

1 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

[MS-AUTHSOD-Diff]:

Authentication Services Protocols Overview

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

2/11/2011 1.0 New Released new document.

3/25/2011 2.0 Major Updated and revised the technical content.

5/6/2011 2.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 2.1 Minor Clarified the meaning of the technical content.

9/23/2011 3.0 Major Updated and revised the technical content.

12/16/2011 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 4.0 Major Updated and revised the technical content.

7/12/2012 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 5.0 Major Updated and revised the technical content.

1/31/2013 5.1 Minor Clarified the meaning of the technical content.

8/8/2013 6.0 Major Updated and revised the technical content.

11/14/2013 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 7.0 Major Significantly changed the technical content.

9/24/2015 7.1 Minor Clarified the meaning of the technical content.

10/16/2015 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

9/26/2016 7.2 Minor Clarified the meaning of the technical content.

6/1/2017 7.2 None
No changes to the meaning, language, or formatting of the
technical content.

12/15/2017 8.0 Major Significantly changed the technical content.

11/5/2018 9.0 Major Significantly changed the technical content.

6/3/2021 10.0 Major Significantly changed the technical content.

10/26/2021 11.0 Major Significantly changed the technical content.

3 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Table of Contents

1 Introduction .. 5
1.1 Conceptual Overview .. 5

1.1.1 Authentication Concepts .. 5
1.1.1.1 Security Principal .. 5
1.1.1.2 Accounts .. 5
1.1.1.3 Domain Membership .. 7
1.1.1.4 Groups .. 8

1.1.1.4.1 Group Scope ... 8
1.1.1.4.2 Nested Groups .. 9

1.1.1.5 Account Domains .. 10
1.1.1.5.1 Local Domains and Account Database .. 10
1.1.1.5.2 Network Domains and Domain Controllers .. 10
1.1.1.5.3 Effect on Accounts ... 11

1.1.2 Pre-GSS Authentication ... 11
1.1.3 GSS-Style Authentication... 11

1.2 Glossary ... 13
1.3 (Updated Section) References .. 19

2 Functional Architecture ... 22
2.1 Overview .. 22

2.1.1 Interactive Logon Authentication .. 23
2.1.1.1 Abstract Components .. 24
2.1.1.2 Protocol Interactions ... 25

2.1.2 Network Logon Authentication .. 27
2.1.2.1 Abstract Components .. 27
2.1.2.2 (Updated Section) Protocol Interactions ... 29
2.1.2.3 Enterprise Environment ... 33

2.1.2.3.1 File Access Services ... 33
2.1.2.3.2 Remote Desktop and Web Services .. 34

2.1.2.4 Intranet Web Environment ... 36
2.1.2.4.1 HTTP Access Authentication .. 36

2.1.2.5 Mixed Web Environment .. 38
2.1.3 (Updated Section) Relevant Standards .. 38
2.1.4 Relationship Between Standards and Microsoft Extensions 39

2.1.4.1 Kerberos Protocols .. 40
2.1.4.2 Digest Protocols .. 41
2.1.4.3 (Updated Section) SSL/TLS Protocols .. 41

2.2 Protocol Summary .. 42
2.2.1 (Updated Section) Enterprise Environment ... 43
2.2.2 (Updated Section) Intranet Web Environment .. 43
2.2.3 Internet Web Environment ... 44

2.3 Environment .. 44
2.3.1 Dependencies on This System .. 44
2.3.2 Dependencies on Other Systems/Components .. 45

2.4 Assumptions and Preconditions .. 45
2.5 Use Cases ... 46

2.5.1 Summary of Supporting Actors and System Interests 46
2.5.2 Actors ... 47
2.5.3 Interactive Logon ... 47

2.5.3.1 Single Domain .. 47
2.5.3.1.1 Interactive Domain Logon: Service Ticket for Client Computer 47

2.5.3.2 Multiple Domains .. 49
2.5.3.2.1 Interactive Domain Logon: Service Ticket for Client Computer 49

2.5.4 Network Logon ... 50
2.5.4.1 Single Domain .. 50

4 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.5.4.1.1 Client Authentication .. 50
2.5.4.1.2 Server Authentication .. 53
2.5.4.1.3 Mutual Authentication .. 55
2.5.4.1.4 Delegation of Authentication ... 56

2.5.4.1.4.1 Delegate by Using a Kerberos Forwarded TGT Mechanism 58
2.5.4.1.4.2 Delegate by Using S4U2proxy Mechanism 59

2.5.4.1.5 Credential Delegation ... 60
2.5.4.2 Multiple Domains .. 62

2.5.4.2.1 Client Authentication .. 62
2.5.4.3 Cross-Forest Environment .. 64

2.5.4.3.1 Client Authentication .. 65
2.5.5 Auxiliary .. 66

2.5.5.1 Authenticate Client Identity to a Kerberos Authentication Server 66
2.5.5.1.1 Authenticate Client Identity by Using a User Name and Password 67
2.5.5.1.2 Authenticate Client Identity by Using an X.509 Certificate 68

2.5.5.2 Negotiate Authentication Protocol ... 69
2.5.5.3 S4U2self Mechanism: Get a Service Ticket for a Front-End Server 70

2.5.6 Security Services .. 72
2.5.6.1 Data Origin Authentication (Signing) ... 72
2.5.6.2 Data Confidentiality (Sealing) ... 73

2.6 Versioning, Capability Negotiation, and Extensibility ... 75
2.7 Error Handling ... 75
2.8 Coherency Requirements .. 75
2.9 Security .. 75
2.10 Additional Considerations .. 76

3 Examples ... 77
3.1 Example 1: GSS Authentication Protocol Process - Stock Quote Server 77
3.2 Example 2: Interactive Domain Logon - Service Ticket for Client Computer 81

3.2.1 Interactive Domain Logon by Using Passwords ... 81
3.2.2 Interactive Domain Logon by Using an X.509 Certificate 83

3.3 Example 3: Connecting to an SMB2 Share ... 84
3.3.1 Using Kerberos Protocol Extensions [MS-KILE] ... 84
3.3.2 Using the NTLM Protocol [MS-NLMP] ... 87

4 (Updated Section) Microsoft Implementations .. 90
4.1 Product Behavior .. 90

5 Change Tracking .. 91

6 Index ... 92

5 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

1 Introduction

1.1 Conceptual Overview

Both the client and server versions of Windows implement standard authentication protocols as part of

an extensible architecture that consists of security support provider (SSP) security packages. These
protocols include Kerberos, Transport Layer Security (TLS), and Simple and Protected Generic Security
Service Application Program Interface (GSS-API) Negotiation Mechanism (SPNEGO), and their
extensions, as specified in [MS-KILE], [MS-TLSP], [MS-SPNG], and [MS-NEGOEX] respectively.

These protocols enable the authentication of users, computers, and services. The authentication
process, in turn, enables authorized users and services to access resources securely.

Windows networking has its roots in the LAN Manager (LM) network product. LM was designed for a
time when client authentication was sufficient for most requirements, and when the algorithms
common at the time exceeded computational capacity. For example, exhaustively searching Data
Encryption Standard (DES) keys was unthinkable by any but the most dedicated government
resources. LM authentication used a straightforward challenge/response authentication and was
sufficient for many customers for many years.

When Microsoft adopted the Kerberos protocol for Windows and moved away from NT LAN Manager

(NTLM) Protocol, the decision required a substantial change for a number of protocols. This process is
still going on today. Rather than repeat the process when circumstances required a new or additional
security protocol, Microsoft chose to insert a protocol, in this case, SPNEGO, to allow security protocol
selection and extension.

1.1.1 Authentication Concepts

Authentication is the process of verifying the identity of an entity. Several types of identities exist in
Windows, and they are managed in several ways. For example, identity can refer to the set of users
on a single computer or to the identities that are available in a domain.

1.1.1.1 Security Principal

The security principal is an entity with an identity that can be authenticated. A security principal is a
common concept in security; it is an actor in a security system and can often initiate action. Typically,
a security principal is associated with a human user of the computer system, but it can also be an
autonomous program within the system, such as a logging daemon, a system backup program, or a
network application. In Windows a security principal typically is a user, but also can be a computer, a

service, or a security group that represents a set of users. When authenticating a user, the goal is to
verify that the user is not an imposter. When authenticating an entity, such as a computer or a
network service, the goal is to verify that the entity is genuine.

Security principals receive permissions to access resources such as files and folders. User rights, such
as interactive logons, are granted or denied to accounts directly or through membership in a group.
The accumulation of these permissions and rights defines what security principals can and cannot do
when working on the network.

An identity is associated with a key. If a client proves knowledge of the key to a server, the server
treats that associated identity as the identity of the client. A security principal is often referred to as
an account. The identity that Windows uses for an account is called a security identifier (SID).

1.1.1.2 Accounts

On a computer that is running Windows, an account represents a security principal. The security
principal (or account) has at least a name and an identifier.

6 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

The name is a simple textual name for the account and can be a personal name, such as Rene Valdes,

SYSTEM, or RedmondDc1$. However, the name is merely an attribute of the account and can change
over time. A common scenario for a name change is when the person to whom the account refers
changes his or her name.

Also, the name is treated as case-insensitive. That is, Rene Valdes, RENE VALDEZ, rene valdes, and
reNe ValdEZ are treated as equivalent in Windows. Microsoft views case-sensitivity as an unnecessary
burden on the administrator that can lead to mistakes.

The identifier, although also an attribute of the account, needs to satisfy other requirements as well.
Of particular importance are the uniqueness and persistence of the identifier and the ability to identify
the issuer of the identifier.

The persistence of the identifier provides the administrator the capability to assign a resource to that

account and the capacity to accept future changes to the account.

For example, an administrator might assign a user who is named Rene Valdes access to a certain
document at some point in time. If Rene Valdes leaves the company and a different Rene Valdes is
hired, the new Rene Valdes is not to have access to the resources of the original Rene Valdes.
Conversely, if Rene Valdes changes his name to Rene Q. Valdes, he is not to lose access to the
resources that was previously granted to him.

The ability to identify the issuer of an identifier is important because it can determine whether a party
is willing to accept the identifier. For example, in the physical world, a cashier generally accepts a
driver's license as proof of identity, but the cashier refuses to accept a gymnasium membership card.
In Windows, the issuer of an account is encoded with the identity so that any recipient can make a
similar decision.

Windows has two basic accounts: user accounts and computer accounts. (The built-in administrator
account is enabled by default, except in the Windows 7 operating system):

User account: Identifies users who belong to a domain. User accounts store the names of users,
information that is required to verify their identity, and other user information.

Computer account: Identifies computers that belong to a domain. A computer account is commonly
referred to as a "machine account". Every Windows computer that joins a domain has a computer
account. Computer accounts provide a means for authenticating and auditing computer access to
the network and to domain resources. Each computer account is unique.

For more information about user and computer accounts, see Active Directory naming [MSFT-ADN].

Windows supports two distinct methods for machine logon. An interactive logon is the process in which

the account information and credentials that the user enters interactively are authenticated by a
domain controller (DC), whereas a network logon is the process of making an authenticated
connection to a server across the network.

Authentication methods range from a simple logon, which identifies users based on information that
only the user knows, like a password, to more powerful security mechanisms that use something that

the user has, like tokens, public key certificates, and biometrics. In a business environment, users
might access multiple applications on many types of servers within a single location or across multiple
locations. For these reasons, authentication methods need to support heterogeneous environments.

For network logon, the authenticating entities are called the client and the server. They are separate
processes or programs that run on one or more computers. When the client/server computing
paradigm was initially designed and adopted, the clients and servers usually communicated over
secure self-contained networks. As more and more applications had to communicate over open

nonsecure interconnected networks such as the Internet, the chances that message data could be
intercepted, altered, or suppressed increased significantly. Therefore, authentication protocols also
typically support the exchange of session keys that are used to protect the messages.

7 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

The client, the server, or both can be authenticated. Client authentication occurs when the client

proves its identity to the server; server authentication occurs when the server proves its identity to
the client.

An example of server authentication is the use of the Secure Sockets Layer (SSL) on the Internet,

which assures the identity of the server to the client. An example of client authentication might be the
authentication of a client in a protected network environment where all valuable resources reside on a
single server, and the server is concerned only about the identity of the client. On modern networks,
however, proving the identity of both the client and the server is critical. The client needs to be
assured of the identity of the server to avoid divulging important information to a rogue server. The
server has to be assured of the identity of the client to avoid granting the client inappropriate access.
This process is referred to as mutual authentication.

Ultimately, authentication is performed by using cryptographic operations of some form, such as

encryption or signatures. There are two main types of encryption: symmetric encryption and
asymmetric encryption. Symmetric encryption uses the same key to encrypt and decrypt a message.
Asymmetric encryption uses one key to encrypt and uses a different key to decrypt; these keys are
linked by mathematical requirements. Symmetric signatures can be implemented through keyed
hashes; asymmetric signatures can be implemented through encrypted hashes. See [SCHNEIER] for

more details.

Multitier client/server applications present a special situation for the Kerberos protocol. In this kind of
application, a client might connect to a front-end server that connects to a second server on the back
end. In this scenario, the front-end server sometimes authenticates itself to the back-end server by
getting a service ticket for the back-end server by using the invoking client's identity. Ideally, this
service ticket limits the front-end server's access on the second server to what the client is authorized
to do, rather than to what the front-end server is authorized to do.

The Kerberos protocol deals with this situation through a mechanism called delegation of
authentication. Essentially, the client delegates authentication to a server by communicating to the
Key Distribution Center (KDC) that the server is authorized to represent the client.

Similar to Kerberos delegation, the Credential Security Support Provider (CredSSP) Protocol [MS-
CSSP] enables applications to securely delegate a user's credentials from the client to the target
server. However, it does so by using a completely different mechanism with different usability and
security characteristics. Unlike Kerberos delegation, the CredSSP Protocol requires prompting for user

credentials when a policy specifies their delegation. This difference means that the user has some
control over whether the delegation occurs and, more importantly, which credentials are used. With
Kerberos delegation, only the user's Active Directory credentials can be delegated.

The CredSSP Protocol is used only in scenarios where other delegation schemes such as Kerberos
delegation cannot be used; for example, in non-domain scenarios.

In one such scenario, the Microsoft Terminal Server uses the CredSSP Protocol to securely delegate

the user's password or smart card PIN from the client to the server to log on a network user and
establish a Terminal Services session.

1.1.1.3 Domain Membership

Domain membership is the state of trusting a third party, the domain controller, for identity and

authentication information. Any computer can be part of a domain. Windows computers are easily
configured to be part of a domain and to trust the domain controller for many tasks. Also, certain
configuration changes are made, such as accepting the domain as the authoritative source of time.

Joining a domain can be summarized as (1) establishing an account on the domain that represents the

computer joining the domain, and (2) setting the password (or key) for the account on both the
domain and the computer. In Windows, this process is encapsulated in a domain join function called

NetJoinDomain. Several tools, including WinBind, exist for non-Windows systems to join a Windows
domain.

8 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

In Windows, the Netlogon component manages the relationship with the domain controller. Netlogon

maintains the keys that are necessary for ongoing authentication of the member system to the
domain controller. It also creates a secure channel to the Netlogon instance on the domain controller.
This channel that Netlogon creates for authentication is not specific to any protocol and is available

only to components that are involved in authentication.

Various authentication protocol implementations use this channel to redirect an authentication request
to their instance on the domain controller or to augment their activities with their instance on the
domain controller.

When the Netlogon service that runs on a client computer connects to the Netlogon service on a
domain controller to authenticate a user, the Netlogon services challenge each other to determine
whether they both have a valid computer account. This allows a secure communication channel to be

established for logon purposes.

1.1.1.4 Groups

A group is a collection of user accounts, computer accounts, and other groups, all of which are called

group members. A group has a name and an identifier. Group membership can either be specified in
Active Directory or be local to a particular computer.

Except on Windows NT operating system and Windows 2000 Server operating system, all applicable
Windows Server releases have several built-in security groups that are preconfigured with the
appropriate rights and permissions to perform specific tasks. Starting with Windows 2000 operating
system, Windows provides two types of groups:

Security groups: These groups contain members and can be granted permissions to control access

to network resources. Security groups can contain users, other groups, and even computers.

Distribution groups: These groups are used for nonsecurity functions, such as grouping users
together to send email messages. Unlike security groups, these groups cannot be used to control
access to network resources.

1.1.1.4.1 Group Scope

The scope of a group can be local or global depending on the portion of the network in which the

group is granted rights and permissions. Starting with Windows 2000, Windows provides four levels of
scope for security groups:

Universal groups: These groups can contain members for any domain and can be granted
permissions to resources in any domain in a specific Active Directory forest. An Active Directory

forest is a collection of one or more Active Directory domains that share a common logical
structure, directory schema, and network configuration, as well as automatic two-way transitive

trust relationships. Each forest is a single instance of the directory and defines a security
boundary. For more information, see How Domains and Forests Work [MSFT-DomainForest].
Universal groups can contain user accounts, global groups, and universal groups from any domain
in the current forest. An administrator can create a universal group only when the domain is in
native mode and not in mixed mode.

Domain global groups: These groups contain members only from their own domain but can be
granted permissions to resources in any trusting domain. In Windows NT, global groups are

created on DCs and exist in the domain directory database.

Domain local groups: These groups can contain members from any trusted domain, but are granted
permissions only to resources in their own domain. A domain administrator can create a domain

local group for each resource that exists within a domain, such as file shares or printers, and then
add the appropriate global groups from each domain to this domain local group. The domain
administrator then assigns the appropriate permissions for the resources to the domain local
group.

9 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Local groups: A local group can exist only within the local security database of the computer where it

is created. A local group can contain user accounts that are local to the computer and user
accounts and global groups from their own domain. This allows the member system to manage its
resources in the manner most relevant to it and not be completely dependent on the decisions of

the domain administrator. A local group can be granted permissions to resources only on the
computer where the local group was created. The Local Users and Groups Microsoft Management
Console (MMC) is used to create local groups on a computer.

A local group that is created with Windows NT Workstation operating system can be granted
permissions only to resources on the computer where it was created. A local group that is created
with a Windows NT Server operating system DC can be granted permissions only to resources on
the DCs of its own domain. Network administrators of enterprise-level Windows NT networks can

use a resource-access strategy called AGLP to plan and implement local groups in their network.
AGLP organizes accounts by placing them in global groups, which are then placed in local groups

that have appropriate permissions and rights assigned to them.

Beginning with Windows 2000 Server, the scope of a group can be changed. For example, global
groups that are not members of other global groups can be converted to universal groups. Domain
local groups that do not contain other domain local groups can be converted to universal groups.

1.1.1.4.2 Nested Groups

Windows supports the concept of nested groups, or the addition of groups to other groups. The use of
nested groups can help reduce the number of permissions that are required to be individually assigned
to users or groups.

The extent to which an organization uses nesting depends on which mode the domain controller was
configured in the operating system. Domain controllers can be configured in two modes: mixed mode

or native mode. For more information, see [MS-ADTS] section 6.1.4.1.

Mixed mode: A domain controller that is configured to support a mixed environment, meaning that
the environment can contain DCs running on Windows NT 4.0 operating system as well as DCs
running on Windows 2000, Windows Server 2003 operating system, and Windows Server 2003 R2
operating system.

Native mode: A domain controller that is not configured to support an environment that contains DCs
running on Windows NT 4.0. When the domain is in native mode, domain local groups can also

contain domain local groups from their own domain and universal groups from any trusted
domain.

Unlike Windows NT local groups, a domain local group can be granted permissions to resources on all

servers (both the domain controllers and member servers) in its domain. When the domain is in mixed
mode, domain local groups can contain user accounts and global groups from any trusted domain or
forest.

In mixed mode, only one type of nesting is available; global groups can be members of domain local
groups. Universal groups do not exist in mixed mode. In native mode, multiple levels of nesting are
available. The nesting rules for group membership are summarized in the following table.

Group scope Contains Can be a member of

Domain local
group

User accounts and universal and global groups from
any trusted domain.
Domain local groups from the same domain.

Domain local groups in the same
domain.

Global group User accounts and global groups from the same
domain.

Universal and domain local groups in
any domain.
Global groups in the same domain.

Universal group User accounts and universal and global groups from
any domain.

Universal or domain local groups in
any domain.

10 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

1.1.1.5 Account Domains

Accounts are always created relative to an issuing authority, which is responsible for allocating and
assigning the SID. In Windows, the issuing authority is referred to as a domain. A domain is either a
local domain or extends across a network.

Domains store information about their accounts in an account database.

Windows uses Active Directory as the account database in domain-based environments, whereas

environments that are not domain-based use the security account manager (SAM) built-in database as
the account database.

1.1.1.5.1 Local Domains and Account Database

Every computer that runs Windows has its own local domain; that is, it has an account database for
accounts that are specific to that computer. Conceptually, this is an account database like any other
with accounts, groups, SIDs, and so on. These are referred to as local accounts, local groups, and so

on. Because computers typically do not trust each other for account information, these identities stay
local to the computer on which they were created.

The Security Account Manager (SAM) Remote Protocol (Client-to-Server) [MS-SAMR] exposes this
account database, for both the local domain and domains across a network. This protocol specifies the
behavior for the local domain and domains across a network by defining a common data model, Active
Directory, as specified in [MS-ADTS].

In a domain controller configuration, the data manipulated by the server of this protocol is stored in

Active Directory and is replicated by the replication protocol specified in [MS-DRSR], made available
through the LDAP interface specified in [MS-ADTS] section 3.1.1.3, and replicated by the NETLOGON
replication interface specified in [MS-NRPC]. The data manipulated by the server of this protocol is
used as a security principal database for authentication protocols such as NTLM [MS-NLMP] and
Kerberos [MS-KILE].

The abstract data model for the SAM Remote Protocol (Client-to-Server) that exposes the account
database is specified in [MS-SAMR] sections 3.1 and 3.2.

1.1.1.5.2 Network Domains and Domain Controllers

In a network domain, all applicable Windows Server releases can be configured to be domain
controllers. A domain controller is a server that has made its account database available to other

machines in a controlled manner.

Because the account database is typically distributed across multiple domain controllers, there can be

a mix of different versions of the individual servers. Active Directory defines a functional level, which
serves as a version level for the entire directory. For more information about functional levels, see
[MSFT-ADDSFL].

A domain has built-in groups that are defined by Microsoft and created in the domain during
installation. For example, built-in groups include the Domain Users, Domain Computers, and Domain
Admins groups. By default, the Domain Users group includes all users who are defined in the domain.

A domain controller accepts authentication requests on behalf of the machines that have chosen to

trust it and for accounts in its domain.

A domain controller can have peers within the domain, which are other servers that also have been
configured to host this account database. Any server that participates in the domain as a domain
controller might or might not allow changes; the configuration is a choice of the administrator.

11 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

When a change is allowed, the servers replicate the change so that all domain controllers have the

same information.

1.1.1.5.3 Effect on Accounts

Windows domains affect the way that accounts and groups work. Some of this is by convention, and
some is by design.

▪ By convention, when a Windows operating system is added to a domain, the domain
administrators group is made a member of the local administrators group.

▪ By design, groups have different scopes when domains are involved. Groups are defined as either
globally known (and therefore usable by other domains) or known only within the domain in which
they are defined.

1.1.2 Pre-GSS Authentication

For the initial generation of client-server computing, applications and authentication protocols were
tightly coupled. Authentication was hardwired into each application or into each security module, and

both were closely tied to the operating system and the communications transport layer.

This application-specific design increased development and maintenance costs and impeded
interoperability between applications that were running on the same or different communications
networks.

1.1.3 GSS-Style Authentication

In the 1990s, a new paradigm decoupled application protocols from authentication protocols. This
approach, which became the Generic Security Service Application Programming Interface (GSS-API),
simplified the interactions between the application protocols and authentication protocols. The Generic
Security Services (GSS) style or GSS model underlies most currently implemented authentication
protocols that interact directly with application protocols. In the GSS style or model, the
authentication protocol produces opaque messages that are known as security tokens. The application

protocol is responsible for security token exchange between sender and receiver but does not parse or
interpret the security tokens.

Client-side requests and server responses usually drive GSS authentication.

The Authentication Services protocols provide authentication services to client and server applications.
As illustrated in the following diagram, client and server applications interact with the Authentication
Client and Authentication Server components of Authentication Services. Additionally, the client and

server applications communicate directly with their counterparts.

12 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 1: GSS-style authentication model

As shown in the preceding diagram, the client application contacts the local Authentication Client
through a generic interface that abstracts the underlying authentication protocols for creating a

security token. The Authentication Client creates a security token with the help of the underlying
authentication protocols and returns it to the calling application. Next, the client application embeds
the security token within application messages of the application protocol and transmits them as an

authentication request to the server side of the application. On receipt of the authentication messages,
the server application extracts the security token and supplies it to the Authentication Server. The
Authentication Server processes the security token with the help of the underlying authentication

protocols and generates a response or determines that authentication is complete. If another security
token is generated, the server-side application sends it back to the client, where the process
continues.

This exchange of security tokens continues until one or both sides determine that authentication is
complete. If authentication fails, the application should drop the connection and indicate the error. If it
succeeds, the application can then be assured of the identity of the participants, as far as the
underlying authentication protocol can accomplish.

When authentication is complete, session-specific security services are available. The application can

then invoke the authentication protocol to sign or encrypt the messages that are sent as part of the
application protocol. These operations are performed in much the same way, where the application
can indicate which portion of the message is to be encrypted, and then include a per-message security
token. By signing and/or encrypting the messages, the application obtains privacy, resists message
tampering, and detects dropped, suppressed, or replayed messages.

In Windows, the Security Support Provider Interface (SSPI) is the implementation of the GSS-style

authentication model. SSPI is a Windows-specific API implementation that provides the means for
connected network applications to call one of several security support providers (SSPs) to establish
authenticated connections and to exchange data securely over those connections. SSP is the
implementation of an authentication protocol as a dynamic link library (DLL). SSPI is the Windows
equivalent of GSS-API, and the two sets of APIs are on-the-wire compatible; hence, in this document,
the terms GSS-API and SSPI are used interchangeably.

For more information about the SSPI, see [SSPI].

13 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

1.2 Glossary

This document uses the following terms:

Active Directory: The Windows implementation of a general-purpose directory service, which uses

LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network such as user accounts, computer accounts, groups, and all related
credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active
Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS),
which are both described in [MS-ADOD]: Active Directory Protocols Overview.

asymmetric encryption: An encryption method that uses one key to encrypt and uses a different
key to decrypt; these keys are linked by mathematical requirements.

asymmetric signature: A digital signature that is derived from a cryptographic operation by using

an asymmetric algorithm and a private key. An asymmetric signature is processed with two
different keys; one key is used to create the signature, and the other key is used to verify the
signature. These keys are linked by mathematical requirements.

Authentication Authority (AA): A system that acts as a trusted third-party system, such as a
Key Distribution Center (KDC).

Authentication Client: The total set of authentication protocol security support providers (SSPs)
that are typically available on a Windows client release.

authentication server: The entity that verifies that a person or thing is who or what it claims to
be (typically using a cryptographic protocol) and issues a ticket or token attesting to the validity
of the claim.

Authentication Service (AS): A service that issues ticket granting tickets (TGTs), which are used
for authenticating principals within the realm or domain served by the Authentication Service.

authenticator: When used in reference to Kerberos, see Kerberos authenticator.

authorization: The secure computation of roles and accesses granted to an identity.

authorization data: An extensible field within a Kerberos ticket, used to pass authorization data
about the principal on whose behalf the ticket was issued to the application service.

challenge: A piece of data used to authenticate a user. Typically a challenge takes the form of a
nonce.

challenge/response authentication: A common authentication technique in which a principal is

prompted (the challenge) to provide some private information (the response) to facilitate
authentication.

claim: An assertion about a security principal expressed as the n-tuple {Identifier, ValueType, m
Value(s) of type ValueType} where m is greater than or equal to 1. A claim with only one Value
in the n-tuple is called a single-valued claim; a claim with more than one Value is called a multi-
valued claim.

client authentication: A mode of authentication in which only the client in the transaction proves
its identity.

client computer: The client machine in the domain or network topology of clients, servers, and
domain controllers. Alternatively, a computer that is not a domain controller server; the

computer may or may not be joined to a domain.

Common Internet File System (CIFS): The "NT LM 0.12" / NT LAN Manager dialect of the
Server Message Block (SMB) Protocol, as implemented in Windows NT. The CIFS name

14 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

originated in the 1990's as part of an attempt to create an Internet standard for SMB, based

upon the then-current Windows NT implementation.

Compound identity TGS-REQ: A FAST TGS-REQ that uses explicit FAST armoring using the
computer's ticket-granting ticket (TGT).

credential: Previously established, authentication data that is used by a security principal to
establish its own identity. When used in reference to the Netlogon Protocol, it is the data that is
stored in the NETLOGON_CREDENTIAL structure.

Data Encryption Standard (DES): A specification for encryption of computer data that uses a
56-bit key developed by IBM and adopted by the U.S. government as a standard in 1976. For
more information see [FIPS46-3].

delegation of authentication: The Kerberos mechanism whereby the client application delegates

its authentication to a front-end server by informing the Key Distribution Center (KDC) that the
front-end server is authorized to act on behalf of the identity of the user who is running the
client application to access protected resources that are located on a back-end server.

Digest authentication: A protocol that uses a challenge-response mechanism for authentication
in which clients are able to verify their identities without sending an in-the-clear password to the
server. For more information, see [RFC2617] and [RFC2831].

Distributed File System (DFS): A file system that logically groups physical shared folders located
on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault-tolerance and load-sharing capabilities.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating

a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain account: A stored set of attributes representing a principal used to authenticate a user or
machine to an Active Directory domain.

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.

When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming

context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),

several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of

computers and services by user-friendly names, and it also enables the discovery of other

information stored in the database.

domain user: A user with an account in the domain's user account database.

encrypted hash: A cryptographic hash that is computed over both an asymmetric key and data.

15 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

FAST AS-REQ: A Kerberos AS-REQ ([RFC4120] section 3.1) message that is armored with a

computer's ticket-granting ticket (TGT).

FAST TGS-REP: A Kerberos TGS-REP ([RFC4120] section 3.3) message that is armored with a
user's TGT.

FAST TGS-REQ: A Kerberos TGS-REQ ([RFC4120] section 3.3) message that is armored with a
user's TGT.

Flexible Authentication Secure Tunneling (FAST): FAST provides a protected channel between
the client and the Key Distribution Center (KDC).

forest: One or more domains that share a common schema and trust each other transitively. An
organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In contrast,

a domain establishes the administrative boundary for managing objects, such as users, groups,
and computers. In addition, each domain has individual security policies and trust relationships
with other domains.

Generic Security Services (GSS): An Internet standard, as described in [RFC2743], for providing
security services to applications. It consists of an application programming interface (GSS-API)
set, as well as standards that describe the structure of the security data.

global catalog server (GC server): A domain controller (DC) that contains a naming context
(NC) replica (one full, the rest partial) for each domain naming context in the forest.

Group Policy: A mechanism that allows the implementer to specify managed configurations for
users and computers in an Active Directory service environment.

Hypertext Transfer Protocol Secure (HTTPS): An extension of HTTP that securely encrypts and
decrypts web page requests. In some older protocols, "Hypertext Transfer Protocol over Secure
Sockets Layer" is still used (Secure Sockets Layer has been deprecated). For more information,

see [SSL3] and [RFC5246].

identity store: The set of users on a single computer or the identities that are available in a
domain.

interactive logon: A software method in which the account information and credentials input by
the user interactively are authenticated by a server or domain controller (DC).

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that

logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

Kerberos authenticator: A record sent with a ticket to a server to certify the client's knowledge
of the session key in the ticket; to help the server detect replay attacks by proving that the
authenticator is recently constructed; and to help the two parties select additional session keys
for a particular connection authenticated by Kerberos. The use of authenticators, including how

authenticators are validated, is specified in [RFC4120] section 5.5.1. For more information, see
[KAUFMAN].

Key Distribution Center (KDC): The Kerberos service that implements the authentication and
ticket granting services specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It must have access to an account database for the realm that it serves. KDCs are

integrated into the domain controller role. It is a network service that supplies tickets to clients

for use in authenticating to services.

16 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

keyed hash: A cryptographic hash computed over both a symmetric key and data, as specified in

[RFC2617]. For more information, see [RFC2104].

LDAP directory: The database that stores information about LDAP objects ([RFC2251]), such as
users, groups, computers, and printers.

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active
Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol,
established by the Internet Engineering Task Force (IETF), which allows users to query and
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

Local Security Authority (LSA): A protected subsystem that authenticates and logs users onto
the local system. LSA also maintains information about all aspects of local security on a system,

collectively known as the local security policy of the system.

mutual authentication: A mode in which each party verifies the identity of the other party, as
described in [RFC3748] section 7.2.1.

Netlogon: The Netlogon Remote Protocol, as specified in [MS-NRPC].

network logon: A software method in which the account information and credentials previously
supplied by the user as part of an interactive logon are used again to log the user onto another

network resource.

nonce: A number that is used only once. This is typically implemented as a random number large
enough that the probability of number reuse is extremely small. A nonce is used in
authentication protocols to prevent replay attacks. For more information, see [RFC2617].

NT LAN Manager (NTLM): An authentication protocol that is based on a challenge-response
sequence for authentication.

NT LAN Manager (NTLM) Authentication Protocol: A protocol using a challenge-response

mechanism for authentication in which clients are able to verify their identities without sending a
password to the server. It consists of three messages, commonly referred to as Type 1
(negotiation), Type 2 (challenge) and Type 3 (authentication).

NTP: Network Time Protocol (NTP), as specified in [MS-SNTP].

NTP server: The server role of the Network Time Protocol (NTP).

object identifier (OID): In the Lightweight Directory Access Protocol (LDAP), a sequence of
numbers in a format described by [RFC1778]. In many LDAP directory implementations, an OID

is the standard internal representation of an attribute. In the directory model used in this
specification, the more familiar ldapDisplayName represents an attribute.

pre-authentication: In Kerberos, a state in which a key distribution center (KDC) demands that
the requestor in the Authentication Service (AS) exchange demonstrate knowledge of the key
associated with the account. If the requestor cannot demonstrate this knowledge, the KDC will
not issue a ticket-granting ticket (TGT) ([RFC4120] sections 5.2.7 and 7.5.2).

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

privilege attribute certificate (PAC): A Microsoft-specific authorization data present in the

authorization data field of a ticket. The PAC contains several logical components, including group
membership data for authorization, alternate credentials for non-Kerberos authentication
protocols, and policy control information for supporting interactive logon.

17 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

proxy: An intermediary program that acts as both a server and a client for the purpose of making

requests on behalf of other clients (see [RFC2616] section 1.3).

public key: One of a pair of keys used in public-key cryptography. The public key is distributed
freely and published as part of a digital certificate. For an introduction to this concept, see

[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key infrastructure (PKI): The laws, policies, standards, and software that regulate or
manipulate certificates and public and private keys. In practice, it is a system of digital
certificates, certificate authorities (CAs), and other registration authorities that verify and
authenticate the validity of each party involved in an electronic transaction. For more
information, see [X509] section 6.

realm: A collection of key distribution centers (KDCs) with a common set of principals, as

described in [RFC4120] section 1.2.

Remote Desktop Protocol (RDP): A multi-channel protocol that allows a user to connect to a
computer running Microsoft Terminal Services (TS). RDP enables the exchange of client and
server settings and also enables negotiation of common settings to use for the duration of the
connection, so that input, graphics, and other data can be exchanged and processed between
client and server.

secret key: A symmetric encryption key shared by two entities, such as between a user and the
domain controller (DC), with a long lifetime. A password is a common example of a secret key.
When used in a context that implies Kerberos only, a principal's secret key.

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of
messages in client and server applications that communicate over open networks. SSL supports

server and, optionally, client authentication using X.509 certificates [X509] and [RFC5280]. SSL
is superseded by Transport Layer Security (TLS). TLS version 1.0 is based on SSL version 3.0

[SSL3].

Security Account Manager (SAM): A centrally managed service, such as Active Directory
Domain Services (AD DS), that enables a server to establish a trust relationship with other
authorized servers. The SAM also maintains information about domains and security principals,
and provides client-to-server information by using several available standards for access control
lists (ACLs).

security account manager (SAM) built-in database: The part of the user account database

that contains account information (such as account names and passwords) for accounts and
groups that are pre-created at the database installation.

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP] section
2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutually

established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

security principal: An identity that can be used to regulate access to resources. A security

principal can be a user, a computer, or a group that represents a set of users.

security support provider (SSP): A dynamic-link library (DLL) that implements the Security
Support Provider Interface (SSPI) by making one or more security packages available to

18 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

applications. Each security package provides mappings between an application's SSPI function

calls and an actual security model's functions. Security packages support security protocols such
as Kerberos authentication and NTLM.

Security Support Provider Interface (SSPI): An API that allows connected applications to call

one of several security providers to establish authenticated connections and to exchange data
securely over those connections. It is equivalent to Generic Security Services (GSS)-API, and
the two are on-the-wire compatible.

security token: An opaque message or data packet produced by a Generic Security Services
(GSS)-style authentication package and carried by the application protocol. The application has
no visibility into the contents of the token.

server authentication: A mode of authentication in which only the server in the transaction

proves its identity.

server computer: The server role in the network topology of client/server/domain controller.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional
security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

service principal name (SPN): The name a client uses to identify a service for mutual

authentication. (For more information, see [RFC1964] section 2.1.1.) An SPN consists of either
two parts or three parts, each separated by a forward slash ('/'). The first part is the service
class, the second part is the host name, and the third part (if present) is the service name. For
example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the
service class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service

name. See [SPNNAMES] for more information about SPN format and composing a unique SPN.

service ticket: A ticket for any service other than the ticket-granting service (TGS). A service

ticket serves only to classify a ticket as not a ticket-granting ticket (TGT) or cross-realm TGT, as
specified in [RFC4120].

session key: A relatively short-lived symmetric key (a cryptographic key negotiated by the client
and the server based on a shared secret). A session key's lifespan is bounded by the session to
which it is associated. A session key has to be strong enough to withstand cryptanalysis for the
lifespan of the session.

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO): An authentication

mechanism that allows Generic Security Services (GSS) peers to determine whether their
credentials support a common set of GSS-API security mechanisms, to negotiate different

options within a given security mechanism or different options from several security
mechanisms, to select a service, and to establish a security context among themselves using
that service. SPNEGO is specified in [RFC4178].

smart card: A portable device that is shaped like a business card and is embedded with a memory

chip and either a microprocessor or some non-programmable logic. Smart cards are often used
as authentication tokens and for secure key storage. Smart cards used for secure key storage
have the ability to perform cryptographic operations with the stored key without allowing the
key itself to be read or otherwise extracted from the card.

SMB dialect: There are several different versions and subversions of the Server Message Block
(SMB) protocol. A particular version of the SMB protocol is referred to as an SMB dialect.
Different SMB dialects can include both new SMB messages as well as changes to the fields and

semantics of existing SMB messages used in other SMB dialects. When an SMB client connects

to an SMB server, the client and server negotiate the SMB dialect to be used.

symmetric encryption: An encryption method that uses the same cryptographic key to encrypt
and decrypt a given message.

19 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

ticket: A record generated by the key distribution center (KDC) that helps a client authenticate to

a service. It contains the client's identity, a unique cryptographic key for use with this ticket (the
session key), a time stamp, and other information, all sealed using the service's secret key. It
only serves to authenticate a client when presented along with a valid authenticator.

ticket-granting service (TGS): A service that issues tickets for admission to other services in its
own domain or for admission to the ticket-granting service in another domain.

ticket-granting ticket (TGT): A special type of ticket that can be used to obtain other tickets.
The TGT is obtained after the initial authentication in the Authentication Service (AS) exchange;
thereafter, users do not need to present their credentials, but can use the TGT to obtain
subsequent tickets.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of

messages in client and server applications communicating over open networks. TLS supports

server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

user principal name (UPN): A user account name (sometimes referred to as the user logon
name) and a domain name that identifies the domain in which the user account is located. This
is the standard usage for logging on to a Windows domain. The format is:

someone@example.com (in the form of an email address). In Active Directory, the
userPrincipalName attribute of the account object, as described in [MS-ADTS].

X.509: An ITU-T standard for public key infrastructure subsequently adapted by the IETF, as
specified in [RFC3280].

1.3 (Updated Section) References

[IETFDRAFT-NEGOEX-02] Short, M., Zhu, L., Damour, K., and McPherson, D., "The Extended GSS-API
Negotiation Mechanism (NEGOEX)", draft-zhu-negoex-02, September 2010,
https://tools.ietf.org/html/draft-zhu-negoex-02

[IETFDRAFT-NEGOEX-04] Short, M., Zhu, L., Damour, K, and McPherson, D, "SPNEGO Extended
Negotiation (NEGOEX) Security Mechanism", draft-zhu-negoex-04, January 2011,
https://tools.ietf.org/id/draft-zhu-negoex-04.txt

[MS-ADOD] Microsoft Corporation, "Active Directory Protocols Overview".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS-CERSOD] Microsoft Corporation, "Certificate Services Protocols Overview".

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-CSSP] Microsoft Corporation, "Credential Security Support Provider (CredSSP) Protocol".

[MS-DPSP] Microsoft Corporation, "Digest Protocol Extensions".

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".

[MS-FASOD] Microsoft Corporation, "File Access Services Protocols Overview".

[MS-GPOD] Microsoft Corporation, "Group Policy Protocols Overview".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

20 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

[MS-KKDCP] Microsoft Corporation, "Kerberos Key Distribution Center (KDC) Proxy Protocol".

[MS-NEGOEX] Microsoft Corporation, "SPEGNOSPNEGO Extended Negotiation (NEGOEX) Security

Mechanism".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-NNTP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication: Network News Transfer
Protocol (NNTP) Extension".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure".

[MS-PKCA] Microsoft Corporation, "Public Key Cryptography for Initial Authentication (PKINIT) in

Kerberos Protocol".

[MS-POP3] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication: Post Office Protocol -
Version 3 (POP3) Extension".

[MS-RCMP] Microsoft Corporation, "Remote Certificate Mapping Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-RDSOD] Microsoft Corporation, "Remote Desktop Services Protocols Overview".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SNTP] Microsoft Corporation, "Network Time Protocol (NTP) Authentication Extensions".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

Extension".

[MS-TLSP] Microsoft Corporation, "Transport Layer Security (TLS) Profile".

[MS-WSMV] Microsoft Corporation, "Web Services Management Protocol Extensions for Windows

Vista".

[MSFT-ADDSFL] Microsoft Corporation, "Understanding Active Directory Domain Services (AD DS)
Functional Levels", http://technet.microsoft.com/en-us/library/understanding-active-directory-
functional-levels(WS.10).aspx

[MSFT-ADN] Microsoft Corporation, "Active Directory naming", http://technet.microsoft.com/en-
us/library/cc739093(WS.10).aspx

[MSFT-DomainForest] Microsoft Corporation, "How Domains and Forests Work",

http://technet.microsoft.com/en-us/library/cc783351(WS.10).aspx

21 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

[PKU2U-DRAFT] Zhu, L., Altman, J., and Williams, N., "Public Key Cryptography Based User-to-User

Authentication (PKU2U)", November 2008, http://tools.ietf.org/id/draft-zhu-pku2u-09.txt

[Referrals] Raeburn, K., Zhu, L., and Jaganathan, K., "Generating KDC Referrals to Locate Kerberos
Realms", February 2008, http://tools.ietf.org/html/draft-ietf-krb-wg-kerberos-referrals-10

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editorhttps://datatracker.ietf.org/rfcdoc/rfc2246.txt/

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999, http://www.rfc-editor.org/rfc/rfc2617.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

[RFC2831] Leach, P. and Newman, C., "Using Digest Authentication as a SASL Mechanism", RFC 2831,
May 2000, http://www.ietf.org/rfc/rfc2831.txt

[RFC3244] Swift, M., Trostle, J., and Brezak, J., "Microsoft Windows 2000 Kerberos Change Password

and Set Password Protocols", RFC 3244, February 2002, http://www.ietf.org/rfc/rfc3244.txt

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961,
February 2005, http://www.ietf.org/rfc/rfc3961.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication

Service (V5)", RFC 4120, July 2005, https://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October

2005, https://www.rfc-editor.org/rfc/rfc4178.txt

[RFC4556] Zhu, L., and Tung, B., "Public Key Cryptography for Initial Authentication in Kerberos", RFC
4556, June 2006, http://www.ietf.org/rfc/rfc4556.txt

[RFC5246] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.2",
RFC 5246, August 2008, http://wwwhttps://datatracker.ietf.org/rfcdoc/rfc5246.txt/

[RFC5349] Zhu, L., Jaganathan, K., and Lauter, K., "Elliptic Curve Cryptography (ECC) Support for

Public Key Cryptography for Initial Authentication in Kerberos (PKINIT)", RFC 5349, September 2008,

http://www.ietf.org/rfc/rfc5349.txt

[RFC6113] Hartman, S., and Zhu, L., "A Generalized Framework for Kerberos Pre-Authentication", RFC
6113, April 2011, http://www.ietf.org/rfc/rfc6113.txt

[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI
10.17487 August 2018, https://www.rfc-editor.org/info/rfc8446

[SCHNEIER] Schneier, B., "Applied Cryptography, Second Edition", John Wiley and Sons, 1996, ISBN:

0471117099, http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471117099.html

[SSPI] Microsoft Corporation, "SSPI", https://docs.microsoft.com/en-
us/windows/desktop/SecAuthN/sspi

22 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2 Functional Architecture

The Authentication Services protocols provide authentication services through the following methods:

▪ Interactive logon authentication

▪ Network logon authentication (also called noninteractive authentication)

The following sections provide an overview of interactive logon authentication and network logon
authentication, the protocols involved, and the relationships of these protocols with the relevant
standard protocols.

2.1 Overview

The following diagram illustrates the high-level interactions between the internal components of
Authentication Services and other external systems, including the public key infrastructure (PKI),
Authorization, and the account database.

Figure 2: Authentication Services interactions with internal and external components

Applications

23 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Applications can be interactive applications, such as Winlogon, or distributed client and server

applications, such as a web browser, web server, or a file client or a file server, or any other type of
client and server application.

Account database

An account database maintains the security principals and necessary information for authentication
and other purposes. In Windows, an Active Directory database maintains the domain security
principals, whereas the security account manager (SAM) built-in database maintains local security
principals. In Windows NT 4.0 operating system, both domain controllers (DCs) and workstations store
security principal accounts in a SAM database, which uses the Windows registry for underlying
persistent storage. Starting with Windows 2000 operating system, the domain security principals are
stored in Active Directory instead of the registry.

The account database is the portion of the directory that maintains the accounts for the principals of

the domain. In Windows NT 4.0 domains, the account database includes all the information in the
Windows NT 4.0 domain. In Active Directory domains, the account database contains a subset of the
entire LDAP-accessible directory that an Active Directory domain hosts.

As a final step to the authentication process, the account database verifies identities.

Public key infrastructure (PKI)

Windows PKI provides a framework of services, technology, protocols, and standards that enable the
deployment and management of a strong information security system that is based on public key
technology. Authentication Services interact with Windows PKI to encrypt and decrypt messages, to
sign and verify messages, and to verify the identities of the client and server by using digital
certificates. As shown in the preceding diagram, distributed client and server applications interact with

Windows PKI for certificate enrollment, renewal, and certificate signature validation.

The SSL/TLS [MS-TLSP], PKINIT [MS-PKCA], and Kerberos Network Authentication Service [MS-SFU]

protocols assume that Windows PKI functions are available as described in [MS-CERSOD].

Windows PKI relies on Microsoft CryptoAPI version 2 for secure cryptographic operations and private
key management.

Authorization

After an identity is authenticated, the next step is to use the identity to authorize access to a
resource. Authorization provides an interface for applications to make authorization decisions.

2.1.1 Interactive Logon Authentication

The interactive logons authentication section with its subsections describe the process and the
methods by which authentication protocols work in conjunction to prove the user's identity. Interactive
logon authentication is used to grant user access to both local and domain resources. Using a

computer that is running Windows in a network environment requires access to system services. Each
client that requests access to a system service is authenticated by that service. Authentication
requires the service to have proof of the user's credentials. The interactive logon task begins when a
user enters credentials to log on by using the Windows user interface. The credentials consist of a user
name and password for logon with a local account, and the user's user name, password, and domain
for logon with a domain account. A smart card containing a user's public key information can also be
used after the user obtains and unlocks it with a personal identification number (PIN).

Users can perform an interactive logon by using a local user account for local logon or a domain

account for domain logon. The interactive logon process confirms the user's identification by using the
security account database on the user's local computer or by using the domain's directory service.
This mandatory logon process cannot be turned off for users in a domain.

24 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

A user can interactively logon to a computer in one of two ways:

▪ Locally, when the user has direct physical access to the computer.

▪ Remotely, through Terminal Services, in which case the logon is further qualified as remote
interactive. Microsoft Terminal Server uses the CredSSP Protocol [MS-CSSP] to securely delegate

the user's password or smart card PIN from the client to the server to remotely log on the user
and to establish a Terminal Services session.

After an interactive logon, Windows runs applications on the user's behalf, and the user interacts with
those applications to access protected resources either locally or on remote computers.

Local logon

Logon to a local account grants a user access to Windows resources on the local computer and

requires that the user has a user account in the account database maintained by the Security Account

Manager (SAM) on the local computer. The SAM protects and manages user and group information in
the form of security accounts that are stored in the local computer registry. The computer can have
network access, but it is not required. Local user account and group membership information is used
to manage access to local resources.

Domain logon

A domain logon is a process that proves the identity of the user to the domain controller, implies

eventual user access to local and domain resources, and requires that the user has a user account in
an account database, such as Active Directory. The computer needs to have an account in the Active
Directory domain and be physically connected to the network. Users need the privileges required to
log on to a local computer or a domain. Domain user account information and group membership
information is used to manage access to domain and local resources.

Smart card domain logon

Logging on to a domain with a smart card provides a strong form of authentication, because smart

cards use keys that are stronger than a human can easily remember, and because two factors are
required: the PIN and the card.

For interactive domain logon, the validation process relies on authenticating domain user credentials
against the domain's directory service.

2.1.1.1 Abstract Components

The following block diagram illustrates abstract components that are involved in the interactive

domain logon authentication process. The abstract components on the domain-joined client computer
are the Local Security Authority (LSA), the client implementation of the authentication protocols, and
the components on the Authentication Authority (AA): for example, a domain controller consists of a
server implementation of authentication protocols, a PKI, and an account database. The Windows user

logon interface calls the LSA method to securely transfer the user credentials to the Authentication
Authority through a specified authentication protocol. The Authentication Authority verifies the user
credentials against the account database.

25 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 3: Abstract view of interactive domain logon authentication

2.1.1.2 Protocol Interactions

The following diagram illustrates the internal system architecture of the interactive domain logon
authentication task. The authentication protocols that are involved in the interactive domain logon
authentication process are:

Domain Logon (Username and Password):

▪ Kerberos Protocol Extensions [MS-KILE] [RFC4120]

▪ Authentication Protocol Domain Support [MS-APDS] - NTLM pass-through

Smart card Domain Logon (X.509 Certificate):

▪ Public Key Cryptography for Initial Authentication [MS-PKCA] [RFC4556]

26 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 4: Protocol interactions for interactive domain logon authentication

If the user credentials consist of a user name and password pair, the domain logon authentication
process first tries the Kerberos Authentication Protocol ([MS-KILE]). If Kerberos fails, the

authentication process falls back to the NTLM pass-through mechanism ([MS-APDS]). For smart card
logons in which the credentials contain X.509 certificates, the domain logon process uses the Public
Key Cryptography for Initial Authentication (PKINIT) in the Kerberos Protocol ([MS-PKCA]).

A Kerberos client attempts to prove the user identity by sending Kerberos protocol messages to
request a ticket-granting ticket (TGT) and a service ticket from the Key Distribution Center (KDC). The

KDC verifies the user identity against the account database and returns the TGT to the Kerberos

client. In subsequent messages, the Kerberos client requests the service ticket for a domain-joined
computer from the KDC. The KDC attempts to validate the TGT. If the validation succeeds, the KDC
returns the service ticket to the Kerberos client.

Next, the Kerberos client submits the service ticket to verify the user logon information. If the
Kerberos authentication fails, the APDS client on the domain-joined computer calls the NTLM pass-
through mechanism to prove the user identity and to get the user logon information. The APDS server
validates the user credentials against the account database; if the validation succeeds, the APDS

server returns the user logon information.

In the smart card logon scenario, the Kerberos client requests the TGT and service ticket from the
KDC by proving the user's identity in the form of an X.509 certificate, as described in [MS-PKCA]. The
KDC verifies the user identity against the account database by using PKI services and returns a TGT

and a service ticket. The Kerberos client submits the service ticket to the Kerberos server to validate
the service ticket and the user logon information. If the validation of user logon information succeeds,
interactive domain logon is permitted; otherwise, logon attempts fail.

27 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.1.2 Network Logon Authentication

The network logon authentication section with its subsections describe the process and the methods
by which authentication protocols work in conjunction to prove the user's identity. Network logon

authentication is used only after interactive logon authentication has taken place. Network logon does
not rely on user interface components, such as a dialog box, to collect data. Instead, previously
established credentials or another method to collect credentials is used. This process confirms the
user's identity to any network service that the user attempts to access. This process is typically
invisible to the user, unless the user is required to provide alternate credentials.

2.1.2.1 Abstract Components

The following block diagram illustrates abstract components that are involved in the network logon
process. Network logon authentication is performed when an application uses underlying

authentication protocol packages through the GSS-API layer to establish a secure network connection.
Network logon authentication is the mechanism at work when a user connects to multiple machines on

a network. For example, if an application needs to open a secure folder on a remote machine and the
application user is already logged on to a domain user account, the application does not require the
user to supply logon data again. Instead, the application requests network logon authentication by
using the GSS-API layer to pass the previously established security information to underlying security
support providers (SSPs).

Figure 5: Network logon authentication architecture

The preceding diagram shows the network logon authentication architecture that distributed client and

server applications in a domain environment use. The communication between the client and server
applications can occur over application communication protocols that are LAN-oriented ([MS-SMB],
[MS-SMB2], [MS-CIFS], and [MS-RPCE]) or Internet-oriented (HTTP, [MS-POP3], [MS-NNTP], and
Lightweight Directory Access Protocol (LDAP)).

The GSS-API is an application programming interface standard [RFC2743] that insulates application
communication protocols and authentication protocols.

GSS-API main functionality

28 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

The primary purpose of GSS-API is to abstract the commonalities of different authentication protocols

and to hide their implementation details.

A related purpose is to disentangle application communication protocols from authentication protocols.
An authentication protocol should be available to any application communication protocol. Its

implementation should not contain any application protocol-specific information.

To facilitate application protocol interactions with authentication protocols, GSS-API uses the
abstractions of credentials and security contexts. Credentials authenticate a security principal, such as
a user name, password, or certificate. In a GSS-API client and server scenario, each party provides
some type of credential. GSS-API uses these credentials to perform the authentication. A security
context is a collection of authenticated information about a security principal for an instance of a
session.

Throughout the GSS-API authentication process, the client and server exchange partial context

information in the form of security tokens. In this process, the GSS-API client and server each initially
obtains credentials and then calls the GSS-API to create security tokens to send to its counterpart.
Likewise, when a GSS-API client or server receives a security token from the other, it uses the GSS-
API to process and incorporate the security token, which contains authentication protocol-specific
data, into the security context for the authenticated relationship.

In GSS-API authentication, the client and server send and receive security tokens until authentication
succeeds or fails. After successful GSS-API authentication, the client and server each has a security
context that establishes an authenticated relationship with the other. These security contexts do not
contain the credentials that are used to create them, however, they can contain information from the
authentication process that is useful to the application for securing communications, such as an
encryption key. They can also contain information for maintaining the authenticated connection, such
as a Kerberos ticket or certificate or other information that is useful in authorizing the client's request,

such as security claims about the client. The security support provider (SSP) that performs the
authentication determines the contents of the context.

The following diagram illustrates GSS-API authentication between client and server application
protocols.

29 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 6: GSS-API authentication process

2.1.2.2 (Updated Section) Protocol Interactions

The following diagram illustrates the protocol interactions of the network logon authentication.

30 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

<New Image>

Figure 7: Protocol interactions for network logon authentication

As the preceding diagram shows, Authentication Services includes the following authentication and
auxiliary protocols.

Authentication protocols:

▪ Digest Protocol Extensions [MS-DPSP]

▪ Credential Security Support Provider (CredSSP) Protocol [MS-CSSP]

31 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP]

▪ Secure Sockets Layer (SSL/)/Transport Layer Security (TLS Protocol) Protocols (SSL/TLS) [MS-
TLSP]

▪ Kerberos Protocol Extensions [MS-KILE] [MS-SFU] [MS-PKCA]

▪ Simple and Protected Generic Security Service Application Program Interface (GSS-API)
Negotiation Mechanism (SPNEGO) Protocol Extensions [MS-SPNG]

▪ The Extended GSS-API Negotiation Mechanism (NEGOEX) [IETFDRAFT-NEGOEX-02]

▪ SPEGNOSPNEGO Extended Negotiation (NEGOEX) Security Mechanism (NEGOEX-04) [MS-
NEGOEX]

▪ Public Key Cryptography Based User-to-User Authentication - (PKU2U) [PKU2U-DRAFT]

▪ Kerberos Proxy Key Distribution Protocol [MS-KKDCP]

Auxiliary Protocols:

▪ Authentication Protocol Domain Support [MS-APDS]

▪ Remote Certificate Mapping Protocol [MS-RCMP]

▪ Netlogon Remote Protocol [MS-NRPC]

Custom Authentication Protocols:

Authentication Services provides an extensible network logon authentication architecture, which allows

implementers to add custom authentication protocol security support providers (SSPs) to the system
architecture.

Authentication protocol selection

Both the client and server application protocols can select any authentication protocol from the list of
supported authentication protocols through the GSS-API interface, either directly or indirectly.

The client and server application protocols can directly select any of the following authentication
protocols through the GSS-API interface: Digest [MS-DPSP], NTLM [MS-NLMP], CSSP [MS-CSSP],

Kerberos [MS-KILE], and SPNEGO [MS-SPNG].

Application protocols can select indirectly any of the following authentication protocols: NTLM [MS-

NLMP], Kerberos [MS-KILE], NEGOEX [MS-NEGOEX], PKU2U, and CUSTOM.

The difference between direct and indirect selection is the use of the SPNEGO protocol. Application
protocols use the SPNEGO protocol when they attempt to select an authentication protocol indirectly;
alternatively, application protocols can select the authentication protocol directly without using
SPNEGO. Because support for these authentication protocols varies across Windows releases and

application environments, the client and server application protocols have to select a mutually
supported authentication protocol either directly or indirectly. For example, for a client and server to
use the Kerberos authentication protocol, each have to support it.

An authentication protocol is selected in one of three ways:

▪ Assertion

▪ Application-Level Negotiation

▪ Negotiate

32 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Application-Level Negotiation uses the application-specific method or configuration to select the

mutually agreed-on authentication protocol between client and server application protocols, whereas
the other two options use Authentication Services.

Assertion

As a precondition for using Assertion to specify a mutually agreed-on authentication protocol when
calling GSS-API, both the client and the server directly specify a single authentication protocol from
the supported authentication protocols.

When the application or server uses only one authentication protocol for the exchange, it specifies
(asserts) the protocol to use when replying to a client request to access a service. If the client does
not support that protocol, the communication fails. This method of selection is called Assertion.

Application-Level Negotiation

When a client and a server support multiple authentication protocols, before authentication can take
place, applications exchange application-specific messages to select a commonly supported
authentication protocol. For example, if a client supports Kerberos and Digest and the server supports
NTLM and Digest, the common protocol that they both support is Digest, so the client and the server
can negotiate to use the Digest protocol. Similarly, the HTTP protocol uses the WWW-Authenticate
and Authorization headers in its negotiation.

Negotiate

The Negotiate option allows the client and server applications that are engaged in the authentication
process to select a mutually agreed-upon authentication protocol from a set of possible authentication
protocols by using the SPNEGO protocol [MS-SPNG].

When the authentication process begins with the option to negotiate for an authentication protocol,
the server or client can initiate the negotiation.

The server-initiated SPNEGO exchange takes place as follows:

1. The client requests access to a service in an application-protocol-specific way.

2. The server replies with a list of authentication protocols that it supports with its preferred
authentication protocol as its first choice in the application protocol message. For example, the
server might list Kerberos [MS-KILE], NEGOEX [MS-NEGOEX], and NTLM [MS-NLMP], and select
Kerberos as its preferred protocol.

3. The client examines the contents of the reply and checks to determine whether it supports any of
the specified protocols.

▪ If the client supports the preferred authentication protocol, authentication proceeds.

▪ If the client does not support the preferred authentication protocol but does support one of the
other protocols that the server lists, the client informs the server as to which authentication
protocol it supports, and the authentication process continues.

▪ If the client does not support any of the listed protocols, the authentication exchange fails.

The client-initiated SPNEGO takes place as follows:

1. The client sends a list of authentication protocols and also a preferred authentication protocol to
the server.

2. The server examines the contents of the request message and checks to determine whether it
supports any of the specified authentication protocols.

▪ If the server supports the preferred authentication protocol, authentication proceeds.

33 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ If the server does not support the preferred authentication protocol but does support one of

the other protocols that the client lists, the server informs the client as to which authentication
protocol it supports, and the authentication process continues.

▪ If the server does not support any of the listed protocols, the authentication exchange fails.

As shown in the preceding diagram, through the negotiation option, the client and server applications
can select NTLM, Kerberos, PKU2U, or a custom authentication protocol as the mutually agreed-on
authentication protocol. To select either the PKU2U or the custom authentication protocol, the
application uses the NEGOEX protocol, which extends the SPNEGO protocol and enables the
application protocol to choose a mutually agreed-on authentication protocol that is based on policy
information.

For example, if the server specifies Kerberos and NTLM and returns Kerberos as its preferred

authentication protocol, one client can immediately authenticate by using Kerberos, but another client

could negotiate to complete the authentication exchange by using NTLM.

Auxiliary protocols

If the client and server agree on any of the following authentication protocols: Digest [MS-DPSP],
NTLM [MS-NLMP], or SSL/TLS [MS-TLSP], an auxiliary protocol carries the credentials information
from the server to the Authentication Authority (AA), for example, a Windows DC. This mechanism is

called a pass-through mechanism.

When the client and server agree on either the Digest or the NTLM protocol, the Authentication
Protocol Domain Support [MS-APDS] performs the pass-through. Otherwise, if the client and server
agree on SSL/TLS, Remote Certificate Mapping Protocol [MS-RCMP] is used for pass-through.

2.1.2.3 Enterprise Environment

The protocols commonly used in enterprise environments for authentication and secure transport of
application data are listed in section 2.2.1. The following section describes how distributed applications
use the Authentication Services protocols in the enterprise environment, with the file access services
as an example.

2.1.2.3.1 File Access Services

The File Access Services section describes the steps that the file access services protocols ([MS-
FASOD]) undertake to support authentication.

The core protocols of the file access services are:

▪ Common Internet File System (CIFS) Protocol [MS-CIFS]

▪ Server Message Block (SMB) Protocol [MS-SMB]

▪ Server Message Block (SMB) Protocol Versions 2 and 3 [MS-SMB2]

To enforce access controls over files and resources on a file server the server acquires the validated
identity of the requestor, as illustrated in the following diagram. The file access services protocols
depend on Authentication Services to support several authentication protocols and depend on the
ability to negotiate the authentication protocol between the client and server.

In addition to the authentication support that CIFS provides, SMB provides new authentication
methods that include Kerberos. The SMB Negotiate and SMB Session Setup commands have been

enhanced to carry opaque security tokens to support mechanisms that are compatible with the

Generic Security Services (GSS) [RFC2743].

34 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 8: Authentication protocol standards in the enterprise environment

The preceding diagram shows that network traffic conforms to the file access services protocols that
are used between the file system client and the file system server. The file access services protocols

that are used between file access client and server carry authentication protocol messages as opaque
payloads in their protocol messages.

SMB and SMB2 rely on the Simple and Protected Generic Security Service Application Programming
Interface Negotiation Mechanism (SPNEGO) ([RFC4178], [MS-SPNG], and [MS-NEGOEX]) for
authentication, which in turn relies on Kerberos [MS-KILE] and on the NTLM [MS-NLMP]

challenge/response authentication protocol. If the agreed-on authentication protocol between client
and server is NTLM [MS-NLMP], the file server authenticates the user credentials provided by the file

access services client using the APDS protocol [MS-APDS] to the DC that contains the user account
information. Otherwise, if the authentication protocol is Kerberos [MS-KILE], the file server
authenticates the user identity by validating the service ticket to the SMB service submitted by the file
system client.

2.1.2.3.2 Remote Desktop and Web Services

In Windows, the Remote Desktop Protocol (RDP) [MS-RDPBCGR] and the Web Services Management

Protocol [MS-WSMV] use the CredSSP Protocol to delegate the user's credentials from the client to the
target server.

35 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 9: Credential delegation through the CredSSP Protocol

The preceding diagram shows that RDP and the Web Services Management Protocol trigger the
CredSSP Protocol to delegate the user's credentials. For more details about how and when these

protocols trigger the CredSSP Protocol, refer to [MS-RDPBCGR] or [MS-WSMV].

As described in [MS-CSSP], the CredSSP Protocol first establishes a Transport Layer Security (TLS)-
encrypted channel between the client and the target server by using the SSL/TLS Protocol [MS-TLSP].
The CredSSP Protocol uses TLS as an encrypted pipe; it does not rely on the client or server
authentication services that are available in TLS. The CredSSP Protocol then uses the SPNEGO Protocol

[MS-SPNG] and [MS-NEGOEX] to negotiate the NTLM or Kerberos authentication protocol that
performs mutual authentication and provides confidentiality services, which are used to securely bind

to the TLS channel and encrypt the credentials for the target server. In environments where the
Kerberos protocol is not supported, the NTLM protocol is selected to establish trust between the client
computer and the server computer. Otherwise, the Kerberos authentication protocol is selected
because the Kerberos protocol ensures server authentication.

The Kerberos Key Distribution Center (KDC) Proxy Protocol [MS-KKDCP] is used to allow Kerberos
clients to use KDC proxy servers to communicate to KDCs for Kerberos Network Authentication Service
(V5) protocol [RFC4120] and Kerberos change password protocol exchanges [RFC3244]. RDP and

IPsec are examples of KDC proxy usage.

When a Kerberos client does not have connectivity to the KDC, but the client could use Kerberos to

authenticate to an application server, Kerberos normally fails. With a Kerberos proxy client on the
client host and a KDC proxy server with connectivity to the KDC, Kerberos authentication can be used
to authenticate to the application server. The Kerberos proxy client sends standard Kerberos
Authentication Service, ticket-granting service (TGS), and change password requests in HTTPS

36 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

messages to the KDC proxy server. The KDC proxy server locates the KDC, sends these messages to

the located KDC, and returns the received replies via HTTPS to the client.

Figure 10: KKDCP deployment environment

2.1.2.4 Intranet Web Environment

The protocols that are commonly used in intranet web environments for authentication and secure
transportation of application data are listed in section 2.2.2. The following section describes how

distributed applications use the Authentication Services protocols in the intranet web environment.

2.1.2.4.1 HTTP Access Authentication

HTTP Access Authentication is described in this section as an HTTP 1.1 [RFC2616] authentication,
whereas Basic and Digest Access Authentication is addressed in [RFC2617]. HTTP is used
internationally for Internet web servicing. The general topology of the HTTP protocol is that of a
client/server role. The HTTP client makes requests that are sent to the HTTP server. The HTTP server

can enforce authentication requirements on the HTTP requests. If a request lacks valid authentication

material in the HTTP header, the HTTP server generates a Challenge message (token), which is sent to
the HTTP client. The HTTP client can then form a ChallengeResponse token based on user credentials
that are applied to the authentication protocol. The initial Request along with the ChallengeResponse
token is sent again to the HTTP server. The HTTP server can then validate the ChallengeResponse

37 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

token in processing the request. This task focuses on the HTTP server side of the authentication

exchange.

HTTP authentication [RFC2617] contains specification details on two forms of authentication: Basic
and Digest authentication. The HTTP authentication framework is extensible to other authentication

mechanisms. This capability provides opportunities to extend the types of authentication that are
available for use in HTTP requests.

Authentication is also possible by way of forms-based authentication. Here the user credentials (user
name and password) are entered by the user in an HTTP format and are transmitted in clear text to
the HTTP server, typically by using a secure HTTPS connection. The HTTP server can then validate the
user credentials. This type of authentication is not part of the HTTP authentication protocol [RFC2617]
and is not covered in additional detail.

Following are the steps that the web server undertakes for HTTP Web Access Authentication. Enforcing

access controls over files and resources on an HTTP server requires the server to recognize the
validated identity of the requestor, the files, and the resources to be configured for access control to
enforce authentication and authorization. The following diagram illustrates the network traffic that
conforms to the web-based protocols that are used between the web browser and the web server.

Figure 11: Authentication protocol standards in an intranet web environment

When a browser uses NTLM [MS-NLMP] or Digest Protocol Extensions [MS-DPSP], if the user's account
information is not available locally, the web server authenticates the user credentials provided by the
web browser by using the APDS protocol to the DC that contains the user's account information.

38 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

When a web browser uses the SSL/TLS [MS-TLSP] protocols to provide an X.509 certificate, if the

user's account information is not available locally, the web server uses the Remote Certificate Mapping
Protocol [MS-RCMP] to authenticate the certificate with the DC that contains the user's account.

When a web browser uses Kerberos [MS-KILE] for web authentication, a service ticket to the web

service is obtained from the DC.

2.1.2.5 Mixed Web Environment

As listed in section 2.2.3, the authentication protocols that are primarily used in web environments for

authentication and secure transportation of application data are Digest Protocol Extensions [MS-
DPSP], Transport Layer Security (TLS) Profile [MS-TLSP], and HTTP Authentication: Basic and Digest
Access Authentication [RFC2617].

The following diagram illustrates authentication protocol interactions in a mixed web environment,
which is the combination of Internet and enterprise environments.

If users have domain accounts but have to connect to a web server from outside the domain or from
an untrusted domain (for example, over the Internet), clients cannot use the SPNEGO [MS-SPNG] and

[MS-NEGOEX] or Kerberos [MS-KILE] protocols. Instead, clients can use custom authentication
protocols, an HTTP authentication mechanism, or the SSL/TLS protocol [MS-TLSP] and then can
transition to Kerberos protocol extensions.

Figure 12: Authentication protocol standards in a mixed web environment

2.1.3 (Updated Section) Relevant Standards

The Authentication Services protocols use and extend the following standards:

39 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The Kerberos Network Authentication Service (V5) [RFC4120] provides an overview and

specification of Version 5 of the Kerberos protocol.

▪ Microsoft Windows 2000 Kerberos Change Password and Set Password Protocols [RFC3244].

▪ A Generalized Framework for Kerberos Pre-Authentication [RFC6113]: This document specifies a

framework for Kerberos pre-authentication mechanisms and defines the common set of functions
that pre-authentication mechanisms perform and how these functions affect the state of the
request and reply.

▪ HTTP Authentication: Basic and Digest Access Authentication ([RFC2617] and [RFC2831]): These
documents specify the HTTP authentication framework, the original Basic authentication scheme,
and a scheme based on cryptographic hashes, referred to as Digest Access Authentication.

▪ Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) [RFC4556]. This document

describes protocol extensions to the Kerberos protocol. These extensions provide a method for
integrating public key cryptography into the initial authentication exchange, by using asymmetric
key signatures and/or encryption algorithms in pre-authentication data fields.

▪ The Simple and Protected Generic Security Service Application Programming Interface (GSS-API)
Negotiation Mechanism [RFC4178] specifies a pseudo security mechanism that enables GSS-API
peers to determine in-band whether they support a common set of one or more GSS-API security

mechanisms.

▪ The Generic Security Service Application Program Interface (GSS-API), Version 2 [RFC2743]
provides security services to callers in a generic fashion supportable with a range of underlying
mechanisms and technologies that allow source-level portability of applications to different
environments.

▪ The Transport Layer Security (TLS) Protocol Version 1.2 [RFC5246] provides communications
security over the Internet. This protocol allows client/server applications to communicate in a way

that is designed to prevent eavesdropping, tampering, or message forgery. TLS Version 1.3
removed legacy algorithms, all handshake messages after the Server Hello are now encrypted,
added Elliptic curve algorithms in the base spec, among other changes. See [RFC8446] for the
details.

2.1.4 Relationship Between Standards and Microsoft Extensions

The diagrams in the following subsections illustrate the relationship between protocol standards and
Microsoft protocol extensions. As indicated in each diagram legend, an arrow is used only when the
protocol standard or Microsoft protocol specification is extended or clarified by other protocol

standards or Microsoft specifications. If there are no connections between a protocol standard and a
Microsoft protocol extension, this means that Microsoft implementations do not extend the standard

but use the standard as-is.

40 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.1.4.1 Kerberos Protocols

Figure 13: Relationships between Kerberos protocol and Microsoft extensions

The Kerberos Protocol Extensions [MS-KILE]:

▪ Specifies Microsoft extensions to [RFC4120] and [RFC3961] and clarifies behavior that is
implementation specific.

▪ Extends the GSS-API RFCs with two new APIs.

▪ Extends [RFC4120] with:

▪ New pre-authentication data using the RFC's extensibility point.

▪ New elements using the RFC's optional authorization data elements.

▪ New KRB-ERROR clock skew data.

▪ Support for the use of Active Directory as the Kerberos account database.

▪ Processing rules for Windows authorization data [MS-PAC].

41 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Public Key Cryptography for Initial Authentication [MS-PKCA] specifies Microsoft extensions to

[RFC4556] and [RFC5349], and normatively documents behavior from an earlier draft of [RFC4556].

Kerberos Protocol Extensions: Service for User and Constrained Delegation Protocol Specification [MS-
SFU] extends [RFC4120] with support for:

▪ Service-for-User-to-Self.

▪ Service-for-User-to-Proxy.

▪ Tracking services that have been delegated, by adding new structures in the PAC.

The Privilege Attribute Certificate Data Structure [MS-PAC] extends [RFC4120] by providing a
mechanism to convey authorization information by encapsulating this information within an
AuthorizationData structure ([RFC4120] section 5.2.6).

2.1.4.2 Digest Protocols

Figure 14: Relationships between Digest Authentication protocol standards and Microsoft

extensions

Digest Protocol Extensions [MS-DPSP] specify:

▪ The variations from the Digest Authentication standard specified in [RFC2617] and [RFC2831].

▪ How Windows implements optional fields and behaviors, and how Windows supports older clients
and servers that do not conform to [RFC2617] and [RFC2831].

2.1.4.3 (Updated Section) SSL/TLS Protocols

42 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

<New Image>

 Figure 15: Relationships between SSL/TLS protocol standards and Microsoft extensions

▪ Transport Layer Security (TLS) Profile [MS-TLSP]: Specifies the differences between the
requirements of the referenced RFC documents and the Microsoft implementation.

2.2 Protocol Summary

The tables in the following sections group the Authentication Services protocols according to their
roles into three distinct environments: the Enterprise Environment (section 2.2.1), the Intranet Web
Environment (section 2.2.2), and the Internet Web Environment (section 2.2.3).

43 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.2.1 (Updated Section) Enterprise Environment

Protocol name Description

Protocol
document
short name

NT LAN Manager (NTLM)
Authentication Protocol

This protocol is used by application protocols to authenticate
remote users and, optionally, to provide session security when the
application requests it. This protocol also provides the group
membership information in conjunction with Authentication
Protocol Domain Support, as described in [MS-APDS].

[MS-NLMP]

Kerberos Protocol
Extensions

Specifies extensions to the Kerberos Network Authentication
Service (V5) protocol [RFC4120]. These extensions provide
additional capability for authorization information, including group
memberships, interactive logon information, and integrity levels,
as well as constrained delegation and encryption that Kerberos
principals support.

[MS-KILE]

Public Key Cryptography
for Initial Authentication
(PKINIT) in Kerberos
Protocol

Specifies Microsoft extensions to the Public Key Cryptography for
Initial Authentication in Kerberos (PKINIT) protocol. These
extensions describe how the Windows implementations of PKINIT
differ from what is specified in [RFC4556] and [RFC5349].

[MS-PKCA]

Authentication Protocol
Domain Support

Specifies the communication between a server and a domain
controller that uses Netlogon interfaces ([MS-NRPC] section 3.2)
to complete an authentication sequence for certain authentication
protocols and provides group membership information.

[MS-APDS]

Simple and Protected
GSS-API Negotiation
Mechanism (SPNEGO)
Extension

Extends [RFC4178], which specifies a negotiation mechanism for
the Generic Security Service Application Programming Interface
(GSS-API) [RFC2743]. Extension is based on version 2 of NEGOEX
[IETFDRAFT-NEGOEX-02].

[MS-SPNG]

SPEGNOSPNEGO
Extended Negotiation
(NEGOEX) Security
Mechanism

Extends [RFC4178], enhances the capabilities of SPNEGO by
providing a security mechanism that can be negotiated by the
SPNEGO protocol. Extension is based on version 4 of NEGOEX
[IETFDRAFT-NEGOEX-04].

[MS-NEGOEX]

Kerberos Protocol
Extensions: Service for
User and Constrained
Delegation Protocol

These two extensions to Kerberos enable an application service to
obtain a Kerberos service ticket on behalf of a user, but each
provides a different way to obtain a ticket on behalf of a user.

[MS-SFU]

Credential Security
Support Provider
(CredSSP) Protocol

Enables an application to securely delegate a user's credentials
from a client to a target server.

[MS-CSSP]

Netlogon Remote
Protocol

Used for user and machine authentication on domain-based
networks.

[MS-NRPC]

2.2.2 (Updated Section) Intranet Web Environment

Protocol name Description
Document
short name

Digest Protocol Extensions Extends the Digest Authentication standard [RFC2617] and
[RFC2831].

[MS-DPSP]

Remote Certificate Mapping
Protocol

Used by servers that authenticate users by using X.509
certificates. This protocol allows the server to use a
directory, database, or other technology to map the user's
X.509 certificate to a security principal. This protocol returns
the authorization information that is associated with the

security principal in the form of a privilege attribute
certificate (PAC), as specified in [MS-PAC], that represents
the user's identity and group memberships.

[MS-RCMP]

Transport Layer Security
(TLS) Profile

Specifies the differences between Microsoft implementation
and the SSL/TLS standards.

[MS-TLSP]

44 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Protocol name Description
Document
short name

NT LAN Manager (NTLM)
Authentication Protocol

See section 2.2.1. [MS-NLMP]

Kerberos Protocol Extensions See section 2.2.1. [MS-KILE]

Public Key Cryptography for
Initial Authentication (PKINIT)
in Kerberos Protocol

Specifies the Microsoft extensions to the Public Key
Cryptography for Initial Authentication in Kerberos (PKINIT)
protocol and enables the use of public key cryptography in
the initial authentication exchange (that is, in the
Authentication Service (AS) exchange) of the Kerberos
protocol [MS-KILE].

[MS-PKCA]

Authentication Protocol
Domain Support

See section 2.2.1. [MS-APDS]

Simple and Protected Generic
Security Service Application
Programming Interface
Negotiation Mechanism
(SPNEGO) Protocol
Extensions

See section 2.2.1. [MS-SPNG]

SPEGNOSPNEGO Extended
Negotiation (NEGOEX)
Security Mechanism

See section 2.2.1. [MS-NEGOEX]

2.2.3 Internet Web Environment

Protocol name Description
Short
name

Digest Protocol
Extensions

See section 2.2.2. [MS-
DPSP]

Transport Layer Security
(TLS) Profile

See section 2.2.2. [MS-
TLSP]

Kerberos Key Distribution
Center (KDC) Proxy
Protocol

This protocol lets Kerberos clients use KDC proxy servers to
communicate to KDCs for the Kerberos Authentication Service (AS),
ticket-granting service (TGS), and change password exchanges.

[MS-
KKDCP]

2.3 Environment

The following subsections identify the context in which Authentication Services exist. This includes the
systems that use the interfaces provided by these protocols, other systems that depend on this
system, and, as appropriate, the methods that the system components use to communicate.

2.3.1 Dependencies on This System

Because Authentication Services authenticate users, computers, and security services in a domain
environment, any system or protocol that operates within a domain or has a mode of operation within

a domain is influenced by this system. However, the following groups of related protocols depend
more closely on the Authentication Services protocols:

Active Directory [MS-ADOD]: Describes how the directory is structured and how LDAP operations are

carried out on the directory store. To authenticate the identities of clients that attempt to operate
on the directory store, Active Directory uses the Authentication Services protocols to
authenticate so that authorization decisions can be made, such as whether a client has permission
to perform a particular operation against a directory object.

45 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Certificate Services [MS-CERSOD]: Describes how the certificate authority leverages the

Authentication Services protocols to manage certificate distribution and enrollment and makes
authorization decisions that are based on information that is associated with the accounts in the
domain.

File Access Services [MS-FASOD]: Describes its dependance on the Authentication Services
protocols to authenticate an identity before it is determined whether the requested identity has
the required access rights on a file object, such as permission to read from a file or write to a file.

Group Policy Protocols [MS-GPOD]: Describes how a domain client can retrieve group policy
information from a domain controller, which is based on the group memberships of the domain
accounts and on the domain account locations in the LDAP directory structure. Group Policy
protocols depend on the Authentication Services protocols to secure communications between

the Group Policy client and the Group Policy server.

Remote Desktop Services Protocols [MS-RDSOD]: Describes the functionality to securely connect
remote clients and servers, to channel communication between components of remote clients and
servers, and to manage servers. RDP protocols depend on the services of the Authentication
Services protocols to authenticate identities and to help ensure secure communications.

2.3.2 Dependencies on Other Systems/Components

The Authentication Services protocols depend on the following systems:

▪ Active Directory [MS-ADOD]

▪ Public Key Infrastructure (PKI) [MS-CERSOD]

The Authentication Services protocols depend on Active Directory for identity information.

The Authentication Services protocols depend on the certificate authority (CA)/PKI infrastructure for
certificate validation, signature validation, and asymmetric cryptography security services. Microsoft
clients use the Crypto API 2.0 library for these features.

2.4 Assumptions and Preconditions

The following assumptions and preconditions apply to this document.

▪ Information regarding network topology and/or addresses for the external server systems is
configured or discoverable.

▪ At least one of the following external server systems has been set up and configured:

▪ Active Directory

▪ DNS Directory

▪ LDAP directory

▪ NTP server

▪ A domain controller has been set up and configured to support the domain infrastructure.

▪ The user account for the authenticating client has been created and provisioned on the domain
controller.

▪ The client and server machines have been joined to the domain.

▪ Higher-layer protocols and service implementations are configured and running on the

authenticating client and server systems, such as:

46 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ Distributed File System (DFS)

▪ Group Policy [MS-GPOD]

▪ Network Time Protocol (NTP)

2.5 Use Cases

The following sections describe a set of use cases that span the functionality of Authentication
Services.

Use case group Use case(s)

Interactive
Logon (section 2.5.3)

Interactive Domain Logon: Service Ticket for Client Computer (section 2.5.3.1.1)

Network
Logon (section 2.5.4)

Client Authentication (section 2.5.4.1.1), Server Authentication (section 2.5.4.1.2),
Mutual Authentication (section 2.5.4.1.3), Delegation of
Authentication (section 2.5.4.1.4), and Credential Delegation (section 2.5.4.1.5).

Auxiliary (section 2.5.5) Authenticate a User or Computer Identity to a Kerberos Authentication
Server (section 2.5.5.1), Negotiate Authentication Protocol (section 2.5.5.2), and
S4U2self Mechanism: Get a Service Ticket for a Front-end Server (section 2.5.5.3).
These use cases support the other use cases that are listed in this table and in the
following tables.

Security
Services (section 2.5.6)

Data Origin Authentication (Signing) (section 2.5.6.1)
Data Confidentiality (Sealing) (section 2.5.6.2)

The use cases listed in the following table apply to a multi-domain environment in a single forest.

Use case group Use case(s)

Interactive
Logon (section 2.5.3)

Interactive Domain Logon: Service Ticket for Client
Computer (section 2.5.3.2.1)

Network Logon (section 2.5.4) Client Authentication (section 2.5.4.2.1)

The use cases listed in the following table apply to a cross-forest environment.

Use case group Use case(s)

Network Logon (section 2.5.4) Client Authentication (section 2.5.4.3.1)

2.5.1 Summary of Supporting Actors and System Interests

The use cases of the Authentication Services protocols have the following supporting actors:

▪ Account database: To authenticate client and server application identities, the Authentication
Services protocols depend on the account database (account DB) as an identity store. Windows
uses an account database implemented by means of Active Directory Services, as described in
[MS-ADOD]. The account DB is on the same machine as the Authentication Authority (AA), so no
network traffic occurs.

▪ Public key infrastructure (PKI): To authenticate the identities of client and server applications that
use certificate-based authentication mechanisms, the Authentication Services protocols use
Windows PKI to verify digital certificates and use the symmetric and asymmetric cryptography
services of Windows PKI to provide security services, such as encryption and signing algorithms to

the client and server applications. Windows implements PKI by means of Certificate Services [MS-
CERSOD].

47 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.5.2 Actors

The actors that participate in the Authentication Services protocols use cases are:

▪ Client applications: Used to access and manipulate protected network resources. Client

applications use the authentication and security services of the Authentication Services protocols
to communicate with and to send requests to the server applications.

▪ Server applications: Provide services to the client applications. Server applications use the
authentication and security services of the Authentication Services protocols to communicate with
and to send responses to the client applications.

▪ LSA: The Local Security Authority (LSA) initiates the interactive logon use case by submitting user
credentials.

▪ Front-end server: A front-end server contacts Authentication Services to get the authentication
token for the back-end server on behalf of the client's identity.

▪ Back-end server: The back-end server depends on Authentication Services to validate the
authentication token submitted by the server on behalf of the client's identity.

▪ Authentication Client: The client application(s) and the LSA interact with Authentication
Services by playing the roles of the "Authentication Client" actor.

2.5.3 Interactive Logon

2.5.3.1 Single Domain

The following subsection describes interactive domain logon in a single domain environment use case.

2.5.3.1.1 Interactive Domain Logon: Service Ticket for Client Computer

The LSA initiates this use case with the goal of proving the identity of a user to the Authentication
Authority (AA) and of getting a service ticket that contains user logon information from the AA for the
client computer. The user provides the credential material information, which includes the

identification and proof of that identification.

48 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 16: Interactive domain logon - service ticket for client computer use case

Goal: To get the service ticket for a client computer.

Context of Use: Applies when the user interactively logs on to the domain.

Direct Actor: The LSA.

Primary Actor: The user.

Supporting Actors: The AA and the account database (DB).

Preconditions:

▪ The client computer is joined to a domain.

▪ The identity of the user is configured in the account database.

▪ The client computer and the AA can communicate with each other.

Minimal Guarantee: The LSA sends an error message to the user when the submitted credentials
do not match the ones that are stored in the account database or when the interactive domain
logon process fails.

Success Guarantee: The LSA receives a service ticket for the client computer.

Trigger: The user attempts to log on interactively to the client computer.

Main Success Scenario:

1. The identity of the user is proven to the AA as described in section 2.5.5.1.

2. The LSA requests a service ticket for the client computer by including a Kerberos

authenticator and the TGT that was received in the preceding step in a Kerberos request and
sending the request to the AA.

3. The AA validates the request and returns a service ticket for the client computer.

49 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Alternative Scenario: This scenario occurs when Flexible Authentication Secure Tunneling (FAST)

mode is supported and configured on both the Authentication Client and the AA and when the
preceding preconditions are met.

1. The identity of the client computer is proven to the AA as described in the Main Scenario in

sections 2.5.5.1.1 or 2.5.5.1.2, and a TGT for the computer is obtained.

2. The identity of the user is proven to the AA as described in the Alternative Scenario in
section 2.5.5.1.1.

3. The LSA requests the AA to issue a service ticket for the client computer by sending a FAST
TGS-REQ message that includes the Kerberos authenticator and the TGT that was received
in the preceding step.

4. Same as step 3 of the Main Success Scenario.

Postconditions: The LSA has received a service ticket for the client computer, which contains user
logon information.

Extensions: None.

Alternative Scenario: The following scenario occurs when Kerberos authentication fails.

1. The LSA submits a Netlogon message to prove the identity of the user to the AA. The
message includes the identity of the user and a one-way hash of the password ([MS-NRPC]

section 2.2.1.4.3).

2. The AA verifies the user identity and password hash against the account DB and returns the
user logon information.

2.5.3.2 Multiple Domains

The following subsection describes a use case that pertains to interactive domain logon in a cross-
domain environment. For example, a user account is provisioned in one domain (domain1), a client
computer is joined to another domain (domain2), and both domains are in the same forest. A user
attempts to log on interactively to a machine that is joined to domain2. In this use case, AA1 denotes
the Authentication Authority (AA) of domain1, AA2 denotes the AA of domain2, and Account DB #1
and Account DB #2 denote the account databases for domain1 and domain2, respectively. For a

similar example, see section 2.5.4.2 and use case diagram section 2.5.4.2.1.

2.5.3.2.1 Interactive Domain Logon: Service Ticket for Client Computer

The LSA initiates this use case with the goal of proving the identity of a user to the Authentication
Authority (AA) and of getting a service ticket that contains user logon information from the AA for the
client computer. The user provides the credential material information, which includes the
identification and proof of that identification.

Goal: To get the service ticket for a client computer.

Context of Use: Applies when the user and computer accounts are in different domains and when
the user interactively logs on to the domain.

Direct Actor: The LSA.

Primary Actor: The user.

Supporting Actors: AA1, AA2, Account DB #1, and Account DB #2. See similar diagram section
2.5.4.2.1.

Preconditions:

50 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The client computer is joined to domain2.

▪ The identity of the user is configured in Account DB #1.

▪ Both domains exist in the same forest.

Minimal Guarantee: The LSA sends an error message to the user when the submitted credentials

do not match the ones stored in the account databases or when the interactive domain logon
process fails.

Success Guarantee: The LSA receives a service ticket for the client computer.

Trigger: The user attempts to log on interactively to the client computer.

Main Success Scenario:

1. The identity of the user is proven to AA1 as described in section 2.5.5.1.

2. The LSA requests a service ticket for the client computer by including a Kerberos

authenticator and the TGT that was received in the preceding step in a Kerberos request and
by sending it to AA1.

3. AA1 cannot issue the service ticket for the client computer because it is joined to domain2
and only AA2 can do so; therefore, AA1 replies with a referral ticket for domain2, as
described in [Referrals].

4. On receiving the referral ticket, the LSA locates AA2 and sends a TGS request that includes

the referral ticket.

5. AA2 decrypts the referral ticket by using the inter-domain key that is shared between AA1
and AA2, detects that the referral ticket contains a request for a service ticket for the client
computer, generates the service ticket, and returns it to the client computer.

Postcondition: The LSA has received a service ticket for the client computer, which contains user
logon information.

Extensions: None.

2.5.4 Network Logon

2.5.4.1 Single Domain

The following sub-sections describe use cases for single domain authentication of client by server, of
server by client, of server and client by mutual authentication, as well as delegation of authentication.

2.5.4.1.1 Client Authentication

This use case describes how a server application authenticates the user identity of the client

application before it allows access to its protected resource or services.

51 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 17: Client authentication use case

Goal: To verify the identity of the client application.

Context of Use: The user has to access a service on a network that requires verification of client
identities.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: The AA, the server application, and the account DB.

Preconditions:

▪ The user that started the client application is logged on to the client computer.

▪ The identities of the client application and the server application are configured in the account
DB.

▪ The client application, server application, and DC can communicate with each other.

Minimal Guarantee: When client authentication fails, the client application receives an error
message that indicates the reason for the failure.

Success Guarantee: The server application has verified the identity of the client application.

Trigger: The user has to access a protected resource or a service on the server computer.

Main Success Scenario: Negotiation leads to the use of Kerberos.

1. The client and server application negotiate as described in section 2.5.5.2 and agree on

Kerberos as the authentication protocol.

52 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2. The identity of the client application is proven to the AA as described in section 2.5.5.1.

3. The client application sends the target server application's identity and the TGT material that
was obtained in step 2 to the AA to request a service ticket for the service application.

4. The AA locates the identity of the server application in its account DB and returns a service

ticket and a session key to the client application.

5. The client application builds the authenticator by using a session key and sends the service
ticket plus the authenticator to the target application.

6. The server application verifies the authenticity of the client application identity and extracts
the group information from the service ticket.

Alternative Scenario: Negotiation leads to the use of Kerberos, and FAST mode is supported and

configured on both the Authentication Client and the AA.

1. Same as step 1 of the Main Success Scenario.

2. The identity of the client computer is proven to the AA as described in the Main Scenario in
section 2.5.5.1.1 or section 2.5.5.1.2, and a TGT for the computer is obtained.

3. The identity of the user is proven to the AA as described in the Alternative Scenario in
section 2.5.5.1.1.

4. The client application constructs the FAST TGS-REQ message with the target server

application's identity and the TGT material that was obtained in step 2 and then sends it to
the AA to request a service ticket for the target server application.

5. The AA locates the identity of the server application in its account DB and returns a service
ticket and a session key to the client application in a FAST TGS-REP message.

6. The client application builds the authenticator by using a session key and sends an AP-REQ
([RFC4120] section 5.5.1) message that contains the service ticket plus the authenticator to
the target application.

7. The server application verifies the authenticity of the client application identity and extracts
the group information and claims from the service ticket.

Alternative Scenario: Negotiation leads to the use of Kerberos, and Compound Identity is
supported and configured on the Authentication Client, the AA, and the Application Server.

1. Same as step 1 of the Main Success Scenario.

2. The identity of the client application is proven to the AA as described in the Alternative
Scenario in section 2.5.5.1.1.

3. The client application constructs a compound identity TGS-REQ and sends it to the AA to
request a service ticket for the server application.

4. The AA receives a compound identity TGS-REQ for a server application that supports
compound identity, verifies the request, and then adds the computer's authorization data to
the privilege attribute certificate (PAC) in the service ticket. The AA returns a service ticket
and a session key to the client application.

5. The client application builds the authenticator by using a session key and sends the service
ticket plus the authenticator in an AP-REQ message to the target application.

6. The server application verifies the authenticity of the client application identity and extracts
the group information, user claims, and device claims from the service ticket.

53 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Alternative Scenario: Negotiation leads to the use of NTLM

1. The client and server application negotiate authentication protocols, as described in section
2.5.5.2, and agree on NTLM as the authentication protocol.

2. The client application requests the server to establish an authenticated session by using its

identity.

3. The server sends back a challenge message that contains a nonce.

4. The client application builds a response message by using the challenge and the key that is
derived from the user's password and sends the response message to the server.

5. The server application verifies the client identity by sending the response message that is
received in the preceding step to the AA.

6. The AA validates the submitted response message by interacting locally with the account

DB.

7. The AA responds to the server with the group and other information.

8. The server application returns a success response to the client application.

Postconditions: The identity of the client application is proven to the server application. Both the
client and the server application have a shared session key for further secure communication.

The following alternative scenarios apply when the client and the server application are

configured with the Digest or SSL/TLS authentication protocols and are not configured with the
Negotiate authentication protocol.

Alternative Scenario: Digest Protocol Extensions

1. The client application sends an application-protocol-specific request to access a protected
resource of the server application.

2. The server application validates the request and returns a digest challenge message to the
client. This message includes the randomly generated nonce and the domain name of the

server.

3. The client obtains the user name (for example, User123) and a password for the user and
constructs a response to the server's challenge. In the digest response, the client proves
that it has acquired the user's password by performing a keyed hash over the user name,
nonce, and other fields (the password is fed into the hash).

4. The server application sends the response and the nonce that was received in step 3 to the
AA for validation.

5. The AA validates the request message by interacting locally with the account DB and
responds to the server application with the group membership information.

6. The server application sends the response messages that were received in step 5 to the
client application.

Extensions: None.

2.5.4.1.2 Server Authentication

This use case describes how a client application authenticates the identity of the server application
before it establishes a secure session to the server application.

54 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 18: Server authentication use case

Goal: To verify the identity of the server application.

Context of Use: The client application has to establish a secure session with the server application
by verifying the identity of the server application.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: The AA, the server application, and the PKI.

Preconditions:

▪ The server application has a valid certificate from a trusted certificate authority.

▪ The client application, server application, and the AA can communicate with each other.

Minimal Guarantee: When the server authentication fails, the server application receives an error

message that indicates the reason for the failure.

Success Guarantee: The server application has proven its identity to the client application.

Trigger: The user has to securely access resources on the server computer.

Main Success Scenario: Using the SSL/TLS Protocol

1. The client application asks the server application to establish a secure session.

2. The server application submits an X.509 certificate to the client application.

3. By using PKI services, the client application verifies the validity, the issuing authority, and
the public key of the certificate and confirms that the domain name of the certificate

matches the domain name of the server. The client application generates a premaster

secret, encrypts it with the public key from the server's X.509 certificate, and sends it to the
server.

55 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

4. The server application decrypts the premaster key with the private key of the certificate,

constructs a key and signs all the previous messages with it, and sends the signature to the
client.

5. The client checks the signature. If it passes the check, then the identity of the server

application is authenticated.

Postconditions: The identity of the server application is proven to the client application. Both the
client and the server application can proceed with secure communications.

Extensions: None.

2.5.4.1.3 Mutual Authentication

This use case describes how a client application and a server application authenticate each other

before they establish secure communication.

Figure 19: Mutual authentication use case

Goal: To authenticate the identities of the client and server application to each other.

Context of Use: The client and the server application have to establish a secure session.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: The AA, the server application, and the account DB.

Preconditions:

▪ The identities of the client application and the server application are configured in the
account DB.

▪ The client application, the server application, and the AA can communicate with each other.

56 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The user that started the client application is logged on to the client computer.

Minimal Guarantees: If client authentication fails, the client application receives an error
message that indicates the reason for the failure. If server authentication fails, the server
application receives an error message that indicates the reason for the failure.

Success Guarantee: The identities of the client and the server application are authenticated to
each other.

Trigger: The user has to securely access the protected resources or services of the server
application.

Main Success Scenario: Negotiation leads to Kerberos

1. The identity of the client application is authenticated to the server application as described in

the main or alternative scenarios of section 2.5.4.1.1, and the client application requests the

server application to prove its identity to the client application.

2. The server application returns the authenticator. It includes the client's time stamp
([RFC4120] section 3.2.4), which is encrypted with an agreed-on session key.

3. The client application verifies the server application identity by decrypting the authenticator
with the session key. If the verification succeeds, the server application is authenticated.

Alternative Scenario: Mutual authentication by using SSL/TLS

1. The client application asks the server application to establish a secure session.

2. The server application sends an X.509 certificate and a nonce to the client application.

3. By using PKI services, the client application verifies the validity, the issuing authority, and
the public key of the certificate and confirms that the DNS name in the certificate matches
the DNS name of the server. The client application signs the server's nonce with the user's
private key, generates a premaster secret, encrypts it with the public key of the server's
X.509 certificate, and sends both the signed nonce and the encrypted premaster secret to

the server, along with its X.509 certificate.

4. By using PKI services, the server application verifies the validity, the issuing authority, and
the public key of the certificate and confirms the signature on its nonce. If the signature
verification succeeds, then the identity of the user is authenticated. The server application
then decrypts the premaster key with the private key that is associated with its certificate,
constructs a symmetric session key from the premaster secret and signs all of the previous
messages with it, and sends the signature to the client.

5. The client checks the signature. If the signature verification succeeds, then the identity of
the server application is authenticated.

Postcondition: Both the client and the server application have a shared session key with which to
establish a secure session.

Extensions: None.

2.5.4.1.4 Delegation of Authentication

Delegation of authentication is accomplished in one of four ways. In the first, the client gets a service
ticket for the back-end server and gives it to the front-end server. Tickets obtained in this way—by

using the client as a proxy—are called proxy tickets. The difficulty with using proxy tickets is that the
client is provided with the name of the back-end server, and the client cannot determine whether to
allow the delegation. Windows clients do not use the proxy tickets mechanism.

57 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

The second method of delegation overcomes the difficulty with using proxy tickets. It allows the client

to give the front-end server a TGT that the front-end server can use to request service tickets for the
back-end server as they are required. Service tickets that are obtained in this way—with credentials
forwarded by a client—are called forwarded tickets. The Kerberos policy that an administrator sets for

the domain determines whether the KDC allows clients to obtain proxy tickets or TGTs that can be
forwarded.

In the other two methods, the front-end server does not require the user to forward either the TGT or
the proxy tickets to access the services of the back-end server. In other words, a user does not have
to have either a TGT or proxy service tickets. This initial condition means that the user is not required
to use the Kerberos protocol to authenticate.

The following use cases describe how the client delegates authentication to a front-end server by

informing the KDC that the front-end server is authorized to represent the client to access the back-

end server resources.

Figure 20: Delegation of authentication use case

Goal: To delegate authentication of the client identity to the front-end server to access the
resources or services of the back-end server on behalf of the client's identity.

Context of Use: The front-end server has to access resources or services on the back-end server

on behalf of the identity of the client application to fulfill the client application request.

Direct Actor: The client application or the front-end server depending on the chosen delegation
mechanism.

58 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Primary Actor: The user that is running the client application.

Supporting Actors: The AA, the back-end server, the PKI, and the account DB.

Preconditions:

▪ The user that started the client application is authenticated.

▪ The identities of the front-end server and the back-end server are configured in the account
DB.

▪ The client application, front-end server, back-end server, and AA can communicate with
each other.

▪ The client application has obtained the forwarded TGT and service ticket for the front-end

server ([MS-SFU] section 1.3.3).

Minimal Guarantee: The front-end server receives an error message from the AA that indicates

the reason for the failure.

Success Guarantee: The front-end server can prove the identity of the user that is running the
client application to the back-end server.

Trigger: The front-end server has to access a protected resource or a service on the back-end
server on behalf of the identity of the client application.

Postcondition: The front-end server has successfully proven the identity of the user that is

running the client application to the back-end server.

2.5.4.1.4.1 Delegate by Using a Kerberos Forwarded TGT Mechanism

Goal: To delegate authentication of the client identity to the front-end server to access the
resources or services of the back-end server by using a Kerberos-forwarded TGT ([RFC4120]
section 2.8).

Context of Use: The front-end server has to access resources or services on the back-end server

on behalf of the identity of the client application to serve the client application request.

Direct Actor: The client application.

Primary Actor: The user that is running the client application.

Supporting Actors: The AA, the back-end server, and the account DB.

Preconditions:

▪ The user that started the client application is authenticated to the AA, and the client
application has obtained a forwarded TGT and a service ticket for the front-end server, as

described in [MS-SFU] section 1.3.3.

▪ The identities of the user, the front-end server, and the back-end server are configured in
the account DB.

▪ The client application, the front-end server, the back-end server, and the AA can
communicate with each other.

Minimal Guarantee: When the front-end server fails to prove the identity of the user that is

running the client application, the front-end server receives an error message that indicates the
reason for the failure.

59 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Success Guarantee: The front-end server can prove the identity of the user that is running the

client application to the back-end server application.

Trigger: The front-end server application has to access a protected resource or a service on the
back-end server on behalf of the identity of the user that is running the client application.

Main Success Scenario:

1. The client application makes the request to the front-end server by presenting a service
ticket and a forwarded TGT.

2. To fulfill the client application request, the front-end server has to access the back-end
server to perform some action on behalf of the identity of the user that is running the client
application. The front-end server application asks the AA for a service ticket for the back-
end server in the name of the client's identity by presenting the forwarded TGT that was

received in step 1.

3. The AA validates the forwarded TGT contained in the request and returns a service ticket for
the back-end server application.

4. The front-end server submits the service ticket from step 3 to the back-end server to prove
the identity of the user that is running the client application.

5. The back-end server verifies the identity and responds to the front-end server.

6. The front-end server responds to the client application.

Postcondition: The front-end server can successfully prove the identity of the user that is running
the client application to the back-end server application.

Extensions: None.

2.5.4.1.4.2 Delegate by Using S4U2proxy Mechanism

Goal: The front-end server has to prove the identity of the user that is running the client

application to the back-end server by using the S4U2proxy mechanism ([MS-SFU] section
1.3.2).

Context of Use: The front-end server has to access resources or services on the back-end server
to fulfill the client application request.

Direct Actor: The client application.

Primary Actor: The user that is running the client application.

Supporting Actors: The AA, the back-end server, and the account DB.

Preconditions:

▪ The identities of the front-end server and the back-end server are configured in the account
DB.

▪ The front-end server is authenticated to the AA (the KDC) and has a valid TGT.

▪ The client application and the AA can communicate with each other, and the client
application has obtained a service ticket for the front-end server ([RFC4120] section 3.2),

or the client application has proven its identity to the front-end server by some means

other than the Kerberos protocol.

▪ The front-end server's configuration authorizes it to delegate to the back-end server.

60 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The front-end server application, the back-end server application, and the AA can

communicate with each other.

▪ The front-end server and the back-end server are in same domain or realm.

Minimal Guarantee: The front-end server receives an error message when it fails to prove the

identity of the user that is running the client application.

Success Guarantee: The front-end server can prove the identity of the user that is running the
client application to the back-end server.

Trigger: The front-end server has to access a protected resource or a service on the back-end
server on behalf of the identity of the user that is running the client application.

Main Success Scenario: The client application has obtained a service ticket for the front-end

server.

1. The client application makes a request to the front-end server that requires eventual access
to resources on the back-end server. The client application includes a service ticket for the
front-end server in the request.

2. The front-end server requests the AA for the service ticket of the back-end server on behalf
of the identity of the user that is running the client application. The user is identified by the
client name and the client realm in the service ticket for the front-end server.

3. The KDC validates the request and issues a service ticket for the back-end server.

4. The front-end server application uses the service ticket to send a request to the back-end
server application. The back-end server treats this request as coming from the user and

proceeds as if the user had connected directly and had been authenticated by the AA.

5. The back-end server application responds to the request.

Postcondition: The front-end server can successfully prove the identity of the user who is running
the client application to the back-end server.

Extensions: The client application has proven its identity to the front-end server by using a non-
Kerberos protocol.

When the client application cannot include the service ticket because, for instance, it is outside
the domain and cannot use the Kerberos protocol, this use case is extended between steps 1
and 2 by the S4U2self Mechanism: Get a Service Ticket for a Front-end Server (section 2.5.5.3)
use case.

2.5.4.1.5 Credential Delegation

61 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 21: Credential delegation use case

Goal: To securely delegate the user's credentials from a client application to the target server
application.

Context of Use: To serve the client application request by using the client's credentials, the target
server requires access to a service or resource on a network. However, either the target server
cannot be accessed with Kerberos delegation, or the number of legitimate possible authorization

configurations makes configuration inconvenient.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: The AA, the server application, the PKI, and the account DB.

Preconditions:

▪ The user that started the client application is logged on to the client computer.

▪ The identities of the client application and the server application are configured in the

account DB.

▪ The policies that are required to enable CredSSP authentication are configured on both the
client and the server.

▪ The server is configured with an X.509 certificate to establish a TLS session.

62 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The client application, server application, and DC can communicate with each other.

Minimal Guarantee: When credential delegation fails, the client application or the user is notified
with an error message that indicates the reason for the failure.

Success Guarantee: The user credentials are successfully delegated to the target server.

Trigger: A client application, such as a Remote Desktop client or a Web services client, triggers the
CredSSP Protocol [MS-CSSP] as the preferred authentication protocol for delegating the user's
credentials.

Main Success Scenario: Negotiation Leads to Kerberos

1. The client and server applications establish an encrypted channel by using the TLS protocol,
as described in [RFC2246].

2. The client and server applications negotiate over the TLS-encrypted channel that was

established in step 1, as described in section 2.5.5.2, and agree on Kerberos as the
authentication protocol.

3. By using the Kerberos protocol, as described in section 2.5.4.1.3, the client and server
mutually authenticate each other and establish an encryption key.

4. The client application sends the user's password or smart card PIN to the target server. This
transaction is protected by using the Kerberos encryption key that was established in the

preceding step.

Alternate Scenario: Negotiation Leads to NTLM

1. Same as step 1 in the Main Success Scenario.

2. The client and server applications negotiate over the TLS-encrypted channel that was
established in step 1, as described in section 2.5.5.2, and agree on NTLM as the
authentication protocol.

3. By using the NTLM protocol, the identity of the client application is proven to the target

server, as described in section 2.5.4.1.1, and an encryption key is established.

4. The client application sends the user's password or smart card PIN to the target server. This
transaction is protected by using the NTLM encryption key that was established in the
preceding step.

Postcondition: The client application can successfully delegate the user's credentials to the target

server.

Extensions: None.

2.5.4.2 Multiple Domains

The following subsection describes a use case that pertains to a network domain logon in a multiple
domain environment. For the following use case, it is assumed that a user account is provisioned in

one domain (domain1), that a resource is located in another domain (domain2), and that both
domains are in the same forest. For these use cases, AA1 denotes the Authentication Authority (AA) of
domain1, AA2 denotes the AA of domain2, and Account DB #1 and Account DB #2 denote the account
databases for domain1 and domain2, respectively.

2.5.4.2.1 Client Authentication

This use case describes how a server application authenticates the user identity of the client

application before it grants access to its protected resources or services.

63 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 22: Client authentication use case

Goal: To verify the identity of the client application.

Context of Use: The user has to access a service on a network that requires verification of client

identities.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: AA1, AA2, the server application, Account DB #1, and Account DB #2.

Preconditions:

64 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

▪ The user that started the client application is logged on to the client computer.

▪ The identity of the client application is configured in Account DB #1, and the identity of the
server application is configured in Account DB #2.

▪ The client application, server application, AA1, and AA2 can communicate with each other.

Minimal Guarantee: When client authentication fails, the client application receives an error
message that indicates the reason for the failure.

Success Guarantee: The server application has verified the identity of the client application.

Trigger: The user has to access a protected resource or a service on the server computer that
resides in domain2.

Main Success Scenario: Negotiation leads to the use of Kerberos.

1. The client and server application negotiate, as described in section 2.5.5.2, and agree on

Kerberos as the authentication protocol.

2. The identity of the client application is proven to AA1, as described in section 2.5.5.1.

3. The client application sends the target server application's identity and the TGT material that
was obtained in step 2 to AA1 to request a service ticket for the server application.

4. AA1 cannot issue the service ticket for the identity of the server application because the
server identity is not defined in Account DB #1; therefore, AA1 replies with a referral ticket

to AA2, as described in [Referrals].

5. When the client application receives the referral ticket, the client application locates AA2 and
sends the TGS request with the received referral ticket.

6. AA2 decrypts the referral ticket by using the inter-domain key that is shared between AA1
and AA2, detects that the referral ticket contains a request for a service ticket for the server
application, generates the service ticket, and returns it to the client.

Postconditions: The identity of the client application is proven to the server application. Both the

client and the server applications have a shared session key for further secure communication.

Extensions: None.

2.5.4.3 Cross-Forest Environment

The following subsection describes a use case that pertains to network domain logon in a cross-forest
environment. For the following use case, it is assumed that a user account and a machine account are
provisioned in one domain (domain1) in one forest (forest1) and that a resource is located in another
domain (domain2) in another forest (forest2). This use case uses the following notation.

FAA1: The Authentication Authority (AA) of forest1.

AA1: The AA of domain1 in forest1.

DB #1: The account database of domain1 in forest1.

FAA2: The AA of forest2.

AA2: The AA of domain2 in forest2.

DB #2: The account database of domain2 in forest2.

GC: The global catalog server (GC server).

65 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

DNS: The Domain Name System (DNS).

2.5.4.3.1 Client Authentication

This use case describes how a client application authenticates itself in a cross-forest environment.

Figure 23: Client authentication in a cross-forest environment

Goal: To verify the identity of the client application.

Context of Use: The user has to access a service or resource on a different forest that requires

verification of client identities.

Direct Actor: The client application.

Primary Actor: The user.

Supporting Actors: FAA1, AA1, DB #1, FAA2, AA2, DB #2, GC, and DNS.

66 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Preconditions:

▪ The user that started the client application is logged on to the client computer, which is in
forest1.

▪ The identities of the client application and the client computer are configured in DB #1, and

the identity of the server application is configured in DB #2.

▪ Bidirectional forest trust is established between forest1 and forest2.

Minimal Guarantee: When client authentication fails, the client application receives an error
message that indicates the reason for the failure.

Success Guarantee: The server application has verified the identity of the client application.

Trigger: The user has to access a protected resource or a service on the server computer that
resides in domain2 in forest2.

Main Success Scenario: Negotiation leads to the use of Kerberos.

1. The client and server applications negotiate as described in section 2.5.5.2 and agree on
Kerberos as the authentication protocol.

2. The identity of the client application is proven to AA1, as described in the Main Success
Scenario in section 2.5.5.1.

3. The client application sends the target server application's identity and the TGT material that

was obtained in step 2 to AA1 to request a service ticket for the server application.

4. AA1 cannot find an entry for the server application identity in DB #1 and requests the GC
server to verify the server application identity. The GC server replies that the service is
located in forest2; therefore, AA1 sends the referral ticket to the root authority of forest1
(FAA1).

5. On receiving the referral ticket, the client application locates FAA1 and sends the TGS
request with the received referral ticket.

6. FAA1 double-checks with the local GC as to whether the identity of the server application is
in forest1. After FAA1 confirms that the identity does not exist in forest1, FAA1 sends the
referral ticket to the root authority of forest2 (FAA2).

7. FAA2 double-checks with the local GC as to whether the identity of the server application is
in forest2. After FAA2 confirms that the identity of the server application exists in domain2,

FAA2 sends the referral ticket to domain2 (AA2) in forest2.

8. AA2 validates the client’s identity through the referral TGT, filters out all SIDs that are not

local to the client’s identity home forest, and sends the response with the service ticket of
the requested server application to the client application.

Postconditions: The identity of the client application is proven to the server application. Both the
client and the server application have a shared session key for further secure communication.

Extensions: None.

2.5.5 Auxiliary

2.5.5.1 Authenticate Client Identity to a Kerberos Authentication Server

The following diagram illustrates protocol interactions to authenticate a client user or computer
identity to a Kerberos authentication server described in the following subsections. The Kerberos client

67 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

that plays the role of the Authentication Client initiates this use case with the goal of authenticating

user/computer identity to the Authentication Authority (AA): the KDC, specifically the Kerberos
Authentication Server (AS).

Figure 24: Authentication of a client user identity to a Kerberos Authentication Server

2.5.5.1.1 Authenticate Client Identity by Using a User Name and Password

The following describes authentication of a client user or computer by using a user name and
password.

Goal: To authenticate the identity of a user or computer to the AA by providing a user name or

computer name and a password.

Context of Use: Applies when the user interactively logs on to the domain or when the user tries
to access a protected resource on the network.

Direct Actor: The Authentication Client.

Primary Actor: The LSA or the client application.

Supporting Actors: The AA, the account DB, and the PKI.

Preconditions:

▪ The identities of the user and the client computer are configured in the account database.

▪ The client computer and the AA can communicate with each other.

▪ The LSA has obtained the credential information for the user or computer identity and has
submitted the credential information to the Authentication Client. In the case of user identity
authentication, the LSA has obtained the credential information from the user (for example,
by using a logon UI).

68 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Minimal Guarantees: If the identity of the user or computer cannot be proven to the AA by using

the underlying authentication protocol, authentication fails. The client application or the user
receives an error message that indicates the reason for the failure.

Success Guarantees: The client computer has a TGT for the user or computer account, which is

used to authenticate to servers. The user or computer identity is successfully proven to the
client computer, and the client computer has group information and other information about the
user.

Main Success Scenario: Using the Kerberos Protocol

1. To prove the identity of the user or computer, the Authentication Client submits to the AA
credential information including a user name or computer account name, a timestamp that is
encrypted with a key derived from the user's or computer's password, and a domain name.

2. The AA verifies the credential information against the account DB. When verification
succeeds, the AA returns to the Authentication Client a TGT and a session keyencrypted with
a key that is derived from the user's or computer's password.

Alternative Scenario: This scenario occurs when FAST mode is supported and configured on both
the Authentication Client and when the AA and the Authentication Client have obtained the TGT
for the computer account, as described in the Main Success Scenario.

1. To prove the user identity, the Authentication Client submits to the AA a FAST AS-REQ
message that contains user credential information. The information includes a user name, a
timestamp that is encrypted with a key derived from the user's password, and a domain
name.

2. The AA verifies the user credential information against the account database. When

verification succeeds, the AA returns a FAST AS-REP message to the Authentication Client.
FAST AS-REP is a Kerberos AS-REP message ([RFC4120] section 3.1) that contains a TGT

and a session key encrypted with a key derived from the user's password.

Postconditions: The user or computer identity is proven to the AA, and the Authentication Client
receives a TGT and a session key for further authentication processing.

2.5.5.1.2 Authenticate Client Identity by Using an X.509 Certificate

The following describes authentication of a client user or computer by using an X.509 certificate in
the Main Success Scenario, otherwise the section is the same as section 2.5.5.1.1.

Goal: To authenticate the identity of a user or computer to the AA by using an X.509 certificate.

Context of Use: Applies when the user interactively logs on to the domain or when the user tries
to access a protected resource on the network.

Direct Actor: The Authentication Client.

Primary Actor: The LSA or the client application.

Supporting Actors: The AA, the account DB, and the PKI.

Preconditions:

▪ The identities of the user and the client computer are configured in the account database.

▪ The client computer and the AA can communicate with each other.

▪ The LSA has obtained the credential information for the user or computer identity and has
submitted the credential information to the Authentication Client. In the case of user identity

69 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

authentication, the LSA has obtained the credential information from the user (for example, by

using a logon UI).

Minimal Guarantees: If the identity of the user or computer cannot be proven to the AA by using
the underlying authentication protocol, authentication fails. The client application or the user

receives an error message that indicates the reason for the failure.

Success Guarantee: The client computer has a TGT for the user or computer account, which is
used to authenticate to servers. The user or computer identity is successfully proven to the
client computer, and the client computer has group information and other information about the
user.

Main Success Scenario:

1. To prove the identity of the user or computer by using PKI services, the Authentication

Client submits to the AA user or computer credential information that consists of the user
name or computer account name, the domain name, the user's or computer's X.509
certificate, and a timestamp that is signed by using the certificate.

2. The AA validates the certificate chain, verifies the signature on the timestamp by using PKI
services, and then looks up the account in the account DB. When verification succeeds, the
AA returns to the Authentication Client a TGT and a session key encrypted with the public

key of the user's certificate.

Postconditions: The user or computer identity is proven to the AA, and the Authentication Client
receives a TGT and a session key for further authentication processing

2.5.5.2 Negotiate Authentication Protocol

The Negotiate Authentication Protcol use case describes how a client and a server application can
negotiate to select an agreed-on common authentication protocol.

Figure 25: Negotiate authentication protocol

Goal: To select an authentication protocol that both the client computer and server computer
system support.

Context of Use: A client application has to access a service on a network that requires verification
of client identities, and the client and server applications are coded to use SPNEGO to negotiate

a common authentication protocol.

Direct Actor: The client application or the server application, depending on how negotiation starts.

Primary Actor: The user.

70 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Supporting Actors: The Authentication Authority (AA), the account DB, and the PKI.

Preconditions:

▪ The user that started the client application is logged on to the client computer.

▪ The client application, server application, and AA can communicate with each other.

▪ The client and server application are configured to negotiate an authentication protocol.

Minimal Guarantees: Negotiation fails in some scenarios when a non-Windows system
participates and there is no common protocol, or when the client or server application receives
another reason for failure.

Success Guarantee: Both the client and the server agree on a common authentication protocol.

Trigger: The client application has to access a protected resource or a service on the server
computer and: a) The client starts the negotiation phase before a request; or b) The server

starts the negotiation phase in reaction to a request; or c) The server rejects access, and the
client initiates the negotiation phase. The trigger depends on the implementation of the
application protocol.

Main Success Scenario: The server starts the negotiation phase in reaction to a request.

1. The server application sends the preferred authentication protocol and a list of available
authentication protocols in priority order to the client application.

2. The client application sends the preferred authentication protocol and a list of available
authentication protocols in priority order to the server application.

3. The server application agrees on a common protocol and returns the state of negotiation to
the client application.

Postcondition: Both the client and server application have agreed on a common authentication
protocol for further authentication process.

Extensions: None.

2.5.5.3 S4U2self Mechanism: Get a Service Ticket for a Front-End Server

This use case describes how a front-end server obtains a service ticket to itself on behalf of the
identity of a client application by using the S4U2self mechanism ([MS-SFU] section 1.3.1) when the

identity of the client application is proven to the front-end server by some means other than Kerberos.

71 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 26: The front-end server obtains service ticket to itself by using the S4U2self
mechanism

Goal: To get a service ticket for a service application on the front-end server.

Context of Use: The user is authenticated to the service application by using a non-Kerberos
protocol, and the front-end service application is required to get a service ticket to itself to serve
the client application request. For example, the front-end service application requires group
information to perform authorization checks, or it requires a service ticket to use in S4U2Proxy

(to contact a back-end service).

Direct Actor: The front-end server.

Primary Actor: The service application that is running on the front-end server.

Supporting Actors: The AA, the account DB, and the PKI.

Preconditions:

▪ The front-end server has obtained the identity of the user that is running the client

application: either the user's certificate or the user name and user's domain name.

▪ The identity service application is configured in the account DB.

▪ The service application is authenticated to the AA (the KDC) and has a valid TGT.

▪ The front-end server and the AA can communicate with each other.

▪ The client application and the front-end server can communicate with each other.

Minimal Guarantees: The front-end server application fails to get a service ticket to itself on

behalf of the identity of the client application. The front-end server application receives an error

message that indicates the reason for the failure.

Success Guarantee: The front-end server application gets a service ticket, which contains group
information, to itself on behalf of the identity of the client application.

72 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Trigger: When the client application attempts to access protected resources or services on the

front-end server by proving its identity through the use of a non-Kerberos protocol, the front-
end server has to get a service ticket to itself on behalf of the identity of the client application to
serve the client's request.

Main Success Scenario:

1. The front-end server makes a request to the AA (the KDC) for a service ticket to itself on
behalf of the identity of the client application by using the S4U2self extension. The front-end
server presents the identity of the client application in either of the following forms:

1. A user name and a user's domain name.

Or

2. The user's certificate.

2. The KDC validates the request and returns a service ticket to the front-end server on behalf
of the client's identity.

Postcondition: The front-end server application can successfully get a service ticket to itself on
behalf of the identity of the client application.

Extensions: None.

2.5.6 Security Services

2.5.6.1 Data Origin Authentication (Signing)

The Data Origin Authentication (signing) use case describes how a client application builds signed
application data, how a server application verifies the signature of the signed application data, and
vice versa.

Figure 27: Data origin authentication (signing)

Goal: To exchange application protocol messages between a client application and a server
application and to guarantee that unauthorized actors cannot modify them. The receiver
processes messages in the same order as they were sent.

Context of Use: The client and server application have to exchange signed application data with
each other.

Direct Actor: The client or the server application, depending on the initiator of the use case.

73 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Primary Actor: The client application or the server application.

Supporting Actors: The server application or the client application.

Preconditions:

▪ The client and server application can communicate with each other.

▪ The identity of the client application is proven to the server application, or the identity of the
server application is proven to the client application, or the identities of the client application
and the server application are proven to each other.

▪ The Authentication Client and the Authentication Server have agreed on a signature
algorithm method and a secret key.

Minimal Guarantee: When the verification of the signed application data fails, the client or server
application receives an error message that indicates the reason for the failure.

Success Guarantees: Application protocol messages are exchanged between a client application
and a server application, and unauthorized actors cannot modify the messages.

Trigger: The client application and the server application have to exchange signed application data
with each other to prevent message tampering in transit.

Main Success Scenario:

1. The client application requests the Authentication Client to compute the signature for the

application data, and the Authentication Client creates a signature of the application data by
using an agreed-on secret key and algorithm. The client application attaches the signature

to the application data and sends both to the server application.

2. The server application requests the Authentication Server to verify the signature, and the
Authentication Server verifies the signature of the application data by using an agreed-on
secret key and algorithm. If the verification succeeds, the server application interprets the
application data.

3. The server application requests the Authentication Server to create the signature, and the
Authentication Server creates a signature of the application data by using an agreed-on
secret key and algorithm. The server application attaches the signature to the application
data and sends both to the client application.

4. The client application requests the Authentication Client to verify the signature, and the
Authentication Client verifies the signature of the application data by using an agreed-on

secret key and algorithm. If the verification succeeds, the client application interprets the

application data.

Postconditions: The client application and the server application can exchange the signed
application data with each other, and both the client application and the server application
interpret the application data based on their implementations.

2.5.6.2 Data Confidentiality (Sealing)

The Data Confidentiality (sealing) use case describes how client and server applications securely
exchange their application data with each other.

74 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 28: Data confidentiality (sealing) use case

Goal: To exchange application data securely so that no unauthorized actor can learn or alter its
contents (confidentiality and data origin guarantee). The receiver processes messages in the
same order as they were sent.

Context of Use: The client and the server application have to securely exchange application data
with each other.

Direct Actor: The client application or the server application, depending on the initiator of the use
case.

Primary Actor: The client application, the server application, or the user.

Supporting Actors: The server application or the client application.

Preconditions:

▪ The first two preconditions of section 2.5.6.1.

▪ The authentication client and the authentication server have agreed on an encryption
algorithm method and a secret key.

Minimal Guarantees: When the secure exchange of the application data fails, the client or server
application receives an error message that indicates the reason for the failure.

Success Guarantee: The client and server applications can securely exchange the application data

with each other.

Trigger: The user has to access a protected resource or a service on the server computer and to
present sensitive information to the server.

Main Success Scenario:

1. The client application requests the authentication client to build an encrypted message. The
authentication client builds the encrypted application data by using the agreed-on encryption
method and a secret key and returns the encrypted message to the client application. The

client application sends the encrypted application data to the server application.

2. The server application requests the authentication server to decrypt the received application

data from the client application by using an agreed-on decryption method and a secret key.
If the decryption succeeds, the authentication server returns the application message to the
server application, which interprets the application data and responds with success to the
client application.

75 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

3. The server application requests the authentication server to build an encrypted message.

The authentication server builds the encrypted application data by using an agreed-on
encryption method and a secret key and returns the encrypted message to the server
application. The server application sends the encrypted application data to the client

application.

4. The client application requests the authentication client to decrypt the received application
data from the server application by using an agreed-on decryption method and a secret key.
If the decryption succeeds, the authentication client returns a decrypted application
message to the client application. The client application interprets the application data and
responds with success to the server application.

Post-conditions: The client and the server application can exchange the application data securely,

and both the client and the server application interpret the application data in an

implementation-specific way.

2.6 Versioning, Capability Negotiation, and Extensibility

No capability negotiation is associated with Authentication Services. Any deviations from a specific
version's implementation of these protocol specifications are documented in the respective protocol
document. Capability negotiations between client and server implementations of these protocols are
specified in the System Versioning and Capability Negotiation sections in their respective technical
documents. For more details, see sections 1.7 of the member protocol specifications that are listed in
section 2.2.

2.7 Error Handling

Authentication Services do not handle errors at the system level for cross-protocol error states. The
member protocol specifications describe the errors that the protocols return and what they mean. The
implementer determines how to handle the errors, based on the protocol descriptions.

2.8 Coherency Requirements

None.

2.9 Security

Implementers have to be aware that Kerberos Protocol Extensions [MS-KILE] and public key-based
authentication ([MS-PKCA] and [MS-TLSP]) offer stronger security guarantees in terms of initial

authentication and in subsequent confidentiality and integrity of client-server traffic and server-server
traffic. Digest authentication or NTLM authentication can be used in environments in which these
stronger mechanisms are not available.

Because the security of Kerberos authentication is in part based upon the time stamps of the tickets, it
is critical to have accurately set clocks on the machines in the Kerberos environment. As stated in the
Kerberos documents, a short lifetime for tickets is used to prevent attackers from performing
successful brute force attacks or replay attacks. If the clocks of the machines in a Kerberos
environment drift, the network becomes vulnerable to such attacks. Because clock synchronization is
vital to Kerberos protocol security, if clocks are not synchronized within a reasonable time window,

Kerberos will report fatal errors and refuse to function.

In Windows, the Network Time Protocol (NTP) Authentication Extensions [MS-SNTP] is used to achieve
authenticated time synchronization between Kerberos clients and the KDC. Client authentication

attempts from a machine with an inaccurate clock will be rejected by the KDC because of the time
difference with the KDC's clock; therefore, it is important to achieve time synchronization.

76 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.10 Additional Considerations

There are no additional considerations.

77 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

3 Examples

3.1 Example 1: GSS Authentication Protocol Process - Stock Quote Server

This example describes the GSS authentication protocol process. It builds on the use cases for Client

Authentication (section 2.5.4.1.1), Server Authentication (section 2.5.4.1.2), Mutual
Authentication (section 2.5.4.1.3), Security Services: Data Origin Authentication
(Signing) (section 2.5.6.1), Security Services: Data Confidentiality (Sealing) (section 2.5.6.2), and
their dependent use cases.

Every application protocol uses its own mechanism to transport the GSS-API security tokens from an
Application Client to an Application Server. The following example explains the interactions of the

Authentication Client, the Authentication Server, and the Authentication Authority (AA) through GSS-

APIs [RFC2743].

This example is particularly useful for application architects and developers to design and implement
application protocols that interoperate with Authentication Services.

To illustrate the use of authentication, this example uses the simple Stock Quote Service block
protocol that specifies the retrieval and update of stock quotes from the Stock Quote Server.

The following table defines Stock Quote Request and Response messages without authentication data

support.

Field Field function

Length The length of the message

Message Type The message type (3 is an error message; 1 is a reply; 0 is a request)

Request Type The requested action (0 is a query; 1 is an update)

Stock Symbol The stock symbol

Stock Price The stock price (optional)

Error code The error code (0 is success; nonzero is failure)

Table 1: Stock Quote Service messages without authentication data support

To get the latest stock quote price, the Stock Quote Client sends a request message, as defined in
Table 1, to the Stock Quote Server and receives a response message with a stock quote price. The
Stock Quote Server is not required to authenticate the client to respond with a stock quote price,
because anyone can query this server, but the client requires the server authentication,
confidentiality, and signing services so that the client can verify that the quote is valid and was

obtained from an authentic server and that the messages were not tampered with. These services
help to keep these interactions private.

The Stock Quote Server restricts stock price updates to authenticated users. To update a stock quote
price, the server requires client authentication; therefore, the client authenticates to the server. To
retrieve a stock quote price, the client requires server authentication; therefore, the server
authenticates to the client. Both the client and the server require the assurance that the messages
were not tampered with and that the message exchanges were secret; this assurance requires signing
and confidentiality services.

Because the application protocol is GSS API-conformant, it is required to support transport of the

authentication token.

The existing Stock Quote request and response messages are extended to hold authentication tokens

and protected application data messages.

The following table defines Stock Quote Request and Response messages with authentication data
support.

78 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Field Field function

Message
Type

The message type (3 is an error message; 1 is a reply; 0 is a request).

Data Blob
Type

The Data Blob field type (1 is an authentication token; 2 is application protocol data; 3 is an
error message).

Length The length of the Data Blob field.

Data Blob The data BLOB. The contents of this field are based on the Data Blob Type field.
If the Data Blob Type field is 1, then this field contains the binary BLOB of the authentication
token.
If the Data Blob Type field is 2, then this field contains the Request Type (0 is query; 1 is
update), Stock Symbol, and Stock Price field values.
If the Data Blob Type field is 3 and the Message Type field is 3, then this message contains
an error code.

Table 2: Stock Quote Service messages with authentication data support

To update or retrieve the stock quote, a client and server exchange one or more request and response
messages with an authentication token in the Data Blob field depending on the underlying

authentication protocol. When authentication finishes, the client or server sends the Data Blob field
with application data that contains stock quote details. If the initial request message does not have an
authentication token, the server returns an error code, because authentication is required.

Prerequisites

This example assumes the following prerequisites in addition to the preconditions of the covered use
cases:

▪ A TCP connection is established between the Stock Quote Client and the Stock Quote Server.

▪ The Stock Quote Client and the Stock Quote Server have acquired the credential handles with
the GSS-API GSS_Acquire_Cred function ([RFC2743] section 2.1.1) by specifying the security
package.

Initial System State

▪ The AA has not authenticated the client identity or the server identity.

Final System State

▪ The AA has authenticated both the client and the server identities.

Sequence of Events

The following steps show the basics of authentication with GSS.

79 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 29: GSS authentication process with underlying authentication protocol messages

Step 1: The Stock Quote Client calls the Authentication Client's GSS-API GSS_Init_sec_context

function ([RFC2743] section 2.2.1) to obtain the security token with the acquired credential handle
and null input token by specifying that it requires mutual authentication, confidentiality, and signing.

Step 2: If the Authentication Client requires information from the Authentication Authority (AA) (that
is, the DC) before returning the token, the Authentication Client generates authentication messages
and sends the messages to the AA. The AA validates the messages. If the messages are valid, the AA
generates an authentication message and sends the reply to the Authentication Client. If the

Authentication Client requires more information from the AA before returning the GSS-API token, step
2 is repeated until all the required information is obtained.

80 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Step 3: The Authentication Client generates a new GSS-API token and if more messages are expected,

returns GSS_S_CONTINUE_NEEDED. Otherwise, if this is the final message, returns
GSS_S_COMPLETE, and the security token to the Stock Quote Client.

Step 4: The Stock Quote Client embeds the security token in its application message and sends the

message to the Stock Quote Server by using its own application-protocol-specific method. In this
example, the Stock Quote Client embeds the security token in the Data Blob field, sets the Data
Blob Type field value to 1, sets the Message Type to 0, and sets the other required fields in the
stock quote service message, as described in Table 2.

Step 5: The Stock Quote Server calls the Authentication Server's GSS-API GSS_Accept_sec_context
function ([RFC2743] section 2.2.2) with the acquired credential handle and security token from the
client by specifying the Confidentiality and Integrity flags.

Step 6: If required by the authentication protocol, the Authentication Server generates an

authentication message and sends the message to the AA. The AA validates the message. If the
message is valid, the AA generates an authentication message and sends the reply to the
Authentication Server.

If the Authentication Server requires more information from the AA before it returns the GSS-API
token, step 6 is repeated until all the required information is obtained.

Step 7: The Authentication Server validates the token. If the token is valid, the Authentication Server
generates a new token if required and

▪ If more messages are expected, returns GSS_S_CONTINUE_NEEDED,

or

▪ If this is the final message, returns GSS_S_COMPLETE,

and the security token to the Stock Quote Server.

Step 8: If the Authentication Server returns a token, the Stock Quote Server embeds the security

token in its application message and sends the message to the Stock Quote Client by using its own
application-protocol-specific transport. In this example, the Stock Quote Server embeds the security
token in the Data Blob field, sets the Data Blob Type field value to 1, sets the Message Type field
to 1, and sets other required fields in the stock quote service message, as described in Table 2.

Step 9: If the Authentication Client had previously returned GSS_S_CONTINUE_NEEDED, the Stock
Quote Client calls the GSS_Init_sec_context function ([RFC2743] section 2.2.1) with the token from
the server.

Step 10: The Authentication Client validates the token. If the token is valid, the Authentication Client
generates a new token if required and

▪ If more messages are expected, returns GSS_S_CONTINUE_NEEDED,

or

▪ If this is the final message, returns GSS_S_COMPLETE,

and the security token to the Stock Quote Client.

If GSS_S_CONTINUE_NEEDED, go to Step 5.

Step 11: The Stock Quote Client generates a Data Blob field that contains the updated stock quote

data and calls the Authentication Client's GSS-API GSS_Wrap function ([RFC2743] section 2.3.3) to
generate a privacy and integrity-protected copy of the application Data Blob field.

81 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Step 12: The Authentication Client returns a privacy and integrity-protected copy of the application

Data Blob field.

Step 13: The Stock Quote Client builds the request message with the protected Data Blob field and
other required fields and sends the message to the Stock Quote Server by using its own application-

protocol-specific transport.

Step 14: The Stock Quote Server calls the Authentication Server's GSS-API GSS_Unwrap function
([RFC2743] section 2.3.4) to verify the integrity of the protected Data Blob field and also to get the
plain Data Blob field contents.

Step 15: The Authentication Server verifies the integrity of the message and returns the plain Data
Blob field contents to the Stock Quote Server. The Stock Quote Server interprets and updates the
stock information with the contents of the application Data Blob field.

Step 16: The Stock Quote Server calls the GSS_Wrap function ([RFC2743] section 2.3.3) with the
Data Blob to get the protected Data Blob field.

Step 17: The Authentication Server returns a protected Data Blob.

Step 18: The Stock Quote Server builds the response message with the protected Data Blob field and
also sets other required fields, as described in Table 2. The message is sent to the Stock Quote Client.

Step 19: The Stock Quote Client calls the GSS_Unwrap function ([RFC2743] section 2.3.4) to verify

the integrity of the message and also to get the plain Data Blob field contents.

Step 20: The Authentication Client returns the plain Data Blob field contents.

The Stock Quote Client interprets the response and ends the session. When finished, both the Stock

Quote Client and the Stock Quote Server release the credential handles by calling the GSS-API
GSS_Release_cred function ([RFC2743] section 2.1.2).

3.2 Example 2: Interactive Domain Logon - Service Ticket for Client Computer

The examples in the following subsections describe interactive domain logons to obtain service tickets.
They build on the use case for Interactive Domain Logon: Service Ticket for Client
Computer (section 2.5.3.1.1) by using a user name and password or an X.509 certificate.

Interactive domain logon can be performed several ways: through the Netlogon RPC interface [MS-

NRPC] with password-based authentication, through Kerberos [MS-KILE] [RFC4120] with passwords,
or through Kerberos PKINIT [MS-PKCA] [RFC4556] by using an X.509 certificate. The examples in the
following subsections show the password-based and the X.509 certificate-based Kerberos exchanges.

3.2.1 Interactive Domain Logon by Using Passwords

This example describes interactive logon by using a password to obtain a service ticket. It covers the
use cases Authenticate User or Computer Identity Using Username and Password (section 2.5.5.1.1)
and Interactive Domain Logon: Service Ticket for Client Computer (section 2.5.3.1.1).

Prerequisites

▪ The Authentication Authority (AA) is available.

▪ The user account is provisioned in the account database.

Initial System State

▪ The user has not been authenticated to the AA.

▪ The Authentication Client does not have a service ticket for the client computer.

82 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Final System State

▪ The AA has interactively authenticated the user, and the Authentication Client has obtained a
service ticket for the client computer.

Sequence of Events

Figure 30: Interactive domain logon that uses passwords

Authentication of User Identity to Authentication Authority by Using Kerberos (see section
2.5.5.1.1)

Step 1: The logon attempt is made through the Kerberos protocol. The Authentication Client (the
Kerberos client) sends a KRB_AS_REQ message ([RFC4120] section 3.1) to the Authentication
Authority (the Key Distribution Center (KDC)). This message includes the user principal name and a
list of supported encryption types in preferred priority order. This message does not include the pre-
authentication data because its function is to discover the supported encryption types.

Step 2: The KDC checks the user principal name in its account database. Because the request

message does not contain the pre-authentication data, the KDC responds with an error ([RFC4120]
section 3.1.3) and also with a list supported encryption types in its priority order.

Step 3: The Authentication Client sends a KRB_AS_REQ message for a ticket-granting ticket (TGT)
with PA-ENC-TIMESTAMP as pre-authentication data to the KDC. The client builds the pre-
authentication data by encrypting its timestamp with a secret key derived from the user's password by

using one of the commonly supported encryption methods.

Step 4: In response to receiving the KRB_AS_REQ message for a TGT, the KDC authenticates the

user by checking the pre-authentication data and ensuring that the credentials that are used in the
KRB_AS_REQ are the same as those of the user's credentials ([RFC4120] section 3.1) in the account
database. The KDC builds the TGT with a privilege attribute certificate (PAC) ([MS-KILE] section
3.3.5.6.4) that contains group membership information in the authorization_data field of the TGT,
generates a KRB_AS_REP message from the TGT and the session key, and sends the KRB_AS_REP
message back to the client.

Service Ticket for Client Computer (see section 2.5.3.1.1)

Step 5: The client sends a KRB_TGS_REQ message ([RFC4120] section 3.3) based on the TGT from
step 4 to obtain a service ticket for the target computer. The client presents the TGT, the

authenticator, and the service principal name (SPN) as host/hostname.domain, where hostname is the
actual name of the client computer, and domain is the domain or realm of the client computer.

83 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Step 6: The KDC validates the TGT and the authenticator. If these are valid, the KDC returns a service

ticket for a client computer in a KRB_TGS_REP message with user logon information.

The client validates the KRB_TGS_REP message ([MS-KILE] section 3.3.4). If KRB_TGS_REP is
valid, then the Kerberos runtime interprets the service ticket within the local client computer.

3.2.2 Interactive Domain Logon by Using an X.509 Certificate

This example describes interactive domain logon by using an X.509 certificate to obtain a service
ticket. It covers the use cases Authenticate User or Computer Identity Using an X.509

Certificate (section 2.5.5.1.2) and Interactive Domain Logon: Service Ticket for Client
Computer (section 2.5.3.1.1).

Prerequisites

▪ The Authentication Authority (AA) is available.

▪ The Authentication Client has access to the X.509 certificate and private key of the requested user
account.

Initial System State

▪ The user has not been authenticated to the AA.

▪ The Authentication Client does not have a service ticket for the client computer.

Final System State

▪ The AA has interactively authenticated the user, and the Authentication Client has obtained a
service ticket for the client computer.

Sequence of Events

Figure 31: Interactive domain logon by using an X.509 certificate

Authentication of User Identity to Authentication Authority (see section 2.5.5.1.2)

Step 1: Same as step 1 in section 3.2.1.

Step 2: Same as step 2 in section 3.2.1.

Step 3: The Authentication Client sends a KRB_AS_REQ message for a ticket-granting ticket (TGT)
with PA-PK-AS-REQ as pre-authentication data to the KDC. The client builds the pre-authentication
data as described in [RFC4556] section 3.2.1.

84 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Step 4: The KDC validates the KRB_AS_REQ message ([RFC4120] section 3.1.2), which includes

verifying the user's signature and validating the certificate ([RFC4556] section 3.2.2). If the
KRB_AS_REQ message is valid, the KDC builds the TGT with a PAC ([MS-KILE] section 3.3.5.6.4)
that contains group membership information in the authorization_data field of the TGT, generates a

KRB_AS_REP message ([RFC4556] section 3.2.3) from the TGT and the session key, and sends the
reply to the client.

Service Ticket for Client Computer (see section 2.5.3.1.1)

Step 5: Same as step 5 in section 3.2.1.

Step 6: Same as step 6 in section 3.2.1.

The client validates the KRB_TGS_REP message ([MS-KILE] section 3.3.4). If the KRB_TGS_REP
message is valid, the service ticket is interpreted by the Kerberos runtime within the local client

computer.

3.3 Example 3: Connecting to an SMB2 Share

The examples in the following subsections describe connecting to an SMB2 share by using Kerberos

protocol [MS-KILE] or NTLM protocol [MS-NLMP]. They build on the use cases for Network Logon:
Mutual Authentication (section 2.5.4.1.3), Network Logon: Client Authentication (section 2.5.4.1.1),
Security Services: Data Origin Authentication (Signing) (section 2.5.6.1), and their dependent use
cases.

3.3.1 Using Kerberos Protocol Extensions [MS-KILE]

This example describes using Kerberos protocol extensions [MS-KILE] to obtain client authentication
to connect to an SMB2 share.

Prerequisites

▪ A file share has been created on an SMB2 server, and the user that initiates the SMB2 client
application has been configured for access permissions on the share.

Initial System State

▪ The user that is running the SMB2 client application has not been authenticated to the
Authentication Authority (AA).

Final System State

▪ The user that is running the SMB2 client application has been authenticated to the AA.

Sequence of Events

85 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 32: Connecting to an SMB2 share with [MS-KILE] as the authentication protocol

Negotiating an Authentication Protocol (see section 2.5.5.2)

The SMB2 client and the SMB2 server negotiate the authentication protocol by using the SPNEGO
protocol [MS-SPNG] and [MS-NEGOEX].

Step 1: When the user tries to access the network share on the SMB2 server, the SMB2 client sends
the SMB2 NEGOTIATE Request message ([MS-SMB2] section 2.2.3) to the SMB2 server to
negotiate SMB2 capabilities, such as SMB dialects between the SMB2 client and server.

Step 2: The SMB2 server builds an SMB2 NEGOTIATE Response message ([MS-SMB2] section
2.2.4) with its preferred dialect and the securityBlob field with the GSS token by calling the
Authentication Server through the GSS-API GSS_Accept_sec_context function [RFC2743]. The GSS
token contains a NegTokenInit2 message ([MS-SPNG] section 2.2.1), which includes the preferred

authentication protocol mechanism as the NegoEx object identifier (OID) and a list of the supported
authentication mechanisms as NegoEx ([MS-NEGOEX]), krb5, erroneous Kerberos, usertouser, and

NTLM OIDs ([MS-SPNG] section 1.9.1).

The SMB2 client calls the Authentication Client through the GSS-API GSS_Init_sec_context function
([RFC2743] section 2.2.1) to verify the received GSS token and to get the token to prove the SMB2
client's identity to the SMB2 server. The Authentication Client first tries by using the Kerberos protocol
to prove the client's identity and to build the security token.

Authenticating an SMB2 Client Identity to a Kerberos Authentication Server (see section
2.5.5.1.1)

The Authentication Client proves the identity of the SMB2 client to the Authentication Authority by
using the Kerberos [MS-KILE] protocol to get the service ticket for the SMB2 server.

Step 3: The Authentication Client (Kerberos client) sends a KRB_AS_REQ message ([RFC4120]
section 3.1) to the Authentication Authority (Key Distribution Center (KDC)). This message includes
the user principal name and a list of supported encryption types in priority order to encrypt the pre-

86 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

authentication data but does not include the pre-authentication data because its function is to discover

the supported encryption types.

Step 4: The KDC checks the user principal name in its account database and the pre-authentication
data. If the request message does not contain the pre-authentication data, the KDC responds with an

error ([RFC4120] section 3.1.3) and with a list of supported encryption types in its priority order.

Step 5: The Authentication Client sends a KRB_AS_REQ message for a ticket-granting ticket (TGT)
with PA-ENC-TIMESTAMP as pre-authentication data to the KDC. The client builds the pre-
authentication data by encrypting its timestamp with a secret key derived from the user's password by
using an agreed-on encryption method. The client presents its principal name and pre-authentication
data in a KRB_AS_REQ message.

Step 6: In response to receiving the KRB_AS_REQ for a TGT, the KDC authenticates the user by

checking that the pre-authentication data credentials that are used in the KRB_AS_REQ are the same

as those of the user's credentials ([RFC4120] section 3.1) in the account database. The KDC builds the
TGT with a PAC ([MS-KILE] section 3.3.5.6.4) that contains group membership information in the
authorization_data field of the TGT, generates a KRB_AS_REP message ([RFC4556] section 3.2.2)
from the TGT and the session key, and sends the KRB_AS_REP message back to the client.

Authenticating an SMB2 Client Identity to an SMB2 Server (see section 2.5.4.1.1)

Step 7: The Authentication Client sends a KRB_TGS_REQ based on the TGT obtained in step 6 to
obtain a service ticket for the SMB2 server. The KRB_TGS_REQ message includes the TGT, the
authenticator, and the Service Principal Name (SPN) as cifs/servername.domain, where servername is
the actual name of the SMB2 server computer, and domain is the domain or realm of the client
computer.

Step 8: The KDC validates the TGT and the authenticator. If these are valid, the KDC returns a service
ticket for an SMB2 server and a session key for communication between the SMB2 client and the

SMB2 server in a KRB_TGS_REP message.

Step 9: The Authentication Client builds a KRB_AP_REQ message ([RFC4120] section 3.2) with a
TGT and the authenticator that is created by encrypting the user name, IP address, and a timestamp
with the session key received in step 8. This entire KRB_AP_REQ message, with a MutualRequired
flag to indicate that the server authentication is required, is embedded as a KerberosToken in a
NegTokenInit message ([RFC4178] section 4.2.1), along with a preferred authentication mechanism,
such as krb5, and a list of supported authentication mechanisms, such as krb5, erroneous Kerberos,

NegoEx, and NTLM OIDs. This entire NegTokenInit message is enveloped in a GSS-API SPNEGO
token and returned to the SMB2 client.

To get a new authenticated session, the SMB2 client sends the SMB2 server an SMB2

SESSION_SETUP Request message ([MS-SMB2] section 2.2.5) with its SecurityMode field set to
SMB2_NEGOTIATE_SIGNING_ENABLED. The request message contains a securityBlob field that
contains the GSS SPNEGO token that was constructed previously, as well as other capabilities and a

security mode.

The SMB2 server calls the Authentication Server on the local machine to verify the client's identity by
validating the GSS-API SPNEGO token. The Authentication Server validates the SPNEGO Token
contents by calling the GSS_Accept_sec_context function ([RFC2743] section 2.2.2) with the
received token. If the validation succeeds, the client identity is proved to the SMB2 server, and the
Authentication Server returns the security token to the SMB2 server.

Proving SMB2 server identity to the SMB2 client application (see section 2.5.4.1.2)

Step 10: The SMB2 server generates a signature as described in [MS-SMB2] section 3.1.4.1 and sends

the SMB2 client an SMB2 SESSION_SETUP Response message ([MS-SMB2] section 2.2.6). The
response contains the signature and the previously received GSS security token, which contains a
negTokenResp ([RFC4178] section 4.2.2), which has a KRB_AP_REP message ([RFC4120] section
3.2.4) as its KerberosToken.

87 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

The SMB2 client calls the Authentication Client's GSS-API GSS_Init_sec_context function

([RFC2743] section 2.2.1) to verify the GSS token to prove the identity of the SMB2 server and
verifies the signature as described in [MS-SMB2] section 3.1.5.1. The Authentication Client verifies the
signature and the GSS token as described in [MS-SPNG] and [MS-NEGOEX] and then validates the

KRB_AP_REP message. If the validation succeeds, the identity of the server is proven to the SMB2
client.

3.3.2 Using the NTLM Protocol [MS-NLMP]

This example describes using NTLM Protocol [MS-NLMP] to obtain client authentication to connect to
an Server Message Block (SMB2) share. When Kerberos authentication fails or is not configured, the
Authentication Client tries the NTLM protocol as the next preferred authentication protocol to prove
the identity of the SMB2 client to the SMB2 server. This example describes the interactions between
the SMB2 client and the SMB2 server when Kerberos is not configured or is unavailable.

Prerequisites

▪ A file share has been created on an SMB2 server, and the user that initiates the SMB2 client

application has been configured for access permissions on the share.

Initial System State

▪ The user that is running the SMB2 client application has not been authenticated to the
Authentication Authority (AA).

Final System State

▪ The user that is running the SMB2 client application has been authenticated to the AA.

Sequence of Events

88 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Figure 33: Connecting to an SMB2 share with [MS-NLMP] as the authentication protocol

The SMB2 client and the SMB2 server negotiate the authentication protocol by using the SPNEGO
protocol [MS-SPNG] and [MS-NEGOEX].

Step 1: When the user tries to access the network share on the SMB2 server, the SMB2 client sends
the SMB2 NEGOTIATE Request ([MS-SMB2] section 2.2.3) message to the SMB2 server to
negotiate SMB2 capabilities, such as SMB dialects between the SMB2 client and server

Step 2: The SMB2 server builds an SMB2 NEGOTIATE Response ([MS-SMB2] section 2.2.4)

message with a preferred dialect and a securityBlob field with the GSS token by calling the
Authentication Server through the GSS-API GSS_Accept_sec_context function, as described in
[RFC2743]. The GSS token contains a NegTokenInit2 ([MS-SPNG] section 2.2.1) message, which
includes the preferred authentication protocol mechanism as NegoEx OID and a list of supported
authentication mechanisms such as NegoEx ([MS-NEGOEX]), krb5, erroneous Kerberos, usertouser,
and NLMP OIDs, as specified in [MS-SPNG] section 1.9.1.

Step 3: The SMB2 client calls the GSS-API GSS_Init_sec_context function ([RFC2743] section
2.2.1) of the Authentication Client to verify the received token and to obtain the new GSS SPNEGO
Token. Next, the Authentication Client builds the GSS token with NTLM as its preferred authentication
mechanism and a NEGOTIATE_MESSAGE ([MS-NLMP] section 2.2.1.1) and hands off to the SMB2
client. The SMB2 client creates an SMB2 SESSION_SETUP Request ([MS-SMB2] section 2.2.5) with

securityBlob field values as the GSS token and sends it to the SMB2 server.

Step 4: The SMB2 server asks the Authentication Server to validate the GSS token that was received

in the preceding step by calling the GSS-API GSS_Accept_sec_context function ([RFC2743] section

89 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

2.2.2). The Authentication Server validates the security token and returns the status code that

indicates that a subsequent round trip is required. It also builds the GSS SPNEGO token with a
CHALLENGE_MESSAGE ([MS-NLMP] section 2.2.1.2), which is returned to the SMB2 server. The
SMB2 server creates an SMB2 SESSION_SETUP Response ([MS-SMB2] section 2.2.6) with the

security field value as the GSS token and sends the response to the SMB2 client.

Step 5: The SMB2 client calls the GSS-API GSS_Init_sec_context function ([RFC2743] section
2.2.1) of the Authentication Client to validate the security token that was received in step 4 and to
build the subsequent security token. The Authentication Client builds the GSS-API SPNEGO token with
an AUTHENTICATE_MESSAGE ([MS-NLMP] section 2.2.1.3). The SMB2 client creates the SMB2
SESSION_SETUP Request with the GSS token and sends it to the SMB2 server.

Step 6: The SMB2 server calls the GSS-API GSS_Accept_sec_context function ([RFC2743] section

2.2.2) of the Authentication Server to validate the received token and builds security tokens if

required for further communication. To validate the security token, the Authentication Server contacts
the Authentication Authority by sending a NETWORK_NETLOGON_INFO message as described in
[MS-APDS] section 2.2.1.

Step 7: The Authentication Authority validates the request message and returns either the
NETLOGON_VALIDATION_SAM_INFO2 or the NETLOGON_VALIDATION_SAM_INFO4 message

with group membership information to the Authentication Server, depending on the processing rules
described in [MS-APDS] section 3.1.5.2.

Step 8: The Authentication Server returns the status indicating that authentication is complete to the
SMB2 server. The SMB2 server builds the SMB2 SESSION_SETUP Response message and sends it
to the SMB2 client.

90 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

4 (Updated Section) Microsoft Implementations

The information in this overview is applicable to the following versions of Windows:

▪ Windows NT operating system

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Server 2003 R2 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows 10 v1809 operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

▪ Windows 11 operating system

4.1 Product Behavior

91 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

5 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to

clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

1.3 References
11217 : Updated [MS-NEGOEX] reference title from SPEGNO
to SPNEGO.

Minor

2.1.2.2 Protocol
Interactions

11217 : Updated [MS-NEGOEX] title from SPEGNO to SPNEGO. Minor

2.1.2.2 Protocol
Interactions

Updated SSL/TLS name. None

2.1.3 Relevant Standards Added TLS Version 1.3 with reference to [RFC8446]. Major

2.1.4.3 SSL/TLS Protocols
Updated diagram with RFCs for TLS 1.3, TLS extensions,
elliptic curves, and cipher suites.

Major

2.2.1 Enterprise
Environment

11217 : Updated [MS-NEGOEX] title from SPEGNO to SPNEGO. Minor

2.2.2 Intranet Web
Environment

11217 : Updated [MS-NEGOEX] title from SPEGNO to SPNEGO. Minor

4 Microsoft
Implementations

Added Windows 11 to the list of applicable products. Major

92 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

6 Index
A

Actors
 overview 47
Actors - overview 47
Additional considerations 76
Applicable protocols 42
 enterprise environment 43
 internet web environment 44
 intranet web environment 43
 overview 42
Architecture 22
Assumptions 45
Auxiliary
 authenticate a client identity to a Kerberos authentication server - overview 66
 negotiate authentication protocol - overview 69
 S4U2self Mechanism - get a service ticket for a front-end server - overview 70

C

Capability negotiation 75
Change tracking 91
Coherency requirements 75
Communications 44
 overview 44
 with other systems 45
 within the system 44
Component dependencies 45
Concepts 22
Conceptual overview
 authentication
 concepts 5
 GSS-style 11
 pre-GSS 11
 introduction 5
Connecting to an SMB2 share
 details 84
 Kerberos protocol extensions - using 84
 NTLM protocol - using 87
Considerations
 additional 76
 security 75

D

Dependencies
 with other systems 45
 within the system 44
Design intent
 actors 47
 auxiliary
 authenticate a client identity to a Kerberos authentication server 66
 negotiate authentication protocol 69
 S4U2self Mechanism - get a service ticket for a front-end server 70
 interactive domain logon - service ticket for client computer 47
 network logon
 client authentication 50

 credential delegation 60
 delegation of authentication 56
 mutual authentication 55
 server authentication 53

93 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

 overview 46
 security services - data
 confidentiality 73
 origin authentication 72
 summary of supporting actors and system interests 46
 supporting actors 46
 system interests 46

E

Environment 44
Environment - overview 44
Error handling 75
Examples
 connecting to an SMB2 share
 Kerberos protocol extensions - using 84
 NTLM protocol - using 87

 overview 84
 GSS authentication protocol process - stock quote server 77
 interactive domain logon - service ticket for client computer
 overview 81
 passwords - using 81
 X.509 certificate - using 83
Extensibility
 Microsoft implementations 90
 overview 75
External dependencies 44

F

Functional
 architecture 22
 requirements
 interactive logon authentication
 internal architecture 25
 overview 24
 network logon authentication
 details 27
 enterprise environment 33
 intranet web environment 36
 mixed web environment 38
 overview 27
 protocol interactions 29
 overview 22
 relationship between standards and Microsoft extensions
 Digest protocols 41
 Kerberos protocols 40
 SSL/TLS protocols 41
 relevant standards - details 38
Functional architecture 22
Functional requirements - overview 22

G

Glossary 13
GSS authentication protocol process - stock quote server - details 77

H

Handling requirements 75

I

Implementations - Microsoft 90

94 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Implementer - security considerations 75
Informative references 19
Initial state 45
Interactive domain logon - service ticket for client computer
 details 81
 overview 47
 passwords - using 81
 X.509 certificate - using 83
Introduction
 authentication
 concepts 5
 GSS-style 11
 pre-GSS 11
 overview 5

M

Microsoft implementations 90

N

Network logon
 client authentication - overview 50
 credential delegation - overview 60
 delegation of authentication - overview 56
 mutual authentication - overview 55
 server authentication - overview 53

O

Overview
 interactive logon authentication
 internal architecture 25
 overview 24
 network logon authentication
 details 27
 enterprise environment 33
 intranet web environment 36
 mixed web environment 38
 overview 27
 protocol interactions 29
 relationship between standards and Microsoft extensions
 Digest protocols 41
 Kerberos protocols 40
 SSL/TLS protocols 41
 relevant standards - details 38
 summary of protocols 42
 enterprise environment 43
 internet web environment 44
 intranet web environment 43
 overview 42

 synopsis 22
Overview (synopsis) 5

P

Preconditions 45
Product behavior 90

R

References 19
Requirements
 coherency 75

95 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

 error handling 75
 interactive logon authentication
 internal architecture 25
 overview 24
 network logon authentication
 details 27
 enterprise environment 33
 intranet web environment 36
 mixed web environment 38
 overview 27
 protocol interactions 29
 overview 22
 preconditions 45
 relationship between standards and Microsoft extensions
 Digest protocols 41
 Kerberos protocols 40
 SSL/TLS protocols 41
 relevant standards - details 38

S

Security
 considerations 75
 services - data
 confidentiality - overview 73
 origin authentication - overview 72
Security considerations 75
Summary of supporting actors and system interests
 overview 46
Supporting actors - overview 46
System
 architecture 22
 dependencies
 overview 44
 with other systems 45
 within the system 44
 errors 75
 interests - overview 46
 overview
 authentication
 concepts 5
 GSS-style 11
 pre-GSS 11
 introduction 5
 protocols
 enterprise environment 43
 internet web environment 44
 intranet web environment 43
 overview 42
 requirements
 interactive logon authentication
 internal architecture 25
 overview 24
 network logon authentication
 details 27
 enterprise environment 33
 intranet web environment 36
 mixed web environment 38
 overview 27
 protocol interactions 29
 overview 22
 relationship between standards and Microsoft extensions

 Digest protocols 41
 Kerberos protocols 40
 SSL/TLS protocols 41

96 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

 relevant standards - details 38
 use cases
 actors 47
 auxiliary
 authenticate a client identity to a Kerberos authentication server 66
 negotiate authentication protocol 69
 S4U2self Mechanism - get a service ticket for a front-end server 70
 interactive domain logon - service ticket for client computer 47
 network logon
 client authentication 50
 credential delegation 60
 delegation of authentication 56
 mutual authentication 55
 server authentication 53
 overview 46
 security services - data
 confidentiality 73
 origin authentication 72
 supporting actors 46
 system interests 46
System architecture 22
System dependencies 44
 with other systems 45

 within the system 44
System errors 75
System protocols 42
System requirements - overview 22
System use cases
 actors 47
 overview 46
 summary of supporting actors and system interests 46

T

Table of protocols 42
 enterprise environment 43
 internet web environment 44
 intranet web environment 43
 overview 42
Tracking changes 91

U

Use cases 46
 actors 47
 auxiliary
 authenticate a client identity to a Kerberos authentication server 66
 negotiate authentication protocol 69
 S4U2self Mechanism - get a service ticket for a front-end server 70
 interactive domain logon - service ticket for client computer 47
 network logon
 client authentication 50
 credential delegation 60
 delegation of authentication 56
 mutual authentication 55
 server authentication 53
 overview 46

 security services - data
 confidentiality 73
 origin authentication 72
 summary of supporting actors and system interests 46
 supporting actors 46
 system interests 46

V

97 / 97

[MS-AUTHSOD-Diff] - v20211026
Authentication Services Protocols Overview
Copyright © 2021 Microsoft Corporation
Release: October 26, 2021

Versioning
 Microsoft implementations 90
 overview 75

	1 Introduction
	1.1 Conceptual Overview
	1.1.1 Authentication Concepts
	1.1.1.1 Security Principal
	1.1.1.2 Accounts
	1.1.1.3 Domain Membership
	1.1.1.4 Groups
	1.1.1.4.1 Group Scope
	1.1.1.4.2 Nested Groups

	1.1.1.5 Account Domains
	1.1.1.5.1 Local Domains and Account Database
	1.1.1.5.2 Network Domains and Domain Controllers
	1.1.1.5.3 Effect on Accounts

	1.1.2 Pre-GSS Authentication
	1.1.3 GSS-Style Authentication

	1.2 Glossary
	1.3 (Updated Section) References

	2 Functional Architecture
	2.1 Overview
	2.1.1 Interactive Logon Authentication
	2.1.1.1 Abstract Components
	2.1.1.2 Protocol Interactions

	2.1.2 Network Logon Authentication
	2.1.2.1 Abstract Components
	2.1.2.2 (Updated Section) Protocol Interactions
	2.1.2.3 Enterprise Environment
	2.1.2.3.1 File Access Services
	2.1.2.3.2 Remote Desktop and Web Services

	2.1.2.4 Intranet Web Environment
	2.1.2.4.1 HTTP Access Authentication

	2.1.2.5 Mixed Web Environment

	2.1.3 (Updated Section) Relevant Standards
	2.1.4 Relationship Between Standards and Microsoft Extensions
	2.1.4.1 Kerberos Protocols
	2.1.4.2 Digest Protocols
	2.1.4.3 (Updated Section) SSL/TLS Protocols

	2.2 Protocol Summary
	2.2.1 (Updated Section) Enterprise Environment
	2.2.2 (Updated Section) Intranet Web Environment
	2.2.3 Internet Web Environment

	2.3 Environment
	2.3.1 Dependencies on This System
	2.3.2 Dependencies on Other Systems/Components

	2.4 Assumptions and Preconditions
	2.5 Use Cases
	2.5.1 Summary of Supporting Actors and System Interests
	2.5.2 Actors
	2.5.3 Interactive Logon
	2.5.3.1 Single Domain
	2.5.3.1.1 Interactive Domain Logon: Service Ticket for Client Computer

	2.5.3.2 Multiple Domains
	2.5.3.2.1 Interactive Domain Logon: Service Ticket for Client Computer

	2.5.4 Network Logon
	2.5.4.1 Single Domain
	2.5.4.1.1 Client Authentication
	2.5.4.1.2 Server Authentication
	2.5.4.1.3 Mutual Authentication
	2.5.4.1.4 Delegation of Authentication
	2.5.4.1.4.1 Delegate by Using a Kerberos Forwarded TGT Mechanism
	2.5.4.1.4.2 Delegate by Using S4U2proxy Mechanism

	2.5.4.1.5 Credential Delegation

	2.5.4.2 Multiple Domains
	2.5.4.2.1 Client Authentication

	2.5.4.3 Cross-Forest Environment
	2.5.4.3.1 Client Authentication

	2.5.5 Auxiliary
	2.5.5.1 Authenticate Client Identity to a Kerberos Authentication Server
	2.5.5.1.1 Authenticate Client Identity by Using a User Name and Password
	2.5.5.1.2 Authenticate Client Identity by Using an X.509 Certificate

	2.5.5.2 Negotiate Authentication Protocol
	2.5.5.3 S4U2self Mechanism: Get a Service Ticket for a Front-End Server

	2.5.6 Security Services
	2.5.6.1 Data Origin Authentication (Signing)
	2.5.6.2 Data Confidentiality (Sealing)

	2.6 Versioning, Capability Negotiation, and Extensibility
	2.7 Error Handling
	2.8 Coherency Requirements
	2.9 Security
	2.10 Additional Considerations

	3 Examples
	3.1 Example 1: GSS Authentication Protocol Process - Stock Quote Server
	3.2 Example 2: Interactive Domain Logon - Service Ticket for Client Computer
	3.2.1 Interactive Domain Logon by Using Passwords
	3.2.2 Interactive Domain Logon by Using an X.509 Certificate

	3.3 Example 3: Connecting to an SMB2 Share
	3.3.1 Using Kerberos Protocol Extensions [MS-KILE]
	3.3.2 Using the NTLM Protocol [MS-NLMP]

	4 (Updated Section) Microsoft Implementations
	4.1 Product Behavior

	5 Change Tracking
	6 Index

