInformation ([MS-FSCC] section 2.4.12)
information class to EA size information for a file.

<177> Section 2.2.8.3.9: Windows NT Server use the FileNameInformation ([MS-FSCC] section
2.4.25) information class to retrieve the long name for a file.

<178> Section 2.2.8.3.11: Windows NT servers use the FileAlternateNameInformation ([MS-FSCC]
section 2.4.5) information class to retrieve the 8.3 format name for a file.

<179> Section 2.2.8.3.12: Windows NT Server use the FileStreamInformation ([MS-FSCC] section

2.4.40) information class to retrieve the stream information for a file.

<180> Section 2.2.8.3.13: Windows NT Server use the FileCompressionInformation ([MS-FSCC]

section 2.4.9) information class to retrieve the compression information for a file.

<181> Section 2.2.8.4.3: Windows NT servers use the FileBasicInformation ([MS-FSCC] section 2.4.7)
information class to set timestamp and extended file attribute information for a file.

<182> Section 2.2.8.4.4: Windows NT servers use the FileDispositionInformation ([MS-FSCC] section

2.4.11) information class to mark or unmark a file for deletion.)

<183> Section 2.2.8.4.5: Windows NT servers use the FileAllocationInformation ([MS-FSCC] section
2.4.4) information class to set allocation size information for a file.

<184> Section 2.2.8.4.6: Windows NT servers use the FileEndOfFileInformation ([MS-FSCC] section
2.4.13) information class to set end-of-file information for a file.

<185> Section 3.1.5.2: Windows clients do not provide a configuration parameter to specify LMv2
authentication. Rather, a single system parameter enables both LMv2 and NTLMv2 authentication. For

more information, see [MSFT-SecurityWatch].

<186> Section 3.2.1.1: Windows NT Workstation 4.0 added support for the ability to enable and
require signing in Service Pack 3 (SP3). See [ENSIGN].

<187> Section 3.2.1.5: Windows 98 and NT 4 Workstation clients do not request Exclusive or Level
II OpLocks.

<188> Section 3.2.2.1: Windows NT and Windows 98 CIFS clients implement this timer with a default
value of 30 seconds.

<189> Section 3.2.3: Windows 98 clients set Client.PlaintextAuthenticationPolicy to Disabled by
default. Plain text authentication can be enabled by selecting the
HKLM\System\CurrentControlSet\Services\VxD\VNETSUP registry path and setting the
EnablePlainTextPassword registry value to 1.

Windows NT clients prior to NT 4 SP3 set Client.PlaintextAuthenticationPolicy to Enabled by
default. Windows NT 4.0 SP3 and above client systems set Client.PlaintextAuthenticationPolicy to

Disabled by default. Plain text authentication can be enabled by selecting the
HKLM\System\CurrentControlSet\Services\Rdr\Parameters registry path and setting the
EnablePlainTextPassword registry value to 1.

Windows 98 clients determine Client.LMAuthenticationPolicy and
Client.NTLMAuthenticationPolicy based upon the value of the LMCompatibility registry key. See
[MSFT-SecurityWatch] and [IMP-CIFS] section 15.5.7 for further information. Windows 98 clients do
not support NTLMv2 authentication, but support can be added. See [MSKB-288358].

http://go.microsoft.com/fwlink/?LinkId=177588
http://go.microsoft.com/fwlink/?LinkId=161959
http://go.microsoft.com/fwlink/?LinkId=182635

662 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Windows NT 4.0 Workstation clients determine Client.LMAuthenticationPolicy and
Client.NTLMAuthenticationPolicy based upon the value of the LMCompatibilityLevel registry key.

Support for NTLMv2 authentication was added to Windows NT 4.0 in SP4. See [MSFT-SecurityWatch],
[MSKB-239869], and [IMP-CIFS] section 15.5.7 for further information.

<190> Section 3.2.3: Windows NT 3.51 servers do not support signing. Windows NT 4.0 added
support for the ability to enable and require signing in Service Pack 3 (SP3). See [ENSIGN].

<191> Section 3.2.3: Windows NT clients use a default value of 45 seconds. This value is obtained
from a system-wide configuration parameter. See [KB102067] for more information.

<192> Section 3.2.3: The default maximum buffer size for Windows 98 and NT 4 Workstation clients
is 4356 bytes.

<193> Section 3.2.3: Windows-based clients set the list of supported dialect identifier strings in the

following order.

 PC NETWORK PROGRAM 1.0

 LANMAN1.0

 MICROSOFT NETWORKS 3.0

 LM1.2X002

 LANMAN2.1

 NT LM 0.12

This technical document describes only the NT LM 0.12 dialect behavior; see section 1.

<194> Section 3.2.3: By default, Windows 98 and NT 4 Workstation clients set the
Client.Connection.MaxMpxCount value to 50. This can be configured using the MaxCmds registry
setting.

<195> Section 3.2.4.1.4: Windows 98 and Windows NT 4.0 clients do not send AndX chains longer
than two commands in length. Windows NT Server 4.0 produces unexpected errors if an untested

AndX chain is received.

<196> Section 3.2.4.1.5: Windows 98 clients and Windows NT clients and servers do not support
sending a transaction with secondary messages as part of an AndX chain. The
SMB_COM_SESSION_SETUP_ANDX and SMB_COM_TREE_CONNECT_ANDX commands each permits
an SMB_COM_TRANSACTION as a follow-on command. Transactions that are part of an AndX chain
are "complete". That is, the entire transaction request fits within the primary transaction request.

<197> Section 3.2.4.2.1: The Windows implementation, by default, attempts to connect on all

available SMB transports (NetBIOS-compatible and direct IPX) simultaneously and selects the one that
succeeds the fastest. Any connection that is not selected is immediately closed. Windows also allows
an upper layer to specify what transport to use.

<198> Section 3.2.4.2.4: Windows NT servers do not support share level access control.

<199> Section 3.2.4.2.4: Null sessions are also used to allow clients to access the browse list and list
of available server shares. See [MS-BRWS] for more information on the Browser Service.

<200> Section 3.2.4.2.4: Windows NT Server does not support share level access control.

<201> Section 3.2.4.2.4: Windows clients determine the authentication type using the following
rules:

http://go.microsoft.com/fwlink/?LinkId=182633
http://go.microsoft.com/fwlink/?LinkId=162005
%5bMS-BRWS%5d.pdf

663 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 IF Client.NTLMAuthenticationPolicy NOT EQUALS Disabled THEN
 USE NT LAN Manager (NTLM) Response OR NT LAN Manager version 2 (NTLMv2) Response
 ELSE IF Client.LMAuthenticationPolicy NOT EQUALS Disabled THEN
 USE LAN Manager (LM) Response OR LAN Manager version 2 (LMv2) Response
 ELSE IF Client.PlaintextAuthenticationPolicy EQUALS Enabled THEN
 USE Plaintext Authentication
 ELSE
 Fail the Authentication
 END IF

<202> Section 3.2.4.2.4: Windows 98 and NT 4 Workstation clients do not retry authentication.

<203> Section 3.2.4.5: Windows 98and Windows NT Workstation 4.0 clients never request exclusive

OpLocks.

<204> Section 3.2.4.14.1: If a Windows-based server does not support the READ RAW capability, but
a client sends an SMB_COM_READ_RAW request to the server, the server sends a zero-length

response.

<205> Section 3.2.4.15: Windows clients set the first two bytes of the SMB_Data.Bytes.Data field
to the SMB_Parameters.Words.Remaining field value for the first write request.

<206> Section 3.2.4.15.1: Windows 98 and NT clients set the Timeout field to 0x00000000 in this

request.

If the server has indicated support for Raw Mode by setting CAP_RAW_MODE in the
SMB_COM_NEGOTIATE Response (section 2.2.4.52.2), a Windows NT client might send
SMB_COM_WRITE_RAW, even if it has not indicated support for RAW WRITE, by setting the
CAP_RAW_MODE bit in the Capabilities bit field of the SMB_COM_SESSION_SETUP_ANDX
Request (section 2.2.4.53.1). This is expected to succeed, because the server has already indicated
support for the Raw Mode.

<207> Section 3.2.4.43: Support for DFS Client capabilities was introduced in Windows NT 4.0

Workstation and Server.

<208> Section 3.2.5.1.2: Windows-based clients that use message signing disconnect the connection
on receipt of an incorrectly signed message.

<209> Section 3.2.5.13: Windows NT CIFS servers maintain a 64-bit offset value internally, but
return only the lower-order 32-bits.

<210> Section 3.2.6.1: Windows NT clients use a default Client.SessionTimeoutValue value of 45
seconds. Additional time will be added depending upon the size of the message. See [KB102067] for
more information.

<211> Section 3.2.6.1: Windows NT and Windows 98 CIFS clients periodically scan for any commands
that have not completed. If there are outstanding commands that have exceeded the
Client.SessionTimeoutValue, an SMB_COM_ECHO (section 2.2.4.39) is sent to determine whether
or not the connection has been lost. Regardless of whether the client receives an SMB_COM_ECHO

Response (section 2.2.4.39.2), it closes the connection if there is no response to the outstanding
commands that have exceeded the Client.SessionTimeoutValue.

<212> Section 3.3.1.1: Windows NT Server 4.0 added support for the ability to enable and require
signing in Service Pack 3 (SP3). See [ENSIGN].

<213> Section 3.3.1.2: Windows NT servers allow the sharing of printers and traditional file shares.

<214> Section 3.3.1.2: In Windows, this ADM element contains the security descriptor for the share.

664 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<215> Section 3.3.1.3: Windows NT Server 4.0 does not include the CID as a lookup key to identify
the list of pending requests that are associated with the SMB transport in

Server.Connection.PendingRequestTable; it includes only the UID, TID, PID, and MID.

<216> Section 3.3.2.1: The default OpLock acknowledgment time-out on Windows NT Servers is 35

seconds. This value is controlled by the
\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\OplockBreak
Wait registry parameter. See [KB129202].

<217> Section 3.3.2.2: The default idle timer time-out value for Windows NT 4.0 is 15 minutes. See
[KB297684] for more information on Windows NT idle timer settings.

<218> Section 3.3.3: Windows NT Server initializes Server.ShareLevelAuthentication to FALSE
because Windows NT Server does not support share-level security.

<219> Section 3.3.3: Windows-based server sets the list of supported dialect identifier strings in the
following order:

 PC NETWORK PROGRAM 1.0

 LANMAN1.0

 MICROSOFT NETWORKS 3.0

 LM1.2X002

 LANMAN2.1

 NT LM 0.12

This technical document describes only the NT LM 0.12 dialect behavior; see section 1.

<220> Section 3.3.3: By default, Windows NT Server accepts plaintext authentication.

Windows NT Server determines Server.LMAuthenticationPolicy and

Server.NTLMAuthenticationPolicy based upon the value of the LMCompatibilityLevel registry key.
Support for NTLMv2 authentication was added in Windows NT 4.0 operating system Service Pack 4

(SP4). See [MSFT-SecurityWatch], [MSKB-239869], and [IMPCIFS] section 15.5.7 for further
information.

<221> Section 3.3.3: The default MaxBufferSize on Windows NT Server is 4356 (0x00001104) bytes
(4KB + 260 bytes) if the server has 512 MB of memory or less. If the server has more than 512 MB of
memory, the default MaxBufferSize is 16644 (0x00004104) bytes (16KB + 260Bytes). Windows NT
Server always uses a MaxBufferSize value that is a multiple of four (0x00000004). The
MaxBufferSize can be configured through the following registry setting:

 HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\SizReqBuf

<222> Section 3.3.3: On Windows NT Server, the default value is 50 (0x0032). This value can be set
using the MaxMpxCt registry key.

<223> Section 3.3.3: Windows NT 3.51 servers do not support signing. Windows NT 4.0 added

support for the ability to enable and require signing in Windows NT 4.0 operating system Service Pack
3 (SP3). See [ENSIGN] for more information.

<224> Section 3.3.3: Windows servers set the Server.MaxRawSize value to 65,536 (0x00010000)
bytes (64KB).

<225> Section 3.3.3: Windows servers initialize Server.MaxSearches to 2048.

http://go.microsoft.com/fwlink/?LinkId=162006
http://go.microsoft.com/fwlink/?LinkId=162010

665 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<226> Section 3.3.4.1: When signing is neither enabled nor required:

 Windows servers do not initialize the SecuritySignature field in the header of the

SMB_COM_SESSION_SETUP_ANDX Response (section 2.2.4.53.2). The value of this field is
arbitrary.

 Windows clients ignore the SecuritySignature field.

<227> Section 3.3.4.1.1: Windows-based servers set the SMB_Header.Reserved field of the
response to the SMB_Header.Reserved value received in the request.

<228> Section 3.3.4.1.2: If 32-bit status codes have not been negotiated, Windows-based servers
convert NTSTATUS codes to their equivalent SMBSTATUS Class/Code pairs before sending the
response.

<229> Section 3.3.4.2: Windows servers receive the type of OpLock that has been requested to be

broken from the object store, as described in [MS-FSA] section 2.1.5.17.3, with the following output
element mapping:

 NewOpLockLevel is copied to the NewOpLockLevel field of the SMB_COM_LOCKING_ANDX
Request (section 2.2.4.32.1).

<230> Section 3.3.4.2: Windows NT Server 4.0 always sets the Timeout, NumberOfUnlocks,
NumberofLocks, and ByteCount fields to zero, and the client ignores these fields.

<231> Section 3.3.4.3: Support for DFS Server capability was introduced in Windows NT Server 4.0
operating system with Service Pack 2 (SP2).

<232> Section 3.3.4.17: For each supported transport type as listed in section 2.1, the Windows CIFS
server attempts to form an association with the specified device with local calls specific to each
supported transport type and rejects the entry if none of the associations succeed.

<233> Section 3.3.4.17: On Windows, ServerName is used only when the transport is
NBT (section 2.1.1.2).

<234> Section 3.3.4.17: On Windows, servers manage listening in TDI transport drivers through the
interface described in [MSDN-MakeEndpoint].

<235> Section 3.3.5.1: On Windows, the transport name is obtained from the TDI device object that
was opened as part of transport initialization and returned by the new connection indication. For more
information on TDI device objects, see [MSDN-TDIDeviceObj]. Possible Windows-specific values for
Server.Connection.TransportName are listed in a product behavior note attached to [MS-SRVS]
section 2.2.4.96.

<236> Section 3.3.5.1: Windows servers do not generate a token and always set
Server.Connection.SessionKey to zero.

<237> Section 3.3.5.2: Windows NT servers perform basic validation tests on received command
requests before determining whether or not the command is Obsolete or Not Implemented. If a
request is found to be incorrectly formatted, the server returns STATUS_INVALID_SMB
(ERRSRV/ERRerror).

<238> Section 3.3.5.2: Windows NT Server does not validate the TID field in SMB_COM_ECHO
requests.

<239> Section 3.3.5.2.5: Windows NT servers fail a transaction request with
STATUS_INSUFF_SERVER_RESOURCES, if (SetupCount + MaxSetupCount +
TotalParameterCount + MaxParameterCount + TotalDataCount + MaxDataCount) is greater
than 65*1024.

http://go.microsoft.com/fwlink/?LinkId=214275
http://go.microsoft.com/fwlink/?LinkId=214277
%5bMS-SRVS%5d.pdf

666 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<240> Section 3.3.5.3: Windows servers create directories within the object store as described in
[MS-FSA] sections 2.1.5.1 and 2.1.5.1.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID field to find the matching
Server.TreeConnect in the Server.Connection.TreeConnectTable. The server then acquires

an Open on Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 PathName is the SMB_Data.Bytes.DirectoryName field from the request.

 SecurityContext is found by using the SMB_Header.UID field to look up the matching Session
entry in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is
passed as SecurityContext.

 DesiredAccess is set to FILE_TRAVERSE, which has the same value as FILE_EXECUTE:
0x00000020.

 ShareAccess is set to 0x00000000.

 CreateOptions is set to FILE_DIRECTORY_FILE.

 CreateDisposition is set to FILE_CREATE.

 DesiredFileAttributes is set to FILE_ATTRIBUTE_NORMAL.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon

system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag of
the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is
successful, the Open returned from the process described in [MS-FSA] section 2.1.5.1 is closed. All
other results are ignored.

<241> Section 3.3.5.4: Windows servers delete directories within the object store by opening them as

described in [MS-FSA] section 2.1.5.1, with DesiredAccess set to DELETE. The following is a mapping
of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching treeConnect in the
Server.Connection.TreeConnectTable, which in turn provides the
Server.TreeConnect.Share. Server.TreeConnect.Share points to an entry in the
Server.Share table. The Server.Share.LocalPath is the path to the root of the share. An Open
directory handle representing Server.Share.LocalPath is passed as RootOpen.

 PathName is the SMB_Data.Bytes.DirectoryName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set to DELETE (0x00010000).

 ShareAccess is set to 0x00000000.

 CreateOptions is set to FILE_DIRECTORY_FILE.

 CreateDisposition is set to FILE_OPEN.

 DesiredFileAttributes is set to 0x00000000.

http://go.microsoft.com/fwlink/?LinkId=182720

667 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon

system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag of
the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The file is opened as described in [MS-FSA] section 2.1.5.1, and the returned Status is copied into the
SMB_Header.Status field of the response. If the operation fails, the Status is returned in an Error
Response and processing is complete.

If the operation is successful, the file is marked to be deleted when closed as described in [MS-FSA]
section 2.1.5.14, passing the following mapping of input elements:

 Open is the Open returned in the previous operation.

 FileInformationClass is FileDispositionInformation. See [MS-FSA] section 2.1.5.14.3.

 InputBuffer is the FILE_DISPOSITION_INFORMATION data element specified in [MS-FSCC]

section 2.4.11. InputBuffer.DeletePending is set to TRUE.

 InputBufferLength is the size of the FILE_DISPOSITION_INFORMATION data element.

If the Set File Information operation fails, the Status is returned in an Error Response and processing
is complete. If the operation is successful, the Open is immediately closed, which results in the

deletion of the file. All other results are ignored.

<242> Section 3.3.5.4: Windows NT servers close any SearchOpen with a matching TID where the
canonicalized directory name derived from the SMB_Data.Bytes.DirectoryName field is a prefix of
the canonicalized full search path, including the filename portion. This could potentially result in
unrelated SearchOpens being closed.

<243> Section 3.3.5.5: Windows NT Server always ignores the SearchAttributes field on Open and
Create operations, and searches for files by name only.

<244> Section 3.3.5.5: Windows servers open files in the object store as described in [MS-FSA]
section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching Server.TreeConnect
in the Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 PathName is the SMB_Data.Bytes.FileName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry

in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set as follows:

 The AccessMode subfield of the AccessMode field in the request is used to set the value of

DesiredAccess. The AccessMode subfield represents the lowest order four bits of the
AccessMode field (0x0007), as shown in the table in section 2.2.4.3.1. The mapping of

values is as follows.

AccessMode.AccessMode DesiredAccess

0 GENERIC_READ 0x80000000

1 GENERIC_WRITE | FILE_READ_ATTRIBUTES0x40000000 | 0x00000080

668 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AccessMode.AccessMode DesiredAccess

2 GENERIC_READ | GENERIC_WRITE0x80000000 | 0x40000000

3 GENERIC_READ | GENERIC_EXECUTE0x80000000 | 0x20000000

 For any other value of AccessMode.AccessMode, this algorithm returns
STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 ShareAccess is set as follows:

 The SharingMode subfield of the AccessMode field in the request is used to set the value of
ShareAccess. The SharingMode subfield is a 4-bit subfield of the AccessMode field
(0x0070), as shown in the table in section 2.2.4.3.1. The mapping of values is as follows.

AccessMode.SharingMode ShareAccess

0 Compatibility mode (see below)

1 0x0L (don't share, exclusive use)

2 FILE_SHARE_READ

3 FILE_SHARE_WRITE

4 FILE_SHARE_READ | FILE_SHARE_WRITE

0xFF FCB mode (see below)

 For Compatibility mode, special filename suffixes (after the '.' in the filename) are mapped to
SharingMode 4. The special filename suffix set is: "EXE", "DLL", "SYM, "COM". All other file
names are mapped to SharingMode 3.

 For FCB mode, if the file is already open on the server, the current sharing mode of the

existing Open is preserved and a FID for the file is returned. If the file is not already open on

the server, the server attempts to open the file using SharingMode 1.

 For any other value of AccessMode.SharingMode, this algorithm returns
STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 CreateOptions is set to (FILE_NON_DIRECTORY_FILE | FILE_COMPLETE_IF_OPLOCKED).
If the SMB_Header.Flags2 SMB_FLAGS2_KNOWS_EAS flag is not set, then the
FILE_NO_EA_KNOWLEDGE bit is also set. The FILE_WRITE_THROUGH bit is set based on the
SMB_Parameters. Words.AccessMode.WritethroughMode bit.

 CreateDisposition is set to FILE_OPEN.

 DesiredFileAttributes is set to FILE_ATTRIBUTE_NORMAL.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon

system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag
of the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

 The returned Status is copied into the SMB_Header.Status field of the response. If the
operation fails, the Status is returned in an Error Response and processing is complete.

 If the operation is successful, processing continues as follows:

669 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If the SMB_FLAGS_OPLOCK flag is set in the SMB_Header.Flags of the request, then an
OpLock is being requested. Windows servers obtain OpLocks as described in [MS-FSA] section

2.1.5.17, with the following mapping of input elements:

 Open is the Open passed through from the preceding operation.

 Type is LEVEL_BATCH if the SMB_FLAGS_OPBATCH flag is set in the SMB_Header.Flags
of the request; otherwise, it is LEVEL_ONE.

 If an OpLock is granted, the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags are copied from the request to the response. Otherwise, both flags
are set to zero in the response.

 The SMB_Parameters.Words.AccessMode from the request is copied to the response.

 Windows servers obtain the SMB_Parameters.Words.FileAttributes and

SMB_Parameters.Words.LastModified response field values by querying file information from
the object store as described in [MS-FSA] section 2.1.5.11, with the following mapping of input
elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileBasicInformation.

 If the query fails, the Status is returned in an Error Response and processing is complete.

Otherwise:

 SMB_Parameters.Words.FileAttributes is set to OutputBuffer.FileAttributes.

 SMB_Parameters.Words.LastModified is set to OutputBuffer.ChangeTime.

 Windows servers obtain the SMB_Parameters.Words.FileSize response field values by querying
file information from the object store as described in [MS-FSA] section 2.1.5.11, with the following
mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileStandardInformation.

 If the query fails, the Status is returned in an Error Response and processing is complete.
Otherwise:

 SMB_Parameters.Words.FileSize is set to the lowest-order 32 bits of
OutputBuffer.EndOfFile.

 If the query fails, the Status is returned in an Error Response and processing is complete.

 A new FID is generated for the Open returned. All of the other results of the Open operation are

ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response.

While opening an existing file, the underlying object store checks for the necessity of an Oplock break,

as described in [MS-FSA] section 2.1.4.12, and if necessary, notifies the server, as described in
section 3.3.4.2 and defers the opening of the file until the server acknowledges the Oplock break, as
described in section 3.3.5.30.

<245> Section 3.3.5.6: Windows servers ignore the CreationTime field in the SMB_COM_CREATE

Request (section 2.2.4.4.1).

<246> Section 3.3.5.6: When opening, overwriting, deleting, or renaming a file, Windows NT Server
checks for sharing violations. If a sharing violation would be generated by the operation, by default
the server delays for 200 ms and then tests again for a sharing violation. By default the server retries

670 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

five times, for a total delay of approximately one second, before giving up and returning the sharing
violation error. The sharing violation delay time and number of retries are configurable as described in

[MSKB-150384].

<247> Section 3.3.5.6: Windows servers create files in the object store as described in [MS-FSA]

section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching TreeConnect in the
Server.Connection.TreeConnectTable, which in turn provides the
Server.TreeConnect.Share. Server.TreeConnect.Share points to an entry in the
Server.Share table. The Server.Share.LocalPath is the path to the root of the share. An Open
directory handle representing Server.Share.LocalPath is passed as RootOpen.

 PathName is the SMB_Data.Bytes.FileName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set to (GENERIC_READ | GENERIC_WRITE).

 ShareAccess is set to FILE_SHARE_WRITE. If the file extension (after the "." in the filename) is
in the special filename suffix set ("EXE", "DLL", "SYM", "COM"), ShareAccess is set to

FILE_SHARE_WRITE | FILE_SHARE_READ).

 DesiredFileAttributes is set as follows:

 DesiredFileAttributes is set to the bitwise AND of the FileAttributes field in the request
and

(SMB_FILE_ATTRIBUTE_READONLY |

SMB_FILE_ATTRIBUTE_HIDDEN |

SMB_FILE_ATTRIBUTE_SYSTEM |

SMB_FILE_ATTRIBUTE_ARCHIVE |

SMB_FILE_ATTRIBUTE_DIRECTORY).

 If the resulting value of DesiredFileAttributes is zero, DesiredFileAttributes is set to
FILE_ATTRIBUTE_NORMAL.

 CreateDisposition is set to FILE_OVERWRITE_IF.

 If the SMB_Header.Flags2 SMB_FLAGS2_KNOWS_EAS flag is not set, the
FILE_NO_EA_KNOWLEDGE bit is also set.

 CreateOptions is set to FILE_NON_DIRECTORY_FILE.

 If the WritethroughMode bit of the SMB_Parameters.Words.AccessMode field is set, the

FILE_WRITE_THROUGH bit is also set.

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response and processing is complete.

If the operation is successful, processing continues as follows:

671 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If the SMB_FLAGS_OPLOCK flag is set in the SMB_Header.Flags of the request, an OpLock is
being requested. Windows servers obtain OpLocks as described in [MS-FSA] section 2.1.5.17, with

the following mapping of input elements:

 Open is the Open passed through from the preceding operation.

 Type is LEVEL_BATCH if the SMB_FLAGS_OPBATCH flag is set in the SMB_Header.Flags
of the request; otherwise, it is LEVEL_ONE.

If an OpLock is granted, the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags are copied from the request to the response. Otherwise, both
flags are set to zero in the response.

 Windows servers set the LastWriteTime of the file if the
SMB_Parameters.Words.CreationTime in the request is not zero or -1 (0xFFFFFFFF). Windows

servers set this value as described in [MS-FSA] section 2.1.5.14, with the following mapping of
input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileBasicInformation.

 InputBuffer.CreationTime, InputBuffer.LastAccessTime,
InputBuffer.ChangeTime, and InputBuffer.FileAttributes are each set to zero.

 InputBuffer.LastWriteTime is set to the time value in
SMB_Parameters.Words.CreationTime.

The result of the set operation is ignored.

 A new FID is generated for the Open returned. All of the other results of the Open operation are
ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response.

<248> Section 3.3.5.7: Windows servers update the last modification time for the file, as described in
[MS-FSA] section 2.1.15.14.2, with the following mapping of input elements:

 Open is the Open corresponding to the input FID.

 InputBuffer.LastWriteTime is set to SMB_Parameters.Word.LastTimeModified.

 FileInformationClass is FileBasicInformation ([MS-FSCC] section 2.4.7).

 InputBuffer.CreationTime, InputBuffer.LastAccessTime, InputBuffer.ChangeTime and
InputBuffer.FileAttributes are all set to zero.

<249> Section 3.3.5.7: Windows servers close an existing Open in the object store as described in
[MS-FSA] section 2.1.5.4, Server Requests Closing an Open. The returned status is copied into the

SMB_Header.Status field of the response. Any Oplocks held by the Open are cleaned up as
described in Phase 8 -- Oplock Cleanup in [MS-FSA] section 2.1.5.4.

<250> Section 3.3.5.7: Windows servers release a byte-range lock from the underlying object store

as described in [MS-FSA] section 2.1.5.8, with the following mapping of input elements for each
element X in the Server.Open.Locks array:

 Open is the Open indicated by the FID.

 FileOffset is the Server.Open.Locks[X].ByteOffset if the entry is formatted as a
LOCKING_ANDX_RANGE32 structure, or Server.Open.Locks[X].ByteOffsetHigh and
Unlocks[X].ByteOffsetLow if the entry is formatted as a LOCKING_ANDX_RANGE64
structure.

672 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 LOCKING_ANDX_RANGE32 structure, or Server.Open.Locks[X].LengthInBytesHigh and
Server.Open.Locks[X].LengthInBytesLow if the entry is formatted as a

LOCKING_ANDX_RANGE64 structure

<251> Section 3.3.5.8: Windows servers flush a file by passing the Open to the algorithm described

in [MS-FSA] section 2.1.5.6. The returned Status is copied into the SMB_Header.Status field of the
response.

<252> Section 3.3.5.9: Windows processes any required Oplock break notification to SMB prior to
deletion via the interface described in [MS-FSA] section 2.1.5.17.3 and defers the delete operation
until acknowledged via the interface in [MS-FSA] section 2.1.5.18.

<253> Section 3.3.5.9: The [XOPEN-SMB] specification (section 7.12) indicates that the server
deletes all files matching the search criteria that it can delete and returns Success if any is deleted,

stating "If a wildcard pathname matches more than one file, and not all of the files could be unlinked,
the request fails silently". Windows NT CIFS servers search for and delete files matching the search
criteria in a sequential fashion. If an error occurs, processing stops, and the error is returned in the
Status field of an error response message. No more matching files are deleted.

<254> Section 3.3.5.9: When opening, overwriting, deleting, or renaming a file, Windows NT Server
checks for sharing violations. If a sharing violation would be generated by the operation, the server

delays for 200 ms and then tests again for a sharing violation. The server retries five times, for a total
delay of approximately one second, before giving up and returning the sharing violation error.

<255> Section 3.3.5.9: Windows servers implement wildcard file deletion as a three-step process.

Step 1: Wildcard Matching

Windows servers match wildcard patterns within directories as described in [MS-FSA] section 2.1.5.5.
The following is a mapping of input elements:

 Open is an Open resulting from opening the directory portion of the SMB_Data.Bytes.FileName

field from the request.

 FileNamePattern is the final component of the FileName field.

If the operation fails, the Status is returned in an Error Response and processing is complete.
Otherwise, all files that match the FileNamePattern are candidates for deletion. The next step is
performed for each file that matches the wildcard pattern.

Step 2: SearchAttribute Filtering

Windows servers match SearchAttributes as follows:

If both SMB_FILE_ATTRIBUTE_HIDDEN and SMB_FILE_ATTRIBUTE_SYSTEM are specified in
SearchAttributes, all files match.

If either or both of the SMB_FILE_ATTRIBUTE_HIDDEN or SMB_FILE_ATTRIBUTE_SYSTEM are not set,
the server queries the object store for the attributes of the file.

 Windows servers obtain FileAttributes values by querying file information from the object store

as described in [MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is the Open resulting from opening the file to be queried.

 FileInformationClass is FileBasicInformation.

If the query fails, the file does not match and is not deleted. Otherwise:

 All bits except the SMB_FILE_ATTRIBUTE_HIDDEN and SMB_FILE_ATTRIBUTE_SYSTEM bits
are cleared from the FileAttributes returned from the query operation.

673 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FileAttributes &= (FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_HIDDEN)

 If the Value of FileAttributes, cast to a USHORT, does not exactly match SearchAttributes,

the file does not match and is not deleted. Otherwise, the Open is closed and the matching
FileName is passed to the next step.

Step 3: File Deletion

If there are no matching FileNames to be deleted, the server returns an Error Response with Status
set to STATUS_NO_SUCH_FILE (ERRDOS/ERRbadfile) and processing is complete. Otherwise:

Windows servers delete files and directories within the object store by opening them as described in
[MS-FSA] section 2.1.5.1 with DesiredAccess set to DELETE. The following is a mapping of input
elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching TreeConnect in the

Server.Connection.TreeConnectTable, which in turn provides the
Server.TreeConnect.Share. Server.TreeConnect.Share points to an entry in the
Server.Share table. The Server.Share.LocalPath is the path to the root of the share. An Open

directory handle representing Server.Share.LocalPath is passed as RootOpen.

 PathName is the FileName generated as a result of the wildcard matching step.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry

in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set to DELETE (0x00010000).

 ShareAccess is set to 0x00000000.

 CreateOptions is set to FILE_NON_DIRECTORY_FILE.

 CreateDisposition is set to FILE_OPEN.

 DesiredFileAttributes is set to 0x00000000.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon
system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag
of the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The file is opened as described in [MS-FSA] section 2.1.5.1, and the returned Status is copied into the
SMB_Header.Status field of the response. If the operation fails, the Status is returned in an Error

Response, and processing is complete.

If the operation is successful, the file is marked to be deleted when closed as described in [MS-FSA]
section 2.1.5.14, passing the following mapping of input elements:

 Open is the Open returned in the previous operation.

 FileInformationClass is FileDispositionInformation. See [MS-FSA] section 2.1.5.14.3.

 InputBuffer is the FILE_DISPOSITION_INFORMATION data element specified in [MS-FSCC].

InputBuffer.DeletePending is set to TRUE.

 InputBufferLength is the size of the FILE_DISPOSITION_INFORMATION data element.

674 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the Set File Information operation fails, the Status is returned in an Error Response, and processing
is complete. If the operation is successful, the Open is immediately closed, which results in the

deletion of the file. All other results are ignored.

<256> Section 3.3.5.10: Windows servers implement wildcard file rename as a three-step process.

Step 1: Old Filename Wildcard Matching

Windows servers match wildcard patterns within directories as described in [MS-FSA] section 2.1.5.5.
The following is a mapping of input elements:

 Open is an Open resulting from opening the directory portion of the
SMB_Data.Bytes.OldFileName field from the request.

 FileNamePattern is the final component of the OldFileName field.

If the operation fails, the Status is returned in an Error Response, and processing is complete.

Otherwise, all files that match the FileNamePattern are candidates for deletion. The next step is
performed for each file that matches the wildcard pattern.

Step 2: SearchAttribute Filtering

Windows servers match SearchAttributes as follows:

If both SMB_FILE_ATTRIBUTE_HIDDEN and SMB_FILE_ATTRIBUTE_SYSTEM are specified in
SearchAttributes, then all files match.

If either or both of the SMB_FILE_ATTRIBUTE_HIDDEN or SMB_FILE_ATTRIBUTE_SYSTEM are not set,
the server queries the object store for the attributes of the file.

 Windows servers obtain FileAttributes values by querying file information from the object store
as described in [MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is the Open resulting from opening the FileName to be queried.

 FileInformationClass is FileBasicInformation.

If the open or the query fails, the file does not match and is not renamed. Otherwise:

 All bits except the SMB_FILE_ATTRIBUTE_HIDDEN and SMB_FILE_ATTRIBUTE_SYSTEM bits
are cleared from the FileAttributes returned from the query operation.

FileAttributes &= (FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_HIDDEN)

 If the value of FileAttributes cast to a USHORT does not exactly match SearchAttributes,
the file does not match and is not renamed. Otherwise, the Open is passed to the next step.

Step 3: Rename

Windows servers rename files as described in [MS-FSA] section 2.1.5.14. The following is a mapping

of input elements:

 Open is an Open resulting from opening the OldFileName, as provided by the preceding steps.

 FileInformationClass is FileRenameInformation.

 ReplaceIfExists is FALSE.

 RootOpen is provided by using the SMB_Header.TID to find the matching TreeConnect in the
Server.Connection.TreeConnectTable, which in turn provides the

Server.TreeConnect.Share. Server.TreeConnect.Share points to an entry in the

675 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Server.Share table. The Server.Share.LocalPath is the path to the root of the share. An Open
directory handle representing Server.Share.LocalPath is passed as RootOpen.

 FileName is generated from the OldFileName and the wildcard pattern in NewFileName. A
description of the wildcard mapping that produces FileName is given in [XOPEN-SMB] section 3.6.

 FileNameLength is the length, in bytes, of the new FileName. The length includes the trailing
null byte(s), if present.

The returned Status is copied into the SMB_Header.Status field of the response. The Open is
closed. All other results are ignored.

<257> Section 3.3.5.10: When opening, overwriting, deleting, or renaming a file, Windows NT Server
checks for sharing violations. If a sharing violation would be generated by the operation, the server
delays for 200 ms and then tests again for a sharing violation. The server retries five times, for a total

delay of approximately one second, before giving up and returning the sharing violation error.

<258> Section 3.3.5.10: Windows processes any required OpLock break notification to SMB prior to
deletion via the interface described in [MS-FSA] section 2.1.5.17.3 and pends the delete operation

until acknowledged via the interface described in [MS-FSA] section 2.1.5.18.

<259> Section 3.3.5.11: Windows servers obtain file information from the object store as described in
[MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is created by opening the file indicated by FileName in the request. If the open operation
fails, the Status is returned in an Error Response and processing is complete. While opening the
file, the underlying object store checks for the necessity of an OpLock break, as described in [MS-
FSA] section 2.1.4.12, and if necessary, notifies the server as specified in section 3.3.4.2 and
defers the opening of the file until the server acknowledges the Oplock break, as specified in
section 3.3.5.30.

 FileInformationClass is FileNetworkOpenInformation.

<260> Section 3.3.5.12: In order to set file attributes and the time of the last write to the file,
Windows NT CIFS servers open the file in the object store as described in [MS-FSA] section 2.1.5.1.

While opening the file, the underlying object store checks for the necessity of an OpLock break, as
described in [MS-FSA] section 2.1.4.12, and if necessary, notifies the server via section 3.3.4.2 and
defers the opening of the file until the server acknowledges the Oplock break, as specified in section
3.3.5.30.

Windows servers set the LastWriteTime of the file if the SMB_Parameters.Words.LastWriteTime

field in the request is not zero or -1 (0xFFFFFFFF). Windows servers set this value as described in
[MS-FSA] section 2.1.5.14.2, with the following mapping of input elements:

 Open is created by opening the file indicated by FileName field in the request. If the open
operation fails, the Status is returned in an Error Response, and processing is complete.

 FileInformationClass is FileBasicInformation.

 InputBuffer.CreationTime, InputBuffer.LastAccessTime, InputBuffer.ChangeTime, and

InputBuffer.FileAttributes are all set to zero.

 InputBuffer.LastWriteTime is set to the time value in the
SMB_Parameters.Words.LastWriteTime field.

The returned Status is copied into the SMB_Header.Status field of the response. The Open is
closed. All other results are ignored.

<261> Section 3.3.5.13: Windows servers request a read of the file from the object store as described
in [MS-FSA] section 2.1.5.2, with the following mapping of input elements:

676 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 ByteOffset is the SMB_Parameters.Words.ReadOffsetInBytes field of the request.

 ByteCount is the SMB_Parameters.Words.CountOfBytesToRead field of the request.

 IsNonCached is not used.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is
successful, the following additional mapping of output elements applies:

 OutputBuffer is copied into the SMB_Data.Bytes.Bytes field of the response.

 BytesRead is copied into both the SMB_Parameters.Words.CountOfBytesReturned and
SMB_Data.Bytes.CountOfBytesRead fields of the response.

<262> Section 3.3.5.14: Windows servers request a write to a file in the object store as described in

[MS-FSA] section 2.1.5.3, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 ByteOffset is the SMB_Parameters.Words.WriteOffsetInBytes field of the request.

 ByteCount is the SMB_Parameters.Words.CountOfBytesToWrite field of the request.

 IsWriteThrough is set to TRUE if Open.IsWriteThrough is TRUE.

 IsNonCached is not used.

 InputBuffer is copied from the SMB_Data.Bytes.Bytes field of the request.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response. If the write fails,

the Status is returned in an Error Response, and processing is complete. If the operation is
successful, the following additional mapping of output elements applies:

 BytesWritten is copied into the SMB_Parameters.Words.CountOfBytesWritten field of the
response.

<263> Section 3.3.5.15: Windows servers request a byte-range lock from the underlying object store
as described in [MS-FSA] section 2.1.5.7, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileOffset is the SMB_Parameters.Words.LockOffsetInBytes field of the request.

 Length is the SMB_Parameters.Words.CountOfBytesToLock field of the request.

 ExclusiveLock – TRUE

 FailImmediately – TRUE

 LockKey is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response.

<264> Section 3.3.5.15: The default timeout for lock violations on Windows NT CIFS servers is 250
milliseconds.

677 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<265> Section 3.3.5.16: Windows servers release a byte-range lock from the underlying object store
as described in [MS-FSA] section 2.1.5.8, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileOffset is the SMB_Parameters.Words.UnlockOffsetInBytes field of the request

 Length is the SMB_Parameters.Words.CountOfBytesToUnlock field of the request.

 LockKey is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response.

<266> Section 3.3.5.17: Windows servers create temporary files in the object store as described in
[MS-FSA] section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching TreeConnect in the
Server.Connection.TreeConnectTable, which in turn provides the

Server.TreeConnect.Share. Server.TreeConnect.Share points to an entry in the

Server.Share table. The Server.Share.LocalPath is the path to the root of the share. An Open
directory handle representing Server.Share.LocalPath is passed as RootOpen.

 PathName is created by combining the SMB_Data.Bytes.DirectoryName field from the request
with a pseudo-randomly generated file name. Windows servers generate file names in the form
SRVxxxxx, where xxxxx is a hexadecimal integer.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set to (GENERIC_READ | GENERIC_WRITE).

 ShareAccess is set to FILE_SHARE_WRITE. If the file extension (after the '.' in the filename) is in
the special filename suffix set ("EXE", "DLL", "SYM, "COM"), then ShareAccess is set to
FILE_SHARE_WRITE | FILE_SHARE_READ).

 DesiredFileAttributes is set to FILE_ATTRIBUTE_NORMAL.

 CreateDisposition is set to FILE_CREATE.

 If the SMB_Header.Flags2 SMB_FLAGS2_KNOWS_EAS flag is not set, then the
FILE_NO_EA_KNOWLEDGE bit is also set.

 CreateOptions is set to FILE_NON_DIRECTORY_FILE.

 If the WritethroughMode bit of the SMB_Parameters.Words.AccessMode field is set, then
the FILE_WRITE_THROUGH bit is also set.

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation

fails, the Status is returned in an Error Response, and processing is complete.

If the operation is successful, processing continues as follows:

 If the SMB_FLAGS_OPLOCK flag is set in the SMB_Header.Flags of the request, then an
OpLock is being requested. Windows servers obtain OpLocks as described in [MS-FSA] section

2.1.5.17, with the following mapping of input elements:

 Open is the Open passed through from the preceding operation.

678 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Type is LEVEL_BATCH if the SMB_FLAGS_OPBATCH flag is set in the SMB_Header.Flags
of the request; otherwise, it is LEVEL_ONE.

If an OpLock is granted, the SMB_Header.Flags SMB_FLAGS_OPLOCK and
SMB_FLAGS_OPBATCH flags are copied from the request to the response. Otherwise, both flags are

set to zero in the response.

 Windows servers ignore the SMB_Parameters.Words.CreationTime in this request.

 A new FID is generated for the Open returned. All of the other results of the Open operation are
ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response. The
pseudo-randomly generated file name is returned as a null-terminated OEM_STRING in the
SMB_Data.Bytes.TemporaryFileName field.

<267> Section 3.3.5.18: Windows servers process this command as an SMB_COM_CREATE request,

as specified in section 3.3.5.6, with the exception that CreateDisposition is set to FILE_CREATE
instead of FILE_OVERWRITE_IF.

<268> Section 3.3.5.19: Windows servers obtain file information from the object store as described in

[MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is created by opening the DirectoryName in the request as a directory. If the open
operation fails, the Status is returned in an Error Response and processing is complete.

 FileInformationClass is FileNetworkOpenInformation.

The returned Status is copied into the SMB_Header.Status field of the response. Success indicates
that the DirectoryName is the name of an existing directory.

<269> Section 3.3.5.20: Windows servers close an existing Open in the object store as described in
[MS-FSA] section 2.1.5.4, Server Requests Closing an Open. Any Oplocks held by the Open are
cleaned up as described in Phase 8 -- Oplock Cleanup in [MS-FSA] section 2.1.5.4.

<270> Section 3.3.5.20: Windows NT Server 4.0 does not use the header CID field as a lookup key.

The list of pending requests is associated with the SMB transport, so the effect is the same.

<271> Section 3.3.5.21: Windows servers query file information from the object store as described in
[MS-FSA] section 2.1.5.11. Windows servers set information on files in the object store as described in
[MS-FSA] section 2.1.5.14. File position can be set or retrieved with the following mapping of input
elements:

Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

FileInformationClass is FilePositionInformation.

If SMB_Parameters.Words.Mode is 0x0000, the new current position is set; next,
InputBuffer.CurrentByteOffset (see [MS-FSA] section 2.1.5.14.9) is set to
SMB_Parameters.Words.Offset.

If SMB_Parameters.Words.Mode is 0x0001, the CurrentByteOffset is read by sending a query
(see [MS-FSA] section 2.1.5.11.23). The OutputBuffer.CurrentByteOffset is then added to

SMB_Parameters.Words.Offset, and the result is stored in InputBuffer.CurrentByteOffset.

If SMB_Parameters.Words.Mode is 0x0001, the file size is read by setting FileInformationClass
to FileStandardInformation. SMB_Parameters.Words.Offset is then subtracted from
OutputBuffer.EndOfFile. The result is stored in InputBuffer.CurrentByteOffset.
FileInformationClass is reset to FilePositionInformation.

The new file position is then set as described in [MS-FSA] section 2.1.5.14. The returned Status is
copied into the SMB_Header.Status field of the response. If the operation fails, the Status is
returned in an Error Response, and processing is complete. If the operation is successful, the

679 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

InputBuffer.CurrentByteOffset is copied to the SMB_Paramters.Words.Offset field of the
response.

<272> Section 3.3.5.22: Windows servers process this command as if it were an
SMB_COM_LOCK_BYTE_RANGE (section 2.2.4.13) followed by an SMB_COM_READ (section 2.2.4.11).

See the behavior notes in sections 3.3.5.15 and 3.3.5.13.

<273> Section 3.3.5.23: With one exception, Windows servers process this command as if it were an
SMB_COM_WRITE followed by an SMB_COM_UNLOCK_BYTE_RANGE. See the behavior notes for
sections 3.3.5.14 and 3.3.5.16. The exception is that the write and unlock requests are passed to the
underlying file system in a single step.

<274> Section 3.3.5.24: Windows servers request a raw read of the file from the object store, as
described in [MS-FSA] section 2.1.5.2, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 ByteOffset is the SMB_Parameters.Words.ReadOffsetInBytes field of the request.

 ByteCount is the SMB_Parameters.Words.CountOfBytesToRead field of the request.

 IsNonCached is not used.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

Due to this command's not returning an SMB message as a response, the Status field is not sent to

the client in the event of an error. If Status indicates an error, the server simply sends a zero-length
response to the client. If the operation is successful, the following additional mapping of output
elements applies:

 OutputBuffer is the raw data to be sent to the client over the SMB transport.

 BytesRead is not used

<275> Section 3.3.5.24: Windows servers ignore the Timeout field.

<276> Section 3.3.5.25: Windows servers request a multiplexed read of the file from the object store

as described in [MS-FSA] section 2.1.5.2, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 ByteOffset is the SMB_Parameters.Words. Offset field of the request.

 ByteCount is the SMB_Parameters.Words.MaxCountOfBytesToReturn field of the request.

 IsNonCached is not used.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is

successful, the following additional mapping of output elements applies:

 OutputBuffer is divided among the SMB_Data.Bytes.Data fields of however many responses
that the server needs to send to the client to complete the operation.

 BytesRead: The sum of all the SMB_Parameters.Words.DataLength fields across however
many responses that the server needs to send add up to this value.

<277> Section 3.3.5.25: Windows NT and Windows 98 clients and Windows NT Server support this

command on connectionless transports only. In particular, clients can send this command only over
the Direct IPX Transport. Windows NT Server does not support the use of SMB_COM_READ_MPX to

680 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

read from named pipes or I/O devices. Server support for this command is indicated by the
CAP_MPX_MODE Capability bit in the SMB_COM_NEGOTIATE response.

<278> Section 3.3.5.25: Windows servers ignore the Timeout field.

<279> Section 3.3.5.26: Windows NT servers do not validate the DataOffset field value.

<280> Section 3.3.5.26: If raw mode data buffers or other resources are not available, Windows NT
Server fails the SMB_COM_WRITE_RAW request without writing the initial data. Likewise, if the FID
represents a named pipe or device, the write operation might block, and if there are insufficient
resources to buffer the data while waiting to write it, Windows NT fails the request without writing the
initial data.

<281> Section 3.3.5.26: Windows servers ignore the Timeout field.

<282> Section 3.3.5.26: [XOPEN-SMB] specifies that if all of the data to be written is contained in the

initial request, the server has to send an Interim Server Response and the client has to send a zero-
length raw write. Older clients can exhibit that behavior. Windows NT Server, however, behaves as
specified in section 3.3.5.26 of this document. If all of the data was transferred in the initial request,

the NT server sends a Final Server Response indicating that the entire write operation has been
completed.

<283> Section 3.3.5.28: Windows servers obtain file information from the object store as described in

[MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileInformationClass is FileNetworkOpenInformation.

If the query fails, the Status is returned in an Error Response and processing is complete. Otherwise,
the response message fields are populated as follows:

 The SMB_DATE and SMB_TIME fields in the SMB_Parameters.Words block of the response
are set by converting the FILETIME fields with matching names to SMB_DATE/SMB_TIME format.

 CreateDate and CreationTime are derived from OutputBuffer.CreationTime.

 LastAccessDate and LastAccessTime are derived from OutputBuffer.LastAccessTime.

 LastWriteDate and LastWriteTime are derived from
OutputBuffer.LastModificationTime.

 OutputBuffer.ChangeTime is not returned to the client.

 SMB_Parameters.Words.FileDataSize is set to OutputBuffer.EndOfFile.

 SMB_Parameters.Words. FileAllocationSize is set to OutputBuffer.AllocationSize.

 SMB_Parameters.Words.FileAttributes is set by converting OutputBuffer.FileAttributes
from the 32-bit SMB_EXT_FILE_ATTR format to the 16-bit SMB_FILE_ATTRIBUTE format (see
sections 2.2.1.2.4 and 2.2.1.2.3).

 FileAttributes &= (SMB_FILE_ATTRIBUTE_READONLY |
 SMB_FILE_ATTRIBUTE_HIDDEN |
 SMB_FILE_ATTRIBUTE_SYSTEM |
 SMB_FILE_ATTRIBUTE_ARCHIVE |
 SMB_FILE_ATTRIBUTE_DIRECTORY)

<284> Section 3.3.5.29: Windows servers set file information from the object store as described in
[MS-FSA] section 2.1.5.14, with the following mapping of input elements:

681 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileInformationClass is set to FileBasicInformation.

 The SMB_DATE and SMB_TIME fields in the SMB_Parameters.Words block of the request are
converted to FILETIME fields with matching names to SMB_DATE/SMB_TIME format:

 CreateDate and CreationTime are converted and copied to InputBuffer.CreationTime.

 LastAccessDate and LastAccessTime are converted and copied to
InputBuffer.LastAccessTime.

 LastWriteDate and LastWriteTime are converted and copied to
OutputBuffer.LastModificationTime.

 InputBuffer.ChangeTime is set to zero (0).

The Status returned is copied into the SMB_Header.Status field of the response.

<285> Section 3.3.5.30: If an SMB_COM_LOCKING_ANDX Request has a nonzero
NumberOfRequestedUnlocks field, Windows servers release a byte-range lock from the underlying
object store as described in [MS-FSA] section 2.1.5.8, with the following mapping of input elements
for each element "X" in the SMB_Data.Bytes.Unlocks array:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileOffset is the Unlocks[X].ByteOffset field of the request for LOCKING_RANGE_ANDX32, or

Unlocks[X].ByteOffsetHigh and Unlocks[X].ByteOffsetLow for LOCKING_ANDX_RANGE64.

 Length is the Unlocks[X].LengthInBytes field of the request for LOCKING_RANGE_ANDX32, or
Unlocks[X].LengthInBytesHigh and Unlocks[X].LengthInBytesLow for
LOCKING_ANDX_RANGE64.

Either the first returned Status indicating an error or the final returned success Status is copied into
the SMB_Header.Status field of the response.

<286> Section 3.3.5.30: If an SMB_COM_LOCKING_ANDX Request has a nonzero

NumberOfRequestedLocks field, Windows servers request a byte-range lock from the underlying
object store as described in [MS-FSA] section 2.1.5.7, with the following mapping of input elements
for each element "X" in the SMB_Data.Bytes.Locks array:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 FileOffset is the Locks[X].ByteOffset field of the request for LOCKING_RANGE_ANDX32, or
Locks[X].ByteOffsetHigh and Locks[X].ByteOffsetLow for LOCKING_ANDX_RANGE64.

 Length is the Locks[X].LengthInBytes field of the request for LOCKING_RANGE_ANDX32, or

Locks[X]. LengthInBytes High and Locks[X].LengthInBytes Low for
LOCKING_ANDX_RANGE64.

 ExclusiveLock is TRUE if SMB_Parameters.Words.TypeOfLock indicates READ_WRITE_LOCK,

or FALSE if it indicates SHARED_LOCK.

 FailImmediately is TRUE if SMB_Parameters.Words.Timeout is zero, or FALSE if Timeout is
nonzero.

 LockKey is set to ((Open.FID << 16) | Open.PID.PIDLow).

<287> Section 3.3.5.30: Windows Server operating systems process the Oplock break
acknowledgment by invoking [MS-FSA] section 2.1.5.18 with the following mapping of input elements:

682 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Open is the Open indicated by the SMB_Parameters.Words.FID field of the request. Type is the
resultant Oplock level from Server.Open.Oplock.

<288> Section 3.3.5.30: Windows NT Server do not test whether NumberOfRequestedUnlocks is
nonzero in an OpLock Break Request message.

<289> Section 3.3.5.30: Windows servers acknowledge an OpLock break as described in [MS-FSA]
section 2.1.5.18, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 Type is LEVEL_TWO.

<290> Section 3.3.5.32: Windows NT servers support a specific set of IOCTL requests (see the notes
in section 2.2.4.35). The IOCTL requests were originally defined by the OS/2 operating system.

The following table provides a mapping of OS/2 IOCTL request to Windows NT server actions. See

[MSDN-SDCTRLREQSTS] for more information on Serial Device Control Requests.

Category OS/2 IOCTL function Action

SERIAL_DEVICE0x0001 GET_BAUD_RATE0x0061 NtDeviceIoControlFile() is called with
IoControlCode set to
IOCTL_SERIAL_GET_BAUD_RATE.

SERIAL_DEVICE0x0001 SET_BAUD_RATE0x0041 NtDeviceIoControlFile() is called with
IoControlCode set to
IOCTL_SERIAL_SET_BAUD_RATE.

SERIAL_DEVICE0x0001 GET_LINE_CONTROL0x0062 NtDeviceIoControlFile() is called with
IoControlCode set to
IOCTL_SERIAL_GET_LINE_CONTROL.

SERIAL_DEVICE0x0001 SET_LINE_CONTROL0x0042 NtDeviceIoControlFile() is called with
IoControlCode set to
IOCTL_SERIAL_SET_LINE_CONTROL.

SERIAL_DEVICE0x0001 GET_DCB_INFORMATION0x0073 NtDeviceIoControlFile() is called with
IoControlCode set to
IOCTL_SERIAL_GET_TIMEOUTS.

SERIAL_DEVICE0x0001 SET_DCB_INFORMATION0x0053 Windows NT Server returns STATUS_SUCCESS
without processing the IOCTL. The IOCTL
response returns no Parameters or Data.

SERIAL_DEVICE0x0001 GET_COMM_ERROR0x006D Windows NT Server returns STATUS_SUCCESS
without processing the IOCTL. The IOCTL
response returns no Parameters or Data.

SERIAL_DEVICE0x0001 SET_TRANSMIT_TIMEOUT0x0044 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 SET_BREAK_OFF0x0045 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 SET_MODEM_CONTROL0x0046 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 SET_BREAK_ON0x004B Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 STOP_TRANSMIT0x0047 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

http://go.microsoft.com/fwlink/?LinkId=182724

683 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Category OS/2 IOCTL function Action

SERIAL_DEVICE0x0001 START_TRANSMIT0x0048 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_COMM_STATUS0x0064 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_LINE_STATUS0x0065 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_MODEM_OUTPUT0x0066 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_MODEM_INPUT0x0067 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_INQUEUE_COUNT0x0068 Windows NT Server returns an error response

with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_OUTQUEUE_COUNT0x0069 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 GET_COMM_EVENT0x0072 Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

SERIAL_DEVICE0x0001 Any other value. Windows NT Server returns an error response
with Status of STATUS_INVALID_PARAMETER.

PRINTER_DEVICE0x0005 GET_PRINTER_STATUS0x0066 Windows NT Server returns STATUS_SUCCESS
without processing the IOCTL. The IOCTL
response returns only one Data byte, which
contains an OS/2 printer status code of 0x90
(OS2_STATUS_PRINTER_HAPPY).

SPOOLER_DEVICE0x0053 GET_PRINTER_ID0x0060 Windows NT Server stores the JobID as an
attribute of the printer file Open. The share
name is an attribute of the TreeConnect

(Server.TreeConnect.Share-
>Share.ShareName) and server name is the
configured name of the server. These values are
returned in the response.

GENERAL_DEVICE0x000B Windows NT Server returns an error response
with Status of STATUS_NOT_IMPLEMENTED.

<291> Section 3.3.5.33: Windows 98 accepts only an SMB_COM_ECHO request containing a valid

TID or a TID value of 0xFFFF (-1). Windows NT systems ignore the TID in the SMB_COM_ECHO
request.

<292> Section 3.3.5.34: Windows servers process this command as if it were an

SMB_COM_WRITE (section 2.2.4.12) followed by an SMB_COM_CLOSE (section 2.2.4.5). See the
product behavior notes for sections 3.3.5.14 and 3.3.5.7.

<293> Section 3.3.5.35: Windows NT Server always ignores the FileAttrs field and the SearchAttrs
field on Open and Create operations, and searches for files by name only.

<294> Section 3.3.5.35: Windows-based servers permit the file creation, if the FileExistsOpts flag
value is 0 and the AccessMode.SharingMode field value is 1, 2, 3, or 4.

684 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<295> Section 3.3.5.35: Windows servers open files in the object store as described in [MS-FSA]
section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching Server.TreeConnect
in the Server.Connection.TreeConnectTable. The server then acquires an Open on

Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 PathName is the SMB_Data.Bytes.FileName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 UserCertificate is empty.

 DesiredAccess is set as follows:

 The AccessMode subfield of the AccessMode field in the request is used to set the value of
DesiredAccess. The AccessMode subfield represents the lowest-order four bits of the

AccessMode field (0x0007), as shown in the table in section 2.2.4.3.1. The mapping of
values is as follows.

AccessMode.AccessMode DesiredAccess

0 GENERIC_READ 0x80000000

1 GENERIC_WRITE | FILE_READ_ATTRIBUTES 0x40000000 | 0x00000080

2 GENERIC_READ | GENERIC_WRITE 0x80000000 | 0x40000000

3 GENERIC_READ | GENERIC_EXECUTE 0x80000000 | 0x20000000

For any other value of AccessMode.AccessMode, this algorithm returns
STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 ShareAccess is set as follows:

 The SharingMode subfield of the AccessMode field in the request is used to set the value of
ShareAccess. The SharingMode subfield is a 4-bit subfield of the AccessMode field
(0x0070), as shown in the table in section 2.2.4.3.1. The mapping of values is as follows.

AccessMode.SharingMode ShareAccess

0 Compatibility mode (see below)

1 0x0L (don't share, exclusive use)

2 FILE_SHARE_READ

3 FILE_SHARE_WRITE

4 FILE_SHARE_READ | FILE_SHARE_WRITE

0xFF FCB mode (see below)

 For Compatibility mode, special filename suffixes (after the '.' in the filename) are mapped
to SharingMode 4. The special filename suffix set is: "EXE", "DLL", "SYM", and "COM". All
other file names are mapped to SharingMode 3.

685 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 For FCB mode, if the file is already open on the server, the current sharing mode of the
existing Open is preserved, and a FID for the file is returned. If the file is not already open

on the server, the server attempts to open the file using SharingMode 1.

 For any other value of AccessMode.SharingMode, this algorithm returns

STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 CreateOptions bits are set as follows.

CreateOptions value SMB_COM_OPEN_ANDX equivalent

FILE_WRITE_THROUGH AccessMode.WritethroughMode == 1

FILE_SEQUENTIAL_ONLY AccessMode.ReferenceLocality == 1

FILE_RANDOM_ACCESS AccessMode.ReferenceLocality == 2 or AccessMode.ReferenceLocality ==
3

FILE_NO_INTERMEDIATE_BUFFERING AccessMode.CacheMode == 1

FILE_NON_DIRECTORY_FILE Is set

FILE_COMPLETE_IF_OPLOCKED Is set

FILE_NO_EA_KNOWLEDGE SMB_Header.Flags2.SMB_FLAGS2_KNOWS_EAS == 0

 All other bits are unused.

 CreateDisposition is set as follows.

CreateDisposition value
SMB_Parameters.Word.OpenMode
equivalent

Invalid combination; return STATUS_OS2_INVALID_ACCESS
(ERRDOS/ERRbadaccess)

FileExistsOpts = 0 & CreateFile = 0

FILE_CREATE FileExistsOpts = 0 & CreateFile = 1

FILE_OPEN FileExistsOpts = 1 & CreateFile = 0

FILE_OPEN_IF FileExistsOpts = 1 & CreateFile = 1

FILE_OVERWRITE FileExistsOpts = 2 & CreateFile = 0

FILE_OVERWRITE_IF FileExistsOpts = 2 & CreateFile = 1

While opening an existing file, the underlying object store checks for the necessity of an OpLock
break, as described in [MS-FSA] section 2.1.4.12, and if necessary, notifies the server as specified in
section 3.3.4.2 and defers the opening of the file until the server acknowledges the OpLock break, as
specified in section 3.3.5.30.

<296> Section 3.3.5.35: When opening, overwriting, deleting, or renaming a file, Windows NT Server

checks for sharing violations. If a sharing violation would be generated by the operation, the server
delays for 200 ms and then tests again for a sharing violation. The server retries five times, for a total
delay of approximately one second, before giving up and returning the sharing violation error.

<297> Section 3.3.5.36: Windows servers request a read of the file from the object store as described
in [MS-FSA] section 2.1.5.2, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID. field of the request.

 ByteOffset is either the 32- or 64-bit offset, as determined by the server.

686 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 ByteCount is the SMB_Parameters.Words.MaxCountOfBytesToReturn field of the request.

 IsNonCached is not used.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is

successful, the following additional mapping of output elements applies:

 OutputBuffer is copied into the SMB_Data.Bytes.Data field of the response.

 BytesRead is copied into the SMB_Parameters.Words.DataLength field of the response.

<298> Section 3.3.5.36: Windows servers ignore the Timeout field. Reads from named pipes and I/O
devices will always block until MinCountOfBytesToReturn are read.

<299> Section 3.3.5.37: Windows NT servers do not validate the DataOffset field value.

<300> Section 3.3.5.37: Windows NT based servers do not fail the request; instead, they write only

SMB_Parameters.Words.DataLength bytes from the SMB_Data.Bytes.Data field to the target
file.

<301> Section 3.3.5.37: Windows Servers ignore the Timeout field. Writes to named pipes or I/O
devices always block until the number of DataLength bytes are written.

<302> Section 3.3.5.37: If the Remaining field is nonzero, and if the MSG_START bit is set in the
SMB_Parameters.Words.WriteMode field, Windows servers ignore the first two bytes of the

SMB_Data.Bytes.Data field.

<303> Section 3.3.5.37: Windows servers request a write to a file in the object store as described in
[MS-FSA] section 2.1.5.3, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

 ByteOffset is the SMB_Parameters.Words.Offset field of the request.

 ByteCount is the SMB_Parameters.Words.DataLength field of the request.

 IsWriteThrough is the SMB_Parameters.Words.WriteMode.WritethroughMode bit of the

request.

 IsNonCached is not used.

 InputBuffer is copied from the SMB_Data.Bytes.Data field of the request.

 Key is set to ((Open.FID << 16) | Open.PID.PIDLow).

The returned Status is copied into the SMB_Header.Status field of the response. If the write fails,
the Status is returned in an Error Response and processing is complete. If the operation is successful,
the following additional mapping of output elements applies:

 BytesWritten is copied into the SMB_Parameters.Words.Count field of the response.

<304> Section 3.3.5.40: Windows implementations check to see if the user indicated by the
Server.Session.UserSecurityContext identified by the SMB_Header.UID is a member of the
Administrator group.

<305> Section 3.3.5.45: Windows implementations check to see if the user indicated by the
Server.Session.UserSecurityContext identified by the SMB_Header.UID is a member of the

Administrator group.

687 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<306> Section 3.3.5.45: Windows servers do not fail tree connects to non-administrative shares by
users that are not granted access but will fail attempts by those clients to open or create files.

Windows servers will fail tree-connect requests to administrative shares, such as C$ or D$, that are
issued by a non-administrator.

<307> Section 3.3.5.46: Windows servers obtain volume information from the object store as
described in [MS-FSA] section 2.1.5.12, with the following mapping of input elements:

 Open is provided by using the SMB_Header.TID to find the matching Server.TreeConnect in
the Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as Open.

 FsInformationClass is set to FileFsSizeInformation.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation

fails, the Status is returned in an Error Response, and processing is complete. If the operation is
successful, the information returned in OutputBuffer is adjusted to fit within the data structure
provided by SMB.

All of the fields in the SMB_COM_QUERY_INFORMATION_DISK Response (section 2.2.4.57.2) are 16-
bit, but the FileFsSizeInformation InformationLevel provides 32- and 64-bit values. The goal is to
adjust the values so that the total bytes on disk and the total number of available (free) bytes can be

calculated reasonably correctly from the numbers returned.

 The value of Output.TotalAllocationUnits is divided by two (bitshifted) until the result fits within
a USHORT (16 bits, unsigned); that is, until the result is less than 0x00010000. The number of
bit shifts is counted and stored as HighBits and also as ExtraBits. If the value of HighBits is
greater than zero, the value of Output.SectorsPerAllocationUnit is multiplied by two, and
HighBits is decremented. This is repeated until HighBits is zero or the result of the multiplication
is greater than or equal to 0x8000. The result is copied into

SMB_Parameters.Words.BlocksPerUnit.

 If the value of HighBits is still greater than zero, the value of Output.BytesPerSector is
multiplied by two and HighBits is decremented. This is repeated until HighBits is zero or the

result of the multiplication is greater than or equal to 0x8000. The result is copied into
SMB_Parameters.Words.BlockSize.

 If the value of HighBits is still greater than zero, SMB_Parameters.Words.TotalUnits is set to
the largest possible value: 0xFFFF. Otherwise, SMB_Parameters.Words.TotalUnits is calculated

as (Output.TotalAllocationUnits / (2 × ExtraBits)).

 SMB_Parameters.Words.FreeUnits is calculated as (Output.ActualAvailableAllocationUnits
/ (2 × (ExtraBits –HighBits))). If the result of the calculation is greater than 0xFFFF,
SMB_Parameters.Words.FreeUnits is set to 0xFFFF.

The SMB_Header.Status field of the response is set to Success.

<308> Section 3.3.5.47: Windows NT Server 4.0 returns STATUS_NO_MORE_FILES for an empty

string in the FileName field of the SMB_COM_SEARCH (section 2.2.4.58) request.

<309> Section 3.3.5.47: Windows NT Server uses both of these techniques.

<310> Section 3.3.5.47: If the SMB_FILE_ATTRIBUTE_VOLUME bit is set--and is the only bit set--in
the SMB_Parameters.Words.SearchAttributes field in the request, Windows servers return the
volume name of the volume underlying the share indicated by SMB_Header.TID. Volume information
is queried as described in [MS-FSA] section 2.1.5.12. The following is a mapping of input elements:

 Open is an Open resulting from opening the directory portion of the SMB_Data.Bytes.FileName

field from the request.

688 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 FileInformationClass is set to FileFsVolumeInformation.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation

fails, Status is returned in an Error Response, and processing is complete; otherwise, a single
DirectoryInformationData[] field entry is returned in the SMB_Data.Bytes block of the response:

 The FileAttributes field is set to SMB_FILE_ATTRIBUTE_VOLUME.

 The LastWriteTime, LastWriteDate, and FileSize fields are set to zero.

 The OutputBuffer.VolumeLabel is converted to the OEM character set and copied into the
FileName field. At most, 11 bytes of the volume label are copied. If the volume label is greater
than 8 bytes in length, a dot (".") is inserted between the 8th and 9th characters. Unused bytes
are space-padded.

 The SMB_Header.Status field of the response is set to Success.

If the SMB_Parameters.Words.SearchAttributes field in the request is not equal to
SMB_FILE_ATTRIBUTE_VOLUME, Windows servers proceed with a normal directory lookup.

Windows servers search directories for files with names that match wildcard patterns as described in
[MS-FSA] sections 2.1.5.5 and 2.1.5.5.3. The following is a mapping of input elements:

 Open is an Open resulting from opening the directory portion of the SMB_Data.Bytes.FileName
field from the request.

 FileInformationClass is set to FileBothDirectoryInformation.

 OutputBufferSize is large enough to hold at least one FILE_BOTH_DIR_INFORMATION
([MS-FSCC] section 2.4.8) structure.

 RestartScan is FALSE.

 ReturnSingleEntry is FALSE.

 If the SMB_Data.Bytes.ResumeKeyLength field is zero, then this is a new search, and
FileIndex is not used; otherwise, the SMB_Data.Bytes.ResumeKey field is used to set

FileIndex so that the directory search continues sequentially.

 FileNamePattern is the final component of the FileName field.

If the directory search operation fails:

 If Status is returned as STATUS_NO_SUCH_FILE, Status is set to STATUS_NO_MORE_FILES to
indicate that the search has completed.

 If Status is returned as STATUS_NO_MORE_FILES, Status is set to
STATUS_OBJECT_PATH_NOT_FOUND because the SMB_Data.Bytes.FileName field in the

request provided a complete path.

 The Status is copied to the SMB_Header.Status field and returned in an Error Response.

Processing is complete.

If the search operation succeeds, the OutputBuffer.FileAttributes of each entry in the list of files
returned is compared against the SMB_Parameters.Words.SearchAttributes field in the request as
follows:

 The SMB_FILE_ATTRIBUTE_VOLUME bit is ignored.

689 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If OutputBuffer.FileAttributes has FILE_ATTRIBUTE_HIDDEN set, but
SMB_FILE_ATTRIBUTE_HIDDEN is not set in the SMB_Parameters.Words.SearchAttributes

field, the entry is rejected.

 If OutputBuffer.FileAttributes has FILE_ATTRIBUTE_SYSTEM set, but

SMB_FILE_ATTRIBUTE_SYSTEM is not set in the SMB_Parameters.Words.SearchAttributes
field, the entry is rejected.

 If OutputBuffer.FileAttributes has FILE_ATTRIBUTE_DIRECTORY set, but
SMB_FILE_ATTRIBUTE_DIRECTORY is not set in the
SMB_Parameters.Words.SearchAttributes field, the entry is rejected.

 If there is no short name (8.3 format name) for this file, the entry is rejected.

 If there are exclusive bits set in the SMB_Parameters.Words.SearchAttributes field, the

following additional tests are performed:

 If SMB_SEARCH_ATTRIBUTE_READONLY is set in SearchAttributes, but
FILE_ATTRIBUTE_READONLY is not set in OutputBuffer.FileAttributes, the entry is rejected.

 If SMB_SEARCH_ATTRIBUTE_HIDDEN is set in SearchAttributes, but
FILE_ATTRIBUTE_HIDDEN is not set in OutputBuffer.FileAttributes, the entry is rejected.

 If SMB_SEARCH_ATTRIBUTE_SYSTEM is set in SearchAttributes, but

FILE_ATTRIBUTE_SYSTEM is not set in OutputBuffer.FileAttributes, the entry is rejected.

 If SMB_SEARCH_ATTRIBUTE_ARCHIVE is set in SearchAttributes, but
FILE_ATTRIBUTE_ARCHIVE is not set in OutputBuffer.FileAttributes, the entry is rejected.

 If SMB_SEARCH_ATTRIBUTE_DIRECTORY is set in SearchAttributes, but
FILE_ATTRIBUTE_DIRECTORY is not set in OutputBuffer.FileAttributes, the entry is
rejected.

If the entry has not been rejected, the required OutputBuffer fields are converted into the field

formats used by the SMB_Directory_Information structure, described in section 2.2.4.58.2. A

DirectoryInformationData[] field entry is added to the response message buffer, and the
SMB_Parameters.Words.Count field is incremented to indicate the total number of
DirectoryInformationData[] field entries in the response message.

 If the SMB_Parameters.Words.Count field is equal to the maximum number of entries to
return:

 The SMB_Data.Bytes.BufferFormat field is set to 0x05.

 The SMB_Data.Bytes.DataLength field is set to the total number of bytes copied into the
DirectoryInformationData[] field array, which is 43 × SMB_Parameters.Words.Count.

 The ResumeKey field of the final DirectoryInformationData[] field entry to be placed into
the response buffer is calculated and copied into the ResumeKey field of that entry.

 The SMB_Header.Status field is set to Success, and processing is complete.

 The maximum number of entries to return is the minimum of:

 The value of the SMB_Parameters.Words.MaxCount field in the request.

 The maximum number of DirectoryInformationData[] field entries that will fit in the
SMB_Data.Bytes block of the response, based upon the
Server.Connection.ClientMaxBufferSize ADM element. (The size of the response with no
DirectoryInformationData[] entries is 40 bytes.)

690 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the maximum number of entries to return has not been reached, additional entries returned in
OutputBuffer are processed as described preceding. If there are no additional entries in

OutputBuffer, another directory query is executed, with the value of FileIndex set to the FileIndex
at the end of the previous query. If Status is returned as STATUS_NO_MORE_FILES, Status is set to

Success, and processing is complete. In this way, directory entries are enumerated sequentially until
there are either enough entries in the DirectoryInformationData[] field to complete the request, or
there are no more entries to be added.

<311> Section 3.3.5.48: Processing of this command is identical to the processing of the
SMB_COM_FIND request with SMB_Parameters.Words.MaxCount set to 0x0001.

<312> Section 3.3.5.51: This is dependent upon the underlying file system. On Windows NT Server, if
the request to create a file is performed on a Windows FAT or FAT32 file system, the request fails with

STATUS_ACCESS_DENIED. Otherwise it fails with STATUS_PRIVILEGE NOT HELD.

<313> Section 3.3.5.51: Windows NT servers allow only the FILE_OPEN option on a named pipe. All
other options are ignored and considered the same as FILE_OPEN. When the object in question is a
disk object, all options are valid.

<314> Section 3.3.5.51: Windows servers open files in the object store as described in [MS-FSA]
section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided in one of two ways:

 If the SMB_Parameters.Words.RootDirectoryFID field is zero, RootOpen is provided by
using the SMB_Header.TID field to find the matching Server.TreeConnect in the
Server.Connection.TreeConnectTable. The server then acquires an Open on the
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 If the SMB_Parameters.Words.RootDirectoryFID field is non-zero, RootOpen is provided
by looking up the RootDirectoryFID field in the Server.Connection.FileOpenTable.

 PathName is the SMB_Data.Bytes.FileName field of the request.

 SecurityContext is found by using the SMB_Header.UID field to look up the matching Session

entry in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is
passed as SecurityContext.

 UserCertificate is empty.

 DesiredAccess is the SMB_Parameters.Words.DesiredAccess field of the request. The
FILE_READ_ATTRIBUTES option is added (using a bitwise OR) to the set provided by the client. If

the FILE_NO_INTERMEDIATE_BUFFERING flag is set, it is cleared, and FILE_WRITE_THROUGH is
set.

 ShareAccess is the SMB_Parameters.Words.ShareAccess field of the request.

 CreateOptions is the SMB_Parameters.Words.CreateOptions field of the request. The
FILE_COMPLETE_IF_OPLOCKED option is added (using a bitwise OR) to the set provided by the
client. If the FILE_NO_INTERMEDIATE_BUFFERING flag is set, it is cleared, and

FILE_WRITE_THROUGH is set.

 CreateDisposition is the SMB_Parameters.Words.CreateDisposition field of the request.

 DesiredFileAttributes is the SMB_Parameters.Words.ExtFileAttributes field of the request.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon
system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag of
the OBJECT_ATTRIBUTES structure in [MSDN-OBJ_ATTRIBS].

691 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation

fails, the Status is returned in an Error Response, and processing is complete.

If the operation is successful, processing continues as follows:

 If either the NT_CREATE_REQUEST_OPLOCK or the NT_CREATE_REQUEST_OPBATCH flag is set in
the SMB_Parameters.Words.Flags field of the request, an OpLock is requested. Windows
servers obtain OpLocks as described in [MS-FSA] section 2.1.5.17, with the following mapping of
input elements:

 Open is the Open passed through from the preceding operation.

 Type is LEVEL_BATCH if the NT_CREATE_REQUEST_OPBATCH flag is set, or LEVEL_ONE if the
NT_CREATE_REQUEST_OPLOCK flag is set.

If an OpLock is granted, the SMB_Parameters.Words.OpLockLevel field of the response is
set.

 Windows servers obtain the extended file attribute and timestamp response information by
querying file information from the object store as described in [MS-FSA] section 2.1.5.11, with the
following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileBasicInformation ([MS-FSCC] section 2.4.7).

If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 SMB_Parameters.Words.ExtFileAttributes is set to OutputBuffer.FileAttributes.

 SMB_Parameters.Words.CreateTime is set to OutputBuffer.CreateTime.

 SMB_Parameters.Words.LastAccessTime is set to OutputBuffer.LastAccessTime.

 SMB_Parameters.Words.LastWriteTime is set to OutputBuffer.LastWriteTime.

 SMB_Parameters.Words.LastChangeTime is set to OutputBuffer.ChangeTime.

 Windows servers obtain the file size response field values by querying file information from the
object store as described in [MS-FSA] section 2.1.5.11, with the following mapping of input
elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileStandardInformation ([MS-FSCC] section 2.4.38).

If the query fails, the Status is returned in an Error Response, and processing is complete.

Otherwise:

 SMB_Parameters.Words.AllocationSize is set to OutputBuffer.AllocationSize.

 SMB_Parameters.Words.EndOfFile is set to OutputBuffer.EndOfFile.

If the query fails, the Status is returned in an Error Response, and processing is complete.

 Open.File.FileType is used to set the SMB_Parameters.Words.ResourceType and
SMB_Parameters.Words.Directory fields of the response.

692 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 If Open.File.FileType indicates a named pipe, Windows servers perform two queries for named
pipe state on the underlying object store, each with different information levels, as described in

[MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the

request that is used for both queries.

 FileInformationClass is FilePipeInformation ([MS-FSCC] section 2.4.29) for one query
and FilePipeLocalInformation for the other ([MS-FSCC] section 2.4.30).

 OutputBufferSize is 8 bytes for the FilePipeInformation buffer (size of
FILE_PIPE_INFORMATION data), and 40 bytes for the FilePipeLocalInformation buffer (size
of FILE_PIPE_LOCAL_INFORMATION data).

If either query returns an error status in Status, that value is set as the SMB_Header.Status

field of the response message. If both return success, a success status is used, and the following
additional mapping of output elements applies:

 OutputBuffer: The output buffers from both queries are used to construct an

SMB_NMPIPE_STATUS (section 2.2.1.3) data type. The SMB_NMPIPE_STATUS buffer is
copied into the SMB_Parameters.Words.NMPipeState field of the response.

 ByteCount is not used.

 A new FID is generated for the Open returned. All of the other results of the Open operation are
ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response.

While opening an existing file, the underlying object store checks for the necessity of an Oplock break,
as described in [MS-FSA] section 2.1.4.12, and if necessary, notifies the server as described in section
3.3.4.2 and defers the opening of the file until the server acknowledges the Oplock break, as
described in section 3.3.5.30.

<315> Section 3.3.5.52: Windows NT Server 4.0 does not use the CID as a lookup key. The list of

pending requests is associated with the SMB transport, so the effect is the same.

<316> Section 3.3.5.52: Windows servers cancel object store operations, as described in the Server
Requests Canceling an Operation section in [MS-FSA], with the following mapping of input elements:

 IORequest is the IORequest of the pending object store operation that is being canceled.

<317> Section 3.3.5.53: Windows NT servers do not completely implement the obsolete
SMB_NT_RENAME_MOVE_FILE information level. Instead of returning an error, Windows NT servers
perform a file copy.

<318> Section 3.3.5.53: Windows servers add link names to files as described in [MS-FSA] section
2.1.5.14, with the following mapping of input elements:

 Open is created by opening the file indicated by SMB_Data.Bytes.NewFileName in the request.
If the open operation fails, the Status is returned in an Error Response, and processing is
complete. The minimum access required in order to add a link to the file is (READ_CONTROL |
FILE_READ_DATA | FILE_READ_ATTRIBUTES | FILE_READ_EA).

 FileInformationClass is FileLinkInformation.

 InputBuffer.FileName is copied from SMB_Data.Bytes.NewFileName.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response.

<319> Section 3.3.5.53: When opening, overwriting, deleting, hard linking, or renaming a file,
Windows NT Server checks for sharing violations. If a sharing violation would be generated by the

693 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

operation, the server delays for 200 ms and then tests again for a sharing violation. The server retries
five times, for a total delay of approximately one second, before giving up and returning the sharing

violation error.

<320> Section 3.3.5.53: It is uncertain how Windows servers respond when a hard linking operation

interferes with an ongoing search or other operations.

<321> Section 3.3.5.54: Windows servers open printer spool files in the object store as described in
[MS-FSA] section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching Server.TreeConnect
in the Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 PathName is "\", which indicates the root of the share.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is (GENERIC_WRITE | FILE_READ_ATTRIBUTES).

 ShareAccess is not FILE_SHARE_READ.

 CreateOptions is set to (FILE_NON_DIRECTORY_FILE | FILE_SEQUENTIAL_ONLY |

FILE_COMPLETE_IF_OPLOCKED). If the SMB_Header.Flags2 SMB_FLAGS2_KNOWS_EAS
flag is not set, then the FILE_NO_EA_KNOWLEDGE bit is also set.

 CreateDisposition is set to FILE_OVERWRITE_IF.

 DesiredFileAttributes is set to FILE_ATTRIBUTE_NORMAL.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request. Otherwise, IsCaseSensitive is set depending upon
system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag

of the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response, and processing is complete.

If the command is successful, the server allocates an Open object and inserts it into
Server.Connection.FileOpenTable with the following default values:

 A new FID is created to uniquely identify this Open in Server.Connection.FileOpenTable.

 Server.Open.TreeConnect is set to the TreeConnect on which the open request was
performed, and Server.Open.TreeConnect.OpenCount is increased by 1.

The server registers the Open by invoking the event Server Registers a New Open ([MS-SRVS]

section 3.1.6.4) and assigns the return value to Server.Open.FileGlobalId.

All of the other results of the Open operation are ignored. The FID is copied into the
SMB_Parameters.Words.FID field of the response.

<322> Section 3.3.5.55: Windows servers request a write to a printer spool file in the object store as
described in [MS-FSA] section 2.1.5.3, with the following mapping of input elements:

 Open is the Open indicated by the SMB_Parameters.Words.FID field of the request.

694 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 ByteOffset is not used.

 ByteCount is the SMB_Data.Bytes.DataLength field of the request.

 InputBuffer is copied from the SMB_Data.Bytes.Data field of the request.

The returned Status is copied into the SMB_Header.Status field of the response. If the write fails,

the Status is returned in an Error Response.

<323> Section 3.3.5.56: Windows servers flush a file by passing the Open to the algorithm described
in [MS-FSA] section 2.1.5.6. The returned Status is copied into the SMB_Header.Status field of the
response.

<324> Section 3.3.5.57.2: Windows servers set pipe state information on named pipes as described
in [MS-FSA] section 2.1.5.14, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the

request.

 FileInformationClass is FilePipeInformation (see [MS-FSCC] section 2.4).

 InputBuffer is a buffer formatted as a FILE_PIPE_INFORMATION structure, specified in [MS-
FSCC] section 2.4.29, where the specific values are taken from the Trans_Parameters.PipeState
field of the request, according to the following mapping.

PipeState bit name Values FilePipeInformation value

 Nonblocking 0 FILE_PIPE_QUEUE_OPERATION

 1 FILE_PIPE_COMPLETE_OPERATION

ReadMode 0 FILE_PIPE_BYTE_STREAM_MODE

 1 FILE_PIPE_MESSAGE_MODE

 InputBufferSize is 8 bytes, the size of the FILE_PIPE_INFORMATION data.

The returned Status is copied into the SMB_Header.Status field of the response.

<325> Section 3.3.5.57.3: Windows NT Server does not support this transaction subcommand. It
returns a Status of STATUS_INVALID_PARAMETER (ERRDOS/ERRinvalidparam).

<326> Section 3.3.5.57.4: Windows servers perform two queries for information on the underlying
object store, each with different information levels, as described in [MS-FSA] section 2.1.5.11, with
the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the

request and is used for both queries.

 FileInformationClass is FilePipeInformation ([MS-FSCC] section 2.3.33) for one query and
FilePipeLocalInformation ([MS-FSCC] section 2.3.34) for the other.

 OutputBufferSize is 8 bytes for the FilePipeInformation buffer (size of FILE_PIPE_INFORMATION
data), and 40 bytes for the FilePipeLocalInformation buffer (size of
FILE_PIPE_LOCAL_INFORMATION data).

If either query returns an error status in Status, that value is set as the SMB_Header.Status field of

the response message. If both return success, a success status is used, and the following additional
mapping of output elements applies:

695 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 OutputBuffer: The output buffers from both queries are used to construct an
SMB_NMPIPE_STATUS data type, as specified in section 2.2.1.3. The SMB_NMPIPE_STATUS

buffer is the Trans_Parameters.NMPipeState field of the response.

 ByteCount is not used.

<327> Section 3.3.5.57.5: Windows servers perform a query for state information of a named pipe on
the underlying object store as described in [MS-FSA] section 2.1.5.11, with the following mapping of
input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request.

 FileInformationClass is FilePipeLocalInformation ([MS-FSCC] section 2.4.30).

 OutputBufferSize is 40 bytes, the size of the FILE_PIPE_LOCAL_INFORMATION data.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is
successful, the following additional mapping of output elements applies:

 OutputBuffer is used to populate the Trans_Data subfields of the response, according to the
following mapping.

FilePipeLocalInformation field Response Trans_Data subfield

OutboundQuota OutputBufferSize

InboundQuota InputBufferSize

MaximumInstances MaximumInstances

CurrentInstances CurrentInstances

 ByteCount is not used.

<328> Section 3.3.5.57.6: Windows servers peek at named pipes on the underlying object store using
an FSCTL_PIPE_PEEK request ([MS-FSCC] section 2.3.30). Processing follows as described in [MS-

FSA] section 2.1.5.9, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request.

 OutputBufferSize is 16 bytes (size of FSCTL_PIPE_PEEK reply data) +
SMB_Parameters.Words.MaxDataCount bytes.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is

successful, the following additional mapping of output elements applies:

 OutputBuffer is an FSCTL_PIPE_PEEK reply structure ([MS-FSCC] section 2.3.30) and is used to
populate the Trans_Parameters and Trans_Data blocks of the response. The following fields
from the OutputBuffer map to subfields in the response. Note that

FSCTL_PIPE_PEEK.MessageLength is not mapped directly, but is used as part of a calculation.

FSCTL_PIPE_PEEK reply
field SMB response field

NamedPipeState Trans_Parameters.NamedPipeState

ReadDataAvailable Trans_Parameters.ReadDataAvailable

NumberOfMessages Not used

696 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

FSCTL_PIPE_PEEK reply
field SMB response field

MessageLength Trans_Parameters.MessageBytesLength = MessageLength –
SMB_Parameters.Words.DataCount

Data Trans_Data.ReadData

<329> Section 3.3.5.57.7: Windows servers write data to and read data from ("transceive" on)

named pipes on the underlying object store using an FSCTL_PIPE_TRANCEIVE request ([MS-FSCC]
section 2.3.33). Processing follows as described in [MS-FSA] section 2.1.5.9, with the following
mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request.

 InputBufferSize is SMB_Parameters.Words.TotalDataCount bytes.

 InputBuffer is the Trans_Data.WriteData field of the request.

 OutputBufferSize is 4 bytes (size of FSCTL_PIPE_TRANSCEIVE reply data) +
SMB_Parameters.Words.MaxDataCount bytes.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is
successful, the following additional mapping of output elements applies:

 OutputBuffer is an FSCTL_PIPE_TRANCEIVE structure ([MS-FSCC] section 2.3.34) and is copied
into the ReadData field of the response.

<330> Section 3.3.5.57.8: Windows NT servers allow only message mode for raw writes on named
pipes. If the ReadMode bitmask of the PipeState field for the named pipe is set to byte mode, the
server fails raw write requests on named pipes and returns STATUS_INVALID_PARAMETER.

<331> Section 3.3.5.57.8: Windows NT Server permits only a 2-byte write that contains two null
(0x00) padding bytes. The pipe must also be in message mode. If these conditions are not met, NT
server returns a STATUS_INVALID_PARAMETER error.

<332> Section 3.3.5.57.9: Windows servers read data from named pipes on the underlying object

store as described in [MS-FSA] section 2.1.5.2, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request.

 ByteCount is SMB_Parameters.Words.MaxDataCount bytes.

 ByteOffset is zero.

 IsNonCached is not used.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is

successful, the following additional mapping of output elements applies:

<333> Section 3.3.5.57.10: Windows servers write data to named pipes on the underlying object
store as described in [MS-FSA] section 2.1.5.3, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request.

 ByteSize is SMB_Parameters.Words.TotalDataCount bytes.

697 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 InputBuffer is the Trans_Data.WriteData field of the request.

 ByteOffset is zero.

 IsWriteThrough and IsNonCached are not used.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is

successful, the following additional mapping of output elements applies:

 BytesWritten is copied into the Trans_Parameters.BytesWritten field of the response

<334> Section 3.3.5.57.11: Windows servers test the availability of named pipes on the underlying
object store using an FSCTL_PIPE_WAIT request ([MS-FSCC] section 2.3.31). Processing follows as
described in [MS-FSA] section 2.1.5.9, with the following mapping of input elements:

 InputBufferSize is 14 + SMB_Data.ByteCount bytes (the size of the FSCTL_PIPE_WAIT
request structure's static portion plus the size of the variable-length pipe name).

 InputBuffer is the FSCTL_PIPE_WAIT request structure.

The returned Status is copied into the SMB_Header.Status field of the response.

<335> Section 3.3.5.57.11: Windows NT Server honors the Timeout field for this transaction.

<336> Section 3.3.5.58.1: Windows servers pass information level requests to the underlying object
store using the information level's corresponding information class. Each information level's
corresponding mapping to one or more information classes is given in the information level's

corresponding subsection of section 2.2.8. Information classes are defined in [MS-FSCC] sections 2.4
and 2.5, and their corresponding behaviors are described in [MS-FSA] sections 2.1.5.11 and 2.1.5.12,
with the following additional considerations:

 The Open input element required for each information class's processing algorithm is either the
Server.Open that matches the FID of the request or created by opening the file indicated by the
pathname in the request. If the open operation fails, the Status is returned in an Error Response,
and processing is complete.

 If the preceding open operation succeeds, once processing completes, the Open is closed.

<337> Section 3.3.5.58.2: Windows servers open files in the object store as described in [MS-FSA]
section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching Server.TreeConnect
in the Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 PathName is the Trans2_Parameters.FileName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set as follows:

 The AccessMode subfield of the Trans2_Parameters.AccessMode field in the request is
used to set the value of DesiredAccess. The AccessMode subfield represents the lowest

order 4 bits of the AccessMode field (0x0007), as shown in the table in section 2.2.4.3.1. The
mapping of values is as follows.

AccessMode.AccessMode DesiredAccess

0 GENERIC_READ 0x80000000

698 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

AccessMode.AccessMode DesiredAccess

1 GENERIC_WRITE | FILE_READ_ATTRIBUTES0x40000000 | 0x00000080

2 GENERIC_READ | GENERIC_WRITE 0x80000000 | 0x40000000

3 GENERIC_READ | GENERIC_EXECUTE 0x80000000 | 0x20000000

 For any other value of AccessMode.AccessMode, this algorithm returns
STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 ShareAccess is set as follows:

 The SharingMode subfield of the Trans2_Parameters.AccessMode field in the request is
used to set the value of ShareAccess. The SharingMode subfield is a 4-bit subfield of the
AccessMode field (0x0070), as shown in the table in section 2.2.4.3.1. The mapping of
values is as follows.

AccessMode.SharingMode ShareAccess

0 Compatibility mode (see following)

1 0x0L (don't share, exclusive use)

2 FILE_SHARE_READ

3 FILE_SHARE_WRITE

4 FILE_SHARE_READ | FILE_SHARE_WRITE

0xFF FCB mode (see following)

 For Compatibility mode, special filename suffixes (after the "." in the filename) are mapped to
SharingMode 4. The special filename suffix set is: "EXE", "DLL", "SYM", "COM". All other file

names are mapped to SharingMode 3.

 For FCB mode, if the file is already open on the server, the current sharing mode of the
existing Open is preserved, and a FID for the file is returned. If the file is not already open on
the server, the server attempts to open the file using SharingMode 1.

 For any other value of AccessMode.SharingMode, this algorithm returns
STATUS_OS2_INVALID_ACCESS (ERRDOS/ERRbadaccess).

 CreateOptions bits are set as follows.

CreateOptions value TRNS2_OPEN2 equivalent

FILE_WRITE_THROUGH AccessMode.WritethroughMode == 1

FILE_SEQUENTIAL_ONLY AccessMode.ReferenceLocality == 1

FILE_RANDOM_ACCESS AccessMode.ReferenceLocality == 2 or

AccessMode.ReferenceLocality == 3

FILE_ WRITE_THROUGH AccessMode.CacheMode == 1

FILE_NON_DIRECTORY_FILE Is set

FILE_COMPLETE_IF_OPLOCKED Is set

FILE_NO_EA_KNOWLEDGE SMB_Header.Flags2 & SMB_FLAGS2_KNOWS_EAS == 0

699 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 All other bits are unused.

 CreateDisposition is set as follows:

CreateDisposition Value
Trans2_Parameters.OpenMode
Equivalent

Invalid combination; return STATUS_OS2_INVALID_ACCESS
(ERRDOS/ERRbadaccess)

FileExistsOpts = 0 & CreateFile = 0

FILE_CREATE FileExistsOpts = 0 & CreateFile = 1

FILE_OPEN FileExistsOpts = 1 & CreateFile = 0

FILE_OPEN_IF FileExistsOpts = 1 & CreateFile = 1

FILE_OVERWRITE FileExistsOpts = 2 & CreateFile = 0

FILE_OVERWRITE_IF FileExistsOpts = 2 & CreateFile = 1

 DesiredFileAttributes is set as follows:

 DesiredFileAttributes is set to the bitwise AND of the FileAttributes field in the request
and

(SMB_FILE_ATTRIBUTE_READONLY |

 SMB_FILE_ATTRIBUTE_HIDDEN |

 SMB_FILE_ATTRIBUTE_SYSTEM |

 SMB_FILE_ATTRIBUTE_ARCHIVE |

 SMB_FILE_ATTRIBUTE_DIRECTORY).

 If the resulting value of DesiredFileAttributes is zero, DesiredFileAttributes is set to

FILE_ATTRIBUTE_NORMAL. See sections 2.2.1.2.3 and 2.2.1.2.4.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the

SMB_Header.Flags field of the request; otherwise, IsCaseSensitive is set depending upon
system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag
of the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response and processing is complete.

If the operation is successful, processing continues as follows:

 If the request's Trans2_Data.ExtendedAttributesList is nonzero, Windows servers set the
extended attribute information on the object store as described in [MS-FSA] section 2.1.5.14, with

the following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileFullEaInformation.

 InputBuffer is the Trans2_Data.ExtendedAttributeList field of the request.

 InputBufferSize is the SMB_Parameters.Words.TotalDataCount field of the request.

700 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response, and processing is complete.

If the operation is successful, processing continues as follows:

 If the REQ_OPLOCK flag is set in the Trans2_Parameters.Flags field of the request, an OpLock

is being requested. Windows servers obtain OpLocks as described in [MS-FSA] section 2.1.5.17,
with the following mapping of input elements:

 Open is the Open passed through from the preceding operation.

 Type is LEVEL_BATCH if both the REQ_OPLOCK flag and the REQ_OPLOCK_BATCH flag are
set, or LEVEL_ONE if only the REQ_OPLOCK flag is set.

If an OpLock is granted, the Trans2_Parameters.OpenResults.LockStatus bit of the
response is set.

 The Trans2_Parameters.AccessMode from the request is copied to the response.

 Open.File.FileType is used to set the Trans2_Parameters.ResourceType.

 Windows servers obtain the Trans2_Parameters.FileAttributes response field values by
querying file information from the object store as described in [MS-FSA] section 2.1.5.11, with the
following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileBasicInformation.

If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 SMB_Parameters.Words.FileAttrs is set to OutputBuffer.FileAttributes.

 If the REQ_ATTRIB flag is set in the Trans2_Parameters.Flags field of the request, Windows

servers obtain the Trans2_Parameters.FileDataSize response field values by querying file
information from the object store as described in [MS-FSA] section 2.1.5.11, with the following

mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileStandardInformation.

If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 Trans2_Parameters.FileDataSize is set to the lowest-order 32 bits of
OutputBuffer.EndOfFile.

 If the REQ_EASIZE flag is set in the Trans2_Parameters.Flags field of the request, Windows
servers obtain the Trans2_Parameters.ExtendedAttributeLength response field values by

querying file information from the object store as described in [MS-FSA] section 2.1.5.11, with the
following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileEaInformation.

If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 Trans2_Parameters.ExtendedAttributeLength is set to OutputBuffer.EaSize.

701 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the query fails, the Status is returned in an Error Response, and processing is complete.

 A new FID is generated for the Open returned. All of the other results of the Open operation are

ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response.

<338> Section 3.3.5.58.3: If no matching entries are found, Windows NT servers fail the

TRANS2_FIND_FIRST2 Request (section 2.2.6.2.1) and return a full TRANS2_FIND_FIRST2
Response (section 2.2.6.2.2), setting all the fields to zero.

<339> Section 3.3.5.58.3: Windows servers close the search and return a nonzero SID field value.

<340> Section 3.3.5.58.3: Windows servers process this command in the same way as the
SMB_COM_SEARCH (section 2.2.4.58) and SMB_COM_FIND (section 2.2.4.59) commands (see the
notes in section 3.3.5.47), with the following differences:

 The FileInformationClass is set to FileDirectoryInformation,

FileBothDirectoryInformation, or FileFullDirectoryInformation, depending upon the
information required in the EA to be returned.

 The FileIndex field is not used.

 Trans2_Parameters.SearchCount replaces SMB_Parameters.Words.MaxCount.

 The files returned are not required to have short names.

 Instead of returning an SMB_Directory_Information structure for each directory entry that

matches the required FileName and SearchAttributes fields, the server returns an
InformationClass structure of the type requested in the
Trans2_Parameters.InformationLevel field. If the requested InformationLevel is
SMB_INFO_QUERY_EAS_FROM_LIST (section 2.2.8.1.3), the server queries the file for the list of
extended attributes (EAs), as described in [MS-FSA] section 2.1.5.11. FileInformationClass is set
to FileFullEaInformation. For each AttributeName field listed in the GetExtendedAttributeList
field, the corresponding FILE_FULL_EA_INFORMATION data returned from the query is converted

into SMB_FEA (section 2.2.1.2.2) format and copied into the Trans2_Data block of the response.
If an error is returned, the Status is not copied into the SMB_Header.Status field. Instead, the

offset of the GetExtendedAttributeList.GEAList field entry that caused the error is stored in the
EaErrorOffset field, and no more EAs are returned.

<341> Section 3.3.5.58.4: Windows servers process this command in the same way as the
TRANS2_FIND_FIRST2 (section 2.2.6.2) except that the FileIndex field is used to restart the search
at the selected location.

<342> Section 3.3.5.58.6: If the InformationLevel field is SMB_QUERY_FILE_NAME_INFO, Windows
servers set the Trans2_Data.FileName field in response to the Server.Open.PathName ADM
element where the Server.Open.FID ADM element matches the FID field in the request. If the
InformationLevel field is SMB_QUERY_FILE_ALL_INFO, Windows servers set the
Trans2_Data.FileName field in the response to the full pathname relative to the root of the share.

<343> Section 3.3.5.58.8: If the InformationLevel field is SMB_QUERY_FILE_NAME_INFO, Windows

servers set the Trans2_Data.FileName field in response to the Server.Open.PathName ADM

element where the Server.Open.FID ADM element matches the FID field in the request. If the
InformationLevel field is SMB_QUERY_FILE_ALL_INFO, Windows servers set the
Trans2_Data.FileName field in the response to the full pathname relative to the root of the share.

<344> Section 3.3.5.58.10: Windows servers create directories within the object store as described in
[MS-FSA] section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided by using the SMB_Header.TID to find the matching Server.TreeConnect

in the Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

702 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 PathName is the Trans2_Parameters.DirectoryName field from the request.

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry

in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed
as SecurityContext.

 DesiredAccess is set to FILE_TRAVERSE (which has the same value as FILE_EXECUTE:
0x00000020).

 ShareAccess is set to 0x00000000.

 CreateOptions is set to FILE_DIRECTORY_FILE.

 CreateDisposition is set to FILE_CREATE.

 DesiredFileAttributes is set to FILE_ATTRIBUTE_NORMAL.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the

SMB_Header. Flags field of the request. Otherwise, IsCaseSensitive is set depending upon

system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag
of the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response, and processing is complete.

 If the request's Trans2_Data.ExtendedAttributesList is nonzero, Windows servers set the
extended attribute (EA) information on the object store as described in [MS-FSA] section 2.1.5.14,
with the following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileFullEaInformation.

 InputBuffer is the Trans2_Data.ExtendedAttributeList field of the request.

 InputBufferSize is the SMB_Parameters.Words.TotalDataCount field of the request.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation is
successful, the Open returned from the process described in [MS-FSA] section 2.1.5.1 is closed. All
other results are ignored.

<345> Section 3.3.5.59.1: This is dependent upon the underlying file system. On Windows NT Server,
if the request to create a file is performed on a Windows FAT or FAT32 file system, the request fails
with STATUS_ACCESS_DENIED. Otherwise, it fails with STATUS_PRIVILEGE_NOT_ HELD.

<346> Section 3.3.5.59.1: Windows servers open files in the object store as described in [MS-FSA]

section 2.1.5.1, with the following mapping of input elements:

 RootOpen is provided in one of two ways:

 If NT_Trans_Parameters.RootDirectoryFID is zero, RootOpen is provided by using the
SMB_Header.TID to find the matching Server.TreeConnect in the
Server.Connection.TreeConnectTable. The server then acquires an Open on
Server.TreeConnect.Share.LocalPath, which is passed as RootOpen.

 If NT_Trans_Parameters.RootDirectoryFID is nonzero, RootOpen is provided by looking
up the RootDirectoryFID in the Server.Connection.FileOpenTable.

 PathName is the NT_Trans_Parameters.FileName field of the request.

703 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SecurityContext is found by using the SMB_Header.UID to look up the matching Session entry
in the Server.Connection.SessionTable. The Server.Session.UserSecurityContext is passed

as SecurityContext.

 DesiredAccess is the NT_Trans_Parameters.DesiredAccess field of the request. The

FILE_READ_ATTRIBUTES attribute is added (using a bitwise OR) to ensure that the server can
query attributes once the file has been opened.

 ShareAccess is the NT_Trans_Parameters.ShareAccess field of the request.

 CreateOptions is the NT_Trans_Parameters.CreateOptions field of the request. The
FILE_COMPLETE_IF_OPLOCKED option is added (using a bitwise OR) to the set provided by the
client. If the FILE_NO_INTERMEDIATE_BUFFERING flag is set, it is cleared, and
FILE_WRITE_THROUGH is set.

 CreateDisposition is the NT_Trans_Parameters.CreateDisposition field of the request.

 DesiredFileAttributes is the NT_Trans_Parameters.ExtFileAttributes field of the request.

 IsCaseSensitive is set to FALSE if the SMB_FLAGS_CASE_INSENSITIVE bit is set in the
SMB_Header.Flags field of the request; otherwise, IsCaseSensitive is set depending upon
system defaults. For more information, see the description of the OBJ_CASE_INSENSITIVE flag of
the OBJECT_ATTRIBUTES structure [MSDN-OBJ_ATTRIBS].

 OpLockKey is empty.

Windows servers complete the NT_TRANSACT_CREATE Request (section 2.2.7.1.1) by calling the
Win32 IoCreateFile() function, which allows both security descriptors (SDs) and extended attributes
(EAs) to be set directly rather than having to set them in separate steps. See [MSDN-IoCreateFile].
With respect to the algorithm presented in [MS-FSA] section 2.1.5.1:

 If the request's NT_Trans_Parameters.SecurityDescriptorLength value is greater than zero,
Windows servers set Open.File.SecurityDescriptor to the security descriptor passed in the

NT_Trans_Data.SecurityDescriptor field in the request. (The SD is passed to the object store
in the ObjectAttributes parameter of IoCreateFile().)

 If the request's NT_Trans_Parameters.EALength value is greater than zero, Windows servers
set Open.File.ExtendedAttributes and Open.File.ExtendedAttributesLength from
NT_Trans_Data.ExtendedAttributes and NT_Trans_Parameters.EALength, respectively.
(These values are passed to the object store via the EaBuffer and EaLength parameters of
IoCreateFile().)

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response, and processing is complete.

If the operation is successful, processing continues as follows:

 If either the NT_CREATE_REQUEST_OPLOCK or NT_CREATE_REQUEST_OPBATCH flag is set in the
SMB_Parameters.Words.Flags field of the request, an OpLock is being requested. Windows
servers obtain OpLocks as described in [MS-FSA] section 2.1.5.17, with the following mapping of

input elements:

 Open is the Open passed through from the preceding operation.

 Type is LEVEL_BATCH if the NT_CREATE_REQUEST_OPBATCH flag is set, or LEVEL_ONE if the
NT_CREATE_REQUEST_OPLOCK flag is set.

 If an OpLock is granted, the SMB_Parameters.Words.OpLockLevel field of the response is set.

The returned Status is copied into the SMB_Header.Status field of the response. If the operation
fails, the Status is returned in an Error Response, and processing is complete.

http://go.microsoft.com/fwlink/?LinkId=182725

704 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

If the operation is successful, processing continues as follows:

 Windows servers obtain the extended file attribute and timestamp response information by

querying file information from the object store as described in [MS-FSA] section 2.1.5.11, with the
following mapping of input elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileBasicInformation.

 If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 NT_Trans_Parameters.ExtFileAttributes is set to OutputBuffer.FileAttributes.

 NT_Trans_Parameters.CreateTime is set to OutputBuffer.CreateTime.

 NT_Trans_Parameters.LastAccessTime is set to OutputBuffer.LastAccessTime.

 NT_Trans_Parameters.LastWriteTime is set to OutputBuffer.LastWriteTime.

 NT_Trans_Parameters.LastChangeTime is set to OutputBuffer.ChangeTime.

 Windows servers obtain the file size response field values by querying file information from the
object store as described in [MS-FSA] section 2.1.5.11, with the following mapping of input
elements:

 Open is the Open passed through from the preceding operations.

 FileInformationClass is FileStandardInformation.

 If the query fails, the Status is returned in an Error Response, and processing is complete.
Otherwise:

 NT_Trans_Parameters.AllocationSize is set to OutputBuffer.AllocationSize.

 NT_Trans_Parameters.EndOfFile is set to OutputBuffer.EndOfFile.

 If the query fails, the Status is returned in an Error Response, and processing is complete.

 Open.File.FileType is used to set the NT_Trans_Parameters.ResourceType and

NT_Trans_Parameters.Directory fields of the response.

 If Open.File.FileType indicates a named pipe, Windows servers perform two queries for named
pipe state on the underlying object store, each with different information levels, as described in
[MS-FSA] section 2.1.5.11, with the following mapping of input elements:

 Open is the Server.Open identified by the SMB_Parameters.Words.Setup.FID field of the
request and is used for both queries.

 FileInformationClass is FilePipeInformation for one query and FilePipeLocalInformation for

the other ([MS-FSCC] section 2.4).

 OutputBufferSize is 8 bytes for the FilePipeInformation buffer (size of
FILE_PIPE_INFORMATION data), and 40 bytes for the FilePipeLocalInformation buffer (size of
FILE_PIPE_LOCAL_INFORMATION data).

 If either query returns an error status in Status, that value is set as the SMB_Header.Status
field of the response message. If both return success, a success status is used, and the following

additional mapping of output elements applies:

705 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 OutputBuffer: The output buffers from both queries are used to construct an
SMB_NMPIPE_STATUS (section 2.2.1.3) data type. The SMB_NMPIPE_STATUS buffer is

copied into the NT_Trans_Parameters.NMPipeState field of the response.

 ByteCount is not used.

 A new FID is generated for the Open returned. All of the other results of the Open operation are
ignored. The FID is copied into the SMB_Parameters.Words.FID field of the response.

<347> Section 3.3.5.59.2: Windows servers send IOCTL and FSCTL requests to the underlying object
store as described in each control code's specific subsection of [MS-FSA] section 2.1.5.9.

<348> Section 3.3.5.59.3: Windows servers set security descriptors on objects within the object store
as described in [MS-FSA] section 2.1.5.16, with the following mapping of input elements:

 Open is the Open indicated by looking up FID in Server.Connection.FileOpenTable.

 SecurityInformation is copied from the NT_Trans_Parameters.SecurityInformation field in
the request.

 InputBuffer is copied from the NT_Trans.Data_SecurityDescriptor field in the request.

Upon completion, the returned Status is copied into the SMB_Header.Status field of the response
message.

<349> Section 3.3.5.59.4: Windows servers provide notification of changes within the object store as

described in [MS-FSA] section 2.1.5.10, with the following mapping of input elements:

 Open is the Open indicated by looking up FID in Server.Connection.FileOpenTable.

 WatchTree is set based upon the value of the WatchTree field in the request.

 CompletionFilter is copied from the CompletionFilter field in the request.

A thread of execution on the server waits for the completion of the notification request. The

notification request is an object store I/O operation, and can be canceled as described in sections
2.2.4.65 and 3.3.5.52, and in [MS-FSA] section 2.1.5.19.

Upon completion, the returned Status is copied into the SMB_Header.Status field of the response
message. If the operation is successful, the NotifyEventEntries are copied from the OutputBuffer
to the NT_Trans_Parameters.FileNotifyInformation field.

<350> Section 3.3.5.59.5: Windows servers query security descriptors on objects within the object
store as described in [MS-FSA] section 2.1.5.13, with the following mapping of input elements:

 Open is the Open indicated by looking up FID in Server.Connection.FileOpenTable.

<351> Section 3.3.6.4: Windows-based servers use a default timeout value of 2 minutes. Windows

servers close the connections if Server.Connection.SelectedDialect is empty and current time
minus Server.Connection.CreationTime is more than 30 seconds.

<352> Section 3.3.7.1: Windows TDI transport drivers indicate transport disconnection by signaling
an Error Notification as described in [MSDN-RecErrorNotif].

<353> Section 3.3.7.2: Windows SMB servers request that a TDI transport driver close a connection
by issuing a disconnect request, as described in [MSDN-DiscntEndpoint], and by subsequently closing

the TDI file object.

<354> Section 3.3.7.3: Windows SMB servers request that TDI transport drivers accept or reject
incoming connections as described in [MSDN-MakeEndpoint].

http://go.microsoft.com/fwlink/?LinkId=214276
http://go.microsoft.com/fwlink/?LinkId=214274

706 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

<355> Section 3.4.4.9: Windows-based SMB clients on Windows NT 4.0 operating system Service
Pack 2 (SP2), Windows 2000, and Windows Server 2003 do not check the CAP_DFS flag and always

send the DFS referral request to the server.

<356> Section 5.1: Windows NT servers provide a mechanism for restricting the access of anonymous

logon users (also known as null session connections). See [KB143474] for a description.

Guest account support is optional and can be disabled.

<357> Section 5.1: Share level access control is deprecated in favor of user level access control.

Windows clients can be configured to fail authentication if plaintext passwords are required by the
server. By default, Windows 98 clients require that the server accept challenge/response
authentication. By default, Windows NT 4.0 and Windows NT 4.0 SP2 Workstation clients send
plaintext passwords if requested by the server. Windows NT 4.0 SP3 clients require

challenge/response by default. See [MSDN-ENPLAINTXT].

http://go.microsoft.com/fwlink/?LinkId=162009
http://go.microsoft.com/fwlink/?LinkId=162040

707 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

708 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable)
and description

Major
change
(Y or N)

Change
type

2.2.3.1 The SMB Header

72351 : Removed duplicate
sentence in Flags2
SMB_FLAGS2_PAGING_IO
description.

N
Content
update.

2.2.3.2 Parameter Block
72252 : Updated the WordCount
field description.

N
Content
update.

2.2.4.30 SMB_COM_SET_INFORMATION2
(0x22)

72218 : Updated the processing
rules for a date or time value of 0.

N
Content
update.

2.2.4.46.1 Request
72310 : Updated the description
and size of the Name field.

Y
Content
update.

2.2.4.64.2 Response
72180 : Added the error code
ERRbadfile(0x0002) to the table of
error codes.

Y
Content
update.

2.2.6.7.2 Response

72180 : Added the error code

ERRbadfile(0x0002) to the table of
error codes.

Y
Content
update.

2.2.8.1.2 SMB_INFO_QUERY_EA_SIZE
71171 : Changed FileName type to
UCHAR and made FileName an
array.

Y
Content
update.

2.2.8.1.3
SMB_INFO_QUERY_EAS_FROM_LIST

71171 : Changed FileName type to
UCHAR and made FileName an
array.

Y
Content
update.

2.2.8.1.4 SMB_FIND_FILE_DIRECTORY_INFO
71171 : Changed FileName type to
UCHAR and made FileName an
array.

Y
Content
update.

2.2.8.1.5
SMB_FIND_FILE_FULL_DIRECTORY_INFO

71171 : Changed FileName type to
UCHAR and made FileName an
array.

Y
Content
update.

2.2.8.1.6 SMB_FIND_FILE_NAMES_INFO

71171 : Changed FileName type to

UCHAR and made FileName an
array.

Y
Content
update.

2.2.8.1.7
SMB_FIND_FILE_BOTH_DIRECTORY_INFO

72201 : Changed description for
ShortNameLength and ShortName
fields.

Y
Content
update.

2.2.8.1.7
SMB_FIND_FILE_BOTH_DIRECTORY_INFO

71171 : Changed FileName type to
UCHAR and made FileName an
array.

Y
Content
update.

3.2.1.3 Per SMB Session 72461 : Updated the description of Y Content

mailto:dochelp@microsoft.com

709 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

Section
Tracking number (if applicable)
and description

Major
change
(Y or N)

Change
type

Client.Session.SessionKey. update.

3.3.1.5 Per SMB Session
72461 : Updated the description of
Server.Session.SessionKey.

Y
Content
update.

3.3.5.29 Receiving an
SMB_COM_SET_INFORMATION2 Request

72218 : Updated the processing
rules for nonzero attributes.

N
Content
update.

3.3.5.51 Receiving an
SMB_COM_NT_CREATE_ANDX Request

69223 : Updated the required
attributes for the DesiredAccess
field.

Y
Content
update.

3.3.5.59.1 Receiving an
NT_TRANSACT_CREATE Request

69223 : Updated required
attributes for the DesiredAccess
field.

Y
Content
update.

710 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

8 Index

A

Abstract data model
 client 476
 global (section 3.1.1.1 473, section 3.2.1.1 476)
 overview (section 3.1.1 473, section 3.2.1 476)
 RPC
 global 473
 overview (section 3.1.1 473, section 3.4.1
626)
 SMB
 connection 478
 session 480
 tree connect 480
 unique
 open 480
 open search 481
 server 548
 global (section 3.1.1.1 473, section 3.3.1.1 548)
 overview (section 3.1.1 473, section 3.3.1 548)
 RPC
 global 473
 overview (section 3.1.1 473, section 3.5.1

633)
 share 550
 SMB
 command - pending 553
 connection 551
 session 554
 tree connect 554
 unique
 open 555
 open search 555
AndX packet 84
Applicability 29

C

Capability negotiation 30
Change tracking 707
Character sequences data type 41
Client
 abstract data model 476
 global (section 3.1.1.1 473, section 3.2.1.1 476)
 overview (section 3.1.1 473, section 3.2.1 476)
 SMB
 connection 478
 session 480
 tree connect 480
 unique
 open 480
 open search 481
 higher-layer triggered events
 cryptographic session key - querying 528
 device
 reading 507
 writing 511
 DFS

 querying referrals 528
 subsystem active 528
 directory
 contents change notification 526
 creating 494
 deleting 495
 enumeration 522
 verifying path 519
 file
 attributes
 querying 504
 setting 505
 byte-range lock 517
 byte-range lock - release 518
 closing 501
 create or overwrite 499
 creating a hard link 503
 deleting 502
 flushing data 501
 opening an existing 495
 opportunistic lock 519
 print 524
 reading 507
 renaming 502
 seek to a location 520
 sending IOCTL 520
 system attributes - querying 521
 writing 511
 named pipe

 exchange (call) 525
 executing a transaction 525
 peeking at data 525
 querying
 handle state 524
 information 525
 reading (section 3.2.4.14 507, section
3.2.4.37 526)
 setting state 524
 waiting for availability 525
 writing (section 3.2.4.15 511, section 3.2.4.38
526)
 named RAP transaction 527
 number of opens on tree connect 528
 operations - canceling pending 523
 process exit notification 520
 security descriptors
 querying 527
 setting 527
 sending any message (section 3.1.4.1 473,
section 3.2.4.1 482)
 share - connecting 489
 SMB session logoff 521
 transport layer connection - testing 521
 tree disconnect (unmount share) 521
 initialization (section 3.1.3 473, section 3.2.3 481)
 local events
 handling transport disconnect 547
 overview 476
 message processing
 algorithms for challenge/response authentication
475
 OpLock

711 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 break notification 546
 grant 545
 receiving any message (section 3.1.5.1 474,
section 3.2.5.1 528)
 SMB_COM_CLOSE response 534
 SMB_COM_CREATE response 534
 SMB_COM_CREATE_NEW response 535
 SMB_COM_CREATE_TEMPORARY response 534
 SMB_COM_ECHO response 538
 SMB_COM_FIND response 540
 SMB_COM_FIND_CLOSE2 response 540
 SMB_COM_FIND_UNIQUE response 541
 SMB_COM_IOCTL response 538
 SMB_COM_LOCK_AND_READ response 535
 SMB_COM_LOGOFF_ANDX response 540
 SMB_COM_NEGOTIATE response 531
 SMB_COM_NT_CREATE_ANDX response 541
 SMB_COM_NT_TRANSACT response 541
 SMB_COM_NT_TRANSACT subcommand
response 544
 SMB_COM_OPEN response 533
 SMB_COM_OPEN_ANDX response 538
 SMB_COM_OPEN_PRINT_FILE response 541

 SMB_COM_QUERY_INFORMATION response 534
 SMB_COM_QUERY_INFORMATION_DISK
response 540
 SMB_COM_QUERY_INFORMATION2 response
538
 SMB_COM_READ response 534
 SMB_COM_READ_ANDX response 539
 SMB_COM_READ_MPX response 536
 SMB_COM_READ_RAW response 536
 SMB_COM_SEARCH response 540
 SMB_COM_SEEK response 535
 SMB_COM_SESSION_SETUP_ANDX response
532
 SMB_COM_TRANSACTION response 538
 SMB_COM_TRANSACTION subcommand
response 542
 SMB_COM_TRANSACTION2 response 539
 SMB_COM_TRANSACTION2 subcommand
response 543
 SMB_COM_TREE_CONNECT response 533
 SMB_COM_TREE_CONNECT_ANDX response 533
 SMB_COM_TREE_DISCONNECT response 540
 SMB_COM_WRITE response 534
 SMB_COM_WRITE_AND_CLOSE response 538
 SMB_COM_WRITE_AND_UNLOCK response 535
 SMB_COM_WRITE_ANDX response 539
 SMB_COM_WRITE_MPX response 537
 SMB_COM_WRITE_RAW response 537
 STATUS_PATH_NOT_COVERED 546
 overview 473
 RPC
 abstract data model
 global 473
 overview (section 3.1.1 473, section 3.4.1
626)
 higher-layer triggered events
 DFS referrals - querying 631
 extended DFS referral capability - querying
632
 named pipe
 closing 629
 opening 626

 reading 628
 transaction - issuing 629
 writing 628
 sending any message 473
 session
 initiating 630
 key - authenticated context 630
 terminating 630
 share connection - requesting 631
 tree disconnect - requesting 632
 initialization (section 3.1.3 473, section 3.4.3
626)
 local events (section 3.1.7 476, section 3.4.7
633)
 message processing
 algorithms for challenge/response
authentication 475
 overview 632
 receiving any message 474
 overview 626
 sequencing rules
 algorithms for challenge/response
authentication 475

 overview 632
 receiving any message 474
 timer events (section 3.1.6 476, section 3.4.6
633)
 timers (section 3.1.2 473, section 3.4.2 626)
 sequencing rules
 algorithms for challenge/response authentication
475
 OpLock
 break notification 546
 grant 545
 receiving any message (section 3.1.5.1 474,
section 3.2.5.1 528)
 SMB_COM_CLOSE response 534
 SMB_COM_CREATE response 534
 SMB_COM_CREATE_NEW response 535
 SMB_COM_CREATE_TEMPORARY response 534
 SMB_COM_ECHO response 538
 SMB_COM_FIND response 540
 SMB_COM_FIND_CLOSE2 response 540
 SMB_COM_FIND_UNIQUE response 541
 SMB_COM_IOCTL response 538
 SMB_COM_LOCK_AND_READ response 535
 SMB_COM_LOGOFF_ANDX response 540
 SMB_COM_NEGOTIATE response 531
 SMB_COM_NT_CREATE_ANDX response 541
 SMB_COM_NT_TRANSACT response 541
 SMB_COM_NT_TRANSACT subcommand
response 544
 SMB_COM_OPEN response 533
 SMB_COM_OPEN_ANDX response 538
 SMB_COM_OPEN_PRINT_FILE response 541
 SMB_COM_QUERY_INFORMATION response 534
 SMB_COM_QUERY_INFORMATION_DISK
response 540
 SMB_COM_QUERY_INFORMATION2 response
538
 SMB_COM_READ response 534
 SMB_COM_READ_ANDX response 539
 SMB_COM_READ_MPX response 536
 SMB_COM_READ_RAW response 536
 SMB_COM_SEARCH response 540

712 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_SEEK response 535
 SMB_COM_SESSION_SETUP_ANDX response
532
 SMB_COM_TRANSACTION response 538
 SMB_COM_TRANSACTION subcommand
response 542
 SMB_COM_TRANSACTION2 response 539
 SMB_COM_TRANSACTION2 subcommand
response 543
 SMB_COM_TREE_CONNECT response 533
 SMB_COM_TREE_CONNECT_ANDX response 533
 SMB_COM_TREE_DISCONNECT response 540
 SMB_COM_WRITE response 534
 SMB_COM_WRITE_AND_CLOSE response 538
 SMB_COM_WRITE_AND_UNLOCK response 535
 SMB_COM_WRITE_ANDX response 539
 SMB_COM_WRITE_MPX response 537
 SMB_COM_WRITE_RAW response 537
 STATUS_PATH_NOT_COVERED 546
 timer events
 overview 476
 request expiration 547
 timers

 idle connection 556
 OpLock break acknowledgment 556
 overview 473
 request expiration 481
 unused open search 556
Codes
 command - SMB_COM 54
 data buffer format 76
 information level 63
 SMB error classes 66
 subcommand - transaction 60
Command codes - SMB_COM 54
Commands - SMB
 SMB_COM_CHECK_DIRECTORY (0x10) 144
 SMB_COM_CLOSE (0x04) 101
 SMB_COM_CLOSE_AND_TREE_DISC (0x31) 251
 SMB_COM_CLOSE_PRINT_FILE (0xC2) 362
 SMB_COM_COPY (0x29) 220
 SMB_COM_CREATE (0x03) 97
 SMB_COM_CREATE_DIRECTORY (0x00) 85
 SMB_COM_CREATE_NEW (0x0F) 140
 SMB_COM_CREATE_TEMPORARY (0x0E) 136
 SMB_COM_DELETE (0x06) 106
 SMB_COM_DELETE_DIRECTORY (0x01) 87
 SMB_COM_ECHO (0x2B) 220
 SMB_COM_FIND (0x82) 309
 SMB_COM_FIND_CLOSE (0x84) 320
 SMB_COM_FIND_CLOSE2 (0x34) 263
 SMB_COM_FIND_NOTIFY_CLOSE (0x35) 265
 SMB_COM_FIND_UNIQUE (0x83) 315
 SMB_COM_FLUSH (0x05) 103
 SMB_COM_GET_PRINT_QUEUE (0xC3) 364
 SMB_COM_INVALID (0xFE) 365
 SMB_COM_IOCTL (0x27) 212
 SMB_COM_IOCTL_SECONDARY (0x28) 219
 SMB_COM_LOCK_AND_READ (0x13) 152
 SMB_COM_LOCK_BYTE_RANGE (0x0C) 129
 SMB_COM_LOCKING_ANDX (0x24) 191
 SMB_COM_LOGOFF_ANDX (0x74) 289
 SMB_COM_MOVE (0x2A) 220
 SMB_COM_NEGOTIATE (0x72) 271
 SMB_COM_NEW_FILE_SIZE (0x30) 250

 SMB_COM_NO_ANDX_COMMAND (0xFF) 365
 SMB_COM_NT_CANCEL (0xA4) 351
 SMB_COM_NT_CREATE_ANDX (0xA2) 337
 SMB_COM_NT_RENAME (0xA5) 353
 SMB_COM_NT_TRANSACT (0xA0) 324
 SMB_COM_NT_TRANSACT_SECONDARY (0xA1)
333
 SMB_COM_OPEN (0x02) 90
 SMB_COM_OPEN_ANDX (0x2D) 228
 SMB_COM_OPEN_PRINT_FILE (0xC0) 355
 SMB_COM_PROCESS_EXIT (0x11) 147
 SMB_COM_QUERY_INFORMATION (0x08) 113
 SMB_COM_QUERY_INFORMATION_DISK (0x80)
299
 SMB_COM_QUERY_INFORMATION2 (0x23) 187
 SMB_COM_QUERY_SERVER (0x21) 184
 SMB_COM_READ (0x0A) 120
 SMB_COM_READ_ANDX (0x2E) 237
 SMB_COM_READ_BULK (0xD8) 365
 SMB_COM_READ_MPX (0x1B) 165
 SMB_COM_READ_MPX_SECONDARY (0x1C) 171
 SMB_COM_READ_RAW (0x1A) 163
 SMB_COM_RENAME (0x07) 109

 SMB_COM_SEARCH (0x81) 302
 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E) 299
 SMB_COM_SEEK (0x12) 149
 SMB_COM_SESSION_SETUP_ANDX (0x73) 279
 SMB_COM_SET_INFORMATION (0x09) 116
 SMB_COM_SET_INFORMATION2 (0x22) 184
 SMB_COM_TRANSACTION (0x25) 199
 SMB_COM_TRANSACTION_SECONDARY (0x26)
209
 SMB_COM_TRANSACTION2 (0x32) 251
 SMB_COM_TRANSACTION2_SECONDARY (0x33)
260
 SMB_COM_TREE_CONNECT (0x70) 265
 SMB_COM_TREE_CONNECT_ANDX (0x75) 292
 SMB_COM_TREE_DISCONNECT (0x71) 269
 SMB_COM_UNLOCK_BYTE_RANGE (0x0D) 132
 SMB_COM_WRITE (0x0B) 124
 SMB_COM_WRITE_AND_CLOSE (0x2C) 223
 SMB_COM_WRITE_AND_UNLOCK (0x14) 157
 SMB_COM_WRITE_ANDX (0x2F) 243
 SMB_COM_WRITE_BULK (0xD9) 365
 SMB_COM_WRITE_BULK_DATA (0xDA) 365
 SMB_COM_WRITE_COMPLETE (0x20) 184
 SMB_COM_WRITE_MPX (0x1E) 178
 SMB_COM_WRITE_MPX_SECONDARY (0x1F) 184
 SMB_COM_WRITE_PRINT_FILE (0xC1) 359
 SMB_COM_WRITE_RAW (0x1D) 171
Common data types 40
Common Data Types message 40
Copy file
 from share example 641
 to share example 642

D

Data buffer format codes 76
Data model - abstract
 client 476
 global (section 3.1.1.1 473, section 3.2.1.1 476)

 overview (section 3.1.1 473, section 3.2.1 476)

713 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 RPC
 global 473
 overview (section 3.1.1 473, section 3.4.1
626)
 SMB
 connection 478
 session 480
 tree connect 480
 unique
 open 480
 open search 481
 server 548
 global (section 3.1.1.1 473, section 3.3.1.1 548)
 overview (section 3.1.1 473, section 3.3.1 548)
 RPC
 global 473
 overview (section 3.1.1 473, section 3.5.1
633)
 share 550
 SMB
 command - pending 553
 connection 551
 session 554

 tree connect 554
 unique
 open 555
 open search 555
Data types
 character sequences 41
 common - overview 40
 file attributes 42
 SMB_ERROR 50
 SMB_NMPIPE_STATUS 47
 time 48
 unique identifiers 50
DAY 49
Direct hosting 34
Direct IPX 34
Disconnect example 635

E

Error classes and codes - SMB 66
Events
 local
 client
 handling transport disconnect 547
 overview 476
 RPC (section 3.1.7 476, section 3.4.7 633)
 server
 disconnecting connection 625
 handling
 incoming transport connection 625
 transport disconnect 625
 overview 476
 RPC (section 3.1.7 476, section 3.5.7 634)
 timer
 client
 overview 476
 request expiration 547
 RPC (section 3.1.6 476, section 3.4.6 633)
 server

 idle connection 625

 OpLock break acknowledgment 624
 overview 476
 RPC (section 3.1.6 476, section 3.5.6 634)
 unused open search 625
Examples
 copy file
 from share 641
 to share 642
 disconnect 635
 get file attributes 638
 message signing 636
 negotiate and tree connect 635
 overview 635
 set file attributes 639

F

Fields - vendor extensible 31
Fields - vendor-extensible 31
File attributes data type 42
Final_Server_Response packet 175

G

Get file attributes example 638
Glossary 16

H

Higher-layer triggered events
 client
 cryptographic session key - querying 528
 device
 reading 507
 writing 511
 DFS
 querying referrals 528
 subsystem active 528
 directory
 contents change notification 526
 creating 494
 deleting 495
 enumeration 522
 verifying path 519
 file
 attributes
 querying 504
 setting 505
 byte-range lock 517
 byte-range lock - release 518
 closing 501

 create or overwrite 499
 creating a hard link 503
 deleting 502
 flushing data 501
 opening an existing 495
 opportunistic lock 519
 print 524
 reading 507

714 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 renaming 502
 seek to a location 520
 sending IOCTL 520
 system attributes - querying 521
 writing 511
 named pipe
 exchange (call) 525
 executing a transaction 525
 peeking at data 525
 querying
 handle state 524
 information 525
 reading (section 3.2.4.14 507, section
3.2.4.37 526)
 setting state 524
 waiting for availability 525
 writing (section 3.2.4.15 511, section 3.2.4.38
526)
 named RAP transaction 527
 number of opens on tree connect 528
 operations - canceling pending 523
 process exit notification 520
 RPC

 DFS referrals - querying 631
 extended DFS referral capability - querying
632
 named pipe
 closing 629
 opening 626
 reading 628
 transaction - issuing 629
 writing 628
 sending any message 473
 session
 initiating 630
 key - authenticated context 630
 terminating 630
 share connection - requesting 631
 tree disconnect - requesting 632
 security descriptors
 querying 527
 setting 527
 sending any message (section 3.1.4.1 473,
section 3.2.4.1 482)
 share - connecting 489
 SMB session logoff 521
 transport layer connection - testing 521
 tree disconnect (unmount share) 521
 server
 client session
 security context 560
 session key 559
 configuration - updating 565
 DFS subsystem
 active 559
 DFS share 559
 not a DFS share 559
 disabling 564
 enabling 564
 open
 closing 562
 querying 563
 OpLock break 558
 pausing 564
 resuming 565

 RPC
 named pipe
 closing its open 634
 waiting for clients to open 633
 security context 634
 sending any message 473
 session key 634
 sending any message (section 3.1.4.1 473,
section 3.3.4.1 557)
 session
 closing 560
 querying 562
 share
 deregistering 561
 querying 561
 registering 560
 updating 561
 statistics 565
 transport binding change 564
 TreeConnect - querying 563
HOUR 49

I

Implementer - security considerations 643
Index of security parameters 643
Information level
 codes 63
 overview 451
Information Levels message 451
Informative references 23
Initialization
 client 481
 overview (section 3.1.3 473, section 3.2.3 481)
 RPC (section 3.1.3 473, section 3.4.3 626)
 server 556
 overview (section 3.1.3 473, section 3.3.3 556)
 RPC (section 3.1.3 473, section 3.5.3 633)
Interim_Server_Response packet 174
Introduction 16

L

Local events
 client
 handling transport disconnect 547
 overview 476
 RPC (section 3.1.7 476, section 3.4.7 633)
 server
 disconnecting connection 625
 handling
 incoming transport connection 625
 transport disconnect 625
 overview 476
 RPC (section 3.1.7 476, section 3.5.7 634)

M

Message processing

715 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 client
 algorithms for challenge/response authentication
475
 OpLock
 break notification 546
 grant 545
 receiving any message (section 3.1.5.1 474,
section 3.2.5.1 528)
 RPC
 algorithms for challenge/response
authentication 475
 overview 632
 receiving any message 474
 SMB_COM_CLOSE response 534
 SMB_COM_CREATE response 534
 SMB_COM_CREATE_NEW response 535
 SMB_COM_CREATE_TEMPORARY response 534
 SMB_COM_ECHO response 538
 SMB_COM_FIND response 540
 SMB_COM_FIND_CLOSE2 response 540
 SMB_COM_FIND_UNIQUE response 541
 SMB_COM_IOCTL response 538
 SMB_COM_LOCK_AND_READ response 535

 SMB_COM_LOGOFF_ANDX response 540
 SMB_COM_NEGOTIATE response 531
 SMB_COM_NT_CREATE_ANDX response 541
 SMB_COM_NT_TRANSACT response 541
 SMB_COM_NT_TRANSACT subcommand
response 544
 SMB_COM_OPEN response 533
 SMB_COM_OPEN_ANDX response 538
 SMB_COM_OPEN_PRINT_FILE response 541
 SMB_COM_QUERY_INFORMATION response 534
 SMB_COM_QUERY_INFORMATION_DISK
response 540
 SMB_COM_QUERY_INFORMATION2 response
538
 SMB_COM_READ response 534
 SMB_COM_READ_ANDX response 539
 SMB_COM_READ_MPX response 536
 SMB_COM_READ_RAW response 536
 SMB_COM_SEARCH response 540
 SMB_COM_SEEK response 535
 SMB_COM_SESSION_SETUP_ANDX response
532
 SMB_COM_TRANSACTION response 538
 SMB_COM_TRANSACTION subcommand
response 542
 SMB_COM_TRANSACTION2 response 539
 SMB_COM_TRANSACTION2 subcommand
response 543
 SMB_COM_TREE_CONNECT response 533
 SMB_COM_TREE_CONNECT_ANDX response 533
 SMB_COM_TREE_DISCONNECT response 540
 SMB_COM_WRITE response 534
 SMB_COM_WRITE_AND_CLOSE response 538
 SMB_COM_WRITE_AND_UNLOCK response 535
 SMB_COM_WRITE_ANDX response 539
 SMB_COM_WRITE_MPX response 537
 SMB_COM_WRITE_RAW response 537
 STATUS_PATH_NOT_COVERED 546
 server
 algorithms for challenge/response authentication
475
 incoming connection 566

 receiving any message (section 3.1.5.1 474,
section 3.3.5.2 567)
 RPC
 algorithms for challenge/response
authentication 475
 overview 634
 receiving any message 474
 SMB_COM_CHECK_DIRECTORY request 582
 SMB_COM_CLOSE request 574
 SMB_COM_CLOSE_PRINT_FILE request 611
 SMB_COM_CREATE request 573
 SMB_COM_CREATE_DIRECTORY request 571
 SMB_COM_CREATE_NEW request 581
 SMB_COM_CREATE_TEMPORARY request 580
 SMB_COM_DELETE request 575
 SMB_COM_DELETE_DIRECTORY request 572
 SMB_COM_ECHO request 591
 SMB_COM_FIND request 603
 SMB_COM_FIND_CLOSE request 606
 SMB_COM_FIND_CLOSE2 request 596
 SMB_COM_FIND_UNIQUE request 606
 SMB_COM_FLUSH request 574
 SMB_COM_IOCTL request 591

 SMB_COM_LOCK_AND_READ request 583
 SMB_COM_LOCK_BYTE_RANGE request 579
 SMB_COM_LOCKING_ANDX request 589
 SMB_COM_LOGOFF_ANDX request 601
 SMB_COM_NEGOTIATE request 598
 SMB_COM_NT_CANCEL request 608
 SMB_COM_NT_CREATE_ANDX request 606
 SMB_COM_NT_RENAME request 609
 SMB_COM_NT_TRANSACT request 606
 SMB_COM_NT_TRANSACT subcommand request
621
 SMB_COM_OPEN request 572
 SMB_COM_OPEN_ANDX request 592
 SMB_COM_OPEN_PRINT_FILE request 610
 SMB_COM_PROCESS_EXIT request 582
 SMB_COM_QUERY_INFORMATION request 577
 SMB_COM_QUERY_INFORMATION_DISK request
603
 SMB_COM_QUERY_INFORMATION2 request 589
 SMB_COM_READ request 578
 SMB_COM_READ_ANDX request 594
 SMB_COM_READ_MPX request 585
 SMB_COM_READ_RAW request 584
 SMB_COM_RENAME request 576
 SMB_COM_SEARCH request 603
 SMB_COM_SEEK request 583
 SMB_COM_SESSION_SETUP_ANDX request 599
 SMB_COM_SET_INFORMATION request 578
 SMB_COM_SET_INFORMATION2 request 589
 SMB_COM_TRANSACTION request 591
 SMB_COM_TRANSACTION subcommand request
611
 SMB_COM_TRANSACTION2 request 596
 SMB_COM_TRANSACTION2 subcommand
request 616
 SMB_COM_TREE_CONNECT request 597
 SMB_COM_TREE_CONNECT_ANDX request 602
 SMB_COM_TREE_DISCONNECT request 598
 SMB_COM_UNLOCK_BYTE_RANGE request 580
 SMB_COM_WRITE request 578
 SMB_COM_WRITE_AND_CLOSE request 592
 SMB_COM_WRITE_AND_UNLOCK request 584

716 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_WRITE_ANDX request 595
 SMB_COM_WRITE_MPX request 588
 SMB_COM_WRITE_PRINT_FILE request 611
 SMB_COM_WRITE_RAW request 586
Message signing example 636
Messages
 character sequences data type 41
 Common Data Types 40
 data buffer format codes 76
 file attributes data type 42
 information level
 codes 63
 overview 451
 Information Levels 451
 NT Transact subcommands
 NT_TRANSACT_CREATE (0x0001) 428
 NT_TRANSACT_IOCTL (0x0002) 439
 NT_TRANSACT_NOTIFY_CHANGE (0x0004) 445
 NT_TRANSACT_QUERY_SECURITY_DESC
(0x0006) 448
 NT_TRANSACT_RENAME (0x0005) 448
 NT_TRANSACT_SET_SECURITY_DESC (0x0003)
442

 SMB
 commands
 SMB_COM_CHECK_DIRECTORY (0x10) 144
 SMB_COM_CLOSE (0x04) 101
 SMB_COM_CLOSE_AND_TREE_DISC (0x31)
251
 SMB_COM_CLOSE_PRINT_FILE (0xC2) 362
 SMB_COM_COPY (0x29) 220
 SMB_COM_CREATE (0x03) 97
 SMB_COM_CREATE_DIRECTORY (0x00) 85
 SMB_COM_CREATE_NEW (0x0F) 140
 SMB_COM_CREATE_TEMPORARY (0x0E) 136
 SMB_COM_DELETE (0x06) 106
 SMB_COM_DELETE_DIRECTORY (0x01) 87
 SMB_COM_ECHO (0x2B) 220
 SMB_COM_FIND (0x82) 309
 SMB_COM_FIND_CLOSE (0x84) 320
 SMB_COM_FIND_CLOSE2 (0x34) 263
 SMB_COM_FIND_NOTIFY_CLOSE (0x35) 265
 SMB_COM_FIND_UNIQUE (0x83) 315
 SMB_COM_FLUSH (0x05) 103
 SMB_COM_GET_PRINT_QUEUE (0xC3) 364
 SMB_COM_INVALID (0xFE) 365
 SMB_COM_IOCTL (0x27) 212
 SMB_COM_IOCTL_SECONDARY (0x28) 219
 SMB_COM_LOCK_AND_READ (0x13) 152
 SMB_COM_LOCK_BYTE_RANGE (0x0C) 129
 SMB_COM_LOCKING_ANDX (0x24) 191
 SMB_COM_LOGOFF_ANDX (0x74) 289
 SMB_COM_MOVE (0x2A) 220
 SMB_COM_NEGOTIATE (0x72) 271
 SMB_COM_NEW_FILE_SIZE (0x30) 250
 SMB_COM_NO_ANDX_COMMAND (0xFF) 365
 SMB_COM_NT_CANCEL (0xA4) 351
 SMB_COM_NT_CREATE_ANDX (0xA2) 337
 SMB_COM_NT_RENAME (0xA5) 353
 SMB_COM_NT_TRANSACT (0xA0) 324
 SMB_COM_NT_TRANSACT_SECONDARY
(0xA1) 333
 SMB_COM_OPEN (0x02) 90
 SMB_COM_OPEN_ANDX (0x2D) 228
 SMB_COM_OPEN_PRINT_FILE (0xC0) 355

 SMB_COM_PROCESS_EXIT (0x11) 147
 SMB_COM_QUERY_INFORMATION (0x08) 113
 SMB_COM_QUERY_INFORMATION_DISK
(0x80) 299
 SMB_COM_QUERY_INFORMATION2 (0x23)
187
 SMB_COM_QUERY_SERVER (0x21) 184
 SMB_COM_READ (0x0A) 120
 SMB_COM_READ_ANDX (0x2E) 237
 SMB_COM_READ_BULK (0xD8) 365
 SMB_COM_READ_MPX (0x1B) 165
 SMB_COM_READ_MPX_SECONDARY (0x1C)
171
 SMB_COM_READ_RAW (0x1A) 163
 SMB_COM_RENAME (0x07) 109
 SMB_COM_SEARCH (0x81) 302
 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E)
299
 SMB_COM_SEEK (0x12) 149
 SMB_COM_SESSION_SETUP_ANDX (0x73)
279
 SMB_COM_SET_INFORMATION (0x09) 116
 SMB_COM_SET_INFORMATION2 (0x22) 184

 SMB_COM_TRANSACTION (0x25) 199
 SMB_COM_TRANSACTION_SECONDARY
(0x26) 209
 SMB_COM_TRANSACTION2 (0x32) 251
 SMB_COM_TRANSACTION2_SECONDARY
(0x33) 260
 SMB_COM_TREE_CONNECT (0x70) 265
 SMB_COM_TREE_CONNECT_ANDX (0x75) 292
 SMB_COM_TREE_DISCONNECT (0x71) 269
 SMB_COM_UNLOCK_BYTE_RANGE (0x0D) 132
 SMB_COM_WRITE (0x0B) 124
 SMB_COM_WRITE_AND_CLOSE (0x2C) 223
 SMB_COM_WRITE_AND_UNLOCK (0x14) 157
 SMB_COM_WRITE_ANDX (0x2F) 243
 SMB_COM_WRITE_BULK (0xD9) 365
 SMB_COM_WRITE_BULK_DATA (0xDA) 365
 SMB_COM_WRITE_COMPLETE (0x20) 184
 SMB_COM_WRITE_MPX (0x1E) 178
 SMB_COM_WRITE_MPX_SECONDARY (0x1F)
184
 SMB_COM_WRITE_PRINT_FILE (0xC1) 359
 SMB_COM_WRITE_RAW (0x1D) 171
 structure
 batched messages ("AndX" messages) 84
 data block 83
 overview 77
 parameter block 83
 SMB_Header 77
 SMB error classes and codes 66
 SMB Message Structure 77
 SMB_COM command codes 54
 SMB_ERROR data type 50
 SMB_NMPIPE_STATUS data type 47
 syntax 38
 time data type 48
 transaction subcommand codes 60
 Transaction Subcommands 366
 overview 366
 TRANS_CALL_NMPIPE (0x0054) 392
 TRANS_MAILSLOT_WRITE (0x0001) 395
 TRANS_PEEK_NMPIPE (0x0023) 377
 TRANS_QUERY_NMPIPE_INFO (0x0022) 373

717 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 TRANS_QUERY_NMPIPE_STATE (0x0021) 371
 TRANS_RAW_READ_NMPIPE (0x0011) 368
 TRANS_RAW_WRITE_NMPIPE (0x0031) 383
 TRANS_READ_NMPIPE (0x0036) 385
 TRANS_SET_NMPIPE_STATE (0x0001) 366
 TRANS_TRANSACT_NMPIPE (0x0026) 380
 TRANS_WAIT_NMPIPE (0x0053) 390
 TRANS_WRITE_NMPIPE (0x0037) 388
 Transaction2 subcommands
 TRANS2_CREATE_DIRECTORY (0x000D) 423
 TRANS2_FIND_FIRST2 (0x0001) 402
 TRANS2_FIND_NEXT2 (0x0002) 406
 TRANS2_FIND_NOTIFY_FIRST (0x000B) 423
 TRANS2_FIND_NOTIFY_NEXT (0x000C) 423
 TRANS2_FSCTL (0x0009) 422
 TRANS2_GET_DFS_REFERRAL (0x0010) 426
 TRANS2_IOCTL2 (0x000A) 423
 TRANS2_OPEN2 (0x0000) 396
 TRANS2_QUERY_FILE_INFORMATION (0x0007)
417
 TRANS2_QUERY_FS_INFORMATION (0x0003)
410
 TRANS2_QUERY_PATH_INFORMATION (0x0005)

412
 TRANS2_REPORT_DFS_INCONSISTENCY
(0x0011) 427
 TRANS2_SESSION_SETUP (0x000E) 426
 TRANS2_SET_FILE_INFORMATION (0x0008) 420
 TRANS2_SET_FS_INFORMATION (0x0004) 412
 TRANS2_SET_PATH_INFORMATION (0x0006)
414
 transport 33
 direct hosting 34
 direct IPX 34
 NetBIOS
 frames 33
 over
 IPX/SPX 34
 TCP/UDP 34
 NetBIOS-based transports
 other 34
 overview 33
 overview 33
 virtual circuits 38
 unique identifiers data type 50
MINUTES 49
MONTH 49

N

Negotiate and tree connect example 635
NetBIOS
 frames 33
 over
 IPX/SPX 34
 TCP/UDP 34
NetBIOS-based transports
 other 34
 overview 33
Normative references 22
NT Transact subcommands
 NT_TRANSACT_CREATE (0x0001) 428

 NT_TRANSACT_IOCTL (0x0002) 439

 NT_TRANSACT_NOTIFY_CHANGE (0x0004) 445
 NT_TRANSACT_QUERY_SECURITY_DESC (0x0006)
448
 NT_TRANSACT_RENAME (0x0005) 448
 NT_TRANSACT_SET_SECURITY_DESC (0x0003)
442

O

Other 46
Overview 26
Overview (synopsis) 26

P

Parameters - security index 643
Preconditions 29
Prerequisites 29
Product behavior 644

R

References 22
 informative 23
 normative 22
Relationship to other protocols 28
Request packet (section 2.2.4.2.1 87, section
2.2.4.3.1 90, section 2.2.4.4.1 97, section 2.2.4.5.1
101, section 2.2.4.6.1 103, section 2.2.4.7.1 106,
section 2.2.4.8.1 109, section 2.2.4.9.1 113, section
2.2.4.10.1 116, section 2.2.4.11.1 120, section
2.2.4.12.1 125, section 2.2.4.13.1 130, section
2.2.4.14.1 133, section 2.2.4.15.1 136, section
2.2.4.16.1 140, section 2.2.4.17.1 144, section
2.2.4.18.1 147, section 2.2.4.19.1 149, section
2.2.4.20.1 152, section 2.2.4.21.1 157, section
2.2.4.22.1 163, section 2.2.4.23.1 165, section
2.2.4.25.1 171, section 2.2.4.26.1 178, section
2.2.4.30.1 184, section 2.2.4.31.1 188, section
2.2.4.32.1 192, section 2.2.4.33.1 199, section
2.2.4.34.1 209, section 2.2.4.35.1 213, section
2.2.4.39.1 220, section 2.2.4.40.1 223, section
2.2.4.41.1 228, section 2.2.4.42.1 237, section
2.2.4.43.1 244, section 2.2.4.46.1 251, section
2.2.4.47.1 260, section 2.2.4.48.1 263, section
2.2.4.50.1 265, section 2.2.4.51.1 270, section
2.2.4.52.1 271, section 2.2.4.53.1 280, section
2.2.4.54.1 289, section 2.2.4.55.1 292, section
2.2.4.57.1 299, section 2.2.4.58.1 302, section
2.2.4.59.1 309, section 2.2.4.60.1 315, section
2.2.4.61.1 320, section 2.2.4.62.1 325, section

2.2.4.63.1 333, section 2.2.4.64.1 337, section
2.2.4.65.1 351, section 2.2.4.66.1 353, section
2.2.4.67.1 356, section 2.2.4.68.1 359, section
2.2.4.69.1 362, section 2.2.5.1.1 366, section
2.2.5.4.1 373, section 2.2.5.6.1 380, section
2.2.5.7.1 383, section 2.2.5.9.1 388, section
2.2.5.11.1 392, section 2.2.6.8.1 417, section
2.2.6.9.1 420, section 2.2.7.1.1 428, section

718 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

2.2.7.2.1 440, section 2.2.7.3.1 443, section
2.2.7.4.1 445, section 2.2.7.6.1 449)
Response packet (section 2.2.4.2.2 88, section
2.2.4.3.2 93, section 2.2.4.4.2 98, section 2.2.4.5.2
102, section 2.2.4.6.2 104, section 2.2.4.7.2 108,
section 2.2.4.8.2 111, section 2.2.4.9.2 114, section
2.2.4.10.2 118, section 2.2.4.11.2 121, section
2.2.4.12.2 127, section 2.2.4.13.2 131, section
2.2.4.14.2 134, section 2.2.4.15.2 137, section
2.2.4.16.2 142, section 2.2.4.17.2 145, section
2.2.4.18.2 148, section 2.2.4.19.2 150, section
2.2.4.20.2 154, section 2.2.4.21.2 159, section
2.2.4.23.2 167, section 2.2.4.26.2 181, section
2.2.4.30.2 186, section 2.2.4.31.2 188, section
2.2.4.32.2 196, section 2.2.4.33.2 204, section
2.2.4.35.2 216, section 2.2.4.39.2 221, section
2.2.4.40.2 225, section 2.2.4.41.2 232, section
2.2.4.42.2 239, section 2.2.4.43.2 247, section
2.2.4.46.2 256, section 2.2.4.48.2 264, section
2.2.4.50.2 267, section 2.2.4.51.2 270, section
2.2.4.52.2 273, section 2.2.4.53.2 286, section
2.2.4.54.2 290, section 2.2.4.55.2 296, section
2.2.4.57.2 300, section 2.2.4.58.2 305, section

2.2.4.59.2 311, section 2.2.4.60.2 317, section
2.2.4.61.2 322, section 2.2.4.62.2 329, section
2.2.4.64.2 346, section 2.2.4.66.2 354, section
2.2.4.67.2 357, section 2.2.4.68.2 361, section
2.2.4.69.2 363, section 2.2.5.2.2 369, section
2.2.5.3.2 372, section 2.2.5.4.2 374, section
2.2.5.5.2 377, section 2.2.5.6.2 381, section
2.2.5.7.2 384, section 2.2.5.8.2 386, section
2.2.5.9.2 389, section 2.2.5.11.2 394, section
2.2.6.3.2 408, section 2.2.6.7.2 415, section
2.2.6.9.2 421, section 2.2.6.14.2 424, section
2.2.7.1.2 435, section 2.2.7.2.2 441, section
2.2.7.4.2 447, section 2.2.7.6.2 450)

S

SECONDS 49
Security
 implementer considerations 643
 overview 643
 parameter index 643
Sequencing rules
 client
 algorithms for challenge/response authentication
475
 OpLock
 break notification 546
 grant 545
 receiving any message (section 3.1.5.1 474,
section 3.2.5.1 528)
 RPC
 algorithms for challenge/response
authentication 475
 overview 632
 receiving any message 474
 SMB_COM_CLOSE response 534
 SMB_COM_CREATE response 534
 SMB_COM_CREATE_NEW response 535
 SMB_COM_CREATE_TEMPORARY response 534

 SMB_COM_ECHO response 538

 SMB_COM_FIND response 540
 SMB_COM_FIND_CLOSE2 response 540
 SMB_COM_FIND_UNIQUE response 541
 SMB_COM_IOCTL response 538
 SMB_COM_LOCK_AND_READ response 535
 SMB_COM_LOGOFF_ANDX response 540
 SMB_COM_NEGOTIATE response 531
 SMB_COM_NT_CREATE_ANDX response 541
 SMB_COM_NT_TRANSACT response 541
 SMB_COM_NT_TRANSACT subcommand
response 544
 SMB_COM_OPEN response 533
 SMB_COM_OPEN_ANDX response 538
 SMB_COM_OPEN_PRINT_FILE response 541
 SMB_COM_QUERY_INFORMATION response 534
 SMB_COM_QUERY_INFORMATION_DISK
response 540
 SMB_COM_QUERY_INFORMATION2 response
538
 SMB_COM_READ response 534
 SMB_COM_READ_ANDX response 539
 SMB_COM_READ_MPX response 536
 SMB_COM_READ_RAW response 536

 SMB_COM_SEARCH response 540
 SMB_COM_SEEK response 535
 SMB_COM_SESSION_SETUP_ANDX response
532
 SMB_COM_TRANSACTION response 538
 SMB_COM_TRANSACTION subcommand
response 542
 SMB_COM_TRANSACTION2 response 539
 SMB_COM_TRANSACTION2 subcommand
response 543
 SMB_COM_TREE_CONNECT response 533
 SMB_COM_TREE_CONNECT_ANDX response 533
 SMB_COM_TREE_DISCONNECT response 540
 SMB_COM_WRITE response 534
 SMB_COM_WRITE_AND_CLOSE response 538
 SMB_COM_WRITE_AND_UNLOCK response 535
 SMB_COM_WRITE_ANDX response 539
 SMB_COM_WRITE_MPX response 537
 SMB_COM_WRITE_RAW response 537
 STATUS_PATH_NOT_COVERED 546
 server
 algorithms for challenge/response authentication
475
 incoming connection 566
 receiving any message (section 3.1.5.1 474,
section 3.3.5.2 567)
 RPC
 algorithms for challenge/response
authentication 475
 overview 634
 receiving any message 474
 SMB_COM_CHECK_DIRECTORY request 582
 SMB_COM_CLOSE request 574
 SMB_COM_CLOSE_PRINT_FILE request 611
 SMB_COM_CREATE request 573
 SMB_COM_CREATE_DIRECTORY request 571
 SMB_COM_CREATE_NEW request 581
 SMB_COM_CREATE_TEMPORARY request 580
 SMB_COM_DELETE request 575
 SMB_COM_DELETE_DIRECTORY request 572
 SMB_COM_ECHO request 591
 SMB_COM_FIND request 603

719 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_FIND_CLOSE request 606
 SMB_COM_FIND_CLOSE2 request 596
 SMB_COM_FIND_UNIQUE request 606
 SMB_COM_FLUSH request 574
 SMB_COM_IOCTL request 591
 SMB_COM_LOCK_AND_READ request 583
 SMB_COM_LOCK_BYTE_RANGE request 579
 SMB_COM_LOCKING_ANDX request 589
 SMB_COM_LOGOFF_ANDX request 601
 SMB_COM_NEGOTIATE request 598
 SMB_COM_NT_CANCEL request 608
 SMB_COM_NT_CREATE_ANDX request 606
 SMB_COM_NT_RENAME request 609
 SMB_COM_NT_TRANSACT request 606
 SMB_COM_NT_TRANSACT subcommand request
621
 SMB_COM_OPEN request 572
 SMB_COM_OPEN_ANDX request 592
 SMB_COM_OPEN_PRINT_FILE request 610
 SMB_COM_PROCESS_EXIT request 582
 SMB_COM_QUERY_INFORMATION request 577
 SMB_COM_QUERY_INFORMATION_DISK request
603

 SMB_COM_QUERY_INFORMATION2 request 589
 SMB_COM_READ request 578
 SMB_COM_READ_ANDX request 594
 SMB_COM_READ_MPX request 585
 SMB_COM_READ_RAW request 584
 SMB_COM_RENAME request 576
 SMB_COM_SEARCH request 603
 SMB_COM_SEEK request 583
 SMB_COM_SESSION_SETUP_ANDX request 599
 SMB_COM_SET_INFORMATION request 578
 SMB_COM_SET_INFORMATION2 request 589
 SMB_COM_TRANSACTION request 591
 SMB_COM_TRANSACTION subcommand request
611
 SMB_COM_TRANSACTION2 request 596
 SMB_COM_TRANSACTION2 subcommand
request 616
 SMB_COM_TREE_CONNECT request 597
 SMB_COM_TREE_CONNECT_ANDX request 602
 SMB_COM_TREE_DISCONNECT request 598
 SMB_COM_UNLOCK_BYTE_RANGE request 580
 SMB_COM_WRITE request 578
 SMB_COM_WRITE_AND_CLOSE request 592
 SMB_COM_WRITE_AND_UNLOCK request 584
 SMB_COM_WRITE_ANDX request 595
 SMB_COM_WRITE_MPX request 588
 SMB_COM_WRITE_PRINT_FILE request 611
 SMB_COM_WRITE_RAW request 586
Server
 abstract data model 548
 global (section 3.1.1.1 473, section 3.3.1.1 548)
 overview (section 3.1.1 473, section 3.3.1 548)
 share 550
 SMB
 command - pending 553
 connection 551
 session 554
 tree connect 554
 unique
 open 555
 open search 555
 higher-layer triggered events

 client session
 security context 560
 session key 559
 configuration - updating 565
 DFS subsystem
 active 559
 DFS share 559
 not a DFS share 559
 disabling 564
 enabling 564
 open
 closing 562
 querying 563
 OpLock break 558
 pausing 564
 resuming 565
 sending any message (section 3.1.4.1 473,
section 3.3.4.1 557)
 session
 closing 560
 querying 562
 share
 deregistering 561

 querying 561
 registering 560
 updating 561
 statistics 565
 transport binding change 564
 TreeConnect - querying 563
 initialization (section 3.1.3 473, section 3.3.3 556)
 local events
 disconnecting connection 625
 handling
 incoming transport connection 625
 transport disconnect 625
 overview 476
 message processing
 algorithms for challenge/response authentication
475
 incoming connection 566
 receiving any message (section 3.1.5.1 474,
section 3.3.5.2 567)
 SMB_COM_CHECK_DIRECTORY request 582
 SMB_COM_CLOSE request 574
 SMB_COM_CLOSE_PRINT_FILE request 611
 SMB_COM_CREATE request 573
 SMB_COM_CREATE_DIRECTORY request 571
 SMB_COM_CREATE_NEW request 581
 SMB_COM_CREATE_TEMPORARY request 580
 SMB_COM_DELETE request 575
 SMB_COM_DELETE_DIRECTORY request 572
 SMB_COM_ECHO request 591
 SMB_COM_FIND request 603
 SMB_COM_FIND_CLOSE request 606
 SMB_COM_FIND_CLOSE2 request 596
 SMB_COM_FIND_UNIQUE request 606
 SMB_COM_FLUSH request 574
 SMB_COM_IOCTL request 591
 SMB_COM_LOCK_AND_READ request 583
 SMB_COM_LOCK_BYTE_RANGE request 579
 SMB_COM_LOCKING_ANDX request 589
 SMB_COM_LOGOFF_ANDX request 601
 SMB_COM_NEGOTIATE request 598
 SMB_COM_NT_CANCEL request 608
 SMB_COM_NT_CREATE_ANDX request 606

720 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_NT_RENAME request 609
 SMB_COM_NT_TRANSACT request 606
 SMB_COM_NT_TRANSACT subcommand request
621
 SMB_COM_OPEN request 572
 SMB_COM_OPEN_ANDX request 592
 SMB_COM_OPEN_PRINT_FILE request 610
 SMB_COM_PROCESS_EXIT request 582
 SMB_COM_QUERY_INFORMATION request 577
 SMB_COM_QUERY_INFORMATION_DISK request
603
 SMB_COM_QUERY_INFORMATION2 request 589
 SMB_COM_READ request 578
 SMB_COM_READ_ANDX request 594
 SMB_COM_READ_MPX request 585
 SMB_COM_READ_RAW request 584
 SMB_COM_RENAME request 576
 SMB_COM_SEARCH request 603
 SMB_COM_SEEK request 583
 SMB_COM_SESSION_SETUP_ANDX request 599
 SMB_COM_SET_INFORMATION request 578
 SMB_COM_SET_INFORMATION2 request 589
 SMB_COM_TRANSACTION request 591

 SMB_COM_TRANSACTION subcommand request
611
 SMB_COM_TRANSACTION2 request 596
 SMB_COM_TRANSACTION2 subcommand
request 616
 SMB_COM_TREE_CONNECT request 597
 SMB_COM_TREE_CONNECT_ANDX request 602
 SMB_COM_TREE_DISCONNECT request 598
 SMB_COM_UNLOCK_BYTE_RANGE request 580
 SMB_COM_WRITE request 578
 SMB_COM_WRITE_AND_CLOSE request 592
 SMB_COM_WRITE_AND_UNLOCK request 584
 SMB_COM_WRITE_ANDX request 595
 SMB_COM_WRITE_MPX request 588
 SMB_COM_WRITE_PRINT_FILE request 611
 SMB_COM_WRITE_RAW request 586
 overview 473
 RPC
 abstract data model
 global 473
 overview (section 3.1.1 473, section 3.5.1
633)
 higher-layer triggered events
 named pipe
 closing its open 634
 waiting for clients to open 633
 security context 634
 sending any message 473
 session key 634
 initialization (section 3.1.3 473, section 3.5.3
633)
 local events (section 3.1.7 476, section 3.5.7
634)
 message processing
 algorithms for challenge/response
authentication 475
 overview 634
 receiving any message 474
 overview 633
 sequencing rules
 algorithms for challenge/response
authentication 475

 overview 634
 receiving any message 474
 timer events (section 3.1.6 476, section 3.5.6
634)
 timers (section 3.1.2 473, section 3.5.2 633)
 sequencing rules
 algorithms for challenge/response authentication
475
 incoming connection 566
 receiving any message (section 3.1.5.1 474,
section 3.3.5.2 567)
 SMB_COM_CHECK_DIRECTORY request 582
 SMB_COM_CLOSE request 574
 SMB_COM_CLOSE_PRINT_FILE request 611
 SMB_COM_CREATE request 573
 SMB_COM_CREATE_DIRECTORY request 571
 SMB_COM_CREATE_NEW request 581
 SMB_COM_CREATE_TEMPORARY request 580
 SMB_COM_DELETE request 575
 SMB_COM_DELETE_DIRECTORY request 572
 SMB_COM_ECHO request 591
 SMB_COM_FIND request 603
 SMB_COM_FIND_CLOSE request 606

 SMB_COM_FIND_CLOSE2 request 596
 SMB_COM_FIND_UNIQUE request 606
 SMB_COM_FLUSH request 574
 SMB_COM_IOCTL request 591
 SMB_COM_LOCK_AND_READ request 583
 SMB_COM_LOCK_BYTE_RANGE request 579
 SMB_COM_LOCKING_ANDX request 589
 SMB_COM_LOGOFF_ANDX request 601
 SMB_COM_NEGOTIATE request 598
 SMB_COM_NT_CANCEL request 608
 SMB_COM_NT_CREATE_ANDX request 606
 SMB_COM_NT_RENAME request 609
 SMB_COM_NT_TRANSACT request 606
 SMB_COM_NT_TRANSACT subcommand request
621
 SMB_COM_OPEN request 572
 SMB_COM_OPEN_ANDX request 592
 SMB_COM_OPEN_PRINT_FILE request 610
 SMB_COM_PROCESS_EXIT request 582
 SMB_COM_QUERY_INFORMATION request 577
 SMB_COM_QUERY_INFORMATION_DISK request
603
 SMB_COM_QUERY_INFORMATION2 request 589
 SMB_COM_READ request 578
 SMB_COM_READ_ANDX request 594
 SMB_COM_READ_MPX request 585
 SMB_COM_READ_RAW request 584
 SMB_COM_RENAME request 576
 SMB_COM_SEARCH request 603
 SMB_COM_SEEK request 583
 SMB_COM_SESSION_SETUP_ANDX request 599
 SMB_COM_SET_INFORMATION request 578
 SMB_COM_SET_INFORMATION2 request 589
 SMB_COM_TRANSACTION request 591
 SMB_COM_TRANSACTION subcommand request
611
 SMB_COM_TRANSACTION2 request 596
 SMB_COM_TRANSACTION2 subcommand
request 616
 SMB_COM_TREE_CONNECT request 597
 SMB_COM_TREE_CONNECT_ANDX request 602
 SMB_COM_TREE_DISCONNECT request 598

721 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 SMB_COM_UNLOCK_BYTE_RANGE request 580
 SMB_COM_WRITE request 578
 SMB_COM_WRITE_AND_CLOSE request 592
 SMB_COM_WRITE_AND_UNLOCK request 584
 SMB_COM_WRITE_ANDX request 595
 SMB_COM_WRITE_MPX request 588
 SMB_COM_WRITE_PRINT_FILE request 611
 SMB_COM_WRITE_RAW request 586
 timer events
 idle connection 625
 OpLock break acknowledgment 624
 overview 476
 unused open search 625
 timers 473
Set file attributes example 639
SMB commands
 SMB_COM_CHECK_DIRECTORY (0x10) 144
 SMB_COM_CLOSE (0x04) 101
 SMB_COM_CLOSE_AND_TREE_DISC (0x31) 251
 SMB_COM_CLOSE_PRINT_FILE (0xC2) 362
 SMB_COM_COPY (0x29) 220
 SMB_COM_CREATE (0x03) 97
 SMB_COM_CREATE_DIRECTORY (0x00) 85

 SMB_COM_CREATE_NEW (0x0F) 140
 SMB_COM_CREATE_TEMPORARY (0x0E) 136
 SMB_COM_DELETE (0x06) 106
 SMB_COM_DELETE_DIRECTORY (0x01) 87
 SMB_COM_ECHO (0x2B) 220
 SMB_COM_FIND (0x82) 309
 SMB_COM_FIND_CLOSE (0x84) 320
 SMB_COM_FIND_CLOSE2 (0x34) 263
 SMB_COM_FIND_NOTIFY_CLOSE (0x35) 265
 SMB_COM_FIND_UNIQUE (0x83) 315
 SMB_COM_FLUSH (0x05) 103
 SMB_COM_GET_PRINT_QUEUE (0xC3) 364
 SMB_COM_INVALID (0xFE) 365
 SMB_COM_IOCTL (0x27) 212
 SMB_COM_IOCTL_SECONDARY (0x28) 219
 SMB_COM_LOCK_AND_READ (0x13) 152
 SMB_COM_LOCK_BYTE_RANGE (0x0C) 129
 SMB_COM_LOCKING_ANDX (0x24) 191
 SMB_COM_LOGOFF_ANDX (0x74) 289
 SMB_COM_MOVE (0x2A) 220
 SMB_COM_NEGOTIATE (0x72) 271
 SMB_COM_NEW_FILE_SIZE (0x30) 250
 SMB_COM_NO_ANDX_COMMAND (0xFF) 365
 SMB_COM_NT_CANCEL (0xA4) 351
 SMB_COM_NT_CREATE_ANDX (0xA2) 337
 SMB_COM_NT_RENAME (0xA5) 353
 SMB_COM_NT_TRANSACT (0xA0) 324
 SMB_COM_NT_TRANSACT_SECONDARY (0xA1)
333
 SMB_COM_OPEN (0x02) 90
 SMB_COM_OPEN_ANDX (0x2D) 228
 SMB_COM_OPEN_PRINT_FILE (0xC0) 355
 SMB_COM_PROCESS_EXIT (0x11) 147
 SMB_COM_QUERY_INFORMATION (0x08) 113
 SMB_COM_QUERY_INFORMATION_DISK (0x80)
299
 SMB_COM_QUERY_INFORMATION2 (0x23) 187
 SMB_COM_QUERY_SERVER (0x21) 184
 SMB_COM_READ (0x0A) 120
 SMB_COM_READ_ANDX (0x2E) 237
 SMB_COM_READ_BULK (0xD8) 365
 SMB_COM_READ_MPX (0x1B) 165

 SMB_COM_READ_MPX_SECONDARY (0x1C) 171
 SMB_COM_READ_RAW (0x1A) 163
 SMB_COM_RENAME (0x07) 109
 SMB_COM_SEARCH (0x81) 302
 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E) 299
 SMB_COM_SEEK (0x12) 149
 SMB_COM_SESSION_SETUP_ANDX (0x73) 279
 SMB_COM_SET_INFORMATION (0x09) 116
 SMB_COM_SET_INFORMATION2 (0x22) 184
 SMB_COM_TRANSACTION (0x25) 199
 SMB_COM_TRANSACTION_SECONDARY (0x26)
209
 SMB_COM_TRANSACTION2 (0x32) 251
 SMB_COM_TRANSACTION2_SECONDARY (0x33)
260
 SMB_COM_TREE_CONNECT (0x70) 265
 SMB_COM_TREE_CONNECT_ANDX (0x75) 292
 SMB_COM_TREE_DISCONNECT (0x71) 269
 SMB_COM_UNLOCK_BYTE_RANGE (0x0D) 132
 SMB_COM_WRITE (0x0B) 124
 SMB_COM_WRITE_AND_CLOSE (0x2C) 223
 SMB_COM_WRITE_AND_UNLOCK (0x14) 157
 SMB_COM_WRITE_ANDX (0x2F) 243

 SMB_COM_WRITE_BULK (0xD9) 365
 SMB_COM_WRITE_BULK_DATA (0xDA) 365
 SMB_COM_WRITE_COMPLETE (0x20) 184
 SMB_COM_WRITE_MPX (0x1E) 178
 SMB_COM_WRITE_MPX_SECONDARY (0x1F) 184
 SMB_COM_WRITE_PRINT_FILE (0xC1) 359
 SMB_COM_WRITE_RAW (0x1D) 171
SMB message structure
 batched messages ("AndX" messages) 84
 data block 83
 overview 77
 parameter block 83
 SMB_Header 77
SMB Message Structure message 77
SMB_COM_CREATE_DIRECTORY_REQUEST packet
85
SMB_COM_CREATE_DIRECTORY_RESPONSE packet
86
SMB_Data packet 83
SMB_ERROR data type 50
SMB_ERROR packet 50
SMB_FEA packet 44
SMB_FEA_LIST packet 45
SMB_FILE_ATTRIBUTE_ARCHIVE 46
SMB_FILE_ATTRIBUTE_DIRECTORY 46
SMB_FILE_ATTRIBUTE_HIDDEN 46
SMB_FILE_ATTRIBUTE_NORMAL 46
SMB_FILE_ATTRIBUTE_READONLY 46
SMB_FILE_ATTRIBUTE_SYSTEM 46
SMB_FILE_ATTRIBUTE_VOLUME 46
SMB_FIND_FILE_BOTH_DIRECTORY_INFO packet
458
SMB_FIND_FILE_DIRECTORY_INFO packet 455
SMB_FIND_FILE_FULL_DIRECTORY_INFO packet 456
SMB_FIND_FILE_NAMES_INFO packet 457
SMB_GEA packet 43
SMB_GEA_LIST packet 43
SMB_Header packet 77
SMB_INFO_ALLOCATION packet 459
SMB_INFO_QUERY_ALL_EAS packet 465
SMB_INFO_QUERY_EA_SIZE packet (section
2.2.8.1.2 454, section 2.2.8.3.2 464)

722 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

SMB_INFO_QUERY_EAS_FROM_LIST packet (section
2.2.8.1.3 454, section 2.2.8.3.3 464)
SMB_INFO_SET_EAS packet 470
SMB_INFO_STANDARD packet (section 2.2.8.1.1
453, section 2.2.8.3.1 463, section 2.2.8.4.1 470)
SMB_INFO_VOLUME packet 459
SMB_NMPIPE_STATUS data type 47
SMB_Parameters packet 83
SMB_QUERY_FILE_ALL_INFO packet 467
SMB_QUERY_FILE_ALT_NAME_INFO packet 468
SMB_QUERY_FILE_BASIC_INFO packet 465
SMB_QUERY_FILE_COMRESSION_INFO packet 469
SMB_QUERY_FILE_EA_INFO packet 466
SMB_QUERY_FILE_NAME_INFO packet 466
SMB_QUERY_FILE_STANDARD_INFO packet 466
SMB_QUERY_FILE_STREAM_INFO packet 468
SMB_QUERY_FS_ATTRIBUTE_INFO packet 462
SMB_QUERY_FS_DEVICE_INFO packet 460
SMB_QUERY_FS_SIZE_INFO packet 460
SMB_QUERY_FS_VOLUME_INFO packet 460
SMB_SEARCH_ATTRIBUTE_ARCHIVE 46
SMB_SEARCH_ATTRIBUTE_DIRECTORY 46
SMB_SEARCH_ATTRIBUTE_HIDDEN 46

SMB_SEARCH_ATTRIBUTE_READONLY 46
SMB_SEARCH_ATTRIBUTE_SYSTEM 46
SMB_SET_FILE_ALLOCATION_INFO packet 472
SMB_SET_FILE_BASIC_INFO packet 470
SMB_SET_FILE_DISPOSITION_INFO packet 471
SMB_SET_FILE_END_OF_FILE_INFO packet 472
Standards assignments 32
Structures - SMB message
 batched messages ("AndX" messages) 84
 data block 83
 overview 77
 parameter block 83
 SMB_Header 77
Subcommand codes - transaction 60
Subcommands
 NT Transact
 NT_TRANSACT_CREATE (0x0001) 428
 NT_TRANSACT_IOCTL (0x0002) 439
 NT_TRANSACT_NOTIFY_CHANGE (0x0004) 445
 NT_TRANSACT_QUERY_SECURITY_DESC
(0x0006) 448
 NT_TRANSACT_RENAME (0x0005) 448
 NT_TRANSACT_SET_SECURITY_DESC (0x0003)
442
 Transaction
 overview 366
 TRANS_CALL_NMPIPE (0x0054) 392
 TRANS_MAILSLOT_WRITE (0x0001) 395
 TRANS_PEEK_NMPIPE (0x0023) 377
 TRANS_QUERY_NMPIPE_INFO (0x0022) 373
 TRANS_QUERY_NMPIPE_STATE (0x0021) 371
 TRANS_RAW_READ_NMPIPE (0x0011) 368
 TRANS_RAW_WRITE_NMPIPE (0x0031) 383
 TRANS_READ_NMPIPE (0x0036) 385
 TRANS_SET_NMPIPE_STATE (0x0001) 366
 TRANS_TRANSACT_NMPIPE (0x0026) 380
 TRANS_WAIT_NMPIPE (0x0053) 390
 TRANS_WRITE_NMPIPE (0x0037) 388
 Transaction2
 TRANS2_CREATE_DIRECTORY (0x000D) 423
 TRANS2_FIND_FIRST2 (0x0001) 402
 TRANS2_FIND_NEXT2 (0x0002) 406

 TRANS2_FIND_NOTIFY_FIRST (0x000B) 423
 TRANS2_FIND_NOTIFY_NEXT (0x000C) 423
 TRANS2_FSCTL (0x0009) 422
 TRANS2_GET_DFS_REFERRAL (0x0010) 426
 TRANS2_IOCTL2 (0x000A) 423
 TRANS2_OPEN2 (0x0000) 396
 TRANS2_QUERY_FILE_INFORMATION (0x0007)
417
 TRANS2_QUERY_FS_INFORMATION (0x0003)
410
 TRANS2_QUERY_PATH_INFORMATION (0x0005)
412
 TRANS2_REPORT_DFS_INCONSISTENCY
(0x0011) 427
 TRANS2_SESSION_SETUP (0x000E) 426
 TRANS2_SET_FILE_INFORMATION (0x0008) 420
 TRANS2_SET_FS_INFORMATION (0x0004) 412
 TRANS2_SET_PATH_INFORMATION (0x0006)
414
Syntax 38

T

Time data type 48
Timer events
 client
 overview 476
 request expiration 547
 RPC (section 3.1.6 476, section 3.4.6 633)
 server
 idle connection 625
 OpLock break acknowledgment 624
 overview 476
 RPC (section 3.1.6 476, section 3.5.6 634)
 unused open search 625
Timers
 client
 idle connection 556
 OpLock break acknowledgment 556
 overview 473
 request expiration 481
 RPC (section 3.1.2 473, section 3.4.2 626)
 unused open search 556
 server
 overview 473
 RPC (section 3.1.2 473, section 3.5.2 633)
Tracking changes 707
TRANS2_FIND_FIRST2_REQUEST packet 402
TRANS2_FIND_NEXT2_REQUEST packet 406
TRANS2_OPEN2_REQUEST packet 396
TRANS2_OPEN2_RESPONSE packet 399
Transaction subcommands
 overview 366
 TRANS_CALL_NMPIPE (0x0054) 392
 TRANS_MAILSLOT_WRITE (0x0001) 395
 TRANS_PEEK_NMPIPE (0x0023) 377
 TRANS_QUERY_NMPIPE_INFO (0x0022) 373
 TRANS_QUERY_NMPIPE_STATE (0x0021) 371
 TRANS_RAW_READ_NMPIPE (0x0011) 368
 TRANS_RAW_WRITE_NMPIPE (0x0031) 383
 TRANS_READ_NMPIPE (0x0036) 385
 TRANS_SET_NMPIPE_STATE (0x0001) 366

 TRANS_TRANSACT_NMPIPE (0x0026) 380

723 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 TRANS_WAIT_NMPIPE (0x0053) 390
 TRANS_WRITE_NMPIPE (0x0037) 388
Transaction Subcommands message 366
Transaction2 subcommands
 TRANS2_CREATE_DIRECTORY (0x000D) 423
 TRANS2_FIND_FIRST2 (0x0001) 402
 TRANS2_FIND_NEXT2 (0x0002) 406
 TRANS2_FIND_NOTIFY_FIRST (0x000B) 423
 TRANS2_FIND_NOTIFY_NEXT (0x000C) 423
 TRANS2_FSCTL (0x0009) 422
 TRANS2_GET_DFS_REFERRAL (0x0010) 426
 TRANS2_IOCTL2 (0x000A) 423
 TRANS2_OPEN2 (0x0000) 396
 TRANS2_QUERY_FILE_INFORMATION (0x0007)
417
 TRANS2_QUERY_FS_INFORMATION (0x0003) 410
 TRANS2_QUERY_PATH_INFORMATION (0x0005)
412
 TRANS2_REPORT_DFS_INCONSISTENCY (0x0011)
427
 TRANS2_SESSION_SETUP (0x000E) 426
 TRANS2_SET_FILE_INFORMATION (0x0008) 420
 TRANS2_SET_FS_INFORMATION (0x0004) 412

 TRANS2_SET_PATH_INFORMATION (0x0006) 414
Transport 33
 NetBIOS
 frames 33
 over
 IPX/SPX 34
 TCP/UDP 34
 overview 33
Transports
 direct hosting 34
 direct IPX 34
 NetBIOS-based transports
 other 34
 overview 33
 virtual circuits 38
Triggered events
 client
 cryptographic session key - querying 528
 device
 reading 507
 writing 511
 DFS
 querying referrals 528
 subsystem active 528
 directory
 contents change notification 526
 creating 494
 deleting 495
 enumeration 522
 verifying path 519
 file
 attributes
 querying 504
 setting 505
 byte-range lock 517
 byte-range lock - release 518
 closing 501
 create or overwrite 499
 creating a hard link 503
 deleting 502
 flushing data 501
 opening an existing 495

 opportunistic lock 519
 print 524
 reading 507
 renaming 502
 seek to a location 520
 sending IOCTL 520
 system attributes - querying 521
 writing 511
 named pipe
 exchange (call) 525
 executing a transaction 525
 peeking at data 525
 querying
 handle state 524
 information 525
 reading (section 3.2.4.14 507, section
3.2.4.37 526)
 setting state 524
 waiting for availability 525
 writing (section 3.2.4.15 511, section 3.2.4.38
526)
 named RAP transaction 527
 number of opens on tree connect 528

 operations - canceling pending 523
 process exit notification 520
 RPC
 DFS referrals - querying 631
 extended DFS referral capability - querying
632
 named pipe
 closing 629
 opening 626
 reading 628
 transaction - issuing 629
 writing 628
 sending any message 473
 session
 initiating 630
 key - authenticated context 630
 terminating 630
 share connection - requesting 631
 tree disconnect - requesting 632
 security descriptors
 querying 527
 setting 527
 sending any message (section 3.1.4.1 473,
section 3.2.4.1 482)
 share - connecting 489
 SMB session logoff 521
 transport layer connection - testing 521
 tree disconnect (unmount share) 521
 server
 client session
 security context 560
 session key 559
 configuration - updating 565
 DFS subsystem
 active 559
 DFS share 559
 not a DFS share 559
 disabling 564
 enabling 564
 open
 closing 562
 querying 563

724 / 724

[MS-CIFS] - v20150630
Common Internet File System (CIFS) Protocol
Copyright © 2015 Microsoft Corporation
Release: June 30, 2015

 OpLock break 558
 pausing 564
 resuming 565
 RPC
 named pipe
 closing its open 634
 waiting for clients to open 633
 security context 634
 sending any message 473
 session key 634
 sending any message (section 3.1.4.1 473,
section 3.3.4.1 557)
 session
 closing 560
 querying 562
 share
 deregistering 561
 querying 561
 registering 560
 updating 561
 statistics 565
 transport binding change 564
 TreeConnect - querying 563

U

Unique identifiers data type 50

V

Vendor-extensible fields 31
Versioning 30
Virtual circuits 38

Y

YEAR 49

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 NetBIOS-Based Transports
	2.1.1.1 NetBIOS Frames (NBF) Protocol Transport
	2.1.1.2 NetBIOS over TCP/UDP (NBT) Transport
	2.1.1.3 NetBIOS over IPX/SPX (NBIPX) Transport
	2.1.1.4 Other NetBIOS-Based Transports

	2.1.2 Direct Hosting
	2.1.2.1 Direct IPX Transport

	2.1.3 Virtual Circuits

	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 Character Sequences
	2.2.1.1.1 File and Directory names
	2.2.1.1.2 Pathnames
	2.2.1.1.3 Wildcards

	2.2.1.2 File Attributes
	2.2.1.2.1 SMB_GEA
	2.2.1.2.1.1 SMB_GEA_LIST

	2.2.1.2.2 SMB_FEA
	2.2.1.2.2.1 SMB_FEA_LIST

	2.2.1.2.3 SMB_EXT_FILE_ATTR
	2.2.1.2.4 SMB_FILE_ATTRIBUTES

	2.2.1.3 Named Pipe Status (SMB_NMPIPE_STATUS)
	2.2.1.4 Time
	2.2.1.4.1 SMB_DATE
	2.2.1.4.2 SMB_TIME
	2.2.1.4.3 UTIME

	2.2.1.5 Status Codes (SMB_ERROR)
	2.2.1.6 Unique Identifiers
	2.2.1.6.1 FID Generation
	2.2.1.6.2 MID Generation
	2.2.1.6.3 PID Generation
	2.2.1.6.4 Connection ID (CID) Generation
	2.2.1.6.5 Search ID (SID) Generation
	2.2.1.6.6 SessionKey Generation
	2.2.1.6.7 TID Generation
	2.2.1.6.8 UID Generation

	2.2.2 Defined Constants
	2.2.2.1 SMB_COM Command Codes
	2.2.2.2 Transaction Subcommand Codes
	2.2.2.3 Information Level Codes
	2.2.2.3.1 FIND Information Level Codes
	2.2.2.3.2 QUERY_FS Information Level Codes
	2.2.2.3.3 QUERY Information Level Codes
	2.2.2.3.4 SET Information Level Codes

	2.2.2.4 SMB Error Classes and Codes
	2.2.2.5 Data Buffer Format Codes

	2.2.3 SMB Message Structure
	2.2.3.1 The SMB Header
	2.2.3.2 Parameter Block
	2.2.3.3 Data Block
	2.2.3.4 Batched Messages ("AndX" Messages)
	2.2.3.4.1 Follow-on Commands

	2.2.4 SMB Commands
	2.2.4.1 SMB_COM_CREATE_DIRECTORY (0x00)
	2.2.4.1.1 Request
	2.2.4.1.2 Response

	2.2.4.2 SMB_COM_DELETE_DIRECTORY (0x01)
	2.2.4.2.1 Request
	2.2.4.2.2 Response

	2.2.4.3 SMB_COM_OPEN (0x02)
	2.2.4.3.1 Request
	2.2.4.3.2 Response

	2.2.4.4 SMB_COM_CREATE (0x03)
	2.2.4.4.1 Request
	2.2.4.4.2 Response

	2.2.4.5 SMB_COM_CLOSE (0x04)
	2.2.4.5.1 Request
	2.2.4.5.2 Response

	2.2.4.6 SMB_COM_FLUSH (0x05)
	2.2.4.6.1 Request
	2.2.4.6.2 Response

	2.2.4.7 SMB_COM_DELETE (0x06)
	2.2.4.7.1 Request
	2.2.4.7.2 Response

	2.2.4.8 SMB_COM_RENAME (0x07)
	2.2.4.8.1 Request
	2.2.4.8.2 Response

	2.2.4.9 SMB_COM_QUERY_INFORMATION (0x08)
	2.2.4.9.1 Request
	2.2.4.9.2 Response

	2.2.4.10 SMB_COM_SET_INFORMATION (0x09)
	2.2.4.10.1 Request
	2.2.4.10.2 Response

	2.2.4.11 SMB_COM_READ (0x0A)
	2.2.4.11.1 Request
	2.2.4.11.2 Response

	2.2.4.12 SMB_COM_WRITE (0x0B)
	2.2.4.12.1 Request
	2.2.4.12.2 Response

	2.2.4.13 SMB_COM_LOCK_BYTE_RANGE (0x0C)
	2.2.4.13.1 Request
	2.2.4.13.2 Response

	2.2.4.14 SMB_COM_UNLOCK_BYTE_RANGE (0x0D)
	2.2.4.14.1 Request
	2.2.4.14.2 Response

	2.2.4.15 SMB_COM_CREATE_TEMPORARY (0x0E)
	2.2.4.15.1 Request
	2.2.4.15.2 Response

	2.2.4.16 SMB_COM_CREATE_NEW (0x0F)
	2.2.4.16.1 Request
	2.2.4.16.2 Response

	2.2.4.17 SMB_COM_CHECK_DIRECTORY (0x10)
	2.2.4.17.1 Request
	2.2.4.17.2 Response

	2.2.4.18 SMB_COM_PROCESS_EXIT (0x11)
	2.2.4.18.1 Request
	2.2.4.18.2 Response

	2.2.4.19 SMB_COM_SEEK (0x12)
	2.2.4.19.1 Request
	2.2.4.19.2 Response

	2.2.4.20 SMB_COM_LOCK_AND_READ (0x13)
	2.2.4.20.1 Request
	2.2.4.20.2 Response

	2.2.4.21 SMB_COM_WRITE_AND_UNLOCK (0x14)
	2.2.4.21.1 Request
	2.2.4.21.2 Response

	2.2.4.22 SMB_COM_READ_RAW (0x1A)
	2.2.4.22.1 Request
	2.2.4.22.2 Response

	2.2.4.23 SMB_COM_READ_MPX (0x1B)
	2.2.4.23.1 Request
	2.2.4.23.2 Response

	2.2.4.24 SMB_COM_READ_MPX_SECONDARY (0x1C)
	2.2.4.25 SMB_COM_WRITE_RAW (0x1D)
	2.2.4.25.1 Request
	2.2.4.25.2 Interim Server Response
	2.2.4.25.3 Final Server Response

	2.2.4.26 SMB_COM_WRITE_MPX (0x1E)
	2.2.4.26.1 Request
	2.2.4.26.2 Response

	2.2.4.27 SMB_COM_WRITE_MPX_SECONDARY (0x1F)
	2.2.4.28 SMB_COM_WRITE_COMPLETE (0x20)
	2.2.4.29 SMB_COM_QUERY_SERVER (0x21)
	2.2.4.30 SMB_COM_SET_INFORMATION2 (0x22)
	2.2.4.30.1 Request
	2.2.4.30.2 Response

	2.2.4.31 SMB_COM_QUERY_INFORMATION2 (0x23)
	2.2.4.31.1 Request
	2.2.4.31.2 Response

	2.2.4.32 SMB_COM_LOCKING_ANDX (0x24)
	2.2.4.32.1 Request
	2.2.4.32.2 Response

	2.2.4.33 SMB_COM_TRANSACTION (0x25)
	2.2.4.33.1 Request
	2.2.4.33.2 Response

	2.2.4.34 SMB_COM_TRANSACTION_SECONDARY (0x26)
	2.2.4.34.1 Request
	2.2.4.34.2 Response

	2.2.4.35 SMB_COM_IOCTL (0x27)
	2.2.4.35.1 Request
	2.2.4.35.2 Response

	2.2.4.36 SMB_COM_IOCTL_SECONDARY (0x28)
	2.2.4.37 SMB_COM_COPY (0x29)
	2.2.4.38 SMB_COM_MOVE (0x2A)
	2.2.4.39 SMB_COM_ECHO (0x2B)
	2.2.4.39.1 Request
	2.2.4.39.2 Response

	2.2.4.40 SMB_COM_WRITE_AND_CLOSE (0x2C)
	2.2.4.40.1 Request
	2.2.4.40.2 Response

	2.2.4.41 SMB_COM_OPEN_ANDX (0x2D)
	2.2.4.41.1 Request
	2.2.4.41.2 Response

	2.2.4.42 SMB_COM_READ_ANDX (0x2E)
	2.2.4.42.1 Request
	2.2.4.42.2 Response

	2.2.4.43 SMB_COM_WRITE_ANDX (0x2F)
	2.2.4.43.1 Request
	2.2.4.43.2 Response

	2.2.4.44 SMB_COM_NEW_FILE_SIZE (0x30)
	2.2.4.45 SMB_COM_CLOSE_AND_TREE_DISC (0x31)
	2.2.4.46 SMB_COM_TRANSACTION2 (0x32)
	2.2.4.46.1 Request
	2.2.4.46.2 Response

	2.2.4.47 SMB_COM_TRANSACTION2_SECONDARY (0x33)
	2.2.4.47.1 Request
	2.2.4.47.2 Response

	2.2.4.48 SMB_COM_FIND_CLOSE2 (0x34)
	2.2.4.48.1 Request
	2.2.4.48.2 Response

	2.2.4.49 SMB_COM_FIND_NOTIFY_CLOSE (0x35)
	2.2.4.50 SMB_COM_TREE_CONNECT (0x70)
	2.2.4.50.1 Request
	2.2.4.50.2 Response

	2.2.4.51 SMB_COM_TREE_DISCONNECT (0x71)
	2.2.4.51.1 Request
	2.2.4.51.2 Response

	2.2.4.52 SMB_COM_NEGOTIATE (0x72)
	2.2.4.52.1 Request
	2.2.4.52.2 Response

	2.2.4.53 SMB_COM_SESSION_SETUP_ANDX (0x73)
	2.2.4.53.1 Request
	2.2.4.53.2 Response

	2.2.4.54 SMB_COM_LOGOFF_ANDX (0x74)
	2.2.4.54.1 Request
	2.2.4.54.2 Response

	2.2.4.55 SMB_COM_TREE_CONNECT_ANDX (0x75)
	2.2.4.55.1 Request
	2.2.4.55.2 Response

	2.2.4.56 SMB_COM_SECURITY_PACKAGE_ANDX (0x7E)
	2.2.4.57 SMB_COM_QUERY_INFORMATION_DISK (0x80)
	2.2.4.57.1 Request
	2.2.4.57.2 Response

	2.2.4.58 SMB_COM_SEARCH (0x81)
	2.2.4.58.1 Request
	2.2.4.58.2 Response

	2.2.4.59 SMB_COM_FIND (0x82)
	2.2.4.59.1 Request
	2.2.4.59.2 Response

	2.2.4.60 SMB_COM_FIND_UNIQUE (0x83)
	2.2.4.60.1 Request
	2.2.4.60.2 Response

	2.2.4.61 SMB_COM_FIND_CLOSE (0x84)
	2.2.4.61.1 Request
	2.2.4.61.2 Response

	2.2.4.62 SMB_COM_NT_TRANSACT (0xA0)
	2.2.4.62.1 Request
	2.2.4.62.2 Response

	2.2.4.63 SMB_COM_NT_TRANSACT_SECONDARY (0xA1)
	2.2.4.63.1 Request
	2.2.4.63.2 Response

	2.2.4.64 SMB_COM_NT_CREATE_ANDX (0xA2)
	2.2.4.64.1 Request
	2.2.4.64.2 Response

	2.2.4.65 SMB_COM_NT_CANCEL (0xA4)
	2.2.4.65.1 Request

	2.2.4.66 SMB_COM_NT_RENAME (0xA5)
	2.2.4.66.1 Request
	2.2.4.66.2 Response

	2.2.4.67 SMB_COM_OPEN_PRINT_FILE (0xC0)
	2.2.4.67.1 Request
	2.2.4.67.2 Response

	2.2.4.68 SMB_COM_WRITE_PRINT_FILE (0xC1)
	2.2.4.68.1 Request
	2.2.4.68.2 Response

	2.2.4.69 SMB_COM_CLOSE_PRINT_FILE (0xC2)
	2.2.4.69.1 Request
	2.2.4.69.2 Response

	2.2.4.70 SMB_COM_GET_PRINT_QUEUE (0xC3)
	2.2.4.71 SMB_COM_READ_BULK (0xD8)
	2.2.4.72 SMB_COM_WRITE_BULK (0xD9)
	2.2.4.73 SMB_COM_WRITE_BULK_DATA (0xDA)
	2.2.4.74 SMB_COM_INVALID (0xFE)
	2.2.4.75 SMB_COM_NO_ANDX_COMMAND (0xFF)

	2.2.5 Transaction Subcommands
	2.2.5.1 TRANS_SET_NMPIPE_STATE (0x0001)
	2.2.5.1.1 Request
	2.2.5.1.2 Response

	2.2.5.2 TRANS_RAW_READ_NMPIPE (0x0011)
	2.2.5.2.1 Request
	2.2.5.2.2 Response

	2.2.5.3 TRANS_QUERY_NMPIPE_STATE (0x0021)
	2.2.5.3.1 Request
	2.2.5.3.2 Response

	2.2.5.4 TRANS_QUERY_NMPIPE_INFO (0x0022)
	2.2.5.4.1 Request
	2.2.5.4.2 Response

	2.2.5.5 TRANS_PEEK_NMPIPE (0x0023)
	2.2.5.5.1 Request
	2.2.5.5.2 Response

	2.2.5.6 TRANS_TRANSACT_NMPIPE (0x0026)
	2.2.5.6.1 Request
	2.2.5.6.2 Response

	2.2.5.7 TRANS_RAW_WRITE_NMPIPE (0x0031)
	2.2.5.7.1 Request
	2.2.5.7.2 Response

	2.2.5.8 TRANS_READ_NMPIPE (0x0036)
	2.2.5.8.1 Request
	2.2.5.8.2 Response

	2.2.5.9 TRANS_WRITE_NMPIPE (0x0037)
	2.2.5.9.1 Request
	2.2.5.9.2 Response

	2.2.5.10 TRANS_WAIT_NMPIPE (0x0053)
	2.2.5.10.1 Request
	2.2.5.10.2 Response

	2.2.5.11 TRANS_CALL_NMPIPE (0x0054)
	2.2.5.11.1 Request
	2.2.5.11.2 Response

	2.2.5.12 TRANS_MAILSLOT_WRITE (0x0001)

	2.2.6 Transaction2 Subcommands
	2.2.6.1 TRANS2_OPEN2 (0x0000)
	2.2.6.1.1 Request
	2.2.6.1.2 Response

	2.2.6.2 TRANS2_FIND_FIRST2 (0x0001)
	2.2.6.2.1 Request
	2.2.6.2.2 Response

	2.2.6.3 TRANS2_FIND_NEXT2 (0x0002)
	2.2.6.3.1 Request
	2.2.6.3.2 Response

	2.2.6.4 TRANS2_QUERY_FS_INFORMATION (0x0003)
	2.2.6.4.1 Request
	2.2.6.4.2 Response

	2.2.6.5 TRANS2_SET_FS_INFORMATION (0x0004)
	2.2.6.6 TRANS2_QUERY_PATH_INFORMATION (0x0005)
	2.2.6.6.1 Request
	2.2.6.6.2 Response

	2.2.6.7 TRANS2_SET_PATH_INFORMATION (0x0006)
	2.2.6.7.1 Request
	2.2.6.7.2 Response

	2.2.6.8 TRANS2_QUERY_FILE_INFORMATION (0x0007)
	2.2.6.8.1 Request
	2.2.6.8.2 Response

	2.2.6.9 TRANS2_SET_FILE_INFORMATION (0x0008)
	2.2.6.9.1 Request
	2.2.6.9.2 Response

	2.2.6.10 TRANS2_FSCTL (0x0009)
	2.2.6.11 TRANS2_IOCTL2 (0x000A)
	2.2.6.12 TRANS2_FIND_NOTIFY_FIRST (0x000B)
	2.2.6.13 TRANS2_FIND_NOTIFY_NEXT (0x000C)
	2.2.6.14 TRANS2_CREATE_DIRECTORY (0x000D)
	2.2.6.14.1 Request
	2.2.6.14.2 Response

	2.2.6.15 TRANS2_SESSION_SETUP (0x000E)
	2.2.6.16 TRANS2_GET_DFS_REFERRAL (0x0010)
	2.2.6.16.1 Request
	2.2.6.16.2 Response

	2.2.6.17 TRANS2_REPORT_DFS_INCONSISTENCY (0x0011)

	2.2.7 NT Transact Subcommands
	2.2.7.1 NT_TRANSACT_CREATE (0x0001)
	2.2.7.1.1 Request
	2.2.7.1.2 Response

	2.2.7.2 NT_TRANSACT_IOCTL (0x0002)
	2.2.7.2.1 Request
	2.2.7.2.2 Response

	2.2.7.3 NT_TRANSACT_SET_SECURITY_DESC (0x0003)
	2.2.7.3.1 Request
	2.2.7.3.2 Response

	2.2.7.4 NT_TRANSACT_NOTIFY_CHANGE (0x0004)
	2.2.7.4.1 Request
	2.2.7.4.2 Response

	2.2.7.5 NT_TRANSACT_RENAME (0x0005)
	2.2.7.6 NT_TRANSACT_QUERY_SECURITY_DESC (0x0006)
	2.2.7.6.1 Request
	2.2.7.6.2 Response

	2.2.8 Information Levels
	2.2.8.1 FIND Information Levels
	2.2.8.1.1 SMB_INFO_STANDARD
	2.2.8.1.2 SMB_INFO_QUERY_EA_SIZE
	2.2.8.1.3 SMB_INFO_QUERY_EAS_FROM_LIST
	2.2.8.1.4 SMB_FIND_FILE_DIRECTORY_INFO
	2.2.8.1.5 SMB_FIND_FILE_FULL_DIRECTORY_INFO
	2.2.8.1.6 SMB_FIND_FILE_NAMES_INFO
	2.2.8.1.7 SMB_FIND_FILE_BOTH_DIRECTORY_INFO

	2.2.8.2 QUERY_FS Information Levels
	2.2.8.2.1 SMB_INFO_ALLOCATION
	2.2.8.2.2 SMB_INFO_VOLUME
	2.2.8.2.3 SMB_QUERY_FS_VOLUME_INFO
	2.2.8.2.4 SMB_QUERY_FS_SIZE_INFO
	2.2.8.2.5 SMB_QUERY_FS_DEVICE_INFO
	2.2.8.2.6 SMB_QUERY_FS_ATTRIBUTE_INFO

	2.2.8.3 QUERY Information Levels
	2.2.8.3.1 SMB_INFO_STANDARD
	2.2.8.3.2 SMB_INFO_QUERY_EA_SIZE
	2.2.8.3.3 SMB_INFO_QUERY_EAS_FROM_LIST
	2.2.8.3.4 SMB_INFO_QUERY_ALL_EAS
	2.2.8.3.5 SMB_INFO_IS_NAME_VALID
	2.2.8.3.6 SMB_QUERY_FILE_BASIC_INFO
	2.2.8.3.7 SMB_QUERY_FILE_STANDARD_INFO
	2.2.8.3.8 SMB_QUERY_FILE_EA_INFO
	2.2.8.3.9 SMB_QUERY_FILE_NAME_INFO
	2.2.8.3.10 SMB_QUERY_FILE_ALL_INFO
	2.2.8.3.11 SMB_QUERY_FILE_ALT_NAME_INFO
	2.2.8.3.12 SMB_QUERY_FILE_STREAM_INFO
	2.2.8.3.13 SMB_QUERY_FILE_COMRESSION_INFO

	2.2.8.4 SET Information levels
	2.2.8.4.1 SMB_INFO_STANDARD
	2.2.8.4.2 SMB_INFO_SET_EAS
	2.2.8.4.3 SMB_SET_FILE_BASIC_INFO
	2.2.8.4.4 SMB_SET_FILE_DISPOSITION_INFO
	2.2.8.4.5 SMB_SET_FILE_ALLOCATION_INFO
	2.2.8.4.6 SMB_SET_FILE_END_OF_FILE_INFO

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Sending Any Message
	3.1.4.1.1 Command Sequence Requirements

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Receiving Any Message
	3.1.5.2 Algorithms for Challenge/Response Authentication

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 Global
	3.2.1.2 Per SMB Connection
	3.2.1.3 Per SMB Session
	3.2.1.4 Per Tree Connect
	3.2.1.5 Per Unique Open
	3.2.1.6 Per Unique Open Search

	3.2.2 Timers
	3.2.2.1 Request Expiration Timer

	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Sending Any Message
	3.2.4.1.1 Command Processing
	3.2.4.1.2 Processing Options
	3.2.4.1.3 Message Signing
	3.2.4.1.4 Sending Any Batched ("AndX") Request
	3.2.4.1.5 Sending Any Transaction
	3.2.4.1.6 Accessing a Share in the DFS Namespace

	3.2.4.2 Application Requests Connecting to a Share
	3.2.4.2.1 Connection Establishment
	3.2.4.2.2 Dialect Negotiation
	3.2.4.2.3 Capabilities Negotiation
	3.2.4.2.4 User Authentication
	3.2.4.2.5 Connecting to the Share (Tree Connect)

	3.2.4.3 Application Requests Creating a Directory
	3.2.4.4 Application Requests Deleting a Directory
	3.2.4.5 Application Requests Opening an Existing File
	3.2.4.5.1 Compatibility Mode
	3.2.4.5.2 FID Permissions

	3.2.4.6 Application Requests to Create or Overwrite a File
	3.2.4.7 Application Requests Closing a File
	3.2.4.8 Application Requests Flushing File Data
	3.2.4.9 Application Requests Deleting a File or Set of Files
	3.2.4.10 Application Requests Renaming a File or Set of Files
	3.2.4.11 Application Requests Creating a Hard Link to a File
	3.2.4.12 Application Requests Querying File Attributes
	3.2.4.13 Application Requests Setting File Attributes
	3.2.4.14 Application Requests Reading from a File, Named Pipe, or Device
	3.2.4.14.1 Client Requests Read Raw
	3.2.4.14.2 Client Requests Multiplexed Read

	3.2.4.15 Application Requests Writing to a File, Named Pipe, or Device
	3.2.4.15.1 Client Requests Raw Write
	3.2.4.15.2 Client Requests Multiplexed Write

	3.2.4.16 Application Requests a Byte-Range Lock on a File
	3.2.4.17 Application Requests the Release of a Byte-Range Lock on a File
	3.2.4.18 Application Requests an Opportunistic Lock on a File
	3.2.4.19 Application Requests Verifying a Directory Path
	3.2.4.20 Client Notifies the Server of a Process Exit
	3.2.4.21 Application Requests to Seek to a Location in a File
	3.2.4.22 Application Requests Sending an IOCTL to a File or Device
	3.2.4.23 Application Requests Testing Transport Layer Connection
	3.2.4.24 Application Requests a Tree Disconnect (Unmount Share)
	3.2.4.25 Application Requests an SMB Session Logoff
	3.2.4.26 Application Requests Querying File System Attributes
	3.2.4.27 Application Requests a Directory Enumeration
	3.2.4.28 Application Requests Canceling Pending Operations
	3.2.4.29 Application Requests to Print a File
	3.2.4.30 Application Requests Setting Named Pipe State
	3.2.4.31 Application Requests Querying Named Pipe Handle State
	3.2.4.32 Application Requests Querying Named Pipe Information
	3.2.4.33 Application Requests Peeking at Named Pipe Data
	3.2.4.34 Application Requests Executing a Transaction on a Named Pipe
	3.2.4.35 Application Requests Waiting for Named Pipe Availability
	3.2.4.36 Application Requests Named Pipe Exchange (Call)
	3.2.4.37 Application Requests to Read from a Named Pipe
	3.2.4.38 Application Requests Writing to a Named Pipe
	3.2.4.39 Application Requests Notification of Change in Directory Contents
	3.2.4.40 Application Requests Querying Security Descriptors
	3.2.4.41 Application Requests Setting Security Descriptors
	3.2.4.42 Application Requests a Named RAP Transaction
	3.2.4.43 DFS Subsystem Notifies That It Is Active
	3.2.4.44 Application Requests Querying DFS Referrals
	3.2.4.45 Application Requests Querying Cryptographic Session Key
	3.2.4.46 Application Requests Number of Opens on a Tree Connect

	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 Receiving Any Message
	3.2.5.1.1 Command Processing
	3.2.5.1.2 Message Signing
	3.2.5.1.3 Receiving any Batched ("AndX") Response
	3.2.5.1.4 Receiving Any Transaction Response

	3.2.5.2 Receiving an SMB_COM_NEGOTIATE Response
	3.2.5.3 Receiving an SMB_COM_SESSION_SETUP_ANDX Response
	3.2.5.4 Receiving an SMB_COM_TREE_CONNECT or SMB_COM_TREE_CONNECT_ANDX Response
	3.2.5.5 Receiving an SMB_COM_OPEN Response
	3.2.5.6 Receiving an SMB_COM_CREATE Response
	3.2.5.7 Receiving an SMB_COM_CLOSE Response
	3.2.5.8 Receiving an SMB_COM_QUERY_INFORMATION Response
	3.2.5.9 Receiving an SMB_COM_READ Response
	3.2.5.10 Receiving an SMB_COM_WRITE Response
	3.2.5.11 Receiving an SMB_COM_CREATE_TEMPORARY Response
	3.2.5.12 Receiving an SMB_COM_CREATE_NEW Response
	3.2.5.13 Receiving an SMB_COM_SEEK Response
	3.2.5.14 Receiving an SMB_COM_LOCK_AND_READ Response
	3.2.5.15 Receiving an SMB_COM_WRITE_AND_UNLOCK Response
	3.2.5.16 Receiving an SMB_COM_READ_RAW Response
	3.2.5.17 Receiving an SMB_COM_READ_MPX Response
	3.2.5.18 Receiving an SMB_COM_WRITE_RAW Response
	3.2.5.19 Receiving an SMB_COM_WRITE_MPX Response
	3.2.5.20 Receiving an SMB_COM_QUERY_INFORMATION2 Response
	3.2.5.21 Receiving an SMB_COM_TRANSACTION Response
	3.2.5.22 Receiving an SMB_COM_IOCTL Response
	3.2.5.23 Receiving an SMB_COM_ECHO Response
	3.2.5.24 Receiving an SMB_COM_WRITE_AND_CLOSE Response
	3.2.5.25 Receiving an SMB_COM_OPEN_ANDX Response
	3.2.5.26 Receiving an SMB_COM_READ_ANDX Response
	3.2.5.27 Receiving an SMB_COM_WRITE_ANDX Response
	3.2.5.28 Receiving an SMB_COM_TRANSACTION2 Response
	3.2.5.29 Receiving an SMB_COM_FIND_CLOSE2 Response
	3.2.5.30 Receiving an SMB_COM_TREE_DISCONNECT Response
	3.2.5.31 Receiving an SMB_COM_LOGOFF_ANDX Response
	3.2.5.32 Receiving an SMB_COM_QUERY_INFORMATION_DISK Response
	3.2.5.33 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Response
	3.2.5.34 Receiving an SMB_COM_FIND_UNIQUE Response
	3.2.5.35 Receiving an SMB_COM_NT_TRANSACT Response
	3.2.5.36 Receiving an SMB_COM_NT_CREATE_ANDX Response
	3.2.5.37 Receiving an SMB_COM_OPEN_PRINT_FILE Response
	3.2.5.38 Receiving any SMB_COM_TRANSACTION Subcommand Response
	3.2.5.38.1 Receiving a RAP Transaction Response
	3.2.5.38.2 Receiving a TRANS_RAW_READ_NMPIPE Response
	3.2.5.38.3 Receiving a TRANS_QUERY_NMPIPE_STATE Response
	3.2.5.38.4 Receiving a TRANS_QUERY_NMPIPE_INFO Response
	3.2.5.38.5 Receiving a TRANS_PEEK_NMPIPE Response
	3.2.5.38.6 Receiving a TRANS_TRASACT_NMPIPE Response
	3.2.5.38.7 Receiving a TRANS_RAW_WRITE_NMPIPE Response
	3.2.5.38.8 Receiving a TRANS_READ_NMPIPE Response
	3.2.5.38.9 Receiving a TRANS_WRITE_NMPIPE Response
	3.2.5.38.10 Receiving a TRANS_CALL_NMPIPE Response

	3.2.5.39 Receiving any SMB_COM_TRANSACTION2 Subcommand Response
	3.2.5.39.1 Receiving a TRANS2_OPEN2 Response
	3.2.5.39.2 Receiving a TRANS2_FIND_FIRST2 or TRANS2_FIND_NEXT2 Response
	3.2.5.39.3 Receiving a TRANS2_QUERY_FS_INFORMATION Response
	3.2.5.39.4 Receiving a TRANS2_QUERY_PATH_INFORMATION or TRANS2_QUERY_FILE_INFORMATION Response
	3.2.5.39.5 Receiving a TRANS2_CREATE_DIRECTORY Response
	3.2.5.39.6 Receiving a TRANS2_GET_DFS_REFERRAL Response

	3.2.5.40 Receiving any SMB_COM_NT_TRANSACT Subcommand Response
	3.2.5.40.1 Receiving an NT_TRANSACT_CREATE Response
	3.2.5.40.2 Receiving an NT_TRANSACT_IOCTL Response
	3.2.5.40.3 Receiving an NT_TRANSACT_NOTIFY_CHANGE Response
	3.2.5.40.4 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Response

	3.2.5.41 Receiving any OpLock Grant
	3.2.5.42 Receiving an OpLock Break Notification
	3.2.5.43 Receiving a STATUS_PATH_NOT_COVERED (ERRSRV/ERRbadpath) Error for an Object in DFS

	3.2.6 Timer Events
	3.2.6.1 Request Expiration Timer Event

	3.2.7 Other Local Events
	3.2.7.1 Handling a Transport Disconnect

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.1.1 Global
	3.3.1.2 Per Share
	3.3.1.3 Per SMB Connection
	3.3.1.4 Per Pending SMB Command
	3.3.1.5 Per SMB Session
	3.3.1.6 Per Tree Connect
	3.3.1.7 Per Unique Open
	3.3.1.8 Per Unique Open Search

	3.3.2 Timers
	3.3.2.1 OpLock Break Acknowledgment Timer
	3.3.2.2 Idle Connection Timer
	3.3.2.3 Unused Open Search Timer
	3.3.2.4 Unused Connection Timer

	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Sending Any Message
	3.3.4.1.1 Processing Options
	3.3.4.1.2 Sending Any Error Response Message

	3.3.4.2 Object Store Indicates an OpLock Break
	3.3.4.3 DFS Subsystem Notifies That It Is Active
	3.3.4.4 DFS Subsystem Notifies That a Share Is a DFS Share
	3.3.4.5 DFS Subsystem Notifies That a Share Is Not a DFS Share
	3.3.4.6 Application Requests the Session Key Associated with a Client Session
	3.3.4.7 Application Requests the Security Context Associated with a Client Session
	3.3.4.8 Server Application Requests Closing a Session
	3.3.4.9 Server Application Registers a Share
	3.3.4.10 Server Application Updates a Share
	3.3.4.11 Server Application Deregisters a Share
	3.3.4.12 Server Application Requests Querying a Share
	3.3.4.13 Server Application Requests Closing an Open
	3.3.4.14 Server Application Queries a Session
	3.3.4.15 Server Application Queries a TreeConnect
	3.3.4.16 Server Application Queries an Open
	3.3.4.17 Server Application Requests Transport Binding Change
	3.3.4.18 Server Service Enables the CIFS Server
	3.3.4.19 Server Services Disables the CIFS Server
	3.3.4.20 Server Service Pauses the CIFS Server
	3.3.4.21 Server Services Resumes (Continues) the CIFS Server
	3.3.4.22 Server Application Requests Updating the Server Configuration
	3.3.4.23 Server Application Requests Server Statistics

	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Accepting an Incoming Connection
	3.3.5.2 Receiving Any Message
	3.3.5.2.1 Command Processing
	3.3.5.2.2 Processing Options
	3.3.5.2.3 Message Signing
	3.3.5.2.4 Receiving any Batched ("AndX") Request
	3.3.5.2.5 Receiving Any Transaction Request
	3.3.5.2.6 Supporting Shares in the DFS Namespace
	3.3.5.2.7 Granting OpLocks

	3.3.5.3 Receiving an SMB_COM_CREATE_DIRECTORY Request
	3.3.5.4 Receiving an SMB_COM_DELETE_DIRECTORY Request
	3.3.5.5 Receiving an SMB_COM_OPEN Request
	3.3.5.6 Receiving an SMB_COM_CREATE Request
	3.3.5.7 Receiving an SMB_COM_CLOSE Request
	3.3.5.8 Receiving an SMB_COM_FLUSH Request
	3.3.5.9 Receiving an SMB_COM_DELETE Request
	3.3.5.10 Receiving an SMB_COM_RENAME Request
	3.3.5.11 Receiving an SMB_COM_QUERY_INFORMATION Request
	3.3.5.12 Receiving an SMB_COM_SET_INFORMATION Request
	3.3.5.13 Receiving an SMB_COM_READ Request
	3.3.5.14 Receiving an SMB_COM_WRITE Request
	3.3.5.15 Receiving an SMB_COM_LOCK_BYTE_RANGE Request
	3.3.5.16 Receiving an SMB_COM_UNLOCK_BYTE_RANGE Request
	3.3.5.17 Receiving an SMB_COM_CREATE_TEMPORARY Request
	3.3.5.18 Receiving an SMB_COM_CREATE_NEW Request
	3.3.5.19 Receiving an SMB_COM_CHECK_DIRECTORY Request
	3.3.5.20 Receiving an SMB_COM_PROCESS_EXIT Request
	3.3.5.21 Receiving an SMB_COM_SEEK Request
	3.3.5.22 Receiving an SMB_COM_LOCK_AND_READ Request
	3.3.5.23 Receiving an SMB_COM_WRITE_AND_UNLOCK Request
	3.3.5.24 Receiving an SMB_COM_READ_RAW Request
	3.3.5.25 Receiving an SMB_COM_READ_MPX Request
	3.3.5.26 Receiving an SMB_COM_WRITE_RAW Request
	3.3.5.27 Receiving an SMB_COM_WRITE_MPX Request
	3.3.5.28 Receiving an SMB_COM_QUERY_INFORMATION2 Request
	3.3.5.29 Receiving an SMB_COM_SET_INFORMATION2 Request
	3.3.5.30 Receiving an SMB_COM_LOCKING_ANDX Request
	3.3.5.31 Receiving an SMB_COM_TRANSACTION Request
	3.3.5.32 Receiving an SMB_COM_IOCTL Request
	3.3.5.33 Receiving an SMB_COM_ECHO Request
	3.3.5.34 Receiving an SMB_COM_WRITE_AND_CLOSE Request
	3.3.5.35 Receiving an SMB_COM_OPEN_ANDX Request
	3.3.5.36 Receiving an SMB_COM_READ_ANDX Request
	3.3.5.37 Receiving an SMB_COM_WRITE_ANDX Request
	3.3.5.38 Receiving an SMB_COM_TRANSACTION2 Request
	3.3.5.39 Receiving an SMB_COM_FIND_CLOSE2 Request
	3.3.5.40 Receiving an SMB_COM_TREE_CONNECT Request
	3.3.5.41 Receiving an SMB_COM_TREE_DISCONNECT Request
	3.3.5.42 Receiving an SMB_COM_NEGOTIATE Request
	3.3.5.43 Receiving an SMB_COM_SESSION_SETUP_ANDX Request
	3.3.5.44 Receiving an SMB_COM_LOGOFF_ANDX Request
	3.3.5.45 Receiving an SMB_COM_TREE_CONNECT_ANDX Request
	3.3.5.46 Receiving an SMB_COM_QUERY_INFORMATION_DISK Request
	3.3.5.47 Receiving an SMB_COM_SEARCH or SMB_COM_FIND Request
	3.3.5.48 Receiving an SMB_COM_FIND_UNIQUE Request
	3.3.5.49 Receiving an SMB_COM_FIND_CLOSE Request
	3.3.5.50 Receiving an SMB_COM_NT_TRANSACT Request
	3.3.5.51 Receiving an SMB_COM_NT_CREATE_ANDX Request
	3.3.5.52 Receiving an SMB_COM_NT_CANCEL Request
	3.3.5.53 Receiving an SMB_COM_NT_RENAME Request
	3.3.5.54 Receiving an SMB_COM_OPEN_PRINT_FILE Request
	3.3.5.55 Receiving an SMB_COM_WRITE_PRINT_FILE Request
	3.3.5.56 Receiving an SMB_COM_CLOSE_PRINT_FILE Request
	3.3.5.57 Receiving any SMB_COM_TRANSACTION Subcommand Request
	3.3.5.57.1 Receiving a RAP Transaction Request
	3.3.5.57.2 Receiving a TRANS_SET_NMPIPE_STATE Request
	3.3.5.57.3 Receiving a TRANS_RAW_READ_NMPIPE Request
	3.3.5.57.4 Receiving a TRANS_QUERY_NMPIPE_STATE Request
	3.3.5.57.5 Receiving a TRANS_QUERY_NMPIPE_INFO Request
	3.3.5.57.6 Receiving a TRANS_PEEK_NMPIPE Request
	3.3.5.57.7 Receiving a TRANS_TRANSACT_NMPIPE Request
	3.3.5.57.8 Receiving a TRANS_RAW_WRITE_NMPIPE Request
	3.3.5.57.9 Receiving a TRANS_READ_NMPIPE Request
	3.3.5.57.10 Receiving a TRANS_WRITE_NMPIPE Request
	3.3.5.57.11 Receiving a TRANS_WAIT_NMPIPE Request
	3.3.5.57.12 Receiving a TRANS_CALL_NMPIPE Request

	3.3.5.58 Receiving Any SMB_COM_TRANSACTION2 Subcommand Request
	3.3.5.58.1 Receiving Any Information Level
	3.3.5.58.2 Receiving a TRANS2_OPEN2 Request
	3.3.5.58.3 Receiving a TRANS2_FIND_FIRST2 Request
	3.3.5.58.4 Receiving a TRANS2_FIND_NEXT2 Request
	3.3.5.58.5 Receiving a TRANS2_QUERY_FS_INFORMATION Request
	3.3.5.58.6 Receiving a TRANS2_QUERY_PATH_INFORMATION Request
	3.3.5.58.7 Receiving a TRANS2_SET_PATH_INFORMATION Request
	3.3.5.58.8 Receiving a TRANS2_QUERY_FILE_INFORMATION Request
	3.3.5.58.9 Receiving a TRANS2_SET_FILE_INFORMATION Request
	3.3.5.58.10 Receiving a TRANS2_CREATE_DIRECTORY Request
	3.3.5.58.11 Receiving a TRANS2_GET_DFS_REFERRAL Request

	3.3.5.59 Receiving any SMB_COM_NT_TRANSACT Subcommand Request
	3.3.5.59.1 Receiving an NT_TRANSACT_CREATE Request
	3.3.5.59.2 Receiving an NT_TRANSACT_IOCTL Request
	3.3.5.59.3 Receiving an NT_TRANSACT_SET_SECURITY_DESC Request
	3.3.5.59.4 Receiving an NT_TRANSACT_NOTIFY_CHANGE Request
	3.3.5.59.5 Receiving an NT_TRANSACT_QUERY_SECURITY_DESC Request

	3.3.6 Timer Events
	3.3.6.1 OpLock Break Acknowledgment Timer Event
	3.3.6.2 Idle Connection Timer Event
	3.3.6.3 Unused Open Search Timer Event
	3.3.6.4 Unused Connection Timer Event

	3.3.7 Other Local Events
	3.3.7.1 Handling a Transport Disconnect
	3.3.7.2 Server Disconnects a Connection
	3.3.7.3 Handling an Incoming Transport Connection

	3.4 Local Interface Details for RPC Client Applications
	3.4.1 Abstract Data Model
	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.4.1 An RPC Client Application Opens a Named Pipe
	3.4.4.2 An RPC Client Application Writes to a Named Pipe
	3.4.4.3 An RPC Client Application Reads from a Named Pipe
	3.4.4.4 An RPC Client Application Issues a Named Pipe Transaction
	3.4.4.5 An RPC Client Application Closes a Named Pipe
	3.4.4.6 An RPC Client Application Requests the Session Key for an Authenticated Context
	3.4.4.7 A Local Client Application Initiates a Server Session
	3.4.4.8 A Local Client Application Terminates a Server Session
	3.4.4.9 A Local Client Application Queries DFS Referrals
	3.4.4.10 A Local Client Application Requests a Connection to a Share
	3.4.4.11 A Local Client Application Requests a Tree Disconnect
	3.4.4.12 A Local Client Application Queries the Extended DFS Referral Capability

	3.4.5 Message Processing Events and Sequencing Rules
	3.4.6 Timer Events
	3.4.7 Other Local Events

	3.5 Local Interface Details for RPC Server Applications
	3.5.1 Abstract Data Model
	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Higher-Layer Triggered Events
	3.5.4.1 An RPC Server Application Waits for Clients to Open a Named Pipe
	3.5.4.2 An RPC Server Application Closes its Open to a Named Pipe
	3.5.4.3 An RPC Server Application Requests the Security Context of a Client
	3.5.4.4 An RPC Server Application Requests the Session Key of a Client

	3.5.5 Message Processing Events and Sequencing Rules
	3.5.6 Timer Events
	3.5.7 Other Local Events

	4 Protocol Examples
	4.1 Negotiate and Tree Connect Example
	4.2 Disconnect Example
	4.3 Message Signing Example
	4.4 Get File Attributes Example
	4.5 Set File Attributes Example
	4.6 Copy File from Share Example
	4.7 Copy File to Share Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

