
1 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[MS-ASP]:

ASP.NET State Server Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

12/18/2006 0.1 New Version 0.1 release

3/2/2007 1.0 Major Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.2.2 Editorial Changed language and formatting in the technical content.

7/20/2007 1.2.3 Editorial Changed language and formatting in the technical content.

8/10/2007 1.2.4 Editorial Changed language and formatting in the technical content.

9/28/2007 2.0 Major Updated and revised the technical content.

10/23/2007 2.0.1 Editorial Changed language and formatting in the technical content.

11/30/2007 2.0.2 Editorial Changed language and formatting in the technical content.

1/25/2008 3.0 Major Updated and revised the technical content.

3/14/2008 4.0 Major Updated and revised the technical content.

5/16/2008 4.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.1 Minor Clarified the meaning of the technical content.

7/25/2008 4.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.1.2 Editorial Changed language and formatting in the technical content.

10/24/2008 5.0 Major Updated and revised the technical content.

12/5/2008 5.0.1 Editorial Changed language and formatting in the technical content.

1/16/2009 5.0.2 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0.3 Editorial Changed language and formatting in the technical content.

4/10/2009 5.0.4 Editorial Changed language and formatting in the technical content.

5/22/2009 5.0.5 Editorial Changed language and formatting in the technical content.

7/2/2009 6.0 Major Updated and revised the technical content.

8/14/2009 6.0.1 Editorial Changed language and formatting in the technical content.

9/25/2009 6.1 Minor Clarified the meaning of the technical content.

11/6/2009 7.0 Major Updated and revised the technical content.

12/18/2009 7.0.1 Editorial Changed language and formatting in the technical content.

1/29/2010 7.1 Minor Clarified the meaning of the technical content.

3/12/2010 7.1.1 Editorial Changed language and formatting in the technical content.

3 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Date
Revision
History

Revision
Class Comments

4/23/2010 7.1.2 Editorial Changed language and formatting in the technical content.

6/4/2010 7.1.3 Editorial Changed language and formatting in the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.

9/23/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 9.0 Major Updated and revised the technical content.

3/30/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 10.0 Major Significantly changed the technical content.

10/16/2015 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Date
Revision
History

Revision
Class Comments

7/14/2016 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2017 11.0 Major Significantly changed the technical content.

6/1/2017 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/13/2019 12.0 Major Significantly changed the technical content.

4/7/2021 13.0 Major Significantly changed the technical content.

5 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 9
1.9 Standards Assignments ... 9

2 Messages ... 10
2.1 Transport .. 10
2.2 Message Syntax ... 10

2.2.1 Common Definitions .. 10
2.2.1.1 Digit .. 10
2.2.1.2 Octet ... 10
2.2.1.3 Carriage Return Line Feed .. 10
2.2.1.4 Space .. 10
2.2.1.5 Delimiter .. 10
2.2.1.6 Stringtext .. 11

2.2.2 Common HTTP Headers and Fields .. 11
2.2.2.1 HTTP Version .. 11
2.2.2.2 Host Header ... 11
2.2.2.3 Content Length ... 11
2.2.2.4 Content ... 11

2.2.3 State Server Headers and Fields ... 11
2.2.3.1 Application Identifier ... 11
2.2.3.2 Application Domain Identifier .. 11
2.2.3.3 Session Identifier .. 12
2.2.3.4 ASP.NET Version ... 12
2.2.3.5 Timeout ... 12
2.2.3.6 Exclusive Lock Acquire ... 12
2.2.3.7 Exclusive Lock Release .. 12
2.2.3.8 Lock Date .. 13
2.2.3.9 Lock Cookie .. 13
2.2.3.10 Lock Age .. 13
2.2.3.11 Extra Flags ... 13
2.2.3.12 Action Flags ... 14
2.2.3.13 Unique identifier ... 14

2.2.4 Response Status Codes ... 14
2.2.4.1 Response Status Code - OK .. 14
2.2.4.2 Response Status Code - Bad Request .. 14
2.2.4.3 Response Status Code - Not Found ... 14
2.2.4.4 Response Status Code - Locked .. 15

2.2.5 Messages ... 15
2.2.5.1 Get_Request .. 15
2.2.5.2 Get_Response .. 15
2.2.5.3 GetExclusive_Request ... 16
2.2.5.4 GetExclusive_Response ... 17
2.2.5.5 Set_Request ... 17
2.2.5.6 Set_Response ... 17
2.2.5.7 ReleaseExclusive_Request .. 18

6 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5.8 ReleaseExclusive_Response .. 18
2.2.5.9 Remove_Request .. 19
2.2.5.10 Remove_Response .. 19
2.2.5.11 ResetTimeout_Request .. 19
2.2.5.12 ResetTimeout_Response .. 20

3 Protocol Details ... 21
3.1 Server Details .. 21

3.1.1 Abstract Data Model .. 21
3.1.2 Timers .. 21
3.1.3 Initialization ... 21
3.1.4 Higher-Layer Triggered Events ... 21
3.1.5 Processing Events and Sequencing Rules ... 21

3.1.5.1 Processing Non-Exclusive Get Requests ... 21
3.1.5.2 Processing Exclusive Get Requests .. 22
3.1.5.3 Saving Session Data with a Set Request .. 23
3.1.5.4 Releasing an Exclusive Session State Lock ... 24
3.1.5.5 Removing Session State .. 24
3.1.5.6 Resetting Session State Time-out .. 25

3.1.6 Timer Events .. 25
3.1.7 Other Local Events .. 25

3.2 Client Details ... 26
3.2.1 Abstract Data Model .. 26
3.2.2 Timers .. 26
3.2.3 Initialization ... 26
3.2.4 Higher-Layer Triggered Events ... 26
3.2.5 Processing Events and Sequencing Rules ... 26

3.2.5.1 Non-Exclusive Get Requests ... 26
3.2.5.2 Exclusive Get Requests .. 27
3.2.5.3 Saving Session Data with a Set Request .. 27
3.2.5.4 Releasing an Exclusive Session State Lock ... 28
3.2.5.5 Removing Session State .. 28
3.2.5.6 Resetting Session State Time-out .. 28

3.2.6 Timer Events .. 28
3.2.7 Other Local Events .. 28

4 Protocol Examples ... 29

5 Security ... 32
5.1 Security Considerations for Implementers ... 32
5.2 Index of Security Parameters .. 32

6 Appendix A: Product Behavior ... 33

7 Change Tracking .. 35

8 Index ... 36

7 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1 Introduction

The ASP.NET State Server Protocol is a contract for transmitting session state data between a client
and a state server. This protocol is used for interaction between a client application that requires
persistent session state storage, and an out-of-process state server responsible for storing session
state. The data that flows between the client application and a state server is transmitted using the
Hypertext Transfer Protocol (HTTP).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

application domain: A virtual process space within which managed code applications are hosted
and executed. It is possible to have multiple managed code applications running inside a single

process. Each managed code application runs within its own application domain and is isolated
from other applications that are running in separate application domains. An application
domain has a unique identifier used as part of the identifying key on a state server when storing
and retrieving session data.

ASP.NET: A web server technology for dynamically rendering HTML pages using a combination of
HTML, Javascript, CSS, and server-side logic. For more information, see [ASPNET].

ASP.NET state server: A Windows service that provides a default server implementation of the
ASP.NET State Server Protocol. When the service is enabled on a computer, that computer can
act as a state server. The state server accepts requests to load, store, delete, and temporarily
lock Session state items.

Hypertext Transfer Protocol (HTTP): An application-level protocol for distributed, collaborative,

hypermedia information systems (text, graphic images, sound, video, and other multimedia
files) on the World Wide Web.

session state: In ASP.NET, a variable store on a server for storing and retrieving values for a
user while the user navigates ASP.NET pages in a web application. Session state is typically
used to store user-specific information between postbacks. Each user maintains a separate
session state on the server.

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

user session identifier: A unique identifier used as part of the identifying key when storing and
retrieving session data.

web application identifier: Each ASP.NET application running on a web server is uniquely
identified with a web application identifier. The web application identifier is the virtual
path of the web application on the web server. A web application identifier is used as part of

the identifying key on a state server when storing and retrieving session data for a specific

browser session.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

https://go.microsoft.com/fwlink/?LinkId=89815
https://go.microsoft.com/fwlink/?LinkId=90287
https://go.microsoft.com/fwlink/?LinkId=90317

8 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[RFC1738] Berners-Lee, T., Masinter, L., and McCahill, M., Eds., "Uniform Resource Locators (URL)",

RFC 1738, December 1994, http://www.rfc-editor.org/rfc/rfc1738.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2396] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifiers (URI):
Generic Syntax", RFC 2396, August 1998, http://www.rfc-editor.org/rfc/rfc2396.txt

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt

1.2.2 Informative References

[MS-NETOD] Microsoft Corporation, "Microsoft .NET Framework Protocols Overview".

1.3 Overview

Web applications need to store state information that is associated with a specific user session. Earlier
web technologies, such as Active Server Pages (ASP), included a session state feature that stored
state information in memory. ASP.NET also has an implementation of in-memory session state.

However, in-memory session state solutions are not suitable for web farms (clusters of two or more

web servers). In web farms there is no guarantee that a user session will reconnect to the same web

server across multiple requests. As a result, if an in-memory session state solution is used, session
data will appear to be lost when the user session connects to different servers.

The ASP.NET State Server Protocol was developed to address the use of session state in a web farm. A
session state server can host an out of process session state store. Client applications such as web
applications can store and retrieve session data across a web farm as long as each instance of the
application is pointed at the same state server instance. The ASP.NET State Server Protocol specifies

the rules for communicating session state data between a client application and a state server.

When using the ASP.NET State Server Protocol, there is a client and a server component to each
network conversation. The general sequence is as follows:

1. A client application runs code that requires session state. For example, a web application could
process a browser request, and as part of the processing, the application needs to access the
session state associated with the browser session.

2. The client sends an HTTP request to the state server to retrieve session state. The request

includes an identifier that correlates to the browser's user session, as well as an identifier for the
specific web application making the request.

3. The state server receives the request, and based upon the user session identifier, application
domain identifier, and web application identifier, retrieves the requested session data. The
session data is returned in an HTTP response to the client.

4. The application code accesses session state, getting and setting values as necessary.

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=90287
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90339
https://go.microsoft.com/fwlink/?LinkId=90372
%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0

9 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5. When the client finishes processing a request, it makes an HTTP request to the state server to
save any changes application code has made to session state. This request contains the updated

session state data, as well user session, application domain, and web application identifiers.

6. The state server accepts the HTTP request to update state data. It stores the information keyed by

the user session identifier, application domain identifier, and application identifier.

1.4 Relationship to Other Protocols

The ASP.NET state server relies on HTTP (as specified in [RFC2616]).

The URL for the ASP.NET state server follows the definitions in "Uniform Resource Locators (URL)," as
specified in [RFC1738].

The allowable characters for strings that are defined in section 2.2.1.6 come from the definition of a
relative URI that is defined in "Uniform Resource Identifiers (URI): Generic Syntax," as specified in
[RFC2396].

1.5 Prerequisites/Preconditions

The ASP.NET State Server Protocol is used when a client application communicates with a state
server. Client and server implementations of the ASP.NET State Server Protocol need to agree on how
a client discovers a state server. Implementations need to agree on how a state server starts up and
becomes available to process requests.

1.6 Applicability Statement

The ASP.NET State Server Protocol is intended for use by clients that need to store session state
data outside the process space of the client application.

1.7 Versioning and Capability Negotiation

The ASP.NET State Server Protocol includes version information in server response messages that a
client can use to implement versioning behavior.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90287
https://go.microsoft.com/fwlink/?LinkId=90339

10 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2 Messages

 The following sections specify transport for the ASP.NET State Server Protocol and details of message
syntax, including common structures, certificate requirements, and common error codes.

2.1 Transport

The ASP.NET State Server Protocol uses HTTP, as specified in [RFC2616], as the transport layer. The
client indicates the requested data as part of an HTTP request header, and packages request data, as
specified in section 3.2.

State server implementations MUST accept the request data and provide responses according to the
specifications in section 3.1.

2.2 Message Syntax

2.2.1 Common Definitions

The following common constructions are used throughout this document. The constructions that are
defined in the following sections are used only for convenience in constructing other messages; they
have no other semantics.

2.2.1.1 Digit

The Digit is defined in the following code sample.

 DIGIT = any US-ASCII digit "0".."9"

2.2.1.2 Octet

The Octet is defined in the following code sample.

 OCTET = any 8-bit sequence of data

2.2.1.3 Carriage Return Line Feed

The Carriage Return Line Feed is defined in the following code sample.

 CR = "\r" | ascii carriage return
 LF = "\n" | ascii linefeed
 CRLF = CRLF

2.2.1.4 Space

The Space is defined in the following code sample.

 SP = " " | ASCII space character

https://go.microsoft.com/fwlink/?LinkId=90372

11 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.5 Delimiter

The Delimiter is defined in the following code sample.

 delimiter = "%2f" | "/"

2.2.1.6 Stringtext

Stringtext consists of the characters that are specified in [RFC2396] section 2.

 stringtext = *(a-z|A-Z|0-9|+|/|=|relativeURI)

2.2.2 Common HTTP Headers and Fields

2.2.2.1 HTTP Version

The http-version field is as specified in [RFC2616] section 3.1.

2.2.2.2 Host Header

The host-information header field is as specified in [RFC2616] section 14.23.

2.2.2.3 Content Length

The content-length entity-header field is as specified in [RFC2616] section 14.13.

Example:

 Content-Length: 134\r\n

2.2.2.4 Content

When a client or server sends session data, the session data is contained in a message body. The

message body contains one or more 8-bit sequences representing the session data.

A state server implementation MUST treat content as opaque and MUST round-trip the value back to
the client when requested.

Both the client and server MUST send and receive content as byte arrays (char* or byte[]).

 content = *OCTET

2.2.3 State Server Headers and Fields

2.2.3.1 Application Identifier

State server implementations MUST treat the application identifier as an opaque field.<1>

 application-identifier = stringtext

https://go.microsoft.com/fwlink/?LinkId=90339
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90372

12 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.2 Application Domain Identifier

State server implementations MUST treat the application domain identifier as an opaque field.<2>

 appdomain-identifier = "(" stringtext ")"

2.2.3.3 Session Identifier

State server implementations MUST treat the user session identifier as an opaque field.<3>

 session-identifier = stringtext

2.2.3.4 ASP.NET Version

A state server implementation indicates which version of the state server is using this response

header.<4>

 aspnet-version =
 "X-AspNet-Version:" SP ("1.x.yyyyy" | "2.x.yyyyy") CRLF

Example:

 X-AspNet-Version: 2.0.50727\r\n

2.2.3.5 Timeout

Timeout is an integer that defines the expiry time in minutes for session state data. If this field is not
set, the default time-out is 20 minutes.

 timeout = "Timeout:" SP 1*DIGIT CRLF

Example:

 Timeout: 120\r\n

2.2.3.6 Exclusive Lock Acquire

An ASP.NET web server indicates that it wants to acquire an exclusive lock on session state data by
including this header in the request.

 exclusive-acquire = "Exclusive: acquire" CRLF

13 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.3.7 Exclusive Lock Release

A client indicates that it wants to release an exclusive lock on session state data by including this
header in the request.

 exclusive-release = "Exclusive: release" CRLF

2.2.3.8 Lock Date

Lock date is a 64-bit integer value that indicates the date a session state lock was created. A Lock
date is measured in 100-nanosecond ticks since midnight, January 1, 0001 C.E. (Common Era), in the
local time zone of the session state server.

 lock-date = "LockDate:" SP 1*DIGIT CRLF

Example:

 LockDate: 127916792367495010\r\n

2.2.3.9 Lock Cookie

Lock cookie is a 32-bit positive signed integer value indicating the lock identifier that MUST be

associated for a piece of locked session state data. This value can be any positive signed integer
value.

 lock-cookie = "LockCookie:" SP 1*DIGIT CRLF

Example:

 LockCookie: 12\r\n

2.2.3.10 Lock Age

Lock age is a 64-bit integer value indicating the current age of the lock cookie measured in seconds.

 lock-age = "LockAge:" SP 1*DIGIT CRLF

Example:

 LockAge: 27819380594\r\n

2.2.3.11 Extra Flags

The extra flags represent optional information about session state that a client requires a state
server to store. A client can send this header when sending session data to a state server for the first
time (that is, a Set_Request call). A value of "0" means no special action will be necessary for the

14 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

session state data. A value of "1" means the client is creating an uninitialized session state item in the
session state store.

 extra-flags = "ExtraFlags:" SP ("0" | "1") CRLF

Example:

 ExtraFlags: 1\r\n

2.2.3.12 Action Flags

The action flags represent optional data that a state server implementation returns to a client. A value
of "0" means no special action by the client is necessary for the session state data. A value of "1"
means the client MUST perform extra initialization work for the session.

 action-flags = "ActionFlags:" SP ("0" | "1") CRLF

Example:

 ActionFlags: 1\r\n

2.2.3.13 Unique identifier

Unique identifier is a concatenation of the application, application domain, and session identifier fields.
The combined value is used as a unique identifier for session state.

 unique-identifier =
 application-identifier appdomain-identifier delimiter
 session-identifier

Example:

 /w3svc/root
 /fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)
 %2f15hgq1uszp2tjt45lkwxmb55

2.2.4 Response Status Codes

2.2.4.1 Response Status Code - OK

This status code indicates that the requested operation succeeded.

 status-code-ok = "200 OK" CRLF

2.2.4.2 Response Status Code - Bad Request

This status code indicates that the state server could not understand the client request.

15 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 status-code-badrequest = "400 Bad Request" CRLF

2.2.4.3 Response Status Code - Not Found

This status code indicates that the state server could not find the requested data.

 status-code-notfound = "404 Not Found" CRLF

2.2.4.4 Response Status Code - Locked

This status code indicates that the requested data cannot be retrieved because another instance of the

user session locked the session state data for exclusive access.

 status-code-locked = "423 Locked" CRLF

2.2.5 Messages

2.2.5.1 Get_Request

The Get_Request message is sent by a client to request session state data in a non-exclusive

manner. If multiple instances of the same user session are active, the request for session state data
will not block session state requests from other instances of the same user session.

Sections 3.1.5.1 and 3.2.5.1 specify using this message.

 Get_Request =
 "GET" SP unique-identifier SP http-version host-information

Example:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424

2.2.5.2 Get_Response

The Get_Response message is sent by a state server implementation to a client in response to a

Get_Request message. Sections 3.1.5.1 and 3.2.5.1 specify using this message.

 Get_Response =
 response-ok | response-bad-request | response-not-found |
 response-locked
 response-ok = status-code-ok content-length
 aspnet-version timeout [action-flags] CRLF content
 response-bad-request = status-code-badrequest
 content-length aspnet-version
 response-not-found = status-code-notfound
 content-length aspnet-version
 response-locked = status-code-locked
 content-length aspnet-version lock-cookie lock-age lock-date

16 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Examples:

Response-ok:

 HTTP/1.1 200 OK
 Content-Length: 2589
 X-AspNet-Version: 2.0.50727
 Timeout: 1200
 ActionFlags: 1

 ...session state content here...

Response-bad-request (this response format is the same for all server responses):

 HTTP/1.1 400 Bad Request
 Content-Length: 589
 X-AspNet-Version: 2.0.50727

Response-not-found (this response format is the same for all server responses):

 HTTP/1.1 404 Not Found
 Content-Length: 205
 X-AspNet-Version: 2.0.50727

Response-locked (this response format is the same for all server responses):

 HTTP/1.1 423 Locked
 Content-Length: 589
 X-AspNet-Version: 2.0.50727
 LockCookie: 1
 LockAge: 1275008970
 LockDate: 1337890127

2.2.5.3 GetExclusive_Request

The GetExclusive_Request message is sent by a client to request session state data in an exclusive

manner. This means the current requestor wants an exclusive lock to be maintained on the session
state data until the current requestor releases the lock. If other instances of the user session request
the same session state data, they will not receive any session data in a response because the current
requestor has already locked it for exclusive access.

Sections 3.1.5.1 and 3.2.5.2 specify using this message.

 GetExclusive_Request =
 "GET" SP unique-identifier SP http-version host-information
 exclusive-acquire

Example:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%

17 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424
 Exclusive: Acquire

2.2.5.4 GetExclusive_Response

The GetExclusive_Response message is sent by a state server implementation to a client in response
to a GetExclusive_Request message.

Sections 3.1.5.2 and 3.2.5.2 specify using this message.

 GetExclusive_Response = response-ok |
 response-bad-request | response-not-found | response-locked
 response-ok = status-code-ok content-length
 aspnet-version timeout [action-flags] lock-cookie CRLF content
 response-bad-request = status-code-badrequest
 content-length aspnet-version
 response-not-found = status-code-notfound
 content-length aspnet-version
 response-locked = status-code-locked
 content-length aspnet-version lock-cookie lock-age lock-date

Example of response-ok:

 HTTP/1.1 200 OK
 Content-Length: 3340
 X-AspNet-Version: 2.0.50727
 Timeout: 30
 LockCookie: 19

 ...session state content here...

2.2.5.5 Set_Request

The Set_Request message is sent by a client to a state server to store session state data for the
current requestor.

Sections 3.1.5.3 and 3.2.5.3 specify using this message.

 Set_Request =
 "PUT" SP unique-identifier SP http-version host-information
 content-length [timeout] [lock-cookie] [extra-flags] CRLF content

Example:

 PUT /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424
 Content-Length: 134
 Timeout: 1200
 Lock-Cookie: 12345
 ExtraFlags: 1
 ...session state content here...

18 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5.6 Set_Response

The Set_Response message is sent by a state server implementation to a client in response to a
Set_Request message.

Sections 3.1.5.3 and 3.2.5.3 specify using this message.

 Set_Response = response-ok | response-bad-request | response-locked
 response-ok = status-code-ok content-length aspnet-version
 response-bad-request = status-code-badrequest
 aspnet-version content-length
 response-locked = status-code-locked
 content-length aspnet-version lock-cookie lock-age lock-date

Example: response-ok:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

2.2.5.7 ReleaseExclusive_Request

The ReleaseExclusive_Request message is sent by a client to indicate to a state server that the
current requestor is releasing its exclusive lock on a piece of session state data.

Sections 3.1.5.4 and 3.2.5.4 specify using this message.

 ReleaseExclusive_Request =
 "GET" SP unique-identifier SP http-version host-information
 exclusive-release lock-cookie

Example:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424
 Exclusive: release
 Lock-Cookie: 12345

2.2.5.8 ReleaseExclusive_Response

The ReleaseExclusive_Response message is sent by a state server implementation to a client in
response to a ReleaseExclusive_Request message.

Sections 3.1.5.4 and 3.2.5.4 specify using this message.

 ReleaseExclusive_Response =
 response-ok | response-bad-request | response-not-found | response-locked
 response-ok = status-code-ok content-length aspnet-version
 response-bad-request =
 status-code-badrequest content-length aspnet-version
 response-not-found =
 status-code-notfound content-length aspnet-version
 response-locked = status-code-locked

19 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 content-length aspnet-version lock-cookie lock-age lock-date

Example:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

2.2.5.9 Remove_Request

The Remove_Request message is sent by a client to delete session state information associated with
the current requestor on a state server.

Sections 3.1.5.5 and 3.2.5.5 specify using this message.

 Remove_Request =
 "DELETE" SP unique-identifier SP http-version
 host-information lock-cookie

Example:

 DELETE /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424
 Lock-Cookie: 12345

2.2.5.10 Remove_Response

The Remove_Response message is sent by a state server implementation to a client in response to a
Remove_Request message.

Sections 3.1.5.5 and 3.2.5.5 specify using this message.

 Remove_Response = response-ok | response-not-found | response-bad-request | response-locked
 response-ok = status-code-ok content-length aspnet-version
 response-bad-request =
 status-code-badrequest content-length aspnet-version
 response-not-found = status-code-notfound
 content-length aspnet-version
 response-locked = status-code-locked
 content-length aspnet-version lock-cookie lock-age lock-date

Example:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

20 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5.11 ResetTimeout_Request

The ResetTimeout_Request message is sent by a client to reset the time-out counter of session state
data that is associated with the current requestor so that the data is not automatically released by the

state server.

Sections 3.1.5.6 and 3.2.5.6 specify use of this message.

 ResetTimeout_Request =
 "HEAD" SP unique-identifier SP http-version host-information

Example:

 HEAD /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 10.0.0.100:42424

2.2.5.12 ResetTimeout_Response

The ResetTimeout_Response message is sent by a state server implementation to a client in response
to a ResetTimeout_Request message.

Sections 3.1.5.6 and 3.2.5.6 specify using this message.

 ResetTimeout_Response =
 response-ok | response-not-found
 response-ok =
 status-code-ok content-length aspnet-version
 response-not-found =
 status-code-notfound content-length aspnet-version

Example:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

21 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

An application that operates in a stateless manner can store data associated with certain transient
operations. If a unique identifier is flowed from one transient operation to another, it is possible for an
application to store data externally keyed to this unique identifier. Client applications can load this
data by providing a unique key to a state server implementation.

A state server provides the service for externally storing such data. It operates against a virtual

storage model, where individual pieces of data are indexed via a unique identifier. Each unique
identifier points to a table of name-value pairs containing session state information.

When a client requests session state information, the server finds the unique identifier and returns the
name-value pairs associated with that key. When a client updates session state information, it
provides the state server with the unique key and a set of name-value pairs. The state server stores
the name-value pairs and associates them with the unique key for subsequent retrieval.

The state server supports basic locking semantics to ensure that concurrent read and write attempts

do not corrupt session state.

3.1.2 Timers

None.

3.1.3 Initialization

The initialization requirements for a state server are implementation-dependent.<5>

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Processing Non-Exclusive Get Requests

A client that uses a state server makes either an exclusive or a non-exclusive request to a state server
implementation for session state data.<6>

For a non-exclusive request, the client sends an HTTP request that uses the message format that is
specified in section 2.2.5.1. A state server implementation MUST attempt to retrieve the session state
data that corresponds to the unique identifier that is contained in the combination of application-
identifier, appdomain-identifier, and session-identifier. A state server MUST not interpret these values
or assign any specific relevance to them. Rather, a state server implementation MUST simply use the
combination of those values as the unique identifier for retrieving any previously stored session state
that is associated with the combination of those identifiers.

22 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The state server MUST send a response back to the client by using one of the message formats that
are specified in section 2.2.5.2.

If the state server finds session data that is associated with the requested identifier, and the data is
not locked by another request, it MUST reply to the client web server by using the response-ok

message, as specified in section 2.2.5.2.

As part of this message, the state server MUST include the action-flags information if set during a
previous set operation, as specified in section 2.2.5.5, the client web server sent extra-flags to the
state server with a value of "1". The state server MUST also reset the action-flags value stored by the
state server to a value of "0".

If the state server finds session data that is associated with the requested identifier, but the session
data is locked by another request (for example, two or more clients are simultaneously running and

each client is using the same identifier), the state server MUST respond with a response-locked
message, as specified in section 2.2.5.2. The response-locked message contains a lock-
age (section 2.2.3.10) and lock-date (section 2.2.3.8) in addition to the value of the current lock-
cookie (section 2.2.3.9). The lock-cookie is an integer representation of the current lock. The lock-

date value MUST contain the date and time that the existing lock was placed on the session state
data. The lock-age header MUST contain a representation for the age of the current lock.

If the state server cannot find any session data that is associated with the requested identifier, the
state server MUST respond with a response-not-found message, as specified in section 2.2.5.2.

The response-bad-request message, as specified in section 2.2.5.2, is conceptually equivalent to
throwing an exception. The session state server MUST send this message if something goes wrong and
the server is unable to process the request.

3.1.5.2 Processing Exclusive Get Requests

A client that uses a state server makes either an exclusive or a non-exclusive request to a state server
implementation for session state data.<7>

For an exclusive request, the client uses the message format that is specified in section 2.2.5.3. A

state server implementation MUST attempt to retrieve the session state data that corresponds to the

unique identifier that is contained in the combination of application-identifier, appdomain-identifier,
and session-identifier. A state server MUST NOT interpret these values or assign any specific relevance
to them. Rather, a state server implementation MUST simply use the combination of those values as
the unique identifier for retrieving any previously stored session state that is associated with the
combination of those identifiers.

The state server MUST send a response back to the client by using one of the message formats that
are specified in section 2.2.5.4.

If the state server finds session data that is associated with the requested identifier and the data is
not locked by another request, it MUST reply to the client with the response-ok message.

As part of this message, the state server MUST include the action-flags information, if during a
previous set operation, as specified in section 2.2.5.5, the client web server sent extra-flags to the
state server with a value of "1". The state server MUST also reset the action-flags value stored by the

state server to a value of "0".

The state server MUST also internally mark the session data in a way that indicates the session data is

now considered locked, and is not available to other requestors. As part of this logical operation, the
state server MUST return an integer representation of the lock to the client. The lock-
cookie (section 2.2.3.9) portion of the response-ok message is where the state server MUST include
this lock information in its response. Internally, the state server MUST also note the date and time
when the lock is established.

23 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

If the state server finds session data that is associated with the requested identifier but the session
data is locked by another request (that is, two or more clients are simultaneously running, and each

client is using the same identifier), the state server MUST respond by using a response-locked
message, as specified in section 2.2.5.4. The response-locked message contains a lock-

age (section 2.2.3.10) and lock-date (section 2.2.3.8) in addition to the value of the current lock-
cookie. The lock-cookie is an integer representation of the current lock. The lock-date value MUST
contain the date and time the existing lock was placed on the session state data. The lock-age header
MUST contain a representation for the age of the current lock.

If the state server cannot find any session data that is associated with the requested identifier, the
state server MUST respond with a response-not-found message, as specified in section 2.2.5.4.

The response-bad-request message, as specified in section 2.2.5.4, is conceptually equivalent to

throwing an exception. The session state server MUST send this message if something goes wrong and
the server is unable to process the request.

3.1.5.3 Saving Session Data with a Set Request

When a client needs to store session data in an out-of-process state server, it makes a request to the
state server by using the message format that is specified in section 2.2.5.5.

A state server MUST associate the session data that is contained in this message with a unique
identifier that is created from the combination of application-identifier, appdomain-identifier, and
session-identifier. A state server MUST not interpret these values or assign any specific relevance to
them. Rather, a state server implementation MUST simply use the combination of those values as the
unique identifier for storing session state associated with the combination of those identifiers.

The state server MUST send a response back to the client by using one of the message formats that
are specified in section 2.2.5.6.

If the state server does not currently have any session data associated with the requested identifier, it
MUST store the session data contained in the message.

If the client sent the optional extra-flags value, the state server MUST also store this information

along with the session state data. The state server MUST be able to return this value in the action-

flags value of the response messages, as specified in sections 2.2.5.2 and 2.2.5.4.

The state server MUST also store the time-out value that is sent from the client. This time-out value is
returned as part of the response-ok messages that are specified in sections 2.2.5.2 and 2.2.5.4. This
value is also used when refreshing session state time-outs by using the message as specified in
section 2.2.5.11.

Internally, the state server MUST also store the date and time of the current request to save session
state. This date and time information is necessary for the state server to remove out-of-date session

data. In order to prevent memory or storage exhaustion from storing data for an infinite time period,
a state server implementation MUST implement some type of cleanup or scavenging mechanism that
can detect expired sessions. A session is considered expired if the current date and time is greater
than the session time-out value that is added to the date and time of either the last Set_Request
message or the last ResetTimeout_Request message.

If the state server successfully stored the session state, it MUST return a response-ok message.

If the state server does currently have session data associated with the requested identifier, and the

client sent the optional extra-flags value, and the optional extra flags value is set to 1, the state
server MUST NOT store the session data contained in the message. Instead the state server MUST
immediately return a response-ok message.

If the state server is already storing session data that is associated with the requested identifier, but
the session data is locked by another request (that is, two or more clients are simultaneously running,

24 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

and each client is using the same identifier), the state server MUST NOT store the session data
contained in the message. Instead the state server MUST respond by using a response-locked

message, as specified in section 2.2.5.6. The response-locked message contains a lock-age (section
2.2.3.10) and lock-date (section 2.2.3.8) in addition to the value of the current lock-cookie. The lock-

cookie is an integer representation of the current lock. The lock-date value MUST contain the date and
time the existing lock was placed on the session state data. The lock-age header MUST contain a
representation for the age of the current lock.

The response-bad-request message, as specified in section 2.2.5.6, is conceptually equivalent to
throwing an exception. The session state server MUST send this message if something goes wrong and
the server is unable to process the request.

3.1.5.4 Releasing an Exclusive Session State Lock

A client can acquire an exclusive lock on a session state by using a successful GetExclusive_Request
message. The client obtains the lock-cookie value that is associated with a piece of locked session
state from the response to a successful GetExclusive_Request message. Alternatively, a client can

acquire the lock-cookie value of a locked piece of session state from failed calls to

GetExclusive_Request or Get_Request, where a response-locked message was returned.

A client sends a ReleaseExclusive_Request message to request that the lock on a piece of session
state data be released. A state server implementation MUST construct a unique identifier based on the
values contained in the combination of application-identifier, appdomain-identifier, and session-
identifier. A state server does not need to interpret these values or assign any specific relevance to
them. Rather, a state server implementation MUST simply use the combination of those values as the

unique identifier for referencing previously stored session state that is associated with the combination
of those identifiers.

The state server MUST compare the lock-cookie value that is associated with the unique identifier to
the lock-cookie value that is sent by the client. If the values match, the state server MUST release the
lock on the session state data and respond to the web server with a response-ok message, as
specified in section 2.2.5.8.

If the lock-cookie values do not match, the state server MUST respond by using a response-locked
message, as specified in section 2.2.5.8. The response-locked message contains a lock-age (section
2.2.3.10) and lock-date (section 2.2.3.8) in addition to the value of the current lock-cookie. The lock-
cookie is an integer representation of the current lock. The lock-date value MUST contain the date and
time the existing lock was placed on the session state data. The lock-age header MUST contain a
representation for the age of the current lock.

If the state server cannot find any session data that is associated with the unique identifier and lock-

cookie, the state server MUST respond with a response-not-found message, as specified in section
2.2.5.8.

The response-bad-request message, as specified in section 2.2.5.8, is conceptually equivalent to
throwing an exception. The session state server MUST send this message if something goes wrong and
the server is unable to process the request.

3.1.5.5 Removing Session State

A client can acquire an exclusive lock on session state by using a successful GetExclusive_Request
message. The client obtains that lock-cookie value that is associated with a piece of locked session
state from the response to a successful GetExclusive_Request message. Although a client can obtain a
lock-cookie value from failed attempts to get session state, a client MUST only send a

Remove_Request message if the client was able to successfully obtain an exclusive lock through a
previous GetExclusive_Request operation.

25 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

A client sends a Remove_Request message to request that a specific set of session data be removed
from the state server. A state server implementation MUST construct a unique identifier that is based

on the values that are contained in the combination of application-identifier, appdomain-identifier, and
session-identifier. A state server does not need to interpret these values or assign any specific

relevance to them. Rather a state server implementation MUST simply use the combination of those
values as the unique identifier for referencing the previously stored session state that is associated
with the combination of those identifiers.

The state server MUST compare the lock-cookie value that is associated with the unique identifier, to
the lock-cookie value that is sent by the client. If the values match, the state server MUST remove the
corresponding session state data and respond to the web server by using a response-ok message, as
specified in section 2.2.5.10.

If the lock-cookie values do not match, the state server MUST respond by using a response-locked
message, as specified in section 2.2.5.8. The response-locked message contains a lock-age (section
2.2.3.10) and lock-date (section 2.2.3.8) in addition to the value of the current lock-cookie. The lock-
cookie is an integer representation of the current lock. The lock-date value MUST contain the date and
time that the existing lock was placed on the session state data. The lock-age header MUST contain a

representation for the age of the current lock.

If the state server cannot find any session data that is associated with the requested identifier and
lock-cookie, the state server MUST respond to the web server by using a response-not-found
message, as specified in section 2.2.5.10.

The response-bad-request message, as specified in section 2.2.5.10, is conceptually equivalent to
throwing an exception. The session state server MUST send this message if something goes wrong and
the server is unable to process the request.

3.1.5.6 Resetting Session State Time-out

A client can send a ResetTimeout_Request message to request that a state server refresh the time-out
for a specific piece of session data.

A state server implementation MUST construct a unique identifier that is based on the values that are

contained in the combination of application-identifier, appdomain-identifier, and session-identifier. A
state server does not need to interpret these values or assign any specific relevance to them. Rather,
a state server implementation MUST simply use the combination of those values as the unique
identifier for referencing the previously stored session state that is associated with the combination
of those identifiers.

If the state server finds session state data that is associated with the unique identifier, it MUST
increase the expiration date of the session state. The new expiration date for the session state data

MUST be set to the time-out value. This value was previously supplied as part of a Set_Request plus
the current date and time on the state server. After the expiration date of the session state has been
successfully updated, the state server MUST send a response-ok message to the client, as specified in
section 2.2.5.12.

If the state server cannot find any session data that is associated with the requested identifier, the
state server MUST respond with a response-not-found message, as specified in section 2.2.5.12.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

26 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2 Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

An application that operates in a stateless manner can need to store data that is associated with
certain transient operations. If a unique identifier is flowed from one transient operation to another, it
is possible for an application to externally store data that is keyed to this unique identifier. Client
applications can load this data by providing a unique key to a state server implementation.<8>

A state server provides the service for externally storing such data. It operates against a virtual
storage model, where individual pieces of data are indexed by using a unique identifier. Each unique

identifier points at a table of name-value pairs that contain session state information.

When a client requests session state information, the server finds the unique identifier and returns the
name-value pairs that are associated with that key. When a client updates session state information, it
provides the state server with the unique key and a set of name-value pairs. The state server stores
the name-value pairs and associates them with the unique key for subsequent retrieval.

The state server supports basic locking semantics to ensure that concurrent read and write attempts
do not corrupt session state.

3.2.2 Timers

None.

3.2.3 Initialization

 The initialization requirements for client startup are implementation-dependent.<9>

There is one per-request initialization requirement for every client message. All requests to a state
server require information that uniquely identifies session state information. The unique identifier is
a combination of application identifier, application domain identifier, and session identifier. The specific

values that are used for these fields are implementation-dependent.<10> However, client
implementations MUST ensure that the combined values for these fields are unique. In other words, at
least one of the three identifiers has to be unique to ensure that a state server can differentiate
between different pieces of session state information.

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

3.2.5.1 Non-Exclusive Get Requests

A client that uses a state server makes either an exclusive or a non-exclusive request to a state server
implementation for session state data.<11>

For a non-exclusive request, the client sends an HTTP request by using the message format that is

specified in section 2.2.5.1.

27 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

If the server responds with a response-ok message, as specified in section 2.2.5.2, the client MUST
perform implementation-specific initialization tasks if the server returns an action-flags value of "1".

However, because this is a non-exclusive get request, a client MUST NOT attempt to send session
state updates back to a state server. As a result, any side effects from initialization tasks that change

session state information MUST not be sent back to the state server.

If the server responds with a response-locked message, as specified in section 2.2.5.2, the client MAY
retain the lock-cookie, lock-age, and lock-date values for use with custom concurrency handling.<12>

If the server responds with either a response-bad-request or a response-not-found message, as
specified in section 2.2.5.2, the client MAY surface some type of error back to the client's caller.<13>

3.2.5.2 Exclusive Get Requests

A client that uses a state server makes either an exclusive or a non-exclusive request to a state server
implementation for session state data.<14>

For an exclusive request, the client sends an HTTP request by using the message format that is

specified in section 2.2.5.3.

If the server responds with a response-ok message, as specified in section 2.2.5.4, the client MUST
perform implementation-specific initialization tasks if the server returns an action-flags value of "1".
The client MUST retain the value of the lock-cookie field. If the client needs to update the session
state data, it MUST send the same lock-cookie value back to the state server as part of a Set_Request
message. When the client no longer requires an exclusive lock on the session state data, it MUST send
the same lock-cookie value back to the state server. This occurs when the client releases its lock with
a ReleaseExclusive_Request message.

If the server responds with a response-locked message, as specified in section 2.2.5.4, the client MAY
retain the lock-cookie, lock-age, and lock-date values for use with custom concurrency handling.<15>

If the server responds with either a response-bad-request or a response-not-found message, as
specified in section 2.2.5.4, the client MAY surface some type of error back to the client's caller.<16>

3.2.5.3 Saving Session Data with a Set Request

When a client needs to store session data in a state server, it makes a request to the state server by
using the message format that is specified in section 2.2.5.5.

If the client needs to perform custom initialization tasks on the session state data during a
subsequent Get_Request or GetExclusive_Request, the client MUST set the extra-flags field to "1".

If this is the first time that the session state data is being stored for the unique identifier that is

contained in the combination of application-identifier, appdomain-identifier, and session-identifier, the
client MUST generate a lock-cookie that conforms to the format that is specified in section 2.2.3.9.
However the lock-cookie will be ignored by the state server the first time session state data is being
stored for a unique identifier.

If the session state data already exists for the unique identifier, and the session state data is being

updated with a Set_Request message, the client MUST send the lock-cookie that it originally obtained
from a previous GetExclusive_Request message.

The value of the timeout field in the Set_Request message is implementation-dependent.<17>

If the server responds with either a response-bad-request or a response-locked, as specified in section
2.2.5.6, the client MAY surface some type of error back to the client's caller.<18>

28 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.5.4 Releasing an Exclusive Session State Lock

A client can acquire an exclusive lock on session state with a successful GetExclusive_Request
message. The client obtains the lock-cookie value associated with a piece of locked session state from

the response to a successful GetExclusive_Request message. Alternatively, a client can acquire the
lock-cookie value of a locked piece of session state from failed calls to GetExclusive_Request or
Get_Request where a response-locked message was returned.

A client requests the release of the lock on a piece of session state data by using a
ReleaseExclusive_Request message.

If the server responds with a response-bad-request, response-locked, or a response-not-found
message, as specified in section 2.2.5.8, the client MAY surface some type of error back to the client's

caller.<19>

3.2.5.5 Removing Session State

A client can acquire an exclusive lock on session state with a successful GetExclusive_Request

message. The client obtains a lock-cookie value that is associated with a piece of locked session state
from the response to a successful GetExclusive_Request message. Although a client can obtain a lock-
cookie value from failed attempts to get session state, a client MUST only send a Remove_Request
message if the client was able to successfully obtain an exclusive lock through a previous
GetExclusive_Request or Set_Request operation.

A client sends a Remove_Request message to request that a specific set of session data be removed
from the state server.

If the server responds with a response-bad-request, or response-locked as specified in section
2.2.5.10, the client MAY surface some type of error back to the client's caller.<20>

3.2.5.6 Resetting Session State Time-out

A client can send a ResetTimeout_Request message to request that a state server refresh the time-out

for a specific piece of session data.

If the server responds with a response-not-found message, as specified in section 2.2.5.12, the client
MAY surface some type of error back to the client's caller.<21>

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

29 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4 Protocol Examples

A client sends a Set_Request to the state server in order to create new session data:

 PUT /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Content-Length: 2381
 Timeout: 10
 Lock-Cookie: 1
 ExtraFlags: 0
 <actual session data>

The server responds:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

The client sends a GetExclusive_Request to the state server:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Exclusive: Acquire
 Content-Length: 184

The server responds:

 HTTP/1.1 200 OK
 Content-Length: 2561
 X-AspNet-Version: 2.0.50727
 Timeout: 10
 LockCookie: 1

 ...session state content here...

A different client tries to get the same item that was locked by using a Get_Request:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Content-Length: 163

The server responds:

 HTTP/1.1 423 Locked
 Content-Length: 378
 X-AspNet-Version: 2.0.50727
 LockCookie: 1

30 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 LockAge: 1275008970
 LockDate: 1337890127

A client with lock updates the session by using Set_Request:

 PUT /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Content-Length: 2981
 Timeout: 10
 Lock-Cookie: 1
 ExtraFlags: 0
 <updated session data>

The server responds:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

A client with lock then releases it by using ReleaseExclusive_Request:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Exclusive: release
 Lock-Cookie: 1

The server responds:

 HTTP/1.1 200 OK
 Content-Length: 0
 X-AspNet-Version: 2.0.50727

A second client tries to get the session again by using the non-exclusive Get_Request:

 GET /w3svc/root/fxstatebvt(NDbkwGi0191wFdDv0yOUOobtHns%3d)%
 2f15hgq1uszp2tjt45lkwxmb55 HTTP/1.1
 Host: 172.30.189.147:42424
 Content-Length: 163

The server responds:

 HTTP/1.1 200 OK
 Content-Length: 2982
 X-AspNet-Version: 2.0.50727
 Timeout: 20

 <updated session data>

31 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

32 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

 None.

33 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

 Microsoft .NET Framework 1.0

 Microsoft .NET Framework 1.1

 Microsoft .NET Framework 2.0

 Microsoft .NET Framework 3.0

 Microsoft .NET Framework 3.5

 Microsoft .NET Framework 4.0

 Microsoft .NET Framework 4.5

 Microsoft .NET Framework 4.6

 Microsoft .NET Framework 4.7

 Microsoft .NET Framework 4.8

 Windows Server 2022 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.2.3.1: An ASP.NET web server uses the virtual path of the current application as an

application identifier.

<2> Section 2.2.3.2: An ASP.NET web server obtains the application domain identifier from
HttpRuntime.AppDomainAppIdInternal and then hashes the value by using the ASP.NET machine
validation key. The result is then encoded by using base64. It is the base64-encoded representation
that an ASP.NET web server uses as the application domain identifier of a web application.

<3> Section 2.2.3.3: ASP.NET web servers acting as session state clients use a specific value for

this field.

<4> Section 2.2.3.4: A state server implementation follows certain conventions for this field when it is
used with an ASP.NET web server as the client.

<5> Section 3.1.3: The default Microsoft state server implementation requires that the state server is
started and running prior to its use by a client.

<6> Section 3.1.5.1: The ASP.NET web server allows developers to specify whether web pages
require exclusive or non-exclusive access to session state.

%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0

34 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<7> Section 3.1.5.2: The ASP.NET web server allows developers to specify whether web pages
require exclusive or non-exclusive access to session state.

<8> Section 3.2.1: ASP.NET stores a unique session identifier in an HTTP cookie that the browser
passes back to an ASP.NET web server on each request.

<9> Section 3.2.3: The default Microsoft state server implementation requires that the state server is
started and running prior to its use by a client.

<10> Section 3.2.3: The default Microsoft client implementation uses specific values for these fields,
as described in Appendix A.

<11> Section 3.2.5.1: The ASP.NET web server allows developers to specify whether web pages
require exclusive or non-exclusive access to session state.

<12> Section 3.2.5.1: The default Microsoft client retains these values and uses them to attempt to

asynchronously unlock session state when the lock time has expired.

<13> Section 3.2.5.1: The default Microsoft client raises an exception if a bad request occurred.

<14> Section 3.2.5.2: The ASP.NET web server allows developers to specify whether web pages
require exclusive or non-exclusive access to session state.

<15> Section 3.2.5.2: The default Microsoft client retains these values and uses them to attempt to
asynchronously unlock session state when the lock time has expired.

<16> Section 3.2.5.2: The default Microsoft client raises an exception if a bad request occurred.

<17> Section 3.2.5.3: The default Microsoft client obtains this value from the configuration.

<18> Section 3.2.5.3: The default Microsoft client raises an exception if a bad request occurred.

<19> Section 3.2.5.4: The default Microsoft client raises an exception if a bad request occurred.

<20> Section 3.2.5.5: The default Microsoft client raises an exception if a bad request occurred.

<21> Section 3.2.5.6: The default Microsoft client raises an exception.

35 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior Updated for this version of Windows Server. Major

mailto:dochelp@microsoft.com

36 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

8 Index

A

Abstract data model
 client 26
 server 21
Action flags 14
Applicability 9
Application domain identifier 11
Application identifier 11
ASP.NET version 12

B

Bad request 14

C

Capability negotiation 9
Carriage return line feed 10
Change tracking 35
Client
 abstract data model 26
 higher-layer triggered events 26
 initialization 26
 message processing 26
 other local events 28
 sequencing rules 26
 timer events 28
 timers 26
Codes - response status 14
Common Definitions message 10
Content 11
Content length 11

D

Data model - abstract
 client 26
 server 21
Delimiter 10
Digit 10

E

Examples 29

Exclusive get requests (section 3.1.5.2 22, section
3.2.5.2 27)

Exclusive lock acquire 12
Exclusive lock release 12
Exclusive session state lock (section 3.1.5.4 24,

section 3.2.5.4 28)
Extra flags 13

F

Fields
 HTTP 11
 server 11
Fields - vendor-extensible 9
Flags
 action 14

 extra 13

G

Get_Request 15
Get_Response 15
GetExclusive_Request 16
GetExclusive_Response 17
Glossary 7

H

Headers
 HTTP 11
 server 11
Higher-layer triggered events
 client 26
 server 21

Higher-layer triggered events - server 21
Host header 11
HTTP
 fields 11
 headers 11
HTTP version 11

I

Implementer - security considerations 32
Index of security parameters 32
Informative references 8
Initialization
 client 26
 server 21
Introduction 7

L

Lock age 13
Lock cookie 13
Lock date 13
Locked 15

M

Message processing

 client 26
 server 21
Messages
 Common Definitions 10
 overview 10
 syntax 10
 transport 10

N

Non-exclusive get requests (section 3.1.5.1 21,

section 3.2.5.1 26)
Normative references 8
Not found 14

O

37 / 37

[MS-ASP] - v20210407
ASP.NET State Server Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Octet 10
OK 14
Other local events
 client 28
 server 25
Overview (synopsis) 8

P

Parameters - security index 32
Preconditions 9
Prerequisites 9
Product behavior 33

R

References 7
 informative 8
 normative 8
Relationship to other protocols 9
ReleaseExclusive_Request 18
ReleaseExclusive_Response 18
Remove_Request 19
Remove_Response 19
Removing session state (section 3.1.5.5 24, section

3.2.5.5 28)
ResetTimeout_Request 19
ResetTimeout_Response 20
Resetting session state time-out (section 3.1.5.6 25,

section 3.2.5.6 28)
Response status codes 14

S

Saving session data (section 3.1.5.3 23, section

3.2.5.3 27)
Security
 implementer considerations 32
 parameter index 32
Sequencing rules
 client 26
 server 21
Server
 abstract data model 21
 fields 11
 headers 11
 higher-layer triggered events 21
 initialization 21
 message processing 21
 other local events 25

 sequencing rules 21
 timer events 25
 timers 21
Session data - saving (section 3.1.5.3 23, section

3.2.5.3 27)
Session identifier 12
Session state
 releasing lock (section 3.1.5.4 24, section 3.2.5.4

28)
 removing (section 3.1.5.5 24, section 3.2.5.5 28)
 resetting time-out (section 3.1.5.6 25, section

3.2.5.6 28)
Set requests (section 3.1.5.3 23, section 3.2.5.3 27)
Set_Request 17

Set_Response 17
Space 10
Standards assignments 9
Stringtext 11
Syntax - message 10

T

Timeout 12
Timeout - session state (section 3.1.5.6 25, section

3.2.5.6 28)
Timer events
 client 28
 server 25
Timers
 client 26
 server 21

Tracking changes 35
Transport 10
Transport - message 10
Triggered events
 client 26
Triggered events - higher-layer
 client 26
 server 21
Triggered events - higher-layer - server 21

U

Unique identifier 14

V

Vendor-extensible fields 9
Versioning 9

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Definitions
	2.2.1.1 Digit
	2.2.1.2 Octet
	2.2.1.3 Carriage Return Line Feed
	2.2.1.4 Space
	2.2.1.5 Delimiter
	2.2.1.6 Stringtext

	2.2.2 Common HTTP Headers and Fields
	2.2.2.1 HTTP Version
	2.2.2.2 Host Header
	2.2.2.3 Content Length
	2.2.2.4 Content

	2.2.3 State Server Headers and Fields
	2.2.3.1 Application Identifier
	2.2.3.2 Application Domain Identifier
	2.2.3.3 Session Identifier
	2.2.3.4 ASP.NET Version
	2.2.3.5 Timeout
	2.2.3.6 Exclusive Lock Acquire
	2.2.3.7 Exclusive Lock Release
	2.2.3.8 Lock Date
	2.2.3.9 Lock Cookie
	2.2.3.10 Lock Age
	2.2.3.11 Extra Flags
	2.2.3.12 Action Flags
	2.2.3.13 Unique identifier

	2.2.4 Response Status Codes
	2.2.4.1 Response Status Code - OK
	2.2.4.2 Response Status Code - Bad Request
	2.2.4.3 Response Status Code - Not Found
	2.2.4.4 Response Status Code - Locked

	2.2.5 Messages
	2.2.5.1 Get_Request
	2.2.5.2 Get_Response
	2.2.5.3 GetExclusive_Request
	2.2.5.4 GetExclusive_Response
	2.2.5.5 Set_Request
	2.2.5.6 Set_Response
	2.2.5.7 ReleaseExclusive_Request
	2.2.5.8 ReleaseExclusive_Response
	2.2.5.9 Remove_Request
	2.2.5.10 Remove_Response
	2.2.5.11 ResetTimeout_Request
	2.2.5.12 ResetTimeout_Response

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Processing Non-Exclusive Get Requests
	3.1.5.2 Processing Exclusive Get Requests
	3.1.5.3 Saving Session Data with a Set Request
	3.1.5.4 Releasing an Exclusive Session State Lock
	3.1.5.5 Removing Session State
	3.1.5.6 Resetting Session State Time-out

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.5.1 Non-Exclusive Get Requests
	3.2.5.2 Exclusive Get Requests
	3.2.5.3 Saving Session Data with a Set Request
	3.2.5.4 Releasing an Exclusive Session State Lock
	3.2.5.5 Removing Session State
	3.2.5.6 Resetting Session State Time-out

	3.2.6 Timer Events
	3.2.7 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

