

1 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-BKRP-Diff]:

BackupKey Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
.www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 Major Updated and revised the technical content.

4/3/2007 1.1 Minor Clarified the meaning of the technical content.

5/11/2007 2.0 Major Updated and revised the technical content.

6/1/2007 2.1 Minor Clarified the meaning of the technical content.

7/3/2007 3.0 Major Changed to unified format; minor updates to technical content

8/10/2007 4.0 Major Updated and revised the technical content.

9/28/2007 5.0 Major Updated and revised the technical content.

10/23/2007 5.1 Minor Clarified the meaning of the technical content.

1/25/2008 5.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 6.0 Major Major update to technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 7.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 7.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/5/2008 9.0 Major Updated and revised the technical content.

1/16/2009 10.0 Major Updated and revised the technical content.

2/27/2009 10.0.1 Editorial Changed language and formatting in the technical content.

4/10/2009 11.0 Major Updated and revised the technical content.

5/22/2009 11.0.1 Editorial Changed language and formatting in the technical content.

7/2/2009 11.0.2 Editorial Changed language and formatting in the technical content.

8/14/2009 11.0.3 Editorial Changed language and formatting in the technical content.

9/25/2009 11.1 Minor Clarified the meaning of the technical content.

11/6/2009 11.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 11.2 Minor Clarified the meaning of the technical content.

1/29/2010 11.2.1 Editorial Changed language and formatting in the technical content.

3/12/2010 12.0 Major Updated and revised the technical content.

4/23/2010 12.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 13.0 Major Updated and revised the technical content.

7/16/2010 13.1 Minor Clarified the meaning of the technical content.

8/27/2010 14.0 Major Updated and revised the technical content.

3 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

10/8/2010 14.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 15.0 Major Updated and revised the technical content.

1/7/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 16.0 Major Updated and revised the technical content.

3/25/2011 17.0 Major Updated and revised the technical content.

5/6/2011 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 17.1 Minor Clarified the meaning of the technical content.

9/23/2011 17.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 18.0 Major Updated and revised the technical content.

3/30/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 19.0 Major Updated and revised the technical content.

11/14/2013 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 20.0 Major Significantly changed the technical content.

10/16/2015 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 20.1 Minor Clarified the meaning of the technical content.

6/1/2017 20.1 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.3.1 Call Flows .. 12

1.3.1.1 ServerWrap Subprotocol .. 13
1.3.1.2 ClientWrap Subprotocol ... 14

1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 15
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 16
1.9 Standards Assignments ... 16

2 Messages ... 17
2.1 Transport .. 17
2.2 Common Data Types .. 17

2.2.1 Server Public Key for ClientWrap Subprotocol ... 17
2.2.2 Client-Side-Wrapped Secret ... 18

2.2.2.1 EncryptedSecret structure Version 2 .. 19
2.2.2.2 EncryptedSecret Structure Version 3 ... 19
2.2.2.3 AccessCheck Structure Version 2 .. 20
2.2.2.4 AccessCheck Structure Version 3 .. 21

2.2.3 Unwrapped Secret (ClientWrap Subprotocol Only)... 22
2.2.4 Secret Wrapped with Symmetric Key .. 22

2.2.4.1 Rc4EncryptedPayload Structure .. 23
2.2.5 ClientWrap RSA Key Pair ... 23
2.2.6 Unwrapped Secret .. 25

2.2.6.1 Recovered Secret Structure .. 26
2.2.7 ServerWrap Key ... 27

3 Protocol Details ... 28
3.1 BackupKey Remote Server Details .. 28

3.1.1 Abstract Data Model .. 28
3.1.1.1 ServerWrap Subprotocol .. 28
3.1.1.2 ClientWrap Subprotocol ... 28

3.1.2 Timers .. 28
3.1.3 Initialization ... 29
3.1.4 Message Processing Events and Sequencing Rules .. 29

3.1.4.1 BackuprKey(Opnum 0) .. 29
3.1.4.1.1 BACKUPKEY_BACKUP_GUID .. 30
3.1.4.1.2 BACKUPKEY_RESTORE_GUID_WIN2K .. 32

3.1.4.1.2.1 Processing a Valid ServerWrap Wrapped Secret 32
3.1.4.1.2.2 Processing a ClientWrap Wrapped Secret 33

3.1.4.1.3 BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID 33
3.1.4.1.4 BACKUPKEY_RESTORE_GUID .. 34

3.1.5 Timer Events .. 36
3.1.6 Other Local Events .. 36

3.2 BackupKey Remote Client Details ... 36
3.2.1 Abstract Data Model .. 36
3.2.2 Timers .. 36
3.2.3 Initialization ... 36
3.2.4 Message Processing Events and Sequencing Rules .. 36

5 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.1 Performing Client-Side Wrapping of Secrets ... 37
3.2.5 Timer Events .. 39
3.2.6 Other Local Events .. 39

4 Protocol Examples ... 40

5 Security ... 41
5.1 Security Considerations for Implementers ... 41
5.2 Index of Security Parameters .. 41

6 Appendix A: Full IDL .. 43

7 Appendix B: Product Behavior ... 44

8 Change Tracking .. 47

9 Index ... 49

6 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The BackupKey Remote Protocol is used by clients to encrypt and decrypt sensitive data (such as
cryptographic keys) with the help of a server. Data encrypted using this protocol can be decrypted
only by the server, and the client can safely write such encrypted data to storage that is not specially
protected. In Windows, this protocol is used to provide encryption of user secrets through the Data
Protection Application Program Interface (DPAPI) in an Active Directory Domain.

Familiarity with cryptography and Public Key Infrastructure (PKI) concepts (such as asymmetric and
symmetric cryptography, digital certificate concepts, and cryptographic key exchange) is required for
a complete understanding of this specification. For more information about cryptography and PKI
concepts, see [CRYPTO].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Active Directory: A general-purpose network directory service. Active Directory also refers to the
Windows implementation of a directory service. Active Directory stores information about a

variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory. Active Directory is either deployed as Active Directory Domain Services (AD
DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both
forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory domain: A domain hosted on Active Directory. For more information, see [MS-

ADTS].

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption

Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the

same key is used for the encryption and decryption operations. It is also a block cipher,
meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also
known as the Rijndael symmetric encryption algorithm [FIPS197].

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

certificate: A certificate is a collection of attributes (1) and extensions that can be stored

persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a public key to the entity that holds the corresponding
private key. A certificate is commonly used for authentication (2) and secure exchange of
information on open networks, such as the Internet, extranets, and intranets. Certificates are
digitally signed by the issuing certification authority (CA) and can be issued for a user, a

computer, or a service. The most widely accepted format for certificates is defined by the ITU-T
X.509 version 3 international standards. For more information about attributes and extensions,
see [RFC3280] and [X509] sections 7 and 8.

7 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ClientWrap subprotocol: The subset of the BackupKey Remote Protocol that is used by a client
that is capable of performing local wrapping of secrets, as specified in sections 3.1.4.1.3 and

3.1.4.1.4.

Data Encryption Standard (DES): A specification for encryption of computer data that uses a

56-bit key developed by IBM and adopted by the U.S. government as a standard in 1976. For
more information see [FIPS46-3].

Data Protection Application Program Interface (DPAPI): An application programming
interface (API) for creating protected data BLOBs. For more information, see [MSDN-DPAPI].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.

When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its

forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),

several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more

information, see [C706].

Generic Security Services (GSS): An Internet standard, as described in [RFC2743], for providing

security services to applications. It consists of an application programming interface (GSS-API)
set, as well as standards that describe the structure of the security data.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in

[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a
curly braced GUID string, a GUIDString is not enclosed in braces.

Hash-based Message Authentication Code (HMAC): A mechanism for message authentication
(2) using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash
function (for example, MD5 and SHA-1) in combination with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

8 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Kerberos: An authentication system that enables two parties to exchange private information

across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime

environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret

and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed

freely and published as part of a digital certificate. For an introduction to this concept, see
[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key infrastructure (PKI): The laws, policies, standards, and software that regulate or
manipulate certificates and public and private keys. In practice, it is a system of digital
certificates, certificate authorities (CAs), and other registration authorities that verify and
authenticate the validity of each party involved in an electronic transaction (3).. For more
information, see [X509] section 6.

public-private key pair: The association of a public key and its corresponding private key when
used in cryptography. Also referred to simply as a "key pair". For an introduction to public-
private key pairs, see [IEEE1363] section 3.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term

interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
[PKCS1] and [RFC3447].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC transfer syntax: A method for encoding messages defined in an Interface Definition
Language (IDL) file. Remote procedure call (RPC) can support different encoding methods or

transfer syntaxes. For more information, see [C706].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

9 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

security identifier (SID): An identifier for security principals in Windows that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion

(typically a domain) and a smaller integer representing an identity relative to the account
authority, termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section

2.4.2; a string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD]
section 1.1.1.2.

security provider: A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

Server Message Block (SMB): A protocol that is used to request file and print services from

server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

ServerWrap subprotocol: The subset of the BackupKey Remote Protocol that is used by a client
that does not perform local wrapping of secrets, as specified in sections 3.1.4.1.1 and 3.1.4.1.2.

SHA-1: An algorithm that generates a 160-bit hash value from an arbitrary amount of input data,
as described in [RFC3174]. SHA-1 is used with the Digital Signature Algorithm (DSA) in the

Digital Signature Standard (DSS), in addition to other algorithms and standards.

SHA-1 hash: A hashing algorithm as specified in [FIPS180-2] that was developed by the National
Institute of Standards and Technology (NIST) and the National Security Agency (NSA).

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication
mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different
options within a given security mechanism or different options from several security

mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178].

symmetric encryption: An encryption method that uses the same cryptographic key to encrypt

and decrypt a given message.

symmetric key: A secret key used with a cryptographic symmetric algorithm. The key needs to be
known to all communicating parties. For an introduction to this concept, see [CRYPTO] section
1.5.

Triple Data Encryption Standard: A block cipher that is formed from the Data Encryption
Standard (DES) cipher by using it three times.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

unwrapping: Relating to a secret wrapped by this protocol: the decryption of a previously
wrapped opaque BLOB to produce the original secret.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

10 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

wrapping: Relating to a secret wrapped by this protocol: encrypting a secret to produce an
opaque BLOB that can then be stored in normal, unprotected media. Wrapped secrets are often

backed up to storage that is not specially protected.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-
2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
http://csrcnvlpubs.nist.gov/publications/fips/fips197/fips-nistpubs/FIPS/NIST.FIPS.197.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed-Hashing for Message

Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

11 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC3447] Jonsson, J. and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,

http://www.ietf.org/rfc/rfc3447.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, http://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic

Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, http://www.rfc-editor.org/rfc/rfc4178.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,
http://www.ietf.org/rfc/rfc5280.txt

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:
0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[SP800-67] National Institute of Standards and Technology., "Special Publication 800-67, Revision 1,
Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher", January 2012,
http://csrc.nist.gov/publications/nistpubs/800-67-Rev1/SP-800-67-Rev1.pdf

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key

and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T-REC-X.509/en

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation
X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

[X9.31] IHS, "Digital Signatures Using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA)", January 1998, http://engineers.ihs.com/document/abstract/MRSOPAAAAAAAAAAA

Note There is a charge to download the specification.

1.2.2 Informative References

[CRYPTO] Menezes, A., Vanstone, S., and Oorschot, P., "Handbook of Applied Cryptography", 1997,

http://www.cacr.math.uwaterloo.ca/hac/

[FIPS140] FIPS PUBS, "Security Requirements for Cryptographic Modules", FIPS PUB 140, December
2002, http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[HOWARD] Howard, M., "Writing Secure Code", Microsoft Press, 2002, ISBN: 0735617228.

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[MSDN-DPAPI] Microsoft Corporation, "Windows Data Protection", October 2001,
http://msdn.microsoft.com/en-us/library/ms995355.aspx

1.3 Overview

The BackupKey Remote Protocol provides a method of protecting a secret value so that the value can
be stored in a potentially insecure location, while still being recoverable by an authorized user. The
protocol does this by encrypting the secret with the assistance of a server, in a process known as
wrapping. When an authorized user wants to access the secret, the user authenticates to the server

12 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

and submits the wrapped data to the server. The server then extracts the original secret in a process
known as unwrapping, and returns it to the user.

As the name indicates, this protocol was designed specifically to wrap and unwrap cryptographic keys.
Within the Microsoft implementation, this protocol is used by the Data Protection Application Program

Interface (DPAPI) on a client in an Active Directory domain and a Domain Controller (DC) in the same
domain to wrap cryptographic keys. However, all of this protocol's variants will wrap arbitrary secrets.
Nothing in the protocol requires the secrets to be cryptographic keys or to have any particular
structure, other than a limitation that is imposed on the length of the secret in certain cases. This
limitation is specified in section 2.2.2.2.

The BackupKey Remote Protocol consists of two subprotocols, each of which enables the client to
perform a wrapping operation and a corresponding unwrapping operation. In the ServerWrap

subprotocol, both the wrapping and unwrapping operations are performed through a protocol
exchange with a server supporting this subprotocol. On the other hand, the server side of the
ClientWrap subprotocol consists of a key retrieval method and an unwrapping method. Thus, a client
can perform the unwrapping operation of the ClientWrap subprotocol only through a protocol
exchange with a server that supports this subprotocol. However, a client can perform the wrapping

operation of the ClientWrap subprotocol purely locally using public key cryptography, provided that it

has in the past retrieved a key from a server that supports this subprotocol.

A BackupKey Remote Protocol client or server can implement either or both of these subprotocols, and
in each case it can implement the entire subprotocol or only the unwrapping operation. However, a
client or server has to always support unwrapping any secrets whose wrapping it performed or
enabled. Thus, a server that supports ServerWrap wrapping has to also support ServerWrap
unwrapping, and a server that supports ClientWrap key retrieval has to also support ClientWrap
unwrapping. Similarly, a client that supports the wrapping operation of either subprotocol has to also

support the corresponding unwrapping operation.

It is important to note that a BackupKey Remote Protocol server does not actually perform remote
backup of secrets. Instead, the server wraps each secret and returns it to the client. The client is
responsible for storing the secret until it is needed again, at which point the client can request the
server to unwrap the secret.

The BackupKey Remote Protocol uses remote procedure call (RPC) [C706] with the security provider
extensions for user impersonation and connection encryption and authentication specified in [MS-

RPCE]. Named pipes over the Server Message Block (SMB) Protocol are used as transport. SPNEGO
[RFC4178] [MS-SPNG] is used to negotiate an authentication mechanism between client and server.

1.3.1 Call Flows

This section presents an overview of the message flows in a typical usage of the BackupKey Remote
Protocol. It is divided into two subsections, one for the subprotocol with server-side wrapping
(referred to as the ServerWrap subprotocol) and the other for the subprotocol with client-side
wrapping (referred to as the ClientWrap subprotocol).

The BackupKey Remote Protocol consists of a single RPC method. This method takes a parameter that
specifies the operation requested. This parameter has four possible values, as specified in section
3.1.4.1. These values are used to identify the messages in the call flows that follow.

Although the BackupKey Remote Protocol could be used between a client and any server to provide
secret wrapping and unwrapping services, the specific use of this protocol is between a client and a
Domain Controller (DC). Specifically, every writable DC in an Active Directory domain is a BackupKey
Remote Protocol server for clients within that domain, and no other machines support BackupKey
Remote Protocol server functionality. All the writable DCs in a domain are treated as equivalent. All
server keys are stored as LSA global secret objects (specified in [MS-LSAD] section 3.1.1.4). These

global secret objects are replicated across all the DCs in a domain as specified in [MS-LSAD].

13 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When it needs to perform a protocol operation, the client implementation locates a writable DC that is
hosting the calling user's domain-naming context. This is done using the client's implementation of the

DC Locator functionality, specified in [MS-ADTS] section 6.3.6, with the DNS domain name of the
calling user's primary domain as the basis. The client then establishes an RPC connection and security

context, as specified in section 3.2.4, and proceeds to issue its request. For brevity, all the call flows
in this section omit these initial steps, as well as the steps required to create and replicate LSA global
secrets among DCs.

1.3.1.1 ServerWrap Subprotocol

In this subprotocol, the client submits a secret to the server for wrapping as specified in section
3.1.4.1.1. This is shown in figure 1.

Figure 1: Server-side secret wrapping

The client then stores the wrapped secret. At a later time, when the client needs access to the secret,
the client makes a request to the server as specified in section 3.1.4.1.2. This is shown in figure 2.
The server performs access checks to ensure that the client is authorized to receive the secret, and if
the checks are successful, the server returns the unwrapped secret. This process, including the access
checking performed, is specified in section 3.1.4.1.2.

14 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Recovering a server-side wrapped secret

1.3.1.2 ClientWrap Subprotocol

In this subprotocol, the client first retrieves the server's public key as specified in section 3.1.4.1.3.
This is shown in figure 3.

Figure 3: Retrieving the server's public key for client-side secret wrapping

The client can then use this public key to wrap any number of secrets, as specified in section 3.2.4.1.
At a later time, when the client needs to access one of these secrets, the client submits the wrapped
secret to the server as specified in section 3.1.4.1.4. This is shown in figure 4. The server then

performs access checks to ensure that the client is authorized to receive the secret, and if the checks
succeed, it returns the unwrapped secret. This process, including the access checking performed, is
specified in section 3.1.4.1.4.

15 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 4: Recovering a client-side wrapped secret

1.4 Relationship to Other Protocols

The BackupKey Remote Protocol is built on the Microsoft Remote Procedure Call (RPC) interface (as
specified in [C706] and [MS-RPCE]). It uses the Server Message Block (SMB) Protocol [MS-SMB] [MS-
SMB2] as its RPC transport. Specifically, it uses named pipes over SMB (RPC Protocol Sequence
ncacn_np) as its transport mechanism. Either version 1 or version 2 of SMB can be used. The client
has to connect to the server over SMB and negotiate a version of SMB before it can access the named

pipe that is the RPC endpoint on the server.

The BackupKey Remote Protocol uses SPNEGO [MS-SPNG] [RFC4178] to negotiate an authentication
mechanism. It uses the authentication level and impersonation level security extensions specified in
[MS-RPCE] sections 2.2.1.1.8 and 2.2.1.1.9 to pass the client's security context to the server and to
prevent exposure of secrets to network eavesdroppers.

As specified in section 1.5, the BackupKey Remote protocol server has to run on a Domain Controller
(DC) in an Active Directory domain. Clients use the DC Locator functionality specified in [MS-ADTS]

section 6.3.6 to locate a Domain Controller. The Local Security Authority (Domain Policy) Remote
Protocol (as specified in [MS-LSAD] section 3.1.1.4) is used by the server to replicate wrapping keys
between all DCs in a domain.

1.5 Prerequisites/Preconditions

The BackupKey Remote Protocol is an RPC interface and, as a result, has the prerequisites specified in
[MS-RPCE] as common to RPC interfaces.

The BackupKey Remote Protocol is used between clients and servers. The BackupKey Remote protocol
server must run on a Domain Controller in an Active Directory domain. The client of the Backup Key
RPC interface must possess credentials that are valid for authentication in the server's domain.

In order to use the BackupKey Remote Protocol, the client must first establish an SMB session [MS-

SMB] [MS-SMB2] to the well-known endpoint on the server. The client and server must possess
appropriate credentials to set up such a session and to establish a mutually authenticated RPC
connection over the session.

The BackupKey Remote Protocol requires the use of secure RPC. Both client and server must support
mutual authentication through the SPNEGO Protocol and must support security packages that
implement support for impersonation as well as packet privacy and integrity.

16 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server must maintain a database of all the cryptographic keys used for secret wrapping, so that it
can perform the corresponding unwrapping operation when required. The contents of this database

must be protected from disclosure, except to authorized administrators of the server. The server must
either be configured with the required keys manually at startup or have a method for generating them

when required. The server must also have a method of generating cryptographically strong random
numbers for use as nonces in this protocol.

1.6 Applicability Statement

This protocol is applicable when secure storage of secrets is desired but no secure media is available
and there exists a common authentication infrastructure.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

▪ Supported Transports: This protocol uses the Server Message Block (SMB) Protocol for

transport, as specified in section 2.1. Either version 1 or version 2 of the SMB protocol can be
used; the version is negotiated as specified in [MS-SMB2] section 1.7.

▪ Protocol Versions: The only version of this protocol is 1.0.

▪ Security and Authentication Methods: Microsoft RPC [MS-RPCE], using Generic Security
Services (GSS) [RFC2743], is used to negotiate the authentication mechanism with the protocol,
as specified in [MS-SPNG] and [RFC4178].

▪ Capability Negotiation: A client implementation or server implementation of this protocol can
support one or both of the subprotocols specified here. When a client wishes to wrap a secret, it
can perform some negotiation to discover which subprotocols are supported by the server. This
negotiation is specified in section 3.2.4.1.

1.8 Vendor-Extensible Fields

No vendor-extensible fields are used by this protocol.

This protocol uses Win32 error codes. These values are taken from the Windows error number space
defined in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated meaning.
Choosing any other value runs the risk of a collision in the future.

1.9 Standards Assignments

 Parameter Value Reference

RPC Well-Known Endpoints \\pipe\protected_storage, \\pipe\ntsvcs Section 2.1

RPC Interface UUID {3dde7c30-165d-11d1-ab8f-00805f14db40} Section 2.1

17 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

The client and server MUST communicate over RPC using named pipes over the Server Message Block

(SMB) Protocol. The SMB version, capabilities, and authentication used for this connection are
negotiated between the client and server when the connection is established, as specified in [MS-SMB]
and [MS-SMB2].

The server MUST listen for requests on at least one of the well-known endpoints,
\\pipe\protected_storage and \\pipe\ntsvcs. Server implementations SHOULD listen on the
\\pipe\protected_storage endpoint<1>, and MAY listen on \\pipe\ntsvcs<2>. All features of this

protocol that are supported by a given server MUST be supported on all of the endpoints on which that
server listens.

The client SHOULD attempt to connect to the \\pipe\protected_storage endpoint first, and if this fails,
it SHOULD connect to the \\pipe\ntsvcs endpoint instead.<3>

The server interface MUST be identified by universal unique identifier (UUID) [3dde7c30-165d-11d1-
ab8f-00805f14db40], version 1.0.

The server MUST use the RPC security extensions specified in [MS-RPCE], in the manner specified in

sections 3.1.3 and 3.1.4. It MUST support the use of SPNEGO [MS-SPNG] [RFC4178] to negotiate
security providers, and it MUST register one or more security packages that can be negotiated using
this protocol.<4>

2.2 Common Data Types

This protocol MUST instruct the RPC runtime to perform a strict Network Data Representation (NDR)
data consistency check at target level 6.0 as specified in [MS-RPCE] section 3.1.1.5.3.3.

This protocol MUST indicate to the RPC runtime that it is to support both the NDR and NDR64 transfer

syntaxes and provide a negotiation mechanism for determining which RPC transfer syntax will be
used, as specified in [MS-RPCE] section 3.3.1.5.6.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types

are defined below.

2.2.1 Server Public Key for ClientWrap Subprotocol

This section specifies the format in which the BackupKey Remote Protocol server returns its public key
to a client for client-side secret wrapping, as specified in section 3.1.4.1.3.

The server's public key MUST be encapsulated in a DER-encoded X.509 public key certificate. For
details on the X.509 certificate format, see [X509] section 2 and [RFC5280]. DER encoding is specified
in [X690]. The fields of the certificate MUST be populated as follows:

▪ The subjectPublicKeyInfo field MUST contain the key wrapping the server's 2,048-bit RSA public

key ([RFC3447] Appendix A.1). As specified in [RFC3447] Appendix A.1, the AlgorithmIdentifier
OID associated with this value MUST be set to rsaEncryption (1.2.840.113549.1.1.1).

▪ The subjectUniqueID field MUST be set to a GUID that the server can use to uniquely identify

this public key. This GUID MUST be encoded as a 16-byte binary array ([MS-DTYP] section
2.3.4.2).

▪ The other fields of the certificate SHOULD be populated as follows:

18 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

▪ The Common Name field of the Subject name field SHOULD contain the name of the DNS
domain assigned to the server.

▪ The version field SHOULD be set to the numeric value 2 to denote an X.509 version 3
certificate as specified in [RFC5280].

▪ The serialNumber field SHOULD be identical to the subjectUniqueID field.

▪ The notBefore field SHOULD be set to the date and time (as determined by the server) at
which the RSA key pair was generated.

▪ The notAfter field SHOULD be set to exactly 365 days after the date and time in the
notBefore field.

▪ The issuerUniqueID field SHOULD be identical to the subjectUniqueID field.

▪ The certificate SHOULD be self-signed.

2.2.2 Client-Side-Wrapped Secret

The Client-Side-Wrapped_Secret structure MUST be used by the client to represent a secret wrapped
using the server's public key, as specified in section 3.2.4.1.

0 1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1

dwVersion

cbEncryptedSecret

cbAccessCheck

guidKey (16 bytes)

...

...

EncryptedSecret (variable)

...

AccessCheck (variable)

...

dwVersion (4 bytes): A 32-bit unsigned integer. This field MUST be encoded using little-endian
format. The value of this field MUST be set to one of the values in the following table.

Value Meaning

0x00000002 The EncryptedSecret and AccessCheck fields MUST be formatted using the version 2 formats
specified in section 2.2.2.1 and section 2.2.2.3 respectively.

0x00000003 The EncryptedSecret and AccessCheck fields MUST be formatted using the version 3 formats
specified in section 2.2.2.2 and section 2.2.2.4 respectively.

19 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

cbEncryptedSecret (4 bytes): A 32-bit unsigned integer. It MUST be the length of the
EncryptedSecret field, in bytes. This field is encoded using little-endian format.

cbAccessCheck (4 bytes): A 32-bit unsigned integer. It MUST be the length of the AccessCheck
field, in bytes. This field is encoded using little-endian format.

guidKey (16 bytes): A 16-byte GUID ([MS-DTYP] section 2.3.4.2) that is used by the server to
uniquely identify this public key.

EncryptedSecret (variable): This field contains an encrypted version of the secret. Its length MUST
be equal to cbEncryptedSecret bytes. It MUST be populated in accordance with the processing
rules specified in section 3.2.4.1.

AccessCheck (variable): This field contains information used by the server to determine which
clients are permitted to unwrap the secret. Its length MUST be equal to cbAccessCheck bytes. It

MUST be populated in accordance with the processing rules specified in section 3.2.4.1.

2.2.2.1 EncryptedSecret structure Version 2

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbSecret

0x20 0x00 0x00 0x00

Secret (variable)

...

PayloadKey (32 bytes)

...

...

cbSecret (4 bytes): A 32-bit unsigned integer. It MUST be the length of the Secret field, in bytes.
This field MUST be encoded using little-endian format.

Secret (variable): This MUST contain the cbSecret-byte value that is being wrapped.

PayloadKey (32 bytes): This MUST contain the payload encryption key, consisting of three Data
Encryption Standard (DES) keys and an initialization vector (IV). These quantities, which are
concatenated to form this field, are each 8 bytes long.

2.2.2.2 EncryptedSecret Structure Version 3

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbSecret

0x30 0x00 0x00 0x00

0x10 0x66 0x00 0x00

20 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0x0e 0x80 0x00 0x00

Secret (variable)

...

PayloadKey (48 bytes)

...

...

cbSecret (4 bytes): A 32-bit unsigned integer. It MUST be the length of the Secret field, in bytes.
This field MUST be encoded using little-endian format. Its value MUST be at least 51 bytes less
than the length in bytes of the RSA modulus of the public key used for wrapping.

Secret (variable): This MUST contain the cbSecret-byte value that is being wrapped.

PayloadKey (48 bytes): This MUST contain the payload encryption key, consisting of a 256-bit
Advanced Encryption Standard (AES) key and a 128-bit IV. These quantities are concatenated to
form this field.

2.2.2.3 AccessCheck Structure Version 2

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x00 0x00 0x00

cbNonce

Nonce (variable)

...

SID (variable)

...

Pad (variable)

...

Hash (20 bytes)

...

...

cbNonce (4 bytes): A 32-bit unsigned integer. It MUST be the length of Nonce, in bytes. This field is
encoded using little-endian format.

21 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Nonce (variable): This MUST contain an arbitrary value chosen by the client, as specified in section
3.2.4.1.

SID (variable): This MUST be a variable-length SID, marshaled in an RPC_SID structure ([MS-DTYP]
section 2.4.2.3).

Pad (variable): This field MUST be 0 to 7 bytes long, such that the length of the AccessCheck
structure is a multiple of 8 bytes.

Hash (20 bytes): This MUST be the SHA-1 hash [FIPS180-2] computed over all the preceding fields
in the AccessCheck structure.

2.2.2.4 AccessCheck Structure Version 3

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x00 0x00 0x00

cbNonce

Nonce (variable)

...

SID (variable)

...

Pad (variable)

...

Hash (64 bytes)

...

...

cbNonce (4 bytes): A 32-bit unsigned integer. It MUST be the length of Nonce, in bytes. This field is
encoded using little-endian format.

Nonce (variable): This MUST contain an arbitrary binary value, as specified in section 3.2.4.1.

SID (variable): This MUST be a variable-length SID, marshaled in an RPC_SID structure ([MS-DTYP]

section 2.4.2.3).

Pad (variable): This field MUST be 0 to 15 bytes long, such that the length of the AccessCheck
structure is a multiple of 16 bytes.

Hash (64 bytes): This MUST be the SHA-512 hash [FIPS180-2] computed over all the preceding
fields in the AccessCheck structure.

22 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.3 Unwrapped Secret (ClientWrap Subprotocol Only)

When returning an unwrapped secret to a client using the ClientWrap subprotocol (section 3.1.1.2),
the server MUST embed the secret in the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x00 0x00 0x00 0x00

Secret (variable)

...

Secret (variable): The unwrapped secret. This field MUST be a copy of the Secret value originally
placed in the EncryptedSecret (section 2.2.2.2) field during the wrapping operation.

2.2.4 Secret Wrapped with Symmetric Key

The following structure MUST be used by servers to wrap a secret using the ServerWrap subprotocol,
as specified in section 3.1.1.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x00 0x00 0x00

Payload_Length

Ciphertext_Length

GUID_of_Wrapping_Key (16 bytes)

...

...

R2 (68 bytes)

...

...

Rc4EncryptedPayload (variable)

...

Payload_Length (4 bytes): A 32-bit unsigned integer. It MUST be the size, in bytes, of the Secret
field within the Rc4EncryptedPayload structure. This field MUST be encoded using little-endian
format.

Ciphertext_Length (4 bytes): A 32-bit unsigned integer. It MUST be the size, in bytes, of the
Rc4EncryptedPayload field. This field MUST be encoded using little-endian format.

23 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

GUID_of_Wrapping_Key (16 bytes): This MUST be the 16-byte GUID ([MS-DTYP] section 2.3.4.2)
of the wrapping key used by the server for this operation.

R2 (68 bytes): This MUST be a 68-byte random number. It SHOULD be generated independently for
each wrapping operation.

Rc4EncryptedPayload (variable): This field MUST be an Rc4EncryptedPayload structure that is
formatted as specified in section 2.2.4.1.

2.2.4.1 Rc4EncryptedPayload Structure

The Rc4EncryptedPayload structure MUST consist of the following structure, encrypted as specified in
section 3.1.4.1.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

R3 (32 bytes)

...

...

MAC (20 bytes)

...

...

SID (variable)

...

Secret (variable)

...

R3 (32 bytes): This MUST be a random number 32 bytes in length.

MAC (20 bytes): This MUST be a 20-byte SHA-1 Hash-based Message Authentication Code (HMAC)
[RFC2104] of the SID and Secret fields, computed as specified in section 3.1.4.1.1.

SID (variable): This MUST be a variable-length SID, marshaled in an RPC_SID structure ([MS-

DTYP] section 2.4.2.3).

Secret (variable): This field MUST contain the secret to be wrapped.

2.2.5 ClientWrap RSA Key Pair

The following structure MUST be used to represent a 2,048-bit ClientWrap RSA key pair that is stored

and replicated between servers using the LSA (Domain Policy) Remote Protocol as specified in sections
3.1.4.1.1 and 3.1.4.1.3.

24 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x02 0x00 0x00 0x00

0x94 0x04 0x00 0x00

Certificate_Length

0x07 0x02 0x00 0x00

0x00 0xA4 0x00 0x00

0x52 0x53 0x41 0x32

0x00 0x08 0x00 0x00

Public_Exponent

Modulus (256 bytes)

...

...

Prime1 (128 bytes)

...

...

Prime2 (128 bytes)

...

...

Exponent1 (128 bytes)

...

...

Exponent2 (128 bytes)

...

...

Coefficient (128 bytes)

25 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

...

...

Private_Exponent (256 bytes)

...

...

Certificate (variable)

...

Certificate_Length (4 bytes): This MUST be a 32-bit unsigned number in little-endian format, equal

to the length of the Certificate field, in bytes.

Public_Exponent (4 bytes): This MUST be a 32-bit unsigned number in little-endian format. It

MUST be the public exponent of the key pair, referred to as e in [RFC3447] section 2.

Modulus (256 bytes): This MUST be the RSA modulus, referred to as n in [RFC3447] section 2. It
MUST be equal to Prime1 * Prime2. It MUST be encoded in little-endian format.

Prime1 (128 bytes): This MUST be the first prime factor of the RSA modulus, referred to as p in
[RFC3447] section 2. It MUST be encoded in little-endian format.

Prime2 (128 bytes): This MUST be the second prime factor of the RSA modulus, referred to as q in

[RFC3447] section 2. It MUST be encoded in little-endian format.

Exponent1 (128 bytes): This MUST be the Chinese Remainder Theorem exponent of Prime1,
referred to as dP in [RFC3447] section 2. It MUST be encoded in little-endian format.

Exponent2 (128 bytes): This MUST be the Chinese Remainder Theorem exponent of Prime2,
referred to as dQ in [RFC3447] section 2. It MUST be encoded in little-endian format.

Coefficient (128 bytes): This MUST be the Chinese Remainder Coefficient of Prime1 and Prime2,
referred to as qInv in [RFC3447] section 2. It MUST be encoded in little-endian format.

Private_Exponent (256 bytes): This MUST be the RSA private exponent, referred to as d in
[RFC3447] section 2. It MUST be encoded in little-endian format.

Certificate (variable): This field MUST contain the certificate for the key pair's public key, formatted
as specified in section 2.2.1.

2.2.6 Unwrapped Secret

The UnwrappedSecret structure consists of the ClientWrap secret unwrapped through the ServerWrap

subprotocol.

The UnwrappedSecret structure is used by the server to return the unwrapped secret to the client in
some special cases, as specified in section 3.1.4.1.2.

26 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x00 0x00 0x00

EncSalt (16 bytes)

...

...

RecoveredSecret (variable)

...

EncSalt (16 bytes): This MUST be a random number 16 bytes in length.

RecoveredSecret (variable): This field MUST contain the secret recovered by the unwrapping
operation, formatted as specified in section 2.2.6.1.

2.2.6.1 Recovered Secret Structure

The RecoveredSecret structure MUST be formatted as follows. It MUST be encrypted with the RC4
algorithm as specified in section 3.1.4.1.2. For more information about RC4, see [SCHNEIER] section

17.1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MACSalt (16 bytes)

...

...

MAC (20 bytes)

...

...

Secret (variable)

...

MACSalt (16 bytes): This MUST be a random number 16 bytes in length.

MAC (20 bytes): This MUST contain the SHA1 HMAC of the Secret field, computed as specified in
section 3.1.4.1.2.

Secret (variable): This field MUST contain the secret recovered by the unwrapping operation.

27 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.7 ServerWrap Key

The following structure MUST be used for persisted ServerWrap keys that are stored and replicated
between servers using the ServerWrap protocol as specified in sections 3.1.4.1.1 and 3.1.4.1.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x01 0x00 0x00 0x00

Key (256 bytes)

...

...

Key (256 bytes): The ServerWrap key.

28 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

3.1 BackupKey Remote Server Details

A server implementation of the BackupKey Remote Protocol MUST fully support at least one of its two

subprotocols, as specified in section 3.1.4.1. Server implementations SHOULD fully support both
subprotocols. If a server supports the wrapping operation of a subprotocol, it MUST also support the
unwrapping operation of that subprotocol. A server MAY support the unwrapping operation of a
subprotocol even if it does not support the wrapping operation.<5>

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this

document.

Each of the two subprotocols has its own abstract data model, as specified in the following
subsections.

3.1.1.1 ServerWrap Subprotocol

ServerWrap keys: The server maintains a (possibly empty) set of symmetric keys, each identified by

a unique identifier. The set of ServerWrap keys is held in persisted storage and survives system
restarts. The server is assumed to have a method of looking up keys from this set based on
identifier. This state is shared with the Local Security Authority (Domain Policy) Remote Protocol
server (see [MS-LSAD]) on the same machine, as explained in sections 3.1.4.1.1 and 3.1.4.1.2.

Current ServerWrap key identifier: At any point in time, exactly one key pair from the set of
ServerWrap keys is designated as the current ServerWrap key, and its identifier is stored as the

current ServerWrap key pair identifier. If the set of ServerWrap keys is empty, this identifier is
empty as well. This identifier is held in persisted storage and survives system restarts.

3.1.1.2 ClientWrap Subprotocol

ClientWrap key pairs: The server maintains a possibly empty set of RSA key pairs, each identified

by a unique identifier. The public key of each pair is used for client-side secret wrapping, while the
private key is used for the unwrap operation. The set of ClientWrap key pairs is held in persisted
storage and survives system restarts. The server is assumed to have a method of looking up key
pairs from this set based on the identifier. This state is shared with the LSA (Domain Policy)
Remote Protocol server on the same machine, as explained in section 3.1.4.1.3 and 3.1.4.1.4.

Current ClientWrap key pair identifier: At any point in time, exactly one key pair from the set of

ClientWrap key pairs is designated as the current ClientWrap key pair, and its identifier is stored
as the current ClientWrap key pair identifier. If the set of ClientWrap key pairs is empty, then this

identifier is empty as well. This identifier is held in persisted storage and survives system restarts.

3.1.2 Timers

None.

29 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.3 Initialization

The server MUST register with RPC over SMB named pipes (protocol sequence ncacn_np, as specified
in [MS-RPCE]) transport using at least one of the well-known endpoints specified in section 1.9.

Server implementations SHOULD support the \\pipe\protected_storage endpoint<6>, and MAY
support the \\pipe\ntsvcs endpoint.<7>

The server MUST indicate to the RPC runtime that it is to negotiate security contexts using the
SPNEGO Protocol. The server SHOULD request the RPC runtime to reject any unauthenticated
connections.<8>

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.1.1.5.3.3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.1.1.5.3.3.1.2.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to

reject use of context handles created by a method of a different RPC interface than this one, as
specified in [MS-RPCE] section 3.1.1.5.3.2.2.2.

The server MUST initialize its current ClientWrap key pair identifier and its set of ClientWrap key pairs

from persisted storage.

3.1.4 Message Processing Events and Sequencing Rules

The BackupKey interface consists of the following method:

Methods in RPC Opnum Order

Method Description

BackuprKey This is the only method defined by this protocol.

Opnum: 0

3.1.4.1 BackuprKey(Opnum 0)

This section specifies the BackuprKey method.

 NET_API_STATUS BackuprKey(
 [in] handle_t h,
 [in] GUID* pguidActionAgent,
 [in, size_is(cbDataIn)] byte* pDataIn,
 [in] DWORD cbDataIn,
 [out, size_is(,*pcbDataOut)] byte** ppDataOut,
 [out] DWORD* pcbDataOut,
 [in] DWORD dwParam
);

h: This is an RPC binding handle parameter as specified in [C706] and [MS-RPCE] section 2.

pguidActionAgent: A GUID RPC structure, as specified in [MS-DTYP] section 2.3.4. This MUST be set
to one of the following values. The BACKUPKEY_BACKUP_GUID and

BACKUPKEY_RESTORE_GUID_WIN2K values indicate the ServerWrap subprotocol, while the
BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID and BACKUPKEY_RESTORE_GUID values indicate the
ClientWrap subprotocol. A server MUST support at least one of these subprotocols completely, and

30 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

all server implementations SHOULD support all four values. In addition, if a server supports the
wrapping operation of either subprotocol, it MUST also support the corresponding unwrap

operation. Thus, if a server supports BACKUPKEY_BACKUP_GUID, then it MUST also support
BACKUPKEY_RESTORE_GUID_WIN2K. Similarly, if a server supports

BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID, it MUST also support
BACKUPKEY_RESTORE_GUID.<9>

Value Meaning

BACKUPKEY_BACKUP_GUID

7F752B10-178E-11D1-AB8F-
00805F14DB40

Requests server-side wrapping. On input, pDataIn MUST point
to a BLOB containing the secret to be wrapped. The server
MUST treat pDataIn as opaque binary data. On output,
ppDataOut MUST contain the wrapped secret in the format
specified in section 2.2.4. For details, see section 3.1.4.1.1.

BACKUPKEY_RESTORE_GUID_WIN2K

7FE94D50-178E-11D1-AB8F-
00805F14DB40

Requests unwrapping of a server-side-wrapped secret. On
input, pDataIn MUST point to a BLOB containing the wrapped
key, in the format specified in section 2.2.4. On output,
ppDataOut MUST contain a pointer to the unwrapped secret,
as supplied by the client to the BACKUPKEY_BACKUP_GUID
call. For details, see section 3.1.4.1.2.

BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID

018FF48A-EABA-40C6-8F6D-72370240E967

Requests the public key part of the server's ClientWrap key
pair. The server MUST ignore the pDataIn and cbDataIn
parameters. On output, ppDataOut MUST contain a pointer to
the server's public key in the format specified in section 2.2.1.

For details, see section 3.1.4.1.3.

BACKUPKEY_RESTORE_GUID

47270C64-2FC7-499B-AC5B-
0E37CDCE899A

Request unwrapping of a secret that was client-side-wrapped
with the server's public key. On input, pDataIn MUST point to
a client-side wrapped key, formatted as specified in section
2.2.2. On output, ppDataOut MUST contain a pointer to the
unwrapped secret, formatted as specified in section 2.2.3. For
details, see section 3.1.4.1.4.

pDataIn: This is the input data supplied by the client. Its format depends on pguidActionAgent as

specified in this section.

cbDataIn: This MUST be an unsigned 32-bit integer, encoded in little-endian format. It MUST be
equal to the length, in bytes, of the data supplied in pDataIn.

ppDataOut: This is the output data returned to the client. Its format depends on pguidActionAgent as
specified in this section.

pcbDataOut: This MUST be an unsigned 32-bit integer, encoded in little-endian format. It MUST be
equal to the length, in bytes, of the data returned in pDataOut.

dwParam: This parameter is unused. It MUST be ignored by the server.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client, and a nonzero value otherwise.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Upon receiving a BackuprKey message, the server MUST check the pguidActionAgent parameter. If
the server does not support the value specified for this parameter, the server MUST return
ERROR_INVALID_PARAMETER (0x57). Otherwise, the server MUST continue processing as specified in

the appropriate subsection below.

3.1.4.1.1 BACKUPKEY_BACKUP_GUID

31 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST proceed as follows:

1. Retrieve the current ServerWrap key identifier, which is a 16-byte GUID stored as the value of the

LSA (Domain Policy) Remote Protocol secret object named G$BCKUPKEY_P, using the method
specified in [MS-LSAD] section 3.1.4.6.6. Let keyGuid denote this identifier. Let keyGuidString

denote the GUIDString ([MS-DTYP] section 2.3.4.3) representation of keyGuid. Retrieve the value
of the LSA (Domain Policy) Remote Protocol secret object named G$BCKUPKEY_keyGuidString,
using the method specified in [MS-LSAD] section 3.1.4.6.6. This value is the current ServerWrap
key, formatted as specified in section 2.2.7. If this process succeeds, go to step 3. If no current
ServerWrap key identifier exists, or the corresponding ServerWrap key cannot be located, or the
ServerWrap key is not in the correct format, then create a new ServerWrap key as specified in
step 2.

2. Create a new ServerWrap key as follows:

1. Generate 256 random bytes using a cryptographically strong random number generator, and
format the result as a ServerWrap key object, specified in section 2.2.7.

2. Using a cryptographically strong random number generator, generate a 16-byte GUID value.
Let this value be denoted newGuid, and let its GUIDString representation ([MS-DTYP] section
2.3.4.3) be denoted newGuidString.

3. Create a new LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_newGuidString, and set its value to the result of the first procedure in step 2, as
specified in [MS-LSAD] section 3.1.4.6.5. This secret object will be stored in the domain's
Active Directory database by the LSA (Domain Policy) protocol server as specified in the first
table of [MS-LSAD] section 3.1.1.4. As a consequence, this secret object will be replicated to
all other DCs in the domain by Active Directory server-to-server replication mechanisms.

4. Create a new LSA (Domain Policy) Remote Protocol secret object named G$BCKUPKEY_P, and

set its value to the 16-byte binary representation of newGuid, as specified in [MS-LSAD]
section 3.1.4.6.5. If an LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_P already exists, replace its value with newGuid. This secret object will be
stored in the domain's Active Directory database by the LSA (Domain Policy) protocol server

as specified in the first table of [MS-LSAD] section 3.1.1.4. As a consequence, this secret
object will be replicated to all other DCs in the domain by Active Directory server-to-server
replication mechanisms.

3. At this stage, we have the value of the current ServerWrap key. Let SrvKey denote the full length
of the key, which is 256 bytes.

4. Retrieve the SID of the calling user.

5. Using a cryptographically strong random number generator, generate 68 bytes of random data.
We will refer to this value as R2.

6. Using a cryptographically strong random number generator, generate 32 bytes of random data.

We will refer to this value as R3.

7. Compute the SHA-1 HMAC [RFC2104] of R2 using SrvKey (from step 3) as the HMAC key. We will

refer to the resulting 20-byte value as SymKey.

8. Compute the SHA-1 HMAC [RFC2104] of R3 using SrvKey (from step 3) as the HMAC key. We will
refer to the resulting 20-byte value as MacKey.

9. Create an Rc4EncryptedPayload structure as specified in section 2.2.4.1. Place the result of step 6
in the R3 field, the result of step 4 in the SID field, and the secret to be wrapped (supplied in the

pDataIn parameter) in the Secret field. Compute the SHA-1 HMAC [RFC2104] of the SID and
Secret fields using MacKey (computed in step 8) as the HMAC key, and place the result in the
MAC field.

32 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

10. Encrypt the result of step 9 using the RC4 encryption algorithm ([SCHNEIER] section 17.1) with
SymKey (computed in step 7) as the key.

11. Create a wrapped secret structure as specified in section 2.2.4. Set the first 4 bytes of this
structure to fixed values as specified in section 2.2.4; set the Payload_Length field to the length

of the secret, in bytes (supplied in the cbDataIn parameter); set the GUID_of_Wrapping_key
field to the current ServerWrap key identifier; and set R2 to the result of step 5. Place the result
of step 10 in the Rc4EncryptedPayload field and its length, in bytes, in the Ciphertext_Length
field.

12. Return success (that is, zero) to the client, with the result of step 11 in the ppDataOut parameter
and its length, in bytes, in the pcbDataOut parameter.

3.1.4.1.2 BACKUPKEY_RESTORE_GUID_WIN2K

The server MUST first check the first four bytes of the wrapped secret passed in the pDataIn
parameter, to see if they match the fixed values specified in section 2.2.4. If they match, the server
MUST proceed as specified in section 3.1.4.1.2.1. If not, and the first four bytes of the wrapped secret

correspond to a valid dwVersion value specified in section 2.2.2, then the server SHOULD<10>
proceed as specified in section 3.1.4.1.2.2. In all other cases, the server MUST stop processing and

return a non-zero error code.

3.1.4.1.2.1 Processing a Valid ServerWrap Wrapped Secret

In this case, the wrapped secret (supplied in the pDataIn parameter) is assumed to be formatted as
specified in section 2.2.4. The server MUST proceed as follows. If, at any point in processing, the
value of pDataIn is found not to conform to the format specified in section 2.2.4, the server MUST
stop processing and return a non-zero error code.

1. Let keyGuid denote the value in the GUID of Wrapping Key field in the wrapped secret, and let
keyGuidString denote the GUIDString ([MS-DTYP] section 2.3.4.3) representation of keyGuid.
Retrieve the value of the LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_keyGuidString, using the method specified in [MS-LSAD] section 3.1.4.6.6. This is

the ServerWrap key that was used to wrap this secret. If this LSA (Domain Policy) Remote
Protocol secret object is not found, or if its value is not in the format specified in section 2.2.7,
stop processing and return a non-zero error code to the client. The error code SHOULD be equal to

ERROR_FILE_NOT_FOUND (0x2). Otherwise, let SrvKey denote the full length of the key, which is
256 bytes.

2. Compute the SHA-1 HMAC [RFC2104] of the R2 field in the wrapped secret using SrvKey
(computed in step 1) as the HMAC key. Use the result as a key to decrypt the contents of the
Rc4EncryptedPayload field in the wrapped secret, using the RC4 algorithm (for more
information about RC4, see [SCHNEIER] section 17.1). The result will be an Rc4EncryptedPayload

structure as specified in section 2.2.4.1. Let this be denoted as secretPayload.

3. Extract the R3 field of secretPayload (computed in step 2) and compute its SHA-1 HMAC
[RFC2104] using SrvKey (computed in step 1) as the HMAC key. Use the result as the HMAC key
to compute the SHA-1 HMAC [RFC2104] of the SID and Secret fields in secretPayload.

4. Compare the result of step 3 to the MAC field of secretPayload. If the two are not identical, stop
processing and return a non-zero error code. The error code SHOULD be equal to
ERROR_INVALID_ACCESS (0xC).

5. Obtain the SID of the calling user, and compare it against the SID field of secretPayload. If the
two are not identical, stop processing and return a non-zero error code. The error code SHOULD
be equal to ERROR_INVALID_ACCESS (0xC).

6. Return success (that is, zero) to the client, with the Secret field of secretPayload in the
ppDataOut parameter, and its length in bytes in the pcbDataOut parameter.

33 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.4.1.2.2 Processing a ClientWrap Wrapped Secret

If the server chooses to process a ClientWrap wrapped secret that was passed by the client to the
BACKUPKEY_RESTORE_GUID_WIN2K interface, it MUST proceed as follows:

1. Process the wrapped secret (supplied in the pDataIn parameter) as specified in section 3.1.4.1.4.
If an error is encountered, stop processing and return a non-zero error code. Otherwise, proceed
to step 2.

2. Compute the SHA-1 hash [FIPS180-2] of the Nonce field in the AccessCheck structure (section
2.2.2.4). Let EnvKey denote this hash value.

3. Using a cryptographically strong random number generator, generate a 16-byte random value.
Call this value EncSalt.

4. Using a cryptographically strong random number generator, generate a 16-byte random value.
Call this value MACSalt.

5. Compute the SHA1 HMAC ([RFC2104] section 2) of EncSalt (computed in step 3) with EnvKey as

the HMAC key. Denote this value EncKey.

6. Compute the SHA1 HMAC ([RFC2104] section 2) of MACSalt (computed in step 4) with EnvKey as
the HMAC key. Denote this value MACKey.

7. Compute the SHA1 HMAC ([RFC2104] section 2) of the unwrapped secret (obtained in step 1) with
MACKey as the HMAC key.

8. Create a Recovered Secret structure as specified in section 2.2.6.1. Place the result of step 4 in
the MACSalt field, the result of step 7 in the MAC field, and the result of step 1 in the Secret field.

9. Encrypt the result of step 8 with the RC4 algorithm using EncKey (computed in step 5) as the
encryption key. For more information on RC4, see [SCHNEIER] section 17.1.

10. Create an Unwrapped Secret structure as specified in section 2.2.6. Set the first four bytes to

fixed values as specified in section 2.2.6. Place the result of step 3 in the EncSalt field and the

result of step 9 in the RecoveredSecret field.

11. Return success (that is, zero) to the client, with the result of step 10 in the ppDataOut parameter
and its length in bytes in the pcbDataOut parameter.

3.1.4.1.3 BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID

The server MUST ignore the cbDataIn and pDataIn parameters. It MUST process the request as

follows:

1. Retrieve the current ClientWrap key pair identifier, which is a 16-byte GUID stored as the
value of the LSA (Domain Policy) Remote Protocol secret object named G$BCKUPKEY_PREFERRED,
using the method specified in [MS-LSAD] section 3.1.4.6.6. Let keyGuid denote this identifier. Let
keyGuidString denote the GUIDString ([MS-DTYP] section 2.3.4.3) representation of keyGuid. If
no such LSA (Domain Policy) Remote Protocol secret object is found, then go to step 3.

2. Retrieve the value of the LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_keyGuidString, using the method specified in [MS-LSAD] section 3.1.4.6.6. This
value is the current ClientWrap key pair, formatted as specified in section 2.2.5. If successful,
go to step 4. If this LSA (Domain Policy) Remote Protocol secret object cannot be located, or its
value is not in the correct format, then continue to step 3.

3. Create a new ClientWrap key as follows:

34 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. Generate a 2,048-bit RSA key pair. The structure of an RSA key pair is specified in [RFC3447]
section 3, and methods for generating it are specified in [X9.31] section 4.1.

2. Using a cryptographically strong random number generator, generate a random 16-byte GUID.
Let this value be denoted newGuid, and let its GUIDString representation ([MS-DTYP] section

2.3.4.3) be denoted newGuidString.

3. Create a new LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_newGuidString and set its value to the result of the first procedure in step 3,
using the method specified in [MS-LSAD] section 3.1.4.6.5. This secret object will be stored in
the domain's Active Directory database by the LSA (Domain Policy) protocol server as
specified in the first table of [MS-LSAD] section 3.1.1.4. As a consequence, this secret object
will be replicated to all other DCs in the domain by Active Directory server-to-server

replication mechanisms.

4. Create a new LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_PREFERRED and set its value to the 16-byte binary representation of newGuid,
using the method specified in [MS-LSAD] section 3.1.4.6.5. If an LSA (Domain Policy) Remote

Protocol secret object named G$BCKUPKEY_PREFERRED already exists, replace its value with
newGuid. This secret object will be stored in the domain's Active Directory database by the

LSA (Domain Policy) protocol server as specified in the first table of [MS-LSAD] section
3.1.1.4. As a consequence, this secret object will be replicated to all other DCs in the domain
by Active Directory server-to-server replication mechanisms.

4. Steps 2 and 3 will have yielded the current ClientWrap key pair in the format specified in section
2.2.5. Place the value of the Certificate field in the ppDataOut parameter and the value of the
Certificate_Length field in the pcbDataOut parameter. Return success (that is, zero) to the
client.

3.1.4.1.4 BACKUPKEY_RESTORE_GUID

The server MUST proceed as follows:

1. Check whether the first four bytes of the wrapped secret (supplied in the pDataIn parameter)

constitute an acceptable value of the dwVersion field, as specified in section 2.2.2. If so, go to
step 2. If not, the server SHOULD check if the first four bytes of the wrapped secret match the
fixed values specified in section 2.2.4 and, if so, it SHOULD<11> proceed as specified in section

3.1.4.1.2.1. Otherwise, the server MUST return a non-zero error code. The error code returned
SHOULD be equal to ERROR_INVALID_PARAMETER (0x57). The server MUST<12> support at
least one of the dwVersion values specified in section 2.2.2.

2. Interpret the wrapped secret (supplied in the pDataIn parameter) as a Client-Side-Wrapped Secret
(section 2.2.2), extract the value in the guidKey field. Let keyGuid denote this value, and let
keyGuidString denote the GUIDString ([MS-DTYP] section 2.3.4.3) representation of keyGuid.

Retrieve the value of the LSA (Domain Policy) Remote Protocol secret object named
G$BCKUPKEY_keyGuidString, using the method specified in [MS-LSAD] section 3.1.4.6.6. This is
the ClientWrap key pair that was used to wrap this secret. If this LSA (Domain Policy) Remote
Protocol secret object is not found, or if its value is not in the format specified in section 2.2.5,
stop processing and return a non-zero error code to the client. The error code SHOULD<13> be

equal to ERROR_FILE_NOT_FOUND (0x2). Otherwise, use the Modulus and Private_Exponent
fields of the ClientWrap key pair to construct an RSA private key, as specified in [RFC3447]

section 3.2. Let PrivKey denote this private key.

3. Interpret the wrapped secret (supplied in the pDataIn parameter) as a Client-Side-Wrapped Secret
(section 2.2.2), extract the value in the EncryptedSecret field. Reverse the order of bytes in this
value and decrypt the result with PrivKey (computed in step 2) using the RSA algorithm with
PKCS1 v1.5 padding (as specified in [RFC3447] section 8.2). Let EncSecret denote the result of
this decryption. If decryption fails, the server MUST return a non-zero error code. The error code
returned SHOULD be equal to ERROR_INVALID_DATA (0xD).

35 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4. Using EncSecret and the value of dwVersion obtained in step 1, proceed as follows:

1. If dwVersion is equal to 0x00000002, verify that EncSecret is formatted as specified in

section 2.2.2.1. If so, let SecretValue denote the value of the Secret field and EncKey denote
the value of the PayloadKey field. If not, the server MUST return an appropriate nonzero

error code. The error code returned SHOULD be equal to ERROR_INVALID_DATA (0xD).

2. If dwVersion is equal to 0x00000003, verify that EncSecret is formatted as specified in
section 2.2.2.2. If so, let SecretValue denote the value of the Secret field and EncKey denote
the value of the PayloadKey field. If not, the server MUST return an appropriate nonzero
error code. The error code returned SHOULD be equal to ERROR_INVALID_DATA (0xD).

5. Interpret the wrapped secret (supplied in the pDataIn parameter) as a Client-Side-Wrapped Secret
(section 2.2.2), extract the value in the AccessCheck field. Using this value and the value of

dwVersion obtained in step 1, proceed as follows:

1. If dwVersion is equal to 0x00000002, decrypt the AccessCheck value using the 3DES
algorithm (as specified in [SP800-67] section 3) with the first 24 bytes of EncKey as the key

and the last 8 bytes of EncKey as the initialization vector (IV), and proceed to step 6.

2. If dwVersion is equal to 0x00000003, decrypt the AccessCheck value using the AES
algorithm (as specified in [FIPS197]) with the first 32 bytes of EncKey as the key and the last

16 bytes of EncKey as the initialization vector (IV), and proceed to step 7.

6. Process the result of the first procedure in step 5, as follows:

1. Verify that the result of the first procedure in step 5 is in the format specified in section
2.2.2.3. If not, the server MUST return an appropriate error code. The error code returned
SHOULD be equal to ERROR_INVALID_DATA (0xD).

2. Compute the SHA-1 hash [FIPS180-2] of the part of the structure preceding the Hash field,
and compare the result against the value in the Hash field. If the values do not match, the

server MUST return an appropriate nonzero error code. The error code returned SHOULD be
equal to ERROR_INVALID_DATA (0xD).

3. Extract the value in the SID field. Let this be called SecretSID. Proceed to step 8.

7. Process the result of the second procedure in step 5, as follows:

1. Verify that the result of the second procedure in step 5 is in the format specified in section
2.2.2.4. If not, the server MUST return an appropriate error code. The error code returned
SHOULD be equal to ERROR_INVALID_DATA (0xD).

2. Compute the SHA-512 hash [FIPS180-2] of the part of the structure preceding the Hash field,
and compare the result against the value in the Hash field. If the values do not match, the
server MUST return an appropriate nonzero error code. The error code returned SHOULD be
equal to ERROR_INVALID_DATA (0xD).

3. Extract the value in the SID field. Let this be called SecretSID. Proceed to step 8.

8. Verify that the caller has access to this secret by comparing the SecretSID against the identity of

the caller retrieved from the authenticated RPC connection. If this check fails, the server MUST
return an appropriate error code. The error code returned SHOULD be equal to
ERROR_INVALID_ACCESS (0xC).

9. Using the ppDataOut and pcbDataOut parameters successfully, return the SecretValue (computed
in step 4) to the caller in the format specified by section 2.2.3.

36 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.5 Timer Events

None.

3.1.6 Other Local Events

The set of ServerWrap keys and the current ServerWrap key identifier, as well as the set of
ClientWrap key pairs and the current ClientWrap key identifier, MUST be updated as the corresponding
LSA (Domain Policy) Remote Protocol secret objects (specified in section 3.1.4 and its subsections) are
updated by the replication mechanisms specified in [MS-LSAD] section 3.1.1.4.

3.2 BackupKey Remote Client Details

A client implementation of the BackupKey Remote Protocol MUST support at least one of its two
subprotocols, as specified in section 3.2.4.1.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

Client secrets: These are the client secrets that must be stored securely on potentially untrusted
media. Client secrets need not have any particular format, and their structure is opaque to this
protocol.

Wrapped secrets: These are the wrapped versions of the above client secrets. Wrapped secrets have

been transformed, through either client-side wrapping or server-side wrapping, into a form that
can be securely stored on potentially untrusted media. The client is responsible for the storage of
all wrapped secrets.

ClientWrap public keys (ClientWrap subprotocol only): These are the public keys from the
server's ClientWrap key pair (as specified in section 3.1.1). They are used by the client to wrap
secrets, as specified in section 3.2.4.1. Clients can choose to cache these keys locally, or to
retrieve them afresh from the server for each ClientWrap wrapping operation. Each ClientWrap key

is associated with an Active Directory domain. A client that executes this protocol against servers
in multiple domains will have one ClientWrap public key for each such domain.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

The BackupKey Remote Protocol client receives requests from a higher layer, requesting a protocol
operation to be executed against a specified Active Directory domain and supplying user credentials
valid for authentication in that domain. Requests for client-side wrapping of secrets MUST be
processed as specified in section 3.2.4.1. All other requests MUST be passed directly to a server.

37 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For all operations, if the client needs to connect to a server, it MUST first locate the server by using
the DC Locator protocol (as specified in [MS-ADTS] section 6.3.6) to locate a writable Domain

Controller in that domain. It MUST then connect to the server using the supplied user credentials, as
follows. First, the client SHOULD<14> attempt to connect to the \\pipe\protected_storage endpoint on

the server. If connecting to the \\pipe\protected_storage endpoint is not attempted or if it fails, the
client MUST attempt to connect to the \\pipe\ntsvcs endpoint on the same server.

The client MUST configure each RPC connection to the server as follows:

▪ The client MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.1.1.5.3.3.

▪ The client MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.1.1.5.3.3.1.2.

▪ The client MUST instruct the RPC runtime to negotiate a security context using the SPNEGO
Protocol [MS-RPCE] section 2.2.1.1.7.

▪ The client MUST also instruct the RPC runtime to negotiate the use of the packet privacy

authentication level, which provides both message confidentiality and integrity ([MS-RPCE] section
2.2.1.1.8).

▪ The client MUST instruct the RPC runtime to use the RPC_C_IMPL_LEVEL_IMPERSONATE

impersonation level specified in [MS-RPCE] section 2.2.1.1.9.

▪ Finally, the client SHOULD request the RPC runtime to perform mutual authentication<15> with
the server.<16>

A client MUST support at least one of these ClientWrap and ServerWrap subprotocols completely. In
addition, if a client supports the wrapping operation of either subprotocol, it MUST also support calling
the corresponding unwrap operation. Thus, if a client supports BACKUPKEY_BACKUP_GUID, it MUST
also support BACKUPKEY_RESTORE_GUID_WIN2K. Similarly, if a client supports

BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID, it MUST also support BACKUPKEY_RESTORE_GUID.
Client implementations SHOULD support both subprotocols completely.<17>

The client SHOULD set the dwParam parameter of the BackuprKey method to zero in all invocations.

The client MUST treat all server errors (that is, nonzero return codes from the server) identically.
When a protocol method fails, the client MUST attempt to locate another server and repeat the same
operation. If no other server can be located, or if the second server also returns an error, the client
MUST return an error to the caller.

3.2.4.1 Performing Client-Side Wrapping of Secrets

When requested by a higher layer to perform client-side wrapping of a client secret against a given
Active Directory domain, a BackupKey Remote Protocol client that supports the ClientWrap

subprotocol MUST proceed as follows.

If the client does not possess a cached copy of a ClientWrap public key of the specified domain, the
client MUST locate a BackupKey server for that domain by using the DC Locator functionality as

specified in [MS-ADTS] section 6.3.6 to locate a writable domain controller in that domain. It must
then send a BackuprKey message to this server with the pguidActionAgent parameter set to
BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID. The pDataIn parameter SHOULD be set to NULL, and the
cbDataIn parameter SHOULD be set to zero.

If the BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID request fails, the client MAY attempt to perform
server-side wrapping by sending a BACKUPKEY_BACKUP_GUID instead.<18>

If the BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID request is successful, the client MUST validate that
the data returned from the server is formatted as specified in section 2.2.1. Specifically, it MUST verify

38 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

that it is able to parse out the fields listed in section 2.2.1 from the certificate. If this validation fails,
the client MUST discard the received data and return an error to the caller. For details on the X.509

certificate format, see [X509] section 2 and [RFC5280]. DER encoding is specified in [X690].

Having obtained the server's ClientWrap public key, the client MUST construct a wrapped secret as

specified in section 2.2.2 by using the following procedure, and store the secret as desired.

1. Select whether to use the version 2 wrapping format or the version 3 wrapping format (specified
as dwVersion in section 2.2.2). Clients MUST use version 2 unless explicitly configured to use
version 3.<19> If version 2 is chosen and the length of the RSA modulus of the server's
ClientWrap public key does not exceed the length of the client secret by at least 51 bytes, stop
processing and return an error to the caller. If version 3 is chosen and the length of the RSA
modulus of the server's ClientWrap public key does not exceed the length of the client secret by at

least 75 bytes, stop processing and return an error to the caller.

2. Retrieve the SID of the calling user.

3. Using a cryptographically strong random number generator, generate a nonce for use in this

wrapping operation. The nonce MUST be at least 32 bytes long.

4. Construct a version 2 or version 3 AccessCheck structure (specified in section 2.2.2.3 and section
2.2.2.4 respectively) based on the choice of wrapping format in step 1. Choose the length of the

Pad field in the AccessCheck structure such that the length of the AccessCheck structure is an
integral multiple of 8 bytes. Place the result of step 2 in the SID field, and populate the cbNonce
and Nonce fields based on the results of step 3. Fill the Pad field with random data, and then
compute and populate the Hash field.

5. Depending on the choice of wrapping format in step 1, generate an encryption key (denoted
EncKey) and initialization vector (denoted EncIV) as follows:

▪ If the version 2 wrapping format was chosen, generate a 3DES [SP800-67] key for EncKey

and a cryptographically random 8-byte value for EncIV.

▪ If the version 3 wrapping format was chosen, generate a 256-bit AES [FIPS197] key for

EncKey and a cryptographically random 16-byte value for EncIV.

6. Based on the choice of wrapping format in step 1, encrypt the AccessCheck structure constructed
in step 4 as follows:

▪ If the version 2 wrapping format was chosen, encrypt the AccessCheck structure using the
3DES algorithm as specified in [SP800-67], with EncKey as the key and EncIV as the

initialization vector.

▪ If the version 3 wrapping format was chosen, encrypt the AccessCheck structure using the
AES algorithm as specified in [FIPS197], with EncKey as the key and EncIV as the initialization
vector.

7. Construct a version 2 or version 3 EncryptedSecret structure (specified in section 2.2.2.1 and
section 2.2.2.2 respectively) based on the choice of wrapping format in step 1. Copy the client

secret to Secret, and copy its length to cbSecret. Concatenate EncKey and EncIV (generated in

step 5) and place the result in the PayloadKey field.

8. Encrypt the EncryptedSecret structure created in step 7, using the server's ClientWrap public key
and using the RSA algorithm PKCS1 v1.5 padding as specified in [RFC3447] section 7.2, and then
reverse the byte order of the result.

9. Construct the client-side wrapped secret as specified in section 2.2.2. Populate the dwVersion
field based on the result of step 1, the cbEncryptedSecret and EncryptedSecret fields based on

the result of step 8, and the cbAccessCheck and AccessCheck fields based on the result of step
7.

39 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

10. Retrieve the GUID of the server public key from the SubjectUniqueID field of the server's
ClientWrap public key certificate, as specified in section 2.2.1, and place it in the guidKey field of

the wrapped secret constructed in step 10.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

40 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

To illustrate the working of the BackupKey Remote Protocol, this section sketches the process used in
Windows for protecting user secrets with the Data Protection Application Program Interface (DPAPI).
This example uses the ClientWrap subprotocol.

The complete working of DPAPI is beyond the scope of this protocol, and more information about it is
available in [MSDN-DPAPI]. As described in the "Key Relationships" section of [MSDN-DPAPI] and

Figure 4 therein, when DPAPI is executing on behalf of an Active Directory domain user, it creates a
Backup Master Key by encrypting its Master Key to a Domain Controller Key. This step is performed
using the BackupKey protocol. This example illustrates DPAPI's use of this protocol in a larger context.

Consider, for example, a Windows user who logs on to a new domain-joined computer running the
Windows Vista operating system for the first time and creates a new RSA key pair for signing his
email. This causes the DPAPI function CryptProtectData to be invoked to protect the private key.

This, in turn, causes DPAPI to generate a new Master Key and to attempt to create a Backup Master
Key as described in [MSDN-DPAPI]. DPAPI then invokes the BackupKey client, passing the Master Key

as the secret and requesting a ClientWrap wrapping operation against the user's domain using the
user's credentials. The BackupKey protocol client performs this operation as specified in section
3.2.4.1 and returns the result, which DPAPI stores locally.

When the user subsequently attempts to sign his email, the signing application causes the DPAPI
function CryptUnprotectData to be invoked. Ordinarily, as described in [MSDN-DPAPI], this

operation will not require the Backup Master Key, and therefore the BackupKey Remote Protocol will
not be invoked.

Now assume that at some later date, the user forgets his password and has to ask the domain
administrator to reset it for him. Now when he tries to sign his email, the signing application causes
the DPAPI function CryptUnprotectData to be invoked once again. This time, DPAPI will not be able
to decrypt the Encrypted Master Key ([MSDN-DPAPI] Figure 4). Therefore, DPAPI will retrieve the
Backup Master Key from local storage and request the BackupKey protocol client to perform a

ClientWrap unwrapping operation against the user's domain using the user's credentials. The
BackupKey protocol client will execute this operation as specified in section 3.2.4 and return the result

(that is, the DPAPI Master Key) to DPAPI. To execute this unwrapping operation, the client will invoke
the BackuprKey method on a server with the pguidActionAgent parameter set to
BACKUPKEY_RESTORE_GUID, and the server will process this request as specified in section 3.1.4.1.4.
When the unwrapping operation completes successfully, DPAPI will be able to complete the

CryptUnprotectData operation as described in [MSDN-DPAPI], and the signing application will be
able to sign the user's email.

41 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

The BackupKey server holds cryptographic keys and other material that can be used to recover all the

secrets wrapped by clients of that server. These keys are therefore highly sensitive and have to be
protected from both loss and disclosure. The threat model for these wrapping keys should assume that
the value of a wrapping key is the sum of the values of all secrets wrapped by it. This value varies
with each deployment and has to be computed at that time. From that value, the motivation of the
attacker can be deduced, and then the level of protection necessary to thwart those attacks can be
estimated. For high-value assets, additional measures such as the use of a Hardware Security Module

(HSM) might be warranted to protect these keys.

For guarding against key loss, the wrapping keys should themselves be backed up, mirrored, or split
via threshold cryptography. The choice of mechanism is up to the implementer.

From the client's perspective, secrets wrapped by a server (or server's public key) are safe only as

long as the server is trusted. This protocol must not be used to protect secrets from parties who have
or can gain privileged access to the BackupKey server.

Any cryptographic key has to be kept secret. Any function of a secret (such as a key schedule) has to

also be kept secret if the knowledge of such a function would increase an attacker's ability to discover
the cryptographic key. Implementations have to be careful not to write keys or secrets directly to disk,
and they should attempt to minimize the time that these are exposed in memory. Secrets and keys
must not be sent in the clear over unsecured network paths.

Generation of cryptographic keys, Initial Values, nonces, and padding for PKCS#1 encryption requires
randomness so that the generated quantity cannot be guessed by an attacker. A cryptographically
strong random number generator is essential to the security of any cryptographic implementation.

Implementers have to ensure that BackupKey clients and servers are running on platforms with
strong random-number generators.

Guidance on building strong cryptographic subsystems is available in [FIPS140]. An overview of the

Windows security architecture is available in [MS-WPO] section 9.

Any implementation of a protocol exposes code to inputs from attackers. Such code has to be
developed according to secure coding and development practices to avoid buffer overflows, denial-of-

service attacks, escalation of privilege, and disclosure of information. For more information about
these concepts, secure development best practices, and common errors, see [HOWARD].

The BackupKey server wraps secrets for many different users and is trusted to disclose those secrets
only to authorized users. Therefore, strong authentication is particularly important. The server has to
authenticate the requester of each unwrapping and server-side wrapping operation and verify that the
requester is authorized to have access to the secret being unwrapped.

Finally, both client and server have to ensure that they are communicating over a secure channel. If

protocol traffic is passing over a channel that can be eavesdropped, then both client and server have
to ensure that suitable security measures are in place, including the use of RPC encryption using the

packet privacy authentication level.

5.2 Index of Security Parameters

 Security parameter Section

Use of RPC security 2.1, 3.1.3, 3.2.4

3DES encryption and key 2.2.2, 2.2.2.3, 3.1.4.1.4, 3.2.4.1

42 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Security parameter Section

RC4 key 3.1.4.1.1, 3.1.4.1.2, 7

RSA key pair 2.2.1, 2.2.5, 3.1.1.2, 3.1.4.1.3, 3.1.4.1.4, 3.2.4.1, 7

Authentication 2.1, 1.7

SHA1 and HMAC-SHA1 2.2.2, 2.2.2.3, 2.2.4.1, 3.1.4.1.4, 3.2.4.1, 7

SHA-512 2.2.2.4, 3.2.4.1

AES Encryption and Key 2.2.2.4, 3.1.4.1.4, 3.2.4.1

43 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full Interface Definition Language (IDL) is provided below, where "ms-
dtyp.idl" is the IDL specified in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions
defined in [MS-RPCE] sections 2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section
2.2.4.8, a pointer_default declaration is not required and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";

 [
 uuid(3dde7c30-165d-11d1-ab8f-00805f14db40),
 version(1.0),
 pointer_default(unique)
]
 interface BackupKey
 {
 NET_API_STATUS
 BackuprKey(
 [in] handle_t h,
 [in] GUID* pguidActionAgent,
 [in, size_is(cbDataIn)] byte* pDataIn,
 [in] DWORD cbDataIn,
 [out, size_is(,*pcbDataOut)] byte** ppDataOut,
 [out] DWORD* pcbDataOut,
 [in] DWORD dwParam
);
 }

44 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

▪ Windows 2000 operating system

▪ Windows 2000 Server operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

Windows Server 2016 operating systemThe terms "earlier" and "later", when used with a product
version, refer to either all preceding versions or all subsequent versions, respectively. The term
"through" refers to the inclusive range of versions. Applicable Microsoft products are listed

chronologically in this section.

The following table shows the relationships between Microsoft product versions or supplemental
software and the roles they perform.

Windows Product Version Server Role Client Role

Windows 2000 Professional No Yes

Windows 2000 Server Yes Yes

Windows XP No Yes

Windows Server 2003 Yes Yes

Windows Vista No Yes

Windows Server 2008 Yes Yes

Windows 7 No Yes

Windows Server 2008 R2 Yes Yes

Windows 8 No Yes

Windows Server 2012 Yes Yes

Windows 8.1 No Yes

45 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Windows Product Version Server Role Client Role

Windows Server 2012 R2 Yes Yes

Windows 10 No Yes

Windows Server 2016 Yes Yes

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1: Windows 2000 Server operating system does not listen on the
\\pipe\protected_storage endpoint.

<2> Section 2.1: Windows 2000 Server and Windows Server 2003 operating system listen on the
\\pipe\ntsvcs endpoint. Windows Server 2008 operating system and all subsequent versions of

Windows Server operating system, according to the applicability list at the beginning of this
section,later do not listen on this endpoint by default, but will do so if the second-least-significant bit
of the DWORD registry value HKLM\System\CurrentControlSet\Control\ProxyType is set to 1, and the
DWORD registry value HKLM\System\CurrentControlSet\Control\DisableRemoteScmEndpoints is
absent or set to zero.

<3> Section 2.1: Windows 2000 operating system clients only attempt to connect to the \\pipe\ntsvcs
endpoint.

<4> Section 2.1: Windows servers register the Kerberos [MS-KILE] [RFC4120] and NTLM [MS-NLMP]
security packages for negotiation with SPNEGO.

<5> Section 3.1: Windows 2000 (including all service packs) does not support retrieval of the server
public key using BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID. However, Windows 2000 operating
system Service Pack 3 (SP3) and subsequent later Windows 2000 service packs of Windows 2000
support unwrapping of client-side-wrapped secrets through BACKUPKEY_RESTORE_GUID. Versions

ofMicrosoft Windows 2000 prior tooperating system Service Pack 2 (SP2) and earlier Windows 2000
SP3versions do not support this operation.

<6> Section 3.1.3: Windows 2000 Server does not support the \\pipe\protected_storage endpoint.

<7> Section 3.1.3: Windows 2000 Server and Windows Server 2003 support the \\pipe\ntsvcs
endpoint. Windows Server 2008 and all subsequent versions of Windows Server, according to the
applicability list at the beginning of this section,later do not support it by default, but will do so if the

second-least-significant bit of the DWORD registry value

HKLM\System\CurrentControlSet\Control\ProxyType is set to "1", and the DWORD registry value
HKLM\System\CurrentControlSet\Control\DisableRemoteScmEndpoints is absent or set to zero.

<8> Section 3.1.3: Windows 2000, Windows XP operating system, and Windows Server 2003
implementations do not instruct the RPC runtime to reject unauthenticated connections.

<9> Section 3.1.4.1: Windows 2000 does not support BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID.
However, Windows 2000 SP3 and subsequentlater Windows 2000 service packs of Windows 2000 do
support BACKUPKEY_RESTORE_GUID.

46 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the Domain Functional Level of the Windows domain is set to Windows 2000 Native, Windows
Server 2003, and all subsequent versions of Windows Server, according to the applicability list at the

beginning of this section, and later will return an error when called with
BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID unless the DWORD registry value

HKLM\SOFTWARE\Microsoft\Cryptography\Protect\Provider\df9d8cd0-1501-11d1-8c7a-
00c04fc297eb\DistributeBackupKey is set to 0x00000001.

<10> Section 3.1.4.1.2: Windows Server 2003 and all subsequent versions of Windows Server,
according to the applicability list at the beginning of this section, detectslater detect whether the
wrapped secret is in the client-wrapped format and, if it is, continue processing as in section
3.1.4.1.4.

<11> Section 3.1.4.1.4: Windows 2000, Windows 2000 operating system Service Pack 1 (SP1), and

Windows 2000 operating system Service Pack 2 (SP2) do not perform this check and return an error if
the wrapped secret is not in the server-wrapped format.

<12> Section 3.1.4.1.4: Windows 2000 Server, Windows Server 2003, and Windows Server 2008 and
earlier support only dwVersion = 0x00000002. Windows Server 2008 R2 operating system and all

subsequent versions of Windows Server, according to the applicability list at the beginning of this
section,later support both dwVersion = 0x00000002 and dwVersion = 0x00000003.

<13> Section 3.1.4.1.4: Windows Server 2008 and all subsequent versions of Windows Server,
according to the applicability list at the beginning of this section,later return ERROR_INVALID_DATA
(0x0000000D). Windows Server 2003 returns ERROR_IO_PENDING (0x000003e5).

<14> Section 3.2.4: Windows 2000 clients only attempt to connect to the \\pipe\ntsvcs endpoint.

<15> Section 3.2.4: Windows 2000 clients do not request the use of mutual authentication.

<16> Section 3.2.4: Windows clients do not perform mutual authentication when the security context
negotiated through the SPNEGO Protocol results in the use of NTLM authentication.

<17> Section 3.2.4: Windows 2000 does not support client-side wrapping.

<18> Section 3.2.4.1: Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,

Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows
Server 2012 R2, Windows 10, and Windows Server 2016 and later and Windows Server 2003 and later
fall back to server-side wrapping using BACKUPKEY_BACKUP_GUID when they fail to retrieve the
server's public key using BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID.

In addition, as noted earlier, Windows clients always retry failing operations once. The resulting

process is as follows: The client first tries the BACKUPKEY_RETRIEVE_BACKUP_KEY_GUID operation
and, if it fails, performs DC rediscovery and retries the same operation. If the retry fails, the client
tries a BACKUPKEY_BACKUP_GUID operation. If this fails, the client performs DC rediscovery again
and retries the BACKUPKEY_BACKUP_GUID operation. If this also fails, an error is returned to the
caller.

<19> Section 3.2.4.1: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, operating

system and earlier and Windows Server 2008 and earlier always use version 2. All subsequent
versions of Windows, according to the applicability list at the beginning of this section,Windows 7

operating system and later and Windows Server 2008 R2 and later use version 2 by default but can be
configured to use version 3 by setting the DWORD registry value
"HKLM\Software\Microsoft\Cryptography\Protect\Providers\df9d8cd0-1501-11d1-8c7a-
00c04fc297eb\Recovery Version" to 3.

47 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

This section identifies No table of changes that were made to thisis available. The document is either
new or has had no changes since theits last release. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements or functionality.

▪ The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

▪ New content added.

▪ Content updated.

▪ Content removed.

▪ New product behavior note added.

▪ Product behavior note updated.

▪ Product behavior note removed.

▪ New protocol syntax added.

▪ Protocol syntax updated.

▪ Protocol syntax removed.

▪ New content added due to protocol revision.

▪ Content updated due to protocol revision.

▪ Content removed due to protocol revision.

▪ New protocol syntax added due to protocol revision.

▪ Protocol syntax updated due to protocol revision.

▪ Protocol syntax removed due to protocol revision.

▪ Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

48 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Some important terms used in the change type descriptions are defined as follows:

▪ Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

▪ Protocol revision refers to changes made to a protocol that affect the bits that are sent over the

wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major change (Y
or N)

Change type

1.2.1 Normative
References

73147 : Added the [SCHNEIER] reference. N
Content
update.

49 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index
A

Abstract data model
 client 36
 ClientWrap subprotocol 28
 overview 28
 ServerWrap subprotocol 28
 server (section 3.1.1 28, section 3.2.1 36)
AccessCheckV2 packet 20
AccessCheckV3 packet 21
Applicability 16

B

backupkey remote interface (section 3.1 28, section 3.2 36)
BackuprKey method 29
BackuprKey(Opnum 0) method 29

C

Call flows 12
Capability negotiation 16
Change tracking 47
Client
 abstract data model 36
 ClientWrap subprotocol 28
 overview 28
 ServerWrap subprotocol 28
 backupkey remote interface 36
 initialization (section 3.1.3 29, section 3.2.3 36)
 local events 39
 message processing (section 3.1.4 29, section 3.2.4 36)
 overview (section 3.1 28, section 3.2 36)
 Performing Client-Side Wrapping of Secrets method 37
 sequencing rules (section 3.1.4 29, section 3.2.4 36)
 timer events 39
 timers (section 3.1.2 28, section 3.2.2 36)
Client_Side_Wrapped_Secret packet 18
ClientWrap subprotocol 14
ClientWrap_RSA_key_pair packet 23
Common data types 17

D

Data model - abstract
 client 36
 ClientWrap subprotocol 28
 overview 28
 ServerWrap subprotocol 28
 server (section 3.1.1 28, section 3.2.1 36)
Data types

 common - overview 17
Data types - common - overview 17

E

EncryptedSecretV2 packet 19
EncryptedSecretV3 packet 19
Events
 local
 client 39

50 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 server 36
 local - client 39
 local - server 36
 timer
 client 39
 server 36
 timer - client 39
 timer - server 36
Examples
 overview 40
Examples - overview 40

F

Fields - vendor-extensible 16
Full IDL 43

G

Glossary 6

I

IDL 43
Implementer - security considerations 41
Index of security parameters 41
Informative references 11
Initialization
 client (section 3.1.3 29, section 3.2.3 36)
 server (section 3.1.3 29, section 3.2.3 36)
Interfaces - client
 backupkey remote 36
Interfaces - server
 backupkey remote 28
Introduction 6

L

Local events
 client 39
 server 36

M

Message processing
 client (section 3.1.4 29, section 3.2.4 36)
 server 29
 client-side wrapping of secrets - performing 37
 overview 36
Messages
 common data types 17
 transport 17
Methods
 BackuprKey(Opnum 0) 29
 Performing Client-Side Wrapping of Secrets 37

N

Normative references 10

O

Overview (synopsis) 11

51 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

P

Parameters - security index 41
Performing Client-Side Wrapping of Secrets method 37
Preconditions 15
Prerequisites 15
Product behavior 44
Public key - server - ClientWrap subprotocol 17

R

Rc4EncryptedPayload packet 23

RecoveredSecret packet 26
References 10
 informative 11
 normative 10
Relationship to other protocols 15

S

SECRET_WRAPPED_WITH_SYMMETRIC_KEY packet 22
Security
 implementer considerations 41
 parameter index 41
Sequencing rules
 client (section 3.1.4 29, section 3.2.4 36)
 server 29
 client-side wrapping of secrets - performing 37
 overview 36
Server
 abstract data model (section 3.1.1 28, section 3.2.1 36)
 backupkey remote interface 28
 BackuprKey(Opnum 0) method 29
 initialization (section 3.1.3 29, section 3.2.3 36)
 local events 36
 message processing 29
 client-side wrapping of secrets - performing 37
 overview 36
 overview (section 3.1 28, section 3.2 36)
 public key - ClientWrap subprotocol 17
 sequencing rules 29
 client-side wrapping of secrets - performing 37
 overview 36
 timer events 36
 timers (section 3.1.2 28, section 3.2.2 36)
ServerWrap packet 27
ServerWrap subprotocol 13
Standards assignments 16
Subprotocols
 ClientWrap 14
 ServerWrap 13

T

Timer events
 client 39
 server 36
Timers
 client (section 3.1.2 28, section 3.2.2 36)
 server (section 3.1.2 28, section 3.2.2 36)
Tracking changes 47
Transport 17

U

52 / 52

[MS-BKRP-Diff] - v20170601
BackupKey Remote Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Unwrapped_Master_Key packet 22
UnwrappedSecret packet 25

V

Vendor-extensible fields 16
Versioning 16

