[MS-ADTS-Diff]:

Active Directory Technical Specification

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
-www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For guestions and support, please contact dochelp@microsoft.com.

1/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

Revision Summary

Revision Revision
Date History Class Comments
2/22/2007 0.01 New Version 0.01 release
6/1/2007 1.0 Major Included non-native content.
7/3/2007 1.0.1 Editorial Changed language and formatting in the technical content.
7/20/2007 1.0.2 Editorial Changed language and formatting in the technical content.
8/10/2007 1.0.3 Editorial Changed language and formatting in the technical content.
9/28/2007 2.0 Major Adjusted bitfield diagrams for byte ordering; added bitflags.
10/23/2007 | 2.1 Minor Clarified the meaning of the technical content.
11/30/2007 | 2.2 Minor Clarified the meaning of the technical content.
1/25/2008 3.0 Major Updated and revised the technical content.
3/14/2008 3.1 Minor I?ae;t.ed hexadecimal representations of little-endian bit
5/16/2008 4.0 Major Updated and revised the technical content.
6/20/2008 5.0 Major Updated and revised the technical content.
7/25/2008 6.0 Major Updated and revised the technical content.
8/29/2008 7.0 Major Updated and revised the technical content.
10/24/2008 | 8.0 Major Updated and revised the technical content.
12/5/2008 9.0 Major Updated and revised the technical content.
1/16/2009 10.0 Major Updated and revised the technical content.
2/27/2009 11.0 Major Updated and revised the technical content.
4/10/2009 12.0 Major Updated and revised the technical content.
5/22/2009 13.0 Major Updated and revised the technical content.
7/2/2009 14.0 Major Updated and revised the technical content.
8/14/2009 15.0 Major Updated and revised the technical content.
9/25/2009 16.0 Major Updated and revised the technical content.
11/6/2009 17.0 Major Updated and revised the technical content.
12/18/2009 | 18.0 Major Updated and revised the technical content.
1/29/2010 19.0 Major Updated and revised the technical content.
3/12/2010 20.0 Major Updated and revised the technical content.
4/23/2010 21.0 Major Updated and revised the technical content.
6/4/2010 22.0 Major Updated and revised the technical content.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2/626

Revision Revision

Date History Class Comments

7/16/2010 23.0 Major Updated and revised the technical content.
8/27/2010 24.0 Major Updated and revised the technical content.
10/8/2010 25.0 Major Updated and revised the technical content.
11/19/2010 | 26.0 Major Updated and revised the technical content.
1/7/2011 27.0 Major Updated and revised the technical content.
2/11/2011 28.0 Major Updated and revised the technical content.
3/25/2011 29.0 Major Updated and revised the technical content.
5/6/2011 30.0 Major Updated and revised the technical content.
6/17/2011 30.1 Minor Clarified the meaning of the technical content.
9/23/2011 31.0 Major Updated and revised the technical content.
12/16/2011 | 32.0 Major Updated and revised the technical content.
3/30/2012 33.0 Major Updated and revised the technical content.
7/12/2012 34.0 Major Updated and revised the technical content.
10/25/2012 | 35.0 Major Updated and revised the technical content.
1/31/2013 36.0 Major Updated and revised the technical content.
8/8/2013 37.0 Major Updated and revised the technical content.
11/14/2013 | 38.0 Major Updated and revised the technical content.
2/13/2014 39.0 Major Updated and revised the technical content.
5/15/2014 40.0 Major Updated and revised the technical content.
6/30/2015 41.0 Major Significantly changed the technical content.
10/16/2015 | 42.0 Major Significantly changed the technical content.
7/14/2016 43.0 Major Significantly changed the technical content.
3/16/2017 44.0 Major Significantly changed the technical content.
6/1/2017 45.0 Major Significantly changed the technical content.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3/626

Table of Contents

1 INtrodUCtioN .iciiciciiciersmrrssse s rsssa s sassasaasa s ssasansasannasaasassnnasansassnsasansassnnnsnnsasnnnnrns 22
1] [0 11T T 24
2] =] r =] Lol PP 41
1.2.1 NOrMAtiVe REfEIENCES .ttt et e e ees 42
1.2.2 INfOrmative REfEIENCES .. .viviieiii i et e e e s e e nans 46

1.3 L@ YT Y O 47
1.4 Relationship to Other ProtoCoISo.civiiiiii s 48
1.5 Prerequisites/Preconditionsccoiiiiiii i e 48
1.6 Applicability Statemento e 48
1.7 Versioning and Capability Negotiationccooiiiiiiiiiiiiii e 48
1.8 Vendor-EXtensible Fields ... e e 48
1.9 Standards ASSIGNMENES. ..t 49

7 =TT T« = 50
A =01 1 o 50
.2 MESSAGE SYNEAX cutiitiitiii it 50
2.2.1 LCID-Locale Mapping Table ..o e 50
2.2.2 DS_REPL_NEIGHBORW _BLOBiuiitiiiiiiitieiesitessesasasessesssnsassnesssnsnnsnenesnnnes 56
2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOBiitiiitiiiiiiie i sieesiene et ne e nenasenenees 59
2.2.4 DS_REPL_OPW _BLOB. .. iitiiitiititiiiets ittt s ae e s e e s ara s e e s s s s e s e s arananeneeenes 60
2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB ...ttt e nrnasenen e 62
2.2.6 DS_REPL_CURSOR _BLOB ..cutiiiitiiiitiiisiete vt iee e st st e e e s e s s e st e e aae e aeees 63
2.2.7 DS_REPL_ATTR_META_DATA_BLOB ...iitiiiitiii ittt na e e s e nee e 64
2.2.8 DS_REPL_VALUE_META_DATA_BLOB ...ttt na e e an e e 65
2.2.9 Y=L T e o T 2 1= T - PPN 67
2.2.10 SYSEEM Flags .ovieiiiiii e 68
2.2.11 schemaFIlagsEX Flags ...iviiiiiiiiiiii i e s 69
2.2.12 GroUp TYPE Flags. .ottt e 69
2.2.13 Group SECUNLY FIagsouiiiiiiii i e e 70
2.2.14 Security Privilege Flags.ciuiiiiiiiiiii i 70
2.2.15 Domain RID ValUesS ...iviiiiiiiiii ittt ettt e e s e a e reee s e san s neaneanerneans 71
2.2.16 uSerAcCOUNTCONEIOl BilS...iuiririie it e e e e aeaes 72
2.2.17 Optional Feature Values........ooiiiiiiiiii e e 73
2.2.18 Claims Wire SErUCTUINES . vttt e e e e e aenes 74

A T R O 17 1 1 5 T PPN 75
A T A @ I 1 1\ I 5 PPN 75
2.2.18.3 CLAIMS _SOURCE _TYPE ettt et e e r s e e e nae e 76
2.2.18.4 CLAIMS_COMPRESSION_FORMAT ...ttt itiiieeiere ittt e e e saeaaaae e 76
2.2.18.5 CLAIM _ENTRY Liitiititiitiintientitatsesesatassesesatasseresarassnereearasaneresaeasaneres 76
2.2.18.6 CLAIMS ARRAY Lottt ettt ettt et 77
2.2.18.7 CLAIMS SET 1ttt et 78
2.2.18.8 CLAIMS SET _MET AD AT A ittt ittt e r et e e e aaeaeas 78
2.2.18.9 CLAIMS BLOB ittt e e e e 79
2.2.19 MSDS-MANAGEDPASSWORD_BLOB ...ctiuiitiiitiiiitiieie i eenese e neneeneneeenes 79
2.2.20 Key Credential Link SEFUCLUIESieiriiiii e e e e 80
2.2.20.1 Key Credential Link CONSANTScoiiiieiiiiiiiiie e 80
2.2.20.2 KEYCREDENTIALLINK _BLOB ..cutiuiitiiitiiiit it iese e see e st e s as e e e neeaaae e 81
2.2.20.3 KEYCREDENTIALLINK_ENTRY . .tuiititiitiiiitiieitiiintienaeieetseiasnesaserasneasanenans 81
2.2.20.4 CUSTOM_KEY_INFORMATION ..t uuiitieitiiietienteitessienaeaeesserasneesaeseeneananenens 82
2.2.20.5 KEYCREDENTIALLINK_ENTRY Identifiersc.cociviiiiiiiiiiiiiiiiiiiiiveiecneen 82
2.2.21 Service Principal Name 83
G T 1= - T 84
3.1 CoOMMON DELAIIS +.vuiitii it 85
3.1.1 AbStract Data MOdel.....c.ciiiiii i 85
4/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.1 SEALE MO .. e e 85
3.1.1.1.1 T o0 85
3.1.1.1.2 State Modeling Primitives and Notational Conventions............ccocvvvvinenn 86
3.1.1.1.3 Basics, objectGUID, and Special Attribute Behaviorccvvvivivnnnnne. 87
3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes 88
3.1.1.1.5 N (O VO 2= o] o= P 91

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetimecccccveieiennnnn. 93
3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-
KNOWN ODbJeCS ...uiii i 94
3.1.1.1.7 Forest, Canonical NamE. . ccuiiiiii i i i e i e e enarenneens 97
3.1.1.1.8] PP 99
3.1.1.1.9 DCs, usn Counters, and the Originating Update Stamp.............coceevnene. 99
0 e R 0 T GO = = 106
3.1.1.1.11 FSMO ROIES tutitiitiiititiit ettt et et ettt e et e e et e e 106
3.1.1.1.12 Cross-NC Object REfErENCES ...iuiiiiiiiiiii i e e 106
3.1.1.1.13 NC Replica Graph ..ouiuiiiiiiiii e 107
3.1.1.1.14 Scheduled and Event-Driven Replication...........cccoiiiiiiiiiiiiiiiiicieiea, 109
3.1.1.1.15 Replication Latency and Tombstone Lifetime..........cccoiviiiiiiiiiiiiininnnn. 110
3.1.1.1.16 Delayed LinK ProCeSSINGouiuiieiiiiiiiiiiiniins e v enae s 110

3.1.1.2 Active DireCtory SChemMa . ..iciiiiiiii i e 110
3.1.1.2.1 1Y a1 0 2 1= T 1 O 111
3.1.1.2.2 RN L= D G PP 112

3.1.1.2.2.1 INErOdUCHION L e 112
3.1.1.2.2.2 LDAP Representationscciiiiiiiiiiiiii i e e 112
3.1.1.2.2.2.1 ODbJeCt(DN-=SEING) tviueiriiiieiiiiiiie i e e e 115
3.1.1.2.2.2.2 Object(AcCCesS-PoINt).....ccouiiiiiiii 115
3.1.1.2.2.2.3 ObJECt(DN-BINAry) .uueiuiiieiiiiiiitiiiee et e e rraeaeees 115
3.1.1.2.2.2.4 ObJeCt(OR-NAMIE) ... i e 115
3.1.1.2.2.2.5 1 W] g Lo [(Or=11=) R 115
3.1.1.2.2.2.6 SEHNG(NT-SEC-DESC) . uiuiiiiiiii e 115
3.1.1.2.2.2.7 SEFNG(SIA) ettt 116
3.1.1.2.2.2.8 SEHNG(TeIEEEX) ittt e 116
3.1.1.2.2.3 Referential INtegrityovveie i e 116
3.1.1.2.2.4 Supported Comparison Operationsccovviiiiiiiiiiiiicii e 116
3.1.1.2.2.4.1 Bool Comparison RUIE ..o 119
3.1.1.2.2.4.2 Integer Comparison RUlE.......cocvviiiiiiiiiii e 119
3.1.1.2.2.4.3 DN-String Comparison Ruleccooiiiiiiiii e 119
3.1.1.2.2.4.4 DN-Binary Comparison RUl€........cccviiiiiiiiiiiii s 119
3.1.1.2.2.4.5 DN ComparisSOn RUIEiiiiiii i e e 119
3.1.1.2.2.4.6 PresentationAddress Comparison Rule............ccovviiiiiiiiieinnnens 120
3.1.1.2.2.4.7 Octet Comparison RUlE......cooiiiiiiiiii e 120
3.1.1.2.2.4.8 CaseString Comparison Ruleccoiiiiiiiiiiii e 120
3.1.1.2.2.4.9 SecDesc Comparison RUIE ...ciiiiiiiiii e 120
3.1.1.2.2.4.10 OID Comparison RUIE.........ioiiiiiiiiiiiiiiiii e 120
3.1.1.2.2.4.11 Sid ComparisON RUIE.......ccouiiiiiiiiii e 120
3.1.1.2.2.4.12 NoCaseString Comparison RUIEcccviiiiiiiiiiiii e 120
3.1.1.2.2.4.13 UnicodeString Comparison Rule...........coiiiiiiiiiiiiiiiieens 121
3.1.1.2.2.4.14 Time Comparison RUlEcciiiiiiiiii e 121
3.1.1.2.3 AL DULES et 121
3.1.1.2.3.1 Auto-Generated HNKIDovviieiiii i e 124
3.1.1.2.3.2 Auto-Generated MAPIIDciiiiiiii i e 124
3.1.1.2.3.3 Property Set. i 125
3.1.1.2.3.4 IDAPDisplayName Generationc.coveiiiiiiniiiniinn e 126
3.1.1.2.3.5 Flag fRODCFilteredAttribute in Attribute searchFlags 126
3.1.1.2.4 (O] 11 T= PPN 127
3.1.1.2.4.1 Class Categories .. .ouiiiiiiii i 127
3.1.1.2.4.2 INREMEANCE «vi e 127
3.1.1.2.4.3 ODJECECIASS . 127

5/626

[MS-ADTS-Diff] - v20170601
Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

3.1.1.2.4.4 SErUCEUNE RUIES. ettt e e e aea s 128
3.1.1.2.4.5 CoNEENE RUIES ..t e e 128
3.1.1.2.4.6 AUXIIANY Class cuviiiiiiie i e e e ea 128
3.1.1.2.4.7 RDN Attribute of @ Classvvviiiiiiii i e 129
3.1.1.2.4.8 Class ClassSChemMaciiiiii e 129
3.1.1.2.5 Schema ModificationsS......oviiii i e 130
3.1.1.2.5.1 Consistency and Safety ChecksS........covieiiiiiiiiiiii e, 131
3.1.1.2.5.1.1 ConsisteNCY CheCKS .uviiiiii i e 131
3.1.1.2.5.1.2 Safety Checks ... 132
3.1.1.2.5.2 Auto-Generated AttribUteSccvvviiiii 133
3.1.1.2.5.3 D UNCE e 133
3.1.1.2.5.3.1 Forest Functional Level Less Than WIN2003...........cccovevvievnnnnens 134
3.1.1.2.5.3.2 Forest Functional Level WIN2003 or Greater.........coevvvvievnnnnnnn 134
3.1.1.2.6 F N I 1 2 I 2 S PR 135
3.1.1.3 I PP 135
3.1.1.3.1 (D 72N = o oo o .4 7= [oL 136
3.1.1.3.1.1 1Y@ g 1=1 0 ¢ 1= T PP 136
3.1.1.3.1.1.1 SUDSCREMA. i e 136
3.1.1.3.1.1.2 SYNEAXES ettt 139
3.1.1.3.1.1.3 AL DULES vt 139
3.1.1.3.1.1.4 (1 = T3 146
3.1.1.3.1.1.5 AUXIlIAry Class@s ..uiiviiiiiiiii i e 149
3.1.1.3.1.2 (0] oy 1=t fl =] o 1 11 T [P PP 150
3.1.1.3.1.2.1 Naming AtErbDULES ...ovii i 150
3.1.1.3.1.2.2 NC NAMING ¢ttt e a e ae e e s e raanens 150
3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNS.........ccooviiiiiiiiiinnnens 151
3.1.1.3.1.2.4 Alternative FOrms of DNS....ciiiiiiiiiiiiii e 151
3.1.1.3.1.2.5 Alternative FOrm of SIDSiviiiiiiiiiiiiiii i nae e 153
3.1.1.3.1.3 Search OParationS ..oviiii i e 153
3.1.1.3.1.3.1 SearCh FIlerS . i e 153
3.1.1.3.1.3.2 Selection FilterS. . 153
3.1.1.3.1.3.3 Range Retrieval of Attribute Values...........ccoevviiiiiiiiiiiiiiiieens 154
3.1.1.3.1.3.4 Ambiguous Name ResolUtion........vcviiiiiiii s 155
3.1.1.3.1.3.5 Searches Using the objectCategory Attributeccoovvviinnnn, 156
3.1.1.3.1.3.6 Restrictions on rootDSE Searchesc.ovvvvviiiiiiiiiiiiiiiienieeens 157
3.1.1.3.1.4 Referrals in LDAPV2 and LDAPV3 ... e 157
3.1.1.3.1.5 Password Modify Operations........ccoviiieiiiiiiiiiii e 157
3.1.1.3.1.5.1 UNICOAEPWA ... e e e 157
3.1.1.3.1.5.2 1= g o= 111 o 159
3.1.1.3.1.6 Dynamic ODbjJects.....oviii 159
3.1.1.3.1.7 Modify DN OpPerations....ccviiiiiiiiiiici i e ea s 160
3.1.1.3.1.8 Y L= T 160
3.1.1.3.1.9 Error Message StringsS ..oovviiiiiiiiiii i 160
0 I O T = o PR 160
3.1.1.3.1.11 LDAP Search OVEer UDPciiiiiiiiiii it e 160
3.1.1.3.1.12 Unbind Operation....ccuciiiiii i e 160
3.1.1.3.2 FOOEDSE AttribULES. . v e 160
3.1.1.3.2.1 configurationNamingContextc.ccviviiiiiiiiiii e 165
3.1.1.3.2.2 (ol ¥ [=T 0ol I 2 1= 165
3.1.1.3.2.3 defaultNamingConteXt ..o 165
3.1.1.3.2.4 ANSHOSENAME ..t e 165
3.1.1.3.2.5 dsSchemaAErCOUNE ..o e 165
3.1.1.3.2.6 dsSchemaClassCoUNE ..ot e 165
3.1.1.3.2.7 dsSchemaPrefiXCoUNT....ovviii i e 165
3.1.1.3.2.8 ASSEIVICENAMIE . ettt e e 166
3.1.1.3.2.9 highestCommittedUSN.......ccoviiiii e 166
3.1.1.3.2.10 isGlobalCatalogReadyccoiiiiiiiiiieiiii e 166
3.1.1.3.2.11 iSSYNCHIrONIZEA ..cnviiiiiiii e e 166
6/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.2.12 IdapServiceNamMeoviviiiriiiiri 166
3.1.1.3.2.13 namingCoONtEXES ...viuiiiiiiiiiiiir 166
3.1.1.3.2.14 NELIOGON c ittt e 166
3.1.1.3.2.15 pendingPropagationsScccooiiiiiiiiiiii 166
3.1.1.3.2.16 rootDomainNamingContextcccooiiiiiiiiiiii 166
3.1.1.3.2.17 schemaNamingConteXtciiiiiiiiiiiii i e eaas 166
3.1.1.3.2.18 SeIrVEINAIME .ottt 166
3.1.1.3.2.19 subSChemMaSUDENTIY ..ot e 167
3.1.1.3.2.20 supportedCapabilitiesccciiiiiiii 167
3.1.1.3.2.21 supportedControl ..c.cuiiiii i e 167
3.1.1.3.2.22 supportedLDAPPOICIEScoviiiiiiiii i 167
3.1.1.3.2.23 suppOrtedLDAPVEISION. .. .coviiiiiiiii i 167
3.1.1.3.2.24 supportedSASLMEChaniSmMS . ..viiiiiiiii i e 167
3.1.1.3.2.25 domainControllerFunctionalitycccooiiiiiiiiii 167
3.1.1.3.2.26 domainFunctionalityc.ccoiiiiiiiii 167
3.1.1.3.2.27 forestFUNCLioNAlityo.oeieiiii e 168
3.1.1.3.2.28 msDS-ReplAllinboundNeighbors, msDS-ReplConnectionFailures, msDS-
ReplLinkFailures, and msDS-ReplPendingOpsccvvviiiiiiiiiiinnnnnns 168

3.1.1.3.2.29 msDS-ReplAllOutboundNeighborsc.cociiiiiiiii 169
3.1.1.3.2.30 msDS-ReplQueueStatistiCS.....ccviiiiiiiiiii i 170
3.1.1.3.2.31 msDS-TopQUOtAUSAGE.....c.iuiieiiiiiiiiiie e e 171
3.1.1.3.2.32 supportedConfigurableSettingsccceviiiiiiiiiiii 171
3.1.1.3.2.33 suppOrtedEXtENSION...cuiiii i 171
3.1.1.3.2.34 ValIdFSMOS ...iuiiiiiiiiiiii e 171
3.1.1.3.2.35 dSaVersionStriNg...ccveieiiiiii i e 172
3.1.1.3.2.36 MSDS-POILDAP ... et 172
3.1.1.3.2.37 MSDS-POISSL. ..ttt 173
3.1.1.3.2.38 msDS-PrincipalName......cccoiiiiiiii 173
3.1.1.3.2.39 ServiceACCOUNEINTO ...ttt e e ne e e 173
3.1.1.3.2.40 spnRegistrationResult.........ccoiiiiiiiii 173
G P NG 1070 & A /o] (= €] o] U o 1 PR 174
3.1.1.3.2.42 USNALRIfM couii 174
3.1.1.3.2.43 approximateHighestInternalObjectID...........ccccviiiiiiiiiiiiiinieee, 174
3.1.1.3.2.44 databaseGuUidccveiiiiiiiii i 174
3.1.1.3.2.45 schemalndexUpdateStatecccoiiiiiiiiiiiii e 174
3.1.1.3.2.46 dumpLdapNotificationscccoiiiiiiiiiiii 174
3.1.1.3.2.47 msDS-ProcessLinksOperations........c.cooviiiiiiiiii e 175
3.1.1.3.2.48 msDS-SegmentCachelnfoccoiiiiiiiiii e 175
3.1.1.3.3 rootDSE Modify Operationscviiiiiiiiiiici i 175
3.1.1.3.3.1 becomeDoOMaAaIiNMaster ...c.vii i 177
3.1.1.3.3.2 becomelnfrastructureMaster........ccvviiiiiiiiiiii 177
3.1.1.3.3.3 DECOMEPAC Lt 178
3.1.1.3.3.4 becomePdcWithCheckPoint......c.ovviiiiiiii e 178
3.1.1.3.3.5 beCOMERIAMASTEN ..t 178
3.1.1.3.3.6 becomeSchemaMaster......c.ooiiiiiiii 179
3.1.1.3.3.7 CheckPhantoms ... 179
3.1.1.3.3.8 doGarbageCollectioncouiiiiii i 179
3.1.1.3.3.9 AUMPDAtabase ..o 180
3.1.1.3.3.10 fiXupINheritanCeccoviiiiii i 180
3.1.1.3.3.11 invalidateRidPOOIcuciviiiii i 181
3.1.1.3.3.12 recalCHIErarChyoouii i 181
3.1.1.3.3.13 schemaUpdateNOW........coiriiiiiiiiiir e e e 182
3.1.1.3.3.14 schemaUpgradelnProgress.......cocvuiuieieininiiiiiieee e eeenes 182
3.1.1.3.3.15 removeLingeringObject.......ccoiiiiiii 183
3.1.1.3.3.16 dOLINKCIEANUP cueuereititiii et eeeees 183
3.1.1.3.3.17 doONINEDEfTag. .. ciuiuiieiiiiii i 184
3.1.1.3.3.18 replicateSingleODbject.cccoiiiiiii e 184
3.1.1.3.3.19 updateCachedMembershipscocoiuieiiiiiii e 185

7/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

3.1.1.3.3.20 doGarbageCollectionPhantomsNOW........ciceiiiiiiiiiiiiiici i ieieaeas 185
3.1.1.3.3.21 invalidateGCCoNNECHION 1 ittt 185
3.1.1.3.3.22 renewServerCertificatecocoiiiiiii 185
3.1.1.3.3.23 rODCPUIgEACCOUNTttt et e e 186
3.1.1.3.3.24 runSamuUpgradeTasks.......cociiiiiiiiiii 186
3.1.1.3.3.25 SOMRUNONCE cutiiitiiii i it ae e raee e a e a e e e e ae e aaneaannens 187
3.1.1.3.3.26 runProtectAdminGroupsTaskccceiuiiiiiiiiiiii e 187
3.1.1.3.3.27 disableOptionalFeatureccooiiiiiiiiii e 188
3.1.1.3.3.28 enableOptionalFeature.........c.cooiiiiiii 188
3.1.1.3.3.29 dUMPRE EIENCES vttt e e 189
3.1.1.3.3.30 sidCompatibilityVersion........cocviiiiiiiiiii 189
3.1.1.3.3.31 dUMPLINKS c.veiiei 190
3.1.1.3.3.32 schemaUpdateIndiCESNOW......cciieiiiiiiiii i e e 190
3.1.1.3.3.33 MU et e 190
3.1.1.3.3.34 dUMPQUOTA ..eiiiitiiti i 190
3.1.1.3.3.35 dumpLinksEXtendedcooiiiiiiiiiiii 191
3.1.1.3.3.36 dUMPLDAPS A, ..iv it 191
3.1.1.3.3.37 msDS-ProcessLinksAbandonOperationc.covviiiiiiiiiiiiiiicininns 191
3.1.1.3.3.38 msDS-ProcessLinksScheduleOperation...........cccooviiiiiiiiiincienen, 192
3.1.1.3.4 (D N o g =T =] o] 192
3.1.1.3.4.1 LDAP Extended CoNtrols ...ovieiiiiiiiiiiiiie i ieesne e e nneeanes 192
3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING ...cciviiiiiiiiiiiieiieninnneinenens 199
3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OIDccvvvvnnens 199
3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID...ccitiitiiiiiiiiiiinineenieineneenanenaanens 199
3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID ...ccvviviiiiiiiiieiieieannneinanens 201
3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID ...cceiviiiiiiiiiiiiieieeinieiaeens 201
3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID ...iciiviiiiiiiiiiiiiiiieieneaenennanens 202
3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID ..cciiiiiiiiiiiieiiiieiieneenneinanens 206
3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OIDccvvvviiiiiiiniiieinnnens 206
3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID....cceviiiiiiiiiiiiiieieenieinenens 206
3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OIDcetvitiiiiiiniieiiininnaneiannens 207
3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID...cictitiiiiriiiiiiiiiniieinnneeanesnaens 207
3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OIDcciviiiiiiieiiiiiiniieiaanens 208
3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_0ID209
3.1.1.3.4.1.14 LDAP_SERVER_SHOW_DELETED_OIDccecevtiiiiiiiiiiiiiiniieiannens 215
3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OIDiciviiiiiiiiiiiieiiiieaienaanens 215
3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID......cciiiitiiiiiiiiiiiiiiiiniieinnnens 216
3.1.1.3.4.1.17 LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE
216
3.1.1.3.4.1.18 LDAP_SERVER_ASQ OID....ititiiiiiiiiiiiiiiieiiiieeisieianneenanenaanens 218
3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID ..c.vctiviiiiiiieiiiiinineiannens 219
3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OIDccovviiiiiiiiinieiannens 220
3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OIDcvtiitiiiiiiiiieiiiiienieiaanens 220
3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID.........ccvcevuuens 220
3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID ...c.ictiiiiiiiiieiiiiiniiieiannens 221
3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID ...c.ictitiiiiiiieiiiiiaaieieneeanenaanens 221
3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OIDcccvevunens 222
3.1.1.3.4.1.26 LDAP_SERVER_SHOW_RECYCLED_OIDccvviiiiiiieiniiinineinnnens 222
3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID.....ccviiiiiiiiiiiiieiiiiininieiaanens 222
3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OIDccvvuuens 223
3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID ...citiiiiiiiiiiiiiiiiieiaiieninienanens 223
3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID ...cccoiiiiiiiiiiiieiiiiiniiieianens 223
3.1.1.3.4.1.30.1 Highest USN Allocated........cccoveiiiiiiiiiiiiiii e, 224
3.1.1.3.4.1.30.2 Invocation ID Of SeIrVer....ccciiiiiiiiiiiiiiiii e nea s 224
3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID ..c.icviiiiiiiiiiiniiiiniieinanens 224
3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OIDcciviiiiiiiiiiieiiiiininienannens 224
3.1.1.3.4.1.32.1 Require Sort INdeX.....c.ceiiiiiiiiiiiiiiiiiie e 225
3.1.1.3.4.1.32.2 SOft Size Limit...ccoiiiiiiii e 225

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OIDcccvvvinnrnnnns
3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID....cccititiiiiininininiiinieieaanaans
3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID.....civvirininininiiininininanaans
3.1.1.3.4.1.36 LDAP_SERVER_LINK_TTL_OID ...uiuiuiieieieieieinieneeeeeneaenaens
3.1.1.3.4.2 LDAP Extended Operations........cooeveiiieiiiniiiiiiii e e
3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID ...cciiiiiiiiiiiiiiiniiiiiinenanaeans
3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID ...cucieieieieieineeeeeeenenanaans
3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID.....iviiiiiiiiniiiiiiiiiirsnsiie e
3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID....cciiiiiieieieieieeeeieeenenenaeans
3.1.1.3.4.2.5 LDAP_SERVER_BATCH_REQUEST_OIDovvviviiiiiiiinennnaans
3.1.1.3.4.3 LDAP Capabilitiescoviiiiiiiiii e
3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID......iuiuieieinininieeeaeneaannns
3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID......c.ceevvvins
3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OIDceiiiiiieeneneanans
3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST_OID..............
3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID.....c.cccviiieeenannnnns
3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID
3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OIDcccvviininininnnnnnns
3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID....c.ccovieeenennnnns
3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_WS8_OIDccvvvuininininininanannns
3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch).......cccovvviiiiiiiiiiiiienn,
3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND ...cccitiiiiiiiiiiiiiiienenanaans
3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR ...cuiiiiieieieieieeeeeneenenenaens
3.1.1.3.4.4.3 LDAP_MATCHING_RULE_TRANSITIVE_EVAL ...cocviiiiiiiiinineanns
3.1.1.3.4.4.4 LDAP_MATCHING_RULE_DN_WITH_DATA ...t
3.1.1.3.4.5 LDAP SASL MeChaniSmMSuciuiiiiiiiiiiirene et e e e
3.1.1.3.4.5.1 GS S AP et
3.1.1.3.4.5.2 GSS-SPNEGO .. .iuiiiieie it r e e e e
3.1.1.3.4.5.3 EXTERNAL L. e i e e e a e
3.1.1.3.4.5.4 DIGEST-MDS5 ..t e e e e e e e e e e aeans
3.1.1.3.4.6 I T o o o1
3.1.1.3.4.7 LDAP Configurable Settingscoovvviiiiiiiiiiiiinn e
3.1.1.3.4.8 LDAP IP-DENY LiSt . uuiuitiuiiiieeieieiereeeeeeeeaenenenereearnrneneneneeenes
3.1.1.4 Y= T = PP
3.1.1.4.1 INErOdUCHION e e
3.1.1.4.2 D i ONS 1ttt e
3.1.1.4.3 ACCESS ChBCKS. . vt
3.1.1.4.4 Extended AcCess CheCKS.oouiiiiiiiiiii e
3.1.1.4.5 Constructed AEribULES ...oviri
3.1.1.4.5.1 SUDSChemMAaSUDENLIY ...
3.1.1.4.5.2 for= [ale] a1 Ter=1 1N\ =] 0 U= T PP
3.1.1.4.5.3 AllowedChildClasSesviuiiiiiii i e e
3.1.1.4.5.4 SDRIGhtSEffECtiVE ..ot e
3.1.1.4.5.5 allowedChildClassesEffectivec.ccviiiiiiiiii e
3.1.1.4.5.6 AlloWEdALLIDULES ...
3.1.1.4.5.7 allowedAttributesEffectiveccvviiiiiiii
3.1.1.4.5.8 frOMENENY L
3.1.1.4.5.9 CreateTimME S AP . i e
3.1.1.4.5.10 mMOdifyTimeStamiPcieiiiii i
3.1.1.4.5.11 primaryGroUuPTOKENiuiuiniiiieie it eeees
I O U A <Y ol Y I I T
3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-
ReplAttributeMetaData, msDS-ReplValueMetaData.............c.ccevevees
3.1.1.4.5.14 msDS-NCReplOutboundNeighbors........c.cccciiiiiiiiiiiiiee,
3.1.1.4.5.15 msDS-Approx-Immed-Subordinates............ccocviiiiiiiiiiiiiee
3.1.1.4.5.16 msDS-KeyVersionNUMbErc.coiiiiiiiiii e
3.1.1.4.5.17 msDS-User-Account-Control-Computedcccveieiniiiiiiiiiiiiennen
3.1.1.4.5.18 mSDS-AUXiliary-Classescccieiiiiimieiniiiiiiire e

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable.........ccovvviiiiiiiiiininnns 251
3.1.1.4.5.20 tokenGroupsGlobalAndUniversalcccoiiiiiiiiiiieee 252
3.1.1.4.5.21 POSSIbIEIN EIIOIS cuiitiiii i e 252
3.1.1.4.5.22 mMsSDS-QUOtAEffeCtiVE ...iiiriiiiii i 253
3.1.1.4.5.23 mMSDS-QUOTAUSEA ...cviiiiiiiii it 253
3.1.1.4.5.24 mMsDS-TOPpQUOLAUSAgE....ccviiiiiiiiiii i i i e aaneaas 254
3.1.1.4.5.25 ms-DS-UserAccountAutoLockedcooiviiiiiiiiiiiiiiici s 254
3.1.1.4.5.26 msDS-UserPasswordEXpired.......c.ccovviiiiiiiiiiiiiiiiiici e 255
3.1.1.4.5.27 msDS-PrincipalName.......cccooiiiiiiii 255
3.1.1.4.5.28 parentGUIDccviiiiiiiiiiiiiei it e 255
3.1.1.4.5.29 MSDS-SItENAME .ttt e 255
3.1.1.4.5.30 MSDS-ISRODC . ..uiitiiiitiiee e et 256
3.1.1.4.5.31 MSDS-ISGC uiuiiiiiiiiiii ittt e 256
3.1.1.4.5.32 msDS-isUserCachableAtROAC.......c.cviiiiiii e 256
3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputedccoooviiiiiiiiiiiiiiennnns 257
3.1.1.4.5.34 msDS-RevealedListccoviiiiiiiiiii e 258
3.1.1.4.5.35 msDS-RevealedLiStBL.......cocciiiiiiiiiiie e 258
3.1.1.4.5.36 mMSDS-ResUltantPSO.......ccciiiiiiiiiiii e 258
3.1.1.4.5.37 msDS-LocalEffectiveDeletionTimeccccviiiiiiiiiiiiiiicic e 259
3.1.1.4.5.38 msDS-LocalEffectiveRecycleTimecccoiiiiiiiiiiiiiiiiii s 259
3.1.1.4.5.39 msDS-ManagedPasswWordccoviiiiiiiiiii i 260
3.1.1.4.5.40 msds-memberOfTransitivec.ccviiiiiiiii e 266
3.1.1.4.5.41 MSAS-MEeMDbErTranSitive ..uoii i s 266
3.1.1.4.5.42 msds-tokenGroupNames, msds-tokenGroupNamesNoGCAcceptable 267
3.1.1.4.5.43 msds-tokenGroupNamesGlobalAndUniversal.........cccoociiiiiiiiiiininn, 267
3.1.1.4.5.44 structuralObjectClasscooiuiiiiiiiii 267
3.1.1.4.6 REfEITAIS .ot e 267
3.1.1.4.7 (©o T oL o[01U T= 1 o [0 o 1= 269
3.1.1.4.8 Effects of Defunct Attributes and Classes.......cccvevvviiiiiiiiiiiiiiiieen, 269
3.1.1.5 170 o [o =P 270
3.1.1.5.1 (T U< o= | PPN 270
3.1.1.5.1.1 Enforce Schema Constraints......coovvriiiiiiiiiiii e 270
3.1.1.5.1.2 Naming ConstraintS.....ccouiiiiiiii e 271
3.1.1.5.1.3 Uniqueness Constraintsooiiiiiiiiiii i e 271
3.1.1.5.1.4 Transactional SemMaNtiCSvvviiiiiii e 272
3.1.1.5.1.5 Stamp ConstruCtion ..o e 272
3.1.1.5.1.6 Replication Notificationcocoieiiiiiiii e 272
3.1.1.5.1.7 Urgent Replicationcociiiiiiiiiii e 273
3.1.1.5.1.8 Updates Performed Only on FSMOSciiiiiiiiiiiciciici e 273
3.1.1.5.1.9 Allow Updates Only When They Are Enabled...........ccciiiiiiiennnnnn. 276
3.1.1.5.1.10 Originating Updates Attempted on an RODC..........ccocevviiiniieinennnn. 276
3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere................. 276
3.1.1.5.2 Add OPErAtION . it 276
3.1.1.5.2.1 Security Considerationsooeiviiiiiiii 277
3.1.1.5.2.2 (©e] a1 r= 11 1 =P 277
3.1.1.5.2.3 Special Classes and Attributesccooiiiiiiiiiiii 282
3.1.1.5.2.4 Processing SPeCifiCs ...ouvuiiieiiiiiii 283
3.1.1.5.2.5 Quota Calculation......ciiii i 286
3.1.1.5.2.6 NC REQUIFEMENTS ..ot e e 286
3.1.1.5.2.7 CrossRef REQUIrEMENEScuiniiie e 287
3.1.1.5.2.8 NC-Add Operationocvieieiieiiii e e 287
3.1.1.5.2.8.1 (6] 5 1536 r=1 1] (= 288
3.1.1.5.2.8.2 Security Considerations.......c.cveveieiiiiiiiii e 288
3.1.1.5.2.8.3 Processing SPeCifiCS .. .ciuiiiiiiiiiiiiii s 288
3.1.1.5.3 MOdify OPErationuieieiii e 289
3.1.1.5.3.1 Security Considerationsoviiiiiiiii 289
3.1.1.5.3.1.1 Validated WHEES ... e 290
3.1.1.5.3.1.1.1 =10 0] o T=] PP 290

10/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.5.3.1.1.2 ANSHOSENAME ... e 290
3.1.1.5.3.1.1.3 msDS-AdditionalDnsHostNameccoevvvviiiicii e, 290
3.1.1.5.3.1.1.4 servicePrincipalNameccooiiiii 291
3.1.1.5.3.1.1.5 MSDS-Behavior-Version.......cvovvieiiiiiiici e 291
3.1.1.5.3.1.1.6 msDS-KeyCredentialLinkc.cooeviiiiiiiiiiiee, 291
3.1.1.5.3.1.2 FSMO ChangesS . .uiuiiiiiiiiiiiiiiieiee it e s e rae e e e raaeas 292
3.1.1.5.3.2 (e 1) o r=1 1 1 =P 292
3.1.1.5.3.3 Processing SPeCIfiCS ..vuviiriiiiiii i e 297
3.1.1.5.3.4 BehaviorVersion Updatescooiiiiiiiiiiiii e 298
3.1.1.5.3.5 ObjectClass Updates.....cciviiiiiiiiiiiiiii i e e e ea e 300
3.1.1.5.3.6 wellKnownObjects Updatescovviiiiiiiiiiii e 300
3.1.1.5.3.7 Undelete Operationcievieiiiiiiiii i 301
3.1.1.5.3.7.1 Undelete Security Considerationsccoceviiiiiiiiiiiiicic e 302
3.1.1.5.3.7.2 Undelete ConStraints....cciveiiiiiiiiri e re e 302
3.1.1.5.3.7.3 Undelete Processing SpecifiCs.....cuvviiiiiiiiiiiiiiiiiiiicie e 303
3.1.1.5.4 1o Ta [} Y2 1\ PR 303
3.1.1.54.1 Intra Domain Modify DN ... e 304
3.1.1.54.1.1 Security Considerations.....c.ccvviiiiiiii i 304
3.1.1.5.4.1.2 (0] 2151 = |) =P 305
3.1.1.54.1.3 Processing SPeCifiCS...iiiiiiiiiiiiiiiii i 306
3.1.1.5.4.2 Cross DOMAIN MOVE ..uiviiiiiiiiiiiiiieie st rae e s s e e e ene e neaeanes 306
3.1.1.54.2.1 Security Considerations.....c.ocviiiiiiiiii i 306
3.1.1.5.4.2.2 (0] 2151 =) =P 307
3.1.1.5.4.2.3 Processing SPeCifiCS...ciiiiiiiiiiiiiiii i 309
3.1.1.5.5 Delete Operation ..o e 311
3.1.1.5.5.1 Resultant Object Requirements.........cooviiiiiiiiiii e 313
3.1.1.5.5.1.1 Tombstone ReqUIrEMENTSiivi i e 313
3.1.1.5.5.1.2 Deleted-Object Requirementscooviiiiiiiiiiiii s 314
3.1.1.5.5.1.3 Recycled-Object Requirements......cocviiiiiiiiiiiiiiiiic e 315
3.1.1.5.5.2 dynamicObject Requirementsc.cooeiiiiiiiiii s 316
3.1.1.5.5.3 Protected ObJeCtS ..vviiiiiii i 316
3.1.1.5.5.4 Security Considerationsiviiiiiiiiii i 316
3.1.1.5.5.5 (0] 1) o r= 1 1 1 =P 316
3.1.1.5.5.6 Processing SPeCifiCs .vuuiiriiiiiiii i 318
3.1.1.5.5.6.1 Transformation into @ Tombstoneccoovviiiiiiiiiic i 318
3.1.1.5.5.6.2 Transformation into a Deleted-Object........ccovviiiiiiiiiiiiiiiieens 318
3.1.1.5.5.6.3 Transformation into a Recycled-Object.........coooiiiiiiiiiiiiins 319
3.1.1.5.5.7 Tree-delete Operationccviiiiiiiii e 320
3.1.1.5.5.7.1 Tree-delete Security Considerations........c.ccvviviiiiiiiiiiiiiciinnnnn, 320
3.1.1.5.5.7.2 Tree-delete Constraints.....ccvvviiii i e 320
3.1.1.5.5.7.3 Tree-delete Processing SpecCifiCS.....cvvvveiiiiiiiiiiiiiiiiiiiiiiaens 320
3.1.1.6 Background TasKscuieieiiieiiiii e 321
3.1.1.6.1 AdMINSDHOIAEI ...t 321
3.1.1.6.1.1 Authoritative Security Descriptorcoovviiiiiiiiii e 321
3.1.1.6.1.2 Protected ODbJects ..o 321
3.1.1.6.1.3 Protection Operationcciiiiiiiiiii 322
3.1.1.6.1.4 Configurable Stateooiiii 322
3.1.1.6.2 Reference Update....ciiiiiiiiiii i e e 323
3.1.1.6.3 Security Descriptor Propagator Update........c.cooviiiiiiiiiiiiciiiiieens 324
3.1.1.7 NT4 Replication SUPPOIT ... e e e e 325
3.1.1.7.1 Format of nt4ReplicationState and pdcChangelLogccoevvviiiiinnenn. 325
3.1.1.7.1.1 Nt4ReplicationState.....cooviii i 325
3.1.1.7.1.2 91 (ol @ F=1 g Vo 1= o Yo [326
3.1.1.7.2 SEAtE Changes .ovviiiiii i 326
3.1.1.7.2.1 INitialiZation ..o e 326
3.1.1.7.2.2 Directory Updatesocviiiiiiiii e 326
3.1.1.7.2.3 Acquiring the PDC ROIE ... 330
3.1.1.7.2.4 Resetting the pdcChangelogcocvvveiiiiiiiiii e 330
11 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog ..ccccvviiiiiiiiiiiiiiiiiiiiiaans 330
3.1.1.8 AD LDS Special ObJECES ..ueueeiiiiiiii i 331
3.1.1.8.1 AD LDS USEIS t1utiiitiiitiiiiet it it itetitetatesaneeessrantsanesrneeraserareraeeeness 331
3.1.1.8.2 [T B = 0 3 332
3.1.1.9 Optional FEAtUMES. . .ui i 332
3.1.1.9.1 Recycle Bin Optional Feature.....ccoviiiiiiiii e 334
3.1.1.9.2 Privileged Access Management Optional Feature............cccoeviiiiiiinnnn. 335
3.1.1.10 SNV] 10 1 1< 335
3.1.1.10.1 0] <15 Al 2=/ 1] 0 335
3.1.1.10.2 [0 D T O 2LV 41 o o 336
3.1.1.10.3 DOMaAIN REVISION ittt e e e et s e reaaaaseereeeesreraaannnnnnnes 337
3.1.1.11 (1 1= T 338
3.1.1.11.1 INfOrmMative OVEIVIEW ..uviiiiiii i it i e e e e eaneeras 338
50 e e e A 1 - 11 o 338
3.1.1.11.1.2 Claims DiCtiONary .iueiei i e aaaas 338
3.1.1.11.1.3 L 1= T 001U oL 338
3.1.1.11.1.4 (@ = 11 0 TS YU 1= o oL 338
3.1.1.11.1.5 Claims Transformation RUIESccoviiiiiiiiiiii e 339
3.1.1.11.1.6 Claims Transformation......c.ccviviiiii e reeeeas 339
3.1.1.11.2 (@ =1 . TS d e Yot =T e 11 /=T 339
3.1.1.11.2.1 GetClaimsFOorPrinCipal.......c.ccviiiiii e 339
3.1.1.11.2.2 GetADSOUIrCEACIaimS. . ittt i i i i e riae i e e enseenareaneens 341
3.1.1.11.2.3 GetCertificateSourcedClaimscccceiiiiiii i r e rreeeens 342
3.1.1.11.2.4 GetConstructedClaims ...oiiuiiiiiiii i i aaeeas 342
3.1.1.11.2.5 ENCodeClaimSS et .oiiuiiiiiiiiii it i v e i i 343
3.1.1.11.2.6 FillClaimsSetMetadatacoovviiiiiii i e 344
3.1.1.11.2.7 RunCompressionAlIgorithmccoiiiiiiii e 345
3.1.1.11.2.8 NN [= oo Yo [346
70 e e = T | [10T oo s [346
3.1.1.11.2.10 DecodeClaimsSet . .uiiiiii it s 346
3.1.1.11.2.11 TransformClaimsOnTrustTraversal......cccvieiiiieiiiiiiiiiii i nneens 347
3.1.1.11.2.12 GetClaimsTransformationRulesXml.........ccciiiiiiiiiiiiiiiiiiii s 349
3.1.1.11.2.13 GetTransformationRUIESTEXLcovviriieii i reeeeas 350
70 e e s I S = O 17 Y 1= 1 ¢ 1 350
3.1.1.11.2.15 CollapseMultiValuedClaimscccooeiiiiiiiiii e 351
3.1.1.11.2.16 FilterAndPackOutputClaimsc.cciiiiiiiiiii i 352
3.1.1.11.2.17 ValidateClaimbDefinitionccoiiiiiiiii i i i e 353
3.1.1.11.2.18 GetAUuthSiloClaim ... s 354
3.1.1.12 [N O =] 5 7= 1 [356
3.1.1.12.1 ADStract Data TyPES ..ucviiieiiie it e 356
3.1.1.12.1.1 [121\ = 356
0 O s A o = VY Y L1 356
3.1.1.12.1.3 ServerDesCripltionciiiiiii i i i 356
3.1.1.12.1.4 InterdomainTrustAccountDescriptionccooviiiiiiiiiiiiii e, 357
3.1.1.12.1.5 TrustedDomainObjectDescriptioncocviiiiiiiiiiii e 357
3.1.1.12.1.6 NCDESCHPHION 1ttt e e e 358
3.1.1.12.1.7 DomainDescriptionElementscooiiiiiii 359
3.1.1.12.1.8 DomainDesCriplion ...ciiii i e 359
3.1.1.12.1.9 NewTrustParentElementsccvvieiiiiiii e 360
3.1.1.12.1.10 DomainWithNewTrustParentDescriptioncocveveiviiiiiiiiiiieenene, 360
3.1.1.12.1.11 NCRenameDeSCriPtiON ...uiiiiiiiiiiiiiiri e 360
3.1.1.12.2 Encoding/Decoding RUIESc.iiiiiiiiiiiiiiiii e e 361
3.1.1.12.2.1 EBINF-M L. e 361
3.1.1.12.2.1.1 Tuples as Parameters to Production Rules.............cccvvveiiiinnnnnn. 362
3.1.1.12.2.1.2 Parameter Fields as Terminal Values..........cooviiiiiiiiiiiiiiiiinnnnns 362
3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values..362
3.1.1.12.2.1.4 Parameter Fields as Iteratorsccooviiiiiiiiiiii i 363
3.1.1.12.2.1.5 Reversed Production RUIES.....iiiiiiiiiii i e naee e 363

[MS-ADTS-Diff] - v20170601

12 /626

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

3.1.1.12.2.2 CodedNCRenameDesCriptioNcuiiiiiiii i neaeas 365
3.1.1.12.2.2.1 EXPreSSION . .ttt 365
3.1.1.12.2.2.2 COMIMION 1tittiitititensiste st satsssssasssatsse st ss s sasaasssatsresaeanesess 365
3.1.1.12.2.2.3 TS ittt e 366
3.1.1.12.2.2.3.1 TestConfigurationNCccomiiimiiiiiire e 367
3.1.1.12.2.2.3.2 TestReplicationEpoCh.......ccoiiiiiiiiiiii e 367
3.1.1.12.2.2.3.3 TeSLAPPNCS ..iiiiiiiiiiiiii e 367
3.1.1.12.2.2.3.4 TestDOMaiNSoviiiiiiiiiiiin e e 368

3.1.1.12.2.2.3.4.1 TestCroSsRef ...uiiiiiiiiiiii e 368
3.1.1.12.2.2.3.4.2 TestServersInstantiatedccocviiiiiiiiiiiiiies 369
3.1.1.12.2.2.3.4.3 TestTrustCoUNtccviriieiii e e e e 370
3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptionsccvuvuens 370
3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions................... 371
3.1.1.12.2.2.3.4.6 TestServerDescriptionsc.cooviiiiiiiiiiiiinaeens 372
3.1.1.12.2.2.3.5 TestPartitionCounts.......coovviiiiiiiii e 373

3.1.1.12.2.2.4 Flatten oo e 374
3.1.1.12.2.2.5 RebUild «veiii e 374
3.1.1.12.2.2.6 THUSES 1ttt e 375
3.1.1.12.2.2.6.1 DomainTrustSpecificationsccoiiiiiiiiiiii e, 376
3.1.1.12.2.2.6.2 DomainTruStACCOUNES....ciiviiiiiiii i e 377
3.1.1.12.2.2.7 CrOSSREIS 1.ttt e 378
3.1.1.12.2.2.7.1 ConfigurationCrossRefc.cciiiiiiiiiiiiiiiii e 379
3.1.1.12.2.2.7.2 SchemaCroSSREfcciiiiiiiiiii e 379
3.1.1.12.2.2.7.3 ApPPNCSCrOoSSREfS. ..ttt e 380
3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRefccvviviiiiiiiiiinnnnnn. 380
3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefsccvveviiiiiniieininnnn. 381
3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossSRefS.......cccvviiiiiiiiiiineiinnn, 383
3.1.1.12.2.2.8 ReplicationEPOChc.oiviiii 385

3.1.1.12.3 Decode OperatioN .. it it e e 385

3.1.1.12.4 Verify CONAitioNSuieieiiii i e e 386

3.1.1.12.5 ProCess Changes ..ciuuiiiiiiiiiiiii i e e et aea s 387

3.1.1.13 Authentication Information Retrievalccooviiiiiiiiiii e 389

3.1.1.13.1 INformative OVEIVIEW ...uiuiiiiiieiii i e e ae e 389

3.1.1.13.2 EXpandMembarships ..ouiiiiiii i e 389

3.1.1.13.3 GetUserLogonINfO...c.iu i e 390

3.1.1.13.4 GetResourceDomainInfo......cuceiuiiiiiiiiiii e 391

3.1.1.13.5 ExpandShadowPrinCipal.........cocoiiiiiiiiiii e 391

3.1.1.13.6 GetUserLogonInfoByAttribute.........c.coiviiiiiiii s 392

3.1.1.13.7 GetUserLogonInfoByUPNOrAcCCOUNtNamME.ovvviiiiiiiiiiiiiiieieeeienaanens 393

4 Protocol EXamples ..cciciieirimrerimmrinsesnss s sassssssssass s s sas s aa s sn s nnn 395
L =T o 1 o 3 2 396
5.1 [Y Y= T 5 o Y P 396
5.1.1 AUEN BN CATION .t 396
5.1.1.1 Supported Authentication Methodsccoiiiiiiii 396

5.1.1.1.1 Simple Authentication ..o 397

5.1.1.1.2 SASL AUEhenticationoviie i e 398

5.1.1.1.3 Sicily Authentication ... 399

5.1.1.2 USING SO L/ TS ittt et et e e e e e e e e aeas 401
5.1.1.3 USING FASt BinNd...oeiiiiiiiii e et 401
5.1.1.4 Mutual Authenticationo.iii i 402
5.1.1.5 Supported Types of Security PrinCipalsocvviiiiiiiiii e 402
5.1.2 MESSAGE SECUNIEY 1.vtitiii i e 404
5.1.2.1 USING SASL 1 ouiiiiiiii e e 404
5.1.2.2 USING SO/ TS ittt e ettt e e e e 404
5.1.3 AUENOIIZAION Lot e 404
5.1.3.1 BaCKgrOUNG ... e 405
5.1.3.2 ACCESS RIGNES .. 405
13/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5.1.3.2.1 Control Access RightS...c.viiiiii i e 407
5.1.3.2.2 Validated WIEES ...t 411
5.1.3.3 ChECKING ACCESS vttt e ettt e e e aerae s 413
5.1.3.3.1 NUIl VS, EMPLY DACLS ..uoieiiiiiie et s e s aen s e e e e 413
5.1.3.3.2 Checking Simple ACCESS ...cviiiiiiii e 413
5.1.3.3.3 Checking Object-Specific ACCESS . .iviiiiiiiiiiiiii i i e eas 414
5.1.3.3.4 Checking Control Access Right-Based ACCESScccevvviiiiiiiniiiiiiieiannns 416
5.1.3.3.5 Checking Validated Write-Based ACCESS.....cuiiiiiiiiiiiiiiiiiiiiieieiieaieaens 417
5.1.3.3.6 Checking Object Visibilityccoviiiiiiii s 417
5.1.3. AD LDS Security Context ConstruCtion........ccvviiiiiiiiiiiiiic i eas 418
6 Additional INformation ...ccciiirrorir s r s s r e rranrrE 420
6.1 Special Objects and Forest ReqUIiremMentsSc.ocviiiiiiiii e e e e s 420
6.1.1 SpECial ObJECES. ittt 420
6.1.1.1 NamMIiNG CONEXES ..viuiiiiiii e e e ae e e 420
6.1.1.1.1 ANY NC ROOE 11ttt 420
6.1.1.1.2 (@0e] o1 o N 1\ LG Yo | o 421
6.1.1.1.3 Schema NC ROOL ..uiiiiii i e e e e aeaens 422
6.1.1.1.4 Domain NC ROOT....ciiiiiiiiiie i s e e e eeas 422
6.1.1.1.5 ApPlication NC ROOEuiiiiiiiiii e e 423
6.1.1.2 Configuration ObjJECESviiiiii i 424
6.1.1.2.1 Cross-Ref-Container CoONtaiNeroveieieie e e eenes 425
6.1.1.2.1.1 Cross-Ref ObJECES 1uiitiiiii i 425
6.1.1.2.1.1.1 Foreign crossRef Objectsvviiiiiiii e 426
6.1.1.2.1.1.2 Configuration crossRef Objectc.ccvvviiiiiiiiiiii e 426
6.1.1.2.1.1.3 Schema crossRef Object....iviviiiiiiiiii i 426
6.1.1.2.1.1.4 Domain crossRef ObJeCovvviviiiiiiii e 426
6.1.1.2.1.1.5 Application NC crossRef Object......cccvviviiiiiiiiiiiiiiiiiciie e 427
6.1.1.2.2 Y LT @lo]] =Y 1= o 427
6.1.1.2.2.1 Site ObJeCt. v 427
6.1.1.2.2.1.1 NTDS Site Settings Objectcoveiiiiiii s 428
6.1.1.2.2.1.2 Servers CoNtaiNer. . .oiv i 429
6.1.1.2.2.1.2.1 Server ODJeCE. . cuiiiii i e 429
6.1.1.2.2.1.2.1.1 NTDSDSA ObJeCE vt e 429
6.1.1.2.2.1.2.1.2 Connection ObJect.....ocviiiiiiiii e 431
6.1.1.2.2.1.2.1.3 RODC NTFRS Connection Object.........cocoviiiiiiiininnnn. 433
6.1.1.2.2.2 Subnets CoNtaiNer ..viiii i e 434
6.1.1.2.2.2.1 Subnet ObjJect. ... 434
6.1.1.2.2.3 Inter-Site Transports Containercoovieiiiiiii e 436
6.1.1.2.2.3.1 IP Transport Containerciiiiii i e 436
6.1.1.2.2.3.2 SMTP Transport CONtaiNerccoeviiiiiiiiii e 436
6.1.1.2.2.3.3 Site Link ObJecCt. ..o 437
6.1.1.2.2.3.4 Site Link Bridge Object......coviiiiiii 438
6.1.1.2.3 Display Specifiers Containgr......ccviiiiiiiiiii i e 438
6.1.1.2.3.1 Display Specifier Object.......ooviiiiiiii 438
6.1.1.2.4 Y= Y/ Tl 440
6.1.1.2.4.1 WINAOWS NT Lot a e 440
6.1.1.2.4.1.1 DireCtory SerVICE ... 440
6.1.1.2.4.1.2 ASHEUNISEICS 1uitiiiiiee i e e e 440
6.1.1.2.4.1.3 Optional Features Container........ccoviiiiiiiiiiii e 445
6.1.1.2.4.1.3.1 Recycle Bin Feature Objectcccooiiiiiiiiiieeee 445
6.1.1.2.4.1.3.2 Privileged Access Management Feature Object................... 446
6.1.1.2.4.1.4 QUETNY-POIICIES et 446
6.1.1.2.4.1.4.1 Default Query POlICYcoveieiiiii e 446
6.1.1.2.4.1.5 SCP Publication Service Object........cvviviiiiiiiiiiieene 446
6.1.1.2.5 [)V (or= | I o Yot ol o 1= TP 447
6.1.1.2.6 WellKnown Security PrinCipals.......ccooviiiiiiiii e 447
6.1.1.2.6.1 ANONYMOUS LOGON utiuiiiiiiiiiiiiitiit s es 447
14/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.1.1.2.6.2 Authenticated USersSccovviiiiiiiiiiiiii e 447
6.1.1.2.6.3 BatCh e 447
6.1.1.2.6.4 (o] g1-Yo] (=T oo o] o PP 448
6.1.1.2.6.5 (@7 =T o] ol €] o o TH [o PP 448
6.1.1.2.6.6 (OS] o] gl @ 1Y 1= ol 448
6.1.1.2.6.7 DIAIUP caeiii 448
6.1.1.2.6.8 Digest Authenticationcooiiiiiiiii 448
6.1.1.2.6.9 Enterprise Domain Controllersccovoiiiiiiiiiii i 448
6.1.1.2.6.10 EVEIYONE 1ot 448
6.1.1.2.6.11 INteracCtiVe ..ciiiiiiiiiii i e 448
6.1.1.2.6.12 TUSR et 449
T A R T G R o Tor= | RS =1 1V ol PP 449
6.1.1.2.6.14 NEEWOIK..iuiuiiiiiiiiiii e 449
6.1.1.2.6.15 NELWOIK SEIVICE ..iuviieiireiii it ae e aaeane s e e aneeanannans 449
6.1.1.2.6.16 NTLM Authenticationcooiiiiiii e 449
6.1.1.2.6.17 Other Organization.........cooviiiiiiiii e 449
6.1.1.2.6.18 OWNEr RIiGOTS ..ttt e e e 449
L O A G S o 03 450
6.1.1.2.6.20 Remote Interactive LOGoNoiiiiiiiiiiiiiiin e 450
6.1.1.2.6.21 ReSIINCLEA vttt e 450
6.1.1.2.6.22 SChannel Authentication..........ccooviiiiiii e 450
6.1.1.2.6.23 Selftiiiiiii 450
T A O G T S Y T Y ol P 450
6.1.1.2.6.25 SYSEM .ttt 450
6.1.1.2.6.26 Terminal Server USEIciiiiiiiiiiiii it e a e e nees 450
6.1.1.2.6.27 This Organizationccooiiiiiiiiiii e 451
6.1.1.2.7 Extended Rights ..o e 451
6.1.1.2.7.1 controlAccessRight ObjJects.......coovviiiiiiiii 451
6.1.1.2.7.2 Change-Rid-Mastercoiiiiiiii i e e 451
6.1.1.2.7.3 Do-Garbage-Collectionoiiieiiiiii e 451
6.1.1.2.7.4 Recalculate-Hierarchy ..o 452
6.1.1.2.7.5 AOCAtE-RIAS ..t 452
6.1.1.2.7.6 Change-PDC ... o 452
6.1.1.2.7.7 ¥ [L] U) 1| N 452
6.1.1.2.7.8 Change-Domain-Masterccoiiiiiiiiiii e 452
6.1.1.2.7.9 Public-INformationoviriii i 452
6.1.1.2.7.10 msmg-Receive-Dead-Letter.......c.cooiiiiiiiiii 453
6.1.1.2.7.11 msmq-Peek-Dead-Letter........cooviiiiiii 453
6.1.1.2.7.12 msmqg-Receive-computer-Journal.........cccooiiiiiiiiiiiiiiiiii e 453
6.1.1.2.7.13 msmg-Peek-computer-Journal..........ccooiiiiiiiiiii e 453
6.1.1.2.7.14 MSMQ - RECEIVE. ...ttt i e i e 453
6.1.1.2.7.15 MSMQ-PEEK .. .itiiii e 453
6.1.1.2.7.16 MSMQG-SENA ..ttt i e 454
6.1.1.2.7.17 msmqg-Receive-jourNal.........cociiiiiiiiiiiii e 454
6.1.1.2.7.18 mMsmMQ-0Open-ConNNECEOr. ...ouiuiiiiiiii i e ees 454
6.1.1.2.7.19 Apply-Group-PoliCycciiiiiiiiii 454
6.1.1.2.7.20 RAS-INfOrmMation ...cuiieiii i e e aaas 454
6.1.1.2.7.21 DS-Install-RepliCa ...ciiiiiiii i e 455
6.1.1.2.7.22 Change-Infrastructure-Mastercocoviiiiiiiiiii e 455
6.1.1.2.7.23 Update-Schema-Cache ..o e 455
6.1.1.2.7.24 Recalculate-Security-Inheritancec.cccooiiiiiiiiiiiic e 455
6.1.1.2.7.25 DS-Check-Stale-Phantomscccoiiiiiiiiii e 455
6.1.1.2.7.26 Certificate-Enrollment.........cciiiiiiiiiiii e 455
6.1.1.2.7.27 Self-Membership....cocc i 456
6.1.1.2.7.28 Validated-DNS-HOSt-Name......c.ccvriiiiiiiiii i 456
6.1.1.2.7.29 Validated-SPNcciriiiiiiiiir e 456
6.1.1.2.7.30 Generate-RSOP-Planning.........cccoiiiiiiiiiiii e 456
6.1.1.2.7.31 Refresh-Group-Cache ..o 456
15/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.1.1.2.7.32 Reload-SSL-Certificate......cocoviiiiiiiii e 457
6.1.1.2.7.33 SAM-Enumerate-Entire-Domaincoviiiiiiiiiiiiiiiiiinie e 457
6.1.1.2.7.34 Generate-RSOP-LOGgiNg.....ciiiiiiiiiii i i i s aaneaas 457
6.1.1.2.7.35 Domain-Other-Parameterscoooviiiiiiii i e e 457
6.1.1.2.7.36 DNS-Host-Name-Attributesc.coiiiiii e 457
6.1.1.2.7.37 Create-Inbound-Forest-Trust.........ccviiiiiiiiiiiiii e 458
6.1.1.2.7.38 DS-Replication-Get-Changes-All..........ccooiiiiiiiiiiiii e, 458
6.1.1.2.7.39 Migrate-SID-HiStOrYciiieiiiiii i i e s 458
6.1.1.2.7.40 Reanimate-TOmMbStONESoviiiiiiii e e aeaeans 458
6.1.1.2.7.41 Allowed-To-Authenticate........cooiiiiii e 458
6.1.1.2.7.42 DS-Execute-Intentions-Scriptcciiiiiiiiiiiii 459
6.1.1.2.7.43 DS-Replication-Monitor-Topologyccoiviiiiiiiiiiiii e 459
6.1.1.2.7.44 Update-Password-Not-Required-Bit..........coceviiiiiiiiiiiiiiiiiiiiianns 459
6.1.1.2.7.45 UNexXpire-PassWOordcocviiiuiiiiiiiiiiii e e 459
6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Passwordccccvieinnnns 459
6.1.1.2.7.47 DS-Query-Self-QUOtacciriiiiiiii i 460
6.1.1.2.7.48 Private-Information.......ccooviiiiiiiii e 460
6.1.1.2.7.49 MS-TS-GaleWayY ACCESS .viiireiiriiiiiite it i aiee i sanerareaneeaaneaaneans 460
6.1.1.2.7.50 Terminal-Server-LiCENSE-SerVerciiiiiiiiiiiiiiiinsenereraeaneans 460
6.1.1.2.7.51 Domain-Administer-Server.....c.ciiiiiiiiiiii e 461
6.1.1.2.7.52 User-Change-PassWord........c.cvoiiiiiiiiiiiiiiiiie s e e eees 461
6.1.1.2.7.53 User-Force-Change-Passwordcocvveiiiiiiiiiiiiiiiiieieneienenenees 461
B.1.1.2.7.54 SN A .ttt 461
6.1.1.2.7.55 RECEIVE-AS ittt 462
6.1.1.2.7.56 SENA-TO 1iuiitiiiitiiiatii it 462
6.1.1.2.7.57 DOMaiN-PassSWordcceiiriiiiiiiiiiiiiae i eaerassaneansse e reranannans 462
6.1.1.2.7.58 General-Information.......cooviiiiiiiiii e 462
6.1.1.2.7.59 User-Account-RestriCtioNSooviiiiiiiiii i e rneaeans 463
ST A 0 0 B U YT e o 0 o 463
6.1.1.2.7.61 Membership ..o 463
6.1.1.2.7.62 Open-Address-BooKccciiiiiiiiiiiiiii e 463
6.1.1.2.7.63 Personal-Information......c.coceiiiiiiiiii e 463
6.1.1.2.7.64 Email-Information.....cccoiiiiiiii 464
6.1.1.2.7.65 Web-Informationcciviiiiiiiiii e 464
6.1.1.2.7.66 DS-Replication-Get-Changescocviiiiiiiiiiiiiii e 464
6.1.1.2.7.67 DS-Replication-Synchronizeccooiiiiiiiiiiiiiiiccc e 465
6.1.1.2.7.68 DS-Replication-Manage-Topologyccocvriieiiiiiiiiiiiiiiiiieeeeens 465
6.1.1.2.7.69 Change-Schema-Master.......c.coiiiiiiiiiiii e 465
6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Setccccvvviiiiiiiininnnn. 465
6.1.1.2.7.71 Run-Protect-Admin-Groups-TasK.........ccviiieiiiiiiiiiiiiieeeeen 466
6.1.1.2.7.72 Manage-Optional-Featurescccoiiiiiiiiiicr e 466
6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronizationcceuneen. 466
6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Namecccovvvviiiiennnnenn. 466
6.1.1.2.7.75 Validated-MS-DS-Behavior-Versionc.cceiiiiiiiiiiiic i iiieanaans 466
6.1.1.2.7.76 DS-Clone-Domain-Controller.........coviiiiiiiiiiiiiisi e 466
6.1.1.2.7.77 Certificate-AutoEnrollmentccoiiiiiiiiiii e 467
6.1.1.2.7.78 DS-Read-Partition-SeCretsccviiiiiiiii i nen e 467
6.1.1.2.7.79 DS-Write-Partition-Secrets......c.coviiiiiiii i 467
6.1.1.2.7.80 DS-Set-OWN ittt ittt 467
6.1.1.2.7.81 DS-Bypass-QUOTaiiiiriiiiiiiiiiiiii 467
6.1.1.2.7.82 DS-Validated-Write-Computerccooiiiiiiiii e 467
6.1.1.2.8 Forest Updates Containerc.vvieiiiiiii e 468
6.1.1.2.8.1 Operations CoNtaiNer... oo viiiiiii s 468
6.1.1.2.8.2 Windows2003Update Containercocvvviiiiiiiiieiiiiiieneieer e 468
6.1.1.2.8.3 ActiveDirectoryUpdate Containercoovviiiiiiiiiiiiiineee e 468
6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container........coovveviiiiiiiiiiiiiiiceen, 469
6.1.1.3 Critical Domain ObJeCESciiiieiei i 469
6.1.1.3.1 Domain Controller ObJectovvieieiii e 470
16 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.1.1.3.2 Read-Only Domain Controller Object......ccvviiiiiiiiiiii e 470
6.1.1.4 Well-KNOWN ODJECES ..uvieieii i e e e an e 471
6.1.1.4.1 Lost and Found Container......ocvveiiiiiiii i e 474
6.1.1.4.2 Deleted Objects Containerccvviiiiiiiiiii e 474
6.1.1.4.3 RN DI @8 o] o= F3 0] o] =] [1= ol 474
6.1.1.4.4 Infrastructure ObJecCt ..ocviiri i e 474
6.1.1.4.5 Domain Controllers OUoiiiiiiii i e e e e aeans 475
6.1.1.4.6 L0 ST @00 T o = | =T o 475
6.1.1.4.7 Computers CoNtaiNEr ... 475
6.1.1.4.8 Program Data Container....ccooviiiiiiii i e 475
6.1.1.4.9 Managed Service Accounts ContaiNer......cvveiiiiieiiiiiirrie e aeaens 476
6.1.1.4.10 Foreign Security Principals Containercocoviiiiiiiiiiii s 476
6.1.1.4.11 V2SI =T 0 g T Oo] o =] | =T o PP 476
6.1.1.4.11.1 Password Settings Containerccvoviiiiiiiiiii 476
6.1.1.4.12 BUiltin Containgr ...viuiiiiiiii e 477
6.1.1.4.12.1 Account Operators Group Object.........ccooviiiiiiiiiiiiiii e 477
6.1.1.4.12.2 Administrators Group ObjJectccciiiiiiiiiiiiiii e 477
6.1.1.4.12.3 Backup Operators Group Object........cciiiiiiiiiiiiiiiiiiiii e 477
6.1.1.4.12.4 Certificate Service DCOM Access Group Objectcocvvvvivnennnene. 478
6.1.1.4.12.5 Cryptographic Operators Group Objectcccviiiiiiiiiiiiieen, 478
6.1.1.4.12.6 Distributed COM Users Group Objectccooviiiiiiiiiiiiiiee, 478
6.1.1.4.12.7 Event Log Readers Group ObjecCt.......ccccviiiiiiiiiiiiiiiiiiiiieneeeeen 478
6.1.1.4.12.8 Guests Group ObJecCtccoviiiiiiiiiii i 478
6.1.1.4.12.9 IIS_IUSRS Group Object.....ccociiiiiiiiiiiiiiic e 478
6.1.1.4.12.10 Incoming Forest Trust Builders Group Object........cccvvvviiiiiiiiiinn, 478
6.1.1.4.12.11 Network Configuration Operators Group Objectcocvvvinenene. 478
6.1.1.4.12.12 Performance Log Users Group Objectcocvveviiiiiieiiiiiiiieinnnnn, 478
6.1.1.4.12.13 Performance Monitor Users Group Object........cccocveveiiiiiiiiiienenns. 479
6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Objectcevutes 479
6.1.1.4.12.15 Print Operators Group Objectccooiiiiiiiiii 479
6.1.1.4.12.16 Remote Desktop Users Group Object.......ccocvvviiiiiiiiiiiiiiiiiiiiiinns 479
6.1.1.4.12.17 Replicator Group ObJeCt....ciciiiiiiiiiiiii s 479
6.1.1.4.12.18 Server Operators Group Object.......c.coviiiiiiiiii 479
6.1.1.4.12.19 Terminal Server License Servers Group Objectcocvvviviiininnnn. 479
6.1.1.4.12.20 Users Group ObJeCt......ceiriiiiiiiiii e 479
6.1.1.4.12.21 Windows Authorization Access Group Group Object..............ccvvuene. 480
6.1.1.4.13 ROIES CONTAINEI . ittt e e e e e e s 480
6.1.1.4.13.1 Administrators Group Objectccoiiiiiiiiiii 480
6.1.1.4.13.2 Readers Group Objectccoceiiiiiiiii 480
6.1.1.4.13.3 Users Group ObjJeCt......cceiriiiiiiiii e 480
6.1.1.4.13.4 Instances Group ObJecCtccviiiiiiiiiiii e 481
6.1.1.5 Other System ODbJectS. ... 481
6.1.1.5.1 AdmMInNSDHoOIdEr ObJeCE. ..ottt 481
6.1.1.5.2 Default Domain Policy Container........covviiiiiiiiiii e 482
6.1.1.5.3 Sam Server ObJeCE ... 482
6.1.1.54 Domain Updates Containgr ...o.viiiiiiiiiiici s e ee s 482
6.1.1.5.4.1 Operations ContaiNer......ociuiiiiii s 483
6.1.1.5.4.2 Windows2003Update Containgrcovviiiiiiiiiiiiicinci e a s 483
6.1.1.5.4.3 ActiveDirectoryUpdate Containerccvviiiiiiiiiiiiiiiieiieee e 483
6.1.1.6 Well-Known Domain-Relative Security Principalscccooiiiiiiiiiiiiinnnnns 484
6.1.1.6.1 AN ST A0 ..t 484
6.1.1.6.2 BT T 484
6.1.1.6.3 Key Distribution Center Service ACCOUNT.......ccovieiiiiiiiiiiiiiiiiiiieeeeaaas 484
6.1.1.6.4 Cert PUDIISNErS. .. e 484
6.1.1.6.5 Domain AdminiStrators.....v.iie i 485
6.1.1.6.6 Domain ComMPULEIS ...uitiiiie i e s aeas 485
6.1.1.6.7 DomMain CoNtrollerS ...u it 485
6.1.1.6.8 DOmMain GUESES ..ovuiiiiii it 485
17/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.1.1.6.9 (Do) o = 1 U 1= PP 485
6.1.1.6.10 Enterprise AdminiStratorsouiuiiiiiiiiii e 485
6.1.1.6.11 Group Policy Creator OWNEIS ..uiiiiiiii i it ie e 486
6.1.1.6.12 RAS @Nd TAS SeIVEIS outiieiiiiii i ittt aeeae e ae e aaneaesansanereannaanannans 486
6.1.1.6.13 Read-Only Domain Controllerscoiiiiiiiiiiiiii s 486
6.1.1.6.14 Enterprise Read-Only Domain Controllersccooiiiiiiiiiiiiiiiicieiea, 486
T A I T T Yol =T o = 2V [1 1 486
6.1.1.6.16 Allowed RODC Password Replication Groupc.ccovveiiiiiiiiiiiieiieiinninnns. 487
6.1.1.6.17 Denied RODC Password Replication Groupcccveeieiiiiiiiiinininiineinnnns 487
6.1.2 oY =T ol ST LU 1 =T 0 =]] = PP 487
6.1.2.1 [T O {13 1= ol P 487
6.1.2.2 N[O =3 = o< P 488
6.1.2.3 HOStING ReqUIrEmMENtS ..viiii i e e ane e nes 488
6.1.2.3.1 DC and Application NC RepliCaccouiviiiiiiiiiiii e 488
6.1.2.3.2 DC and Regular Domain NC RepliCacvvvviiiiiiiiiiii i a s 488
6.1.2.3.3 DC and Schema/Config NC RepliCascccoiviiiiieieieieiiiiiieieieieneeeeaans 489
6.1.2.3.4 DC and Partial Replica NCs RepliCasccvviviiiiiiiiiiiiiiiciii i e 489
6.1.3 Security Descriptor ReqUIrEMENTS . ..viiii i i e e e 489
6.1.3.1 ACE Ordering RUIES .. .cuiii e 491
6.1.3.2 SD Flags Control ..o i e 491
6.1.3.3 Processing SPECIFICS +.vuviuieiiiiii i 492
6.1.3.4 Security ConsSiderations . i 493
6.1.3.5 SD Defaulting RUIESvuiiieieieie e e e e e e e e e nenens 494
6.1.3.6 Owner and Group Defaulting RUIESociiiiiiiiiiii e 494
6.1.3.7 Default Administrators GroUp ...ovvieiieiiiiiiiiii e e e aa 494
6.1.4 Special AtErDULES ..o 495
6.1.4.1 NEMIXEAD OMAIN. 1.ttt et e e e e e e r e e e as 495
6.1.4.2 msDS-Behavior-Version: DC Functional Levelc.coviiiiiiiic i 496
6.1.4.3 msDS-Behavior-Version: Domain NC Functional Levelccccovviviiiieininnnn. 496
6.1.4.4 msDS-Behavior-Version: Forest Functional Level..........cccovviviiiiiiciiiinnnnnn 497
6.1.4.5 Replication Schedule Structurescociiiiiiiiiiii e 499
6.1.4.5.1 SCHEDULE_HEADER STrUCEUIe ..ivviiiiiiieis it e an e naaaens 499
6.1.4.5.2 YO | = T I o U T o =P 499
6.1.4.5.3 L ST o 2O PP 500
6.1.4.5.4 T 1 PP 500
6.1.4.5.5 MTX_ADDR SErUCTUIE ... vt e e e e e 500
6.1.4.5.6 REPLTIMES SErUCEUIE cvuviitiiit ittt et et e e e e e 500
6.1.4.5.7 PAS DATA SErUCEUIE vttt e e e e 500
6.1.4.6 MSDS-AUthenticatedALDC ...c.viii e 500
6.1.5 L] 1 L@ N 2 1= 500
6.1.5.1 Schema Master FSMO ROIE.....ciiiiiiiiii i e e e aaeas 501
6.1.5.2 Domain Naming Master FSMO ROI€.......cciiiiiiiii e 501
6.1.5.3 RID Master FSMO ROIE....uiuiiiiiiii e e e e e 501
6.1.5.4 PDC EmMulator FSMO ROIE ..uviiiiiiiiiii ettt e e ene e a e eeas 501
6.1.5.5 Infrastructure FSMO ROIEviieiii i e aea s 502
6.1.6 TrUSE O O CES tritiii i e 502
6.1.6.1 OVEIVIEW (SYNOPSIS) +ueutiutininiititiaatat ettt e et s e aae e raeeananeaaanens 502
6.1.6.2 Relationship to Other ProtoCoIScciviiiiiiiiiiii e 503
6.1.6.2.1 TDO Replication over DRS ... e 503
6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries............ 503
6.1.6.2.3 TDO Roles in Authorization over Domain Boundaries............ccvcevivinennn. 503
6.1.6.3 Prerequisites/PreCconditionsveieiiiieiiii e 503
6.1.6.4 Versioning and Capability Negotiationcoooiiiiiiiiiii e 503
6.1.6.5 Vendor-Extensible Fieldsooviiiiiii i 504
6.1.6.6 =101 1 o 504
6.1.6.7 Essential Attributes of a Trusted Domain Object.........cccooviiiiiiiiiiiiiiiiene, 504
6.1.6.7.1 FlaEN A 1ttt 505
6.1.6.7.2 iSCriticalSystemODJECE 505
18/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.1.6.7.3 mMsDs-supportedENCryptionNTYPeS...civviiiiiiii e 505
6.1.6.7.4 MSDS-TrustForestTrustINfO....ivvie i e 505
6.1.6.7.5 R IST=TolUT g YA B L=T= ol o 0] o] o 505
6.1.6.7.6 [o] 0} =T OF=) =Ta o VP 505
6.1.6.7.7 ODJECECIASS vt 505
6.1.6.7.8 SeCUNtYIdeNtifiEr .o e 505
6.1.6.7.9 ErUSEALERIDULES o 506
6.1.6.7.10 trustAULNINCOMING . vttt e 508
6.1.6.7.11 trustAUthOULtgOING . .cviiiiii 508
6.1.6.7.12 truSEDIrECHION .. .ttt e 508
6.1.6.7.13 HrUSEPartNer .. s 508
6.1.6.7.14 trustPOSIXOffSE. ..ttt e 509
T I T I T o U =3 o 1Y/ o T T P 509
6.1.6.8 Essential Attributes of Interdomain Trust ACCOUNtS......cccvvviiiiiiiiiiniiinenenn, 509
6.1.6.8.1 (ol g T3 1) PP 510
6.1.6.8.2 ODJECECIASS et 510
6.1.6.8.3 SAMACCOUNENGME .. ui i e as 510
6.1.6.8.4 SAM A CCOUNE TY P ittt a e e e a e e e e aaneaanearas 510
6.1.6.8.5 USErACCOUNECONEIOl 1.veiieiie e e e e ene e anannans 510
6.1.6.9 D] = 11 =P 510
6.1.6.9.1 trustAuthInfo Attributescoviii 510
6.1.6.9.1.1 LSAPR_AUTH_INFORMATION....ctitiitiiiitieneiiiie e reneseneeneaeanenees 511
6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes..........ccovevviiiiiiiinnn, 512
6.1.6.9.2 Netlogon Usages of Trust Objectscovviiiiiiiiiiiii e 513
6.1.6.9.3 msDS-TrustForestTrustInfo Attributecocvvviiiiiiii e, 513
6.1.6.9.3.1 =T] oo [P 514
6.1.6.9.3.2 Building Well-Formed msDS-TrustForestTrustInfo Messages........... 517
6.1.6.9.4 Computation of trustPosiXOffsetccoovviiiiiiiiiii e 519
6.1.6.9.5 Mapping Logon SIDs to POSIX Identifierscocoovvviiiiiiiiiiiiiiiiiieenn, 519
6.1.6.9.6 L. =T P 519
6.1.6.9.6.1 Trust Secret CyCliNg ..vvviiiiiii i e 519
6.1.6.9.7 INitialiZatioN. .. e 519
6.1.6.10 Security Considerations for Implementersccocoiiiiiiiiiiiiiireeeeens 520
6.1.7 DynamicObject REQUIFrEMENTS ...uiuiiriiiiii e et et e e e e neeneanens 521
6.2 Knowledge Consistency CheCKer ..o e 521
6.2.1] (=] =] [0l T PP PP 521
6.2.2 (O A= Y P 522
6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnectionscovvvviiviiiiieiiennnnnns 524
6.2.2.2 Intrasite Connection Creationcooviiiiiiiii e 524
6.2.2.3 Intersite Connection Creationcvvveiiiiiiii e 526
6.2.2.3.1 ISTG SeIECHION ettt e e a e aaens 527
6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads............ 528
6.2.2.3.3 Site Graph CONCEPES ..iiiiiii i e 529
6.2.2.3.4 ConNection Creation ...iviii i e 530
6.2.2.3.4.1 L1075 530
6.2.2.3.4.2 Main Entry Point ..o 531
6.2.2.3.4.3 Site Graph ConstruCtion.......ociiiiii 532
6.2.2.3.4.4 Spanning Tree Computationcovviiiiii e 535
6.2.2.3.4.5 NTDSConnection Creationc.vvviiiiii e e e 545
6.2.2.4 Removing Unnecessary CONNECLIONSuivvieiuiiiiiiiiiieiei i sieereeseeas 549
6.2.2.5 Connection Translationo.vie i 550
6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples 551
6.2.2.7 Updating the RODC NTFRS Connection Objectcccvoviiiiiiiiiiiiieenn, 551
6.3 Publishing and Locating a Domain Controllerccooiiiiiiiiiiii e 552
6.3.1 Structures and CoNSEaNTS ..oviiiiiiiiii i 552
6.3.1.1 NETLOGON_NT_VERSION Options BitS.....ccvuiiiiiiiiiiiiiiii i iennieieeeen 552
6.3.1.2 DS_FLAG OPLiONS BitS 1.vieiieiiiiii ittt ettt e e e e e eeeas 553
6.3.1.3 (O] 011 =1 o] I ©o T [PP 555
19/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6.3.1.4 NETLOGON_LOGON_QUERY ..uiuiiiiiiiiiiiiiiiiiine s 555
6.3.1.5 NETLOGON_PRIMARY_RESPONSE ...ttt ee e e e 556
6.3.1.6 NETLOGON_SAM_LOGON_REQUESTiviuiiiiiiiiniii e e 557
6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40cicieieieinieieieieieaeieeeeaenenenens 558
6.3.1.8 NETLOGON_SAM_LOGON_RESPONSEciiiiiiiiieieieee e eae e e e aenenens 559
6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EXcciviiiiiiiiiiiiiiiinn e, 560
6.3.1.10 DNSRegistrationSettingsccouviiiiiiii 563
6.3.2 DNS Record Registrationsiiiiiiiiiiii i e e ea e 565
6.3.2.1 L0 T 566
6.3.2.1.1 Register DNS Records Timer ...oiiiiiiiiii i e a e 566
6.3.2.2 NON-TIMEr EVENTS 1.viiiiiiiiii i e 566
6.3.2.2.1 Force Register DNS Records Non-Timer Event.........ccooovviiiiiiiiiniinenn, 566
6.3.2.3 0] Y 2= o T [566
6.3.2.4 NON=SRV RECOIAS ...ttt e e e e ae e e 569
6.3.3 L T T 570
6.3.3.1 Syntactic Validation of the Filter........ccoiiiiiiii e, 571
6.3.3.2 Domain Controller Response to an LDAP PiNgccciviiiiiiiiiiiiciciieceeee 572
6.3.3.3 Response to Invalid Filter......cooiiiiiiii e 577
6.3.4 NetBIOS Broadcast and NBNS Background.........cccooeiiiiiiiiiiiiiiiii e 577
6.3.5 = Y1 £ T ol 1o e R PP 577
6.3.6 Locating @ Domain Controller ... e 580
6.3.6.1 DINS-Based DiSCOVEIY ..uuiiiiiiiiti ittt it ettt a e e aeaaeaaas 580
6.3.6.2 NetBIOS-Based DiSCOVEIY ...uuuiuiiinieiitiee it rere e e e s eerasesaeeas 581
6.3.7 Name Compression and DECOMPIreSSION ...vviiiiiiiiiiiiiiii i ae e aeaeas 581
6.3.8 AD LDS DC PUDBIICAtION 1uuviiiiiiiiii e 583
6.4 DOMAIN JOIN 1utiaiitiiii e 584
6.4.1 State of a Machine Joined to @ DOMaiNcvvveiiiiiiiiiiii e 584
6.4.2 State in an Active Directory DOMain......ccvuviiiiiiiiiiiiii e 585
6.4.3 Relationship to ProtocCols.. ..o e 586
6.5 Unicode String COMPAriSONuiuiieieieiiiieat et e e st e e raae e eas 586
6.5.1 String Comparison by Using SOrt KEYS ...civiiiiiiiiiiiiiiiii i e ee e 586
6.6 (1= 70 0T T | 587
7 Communication Details for Active Directory Connectionsc.ccvcririmrmieransasansnss 589
7.1 Connection Resolution of LDAP CHENESviiiiieiiiiiiiii e 589
7.2 ADCONNECLION OVEIVIEW ..ttt ittt et et et e e e et e e e e e e aaeneas 589
7.3 ADConnection Abstract Data Model..........ccoviiiiiiiiiii 592
7.4 Handling NetWOrK ErrOrs ... et e e 594
7.5 | @01 =T o = PP 595
7.6 Tasks @Nd EVENES ..uuuieiiiii e 595
7.6.1 1K= F5 PP 596
7.6.1.1 Initializing @an ADCONNECHION ...ttt 596
7.6.1.2 Setting an LDAP Option on an ADConNectioncocvviiiiiiiiiiiieeieieens 597
7.6.1.3 Establishing an ADCONNECHION ... vttt e e e e 598
7.6.1.4 Performing an LDAP Bind on an ADConnection.........covviiiiiiiiiiiniiiineen, 598
7.6.1.5 Performing an LDAP Unbind on an ADConnectionc.covvviiiiiiiniiniiennenenn. 599
7.6.1.6 Performing an LDAP Operation on an ADConnectioncccvvvvvviviiininennennnn. 599
7.6.2 INEErNAl TaSKS .ouueiie i 600
7.6.2.1 Initializing a Connection to a Directory Serverooviviiiiiiiiiiiiiieiiieens 600
7.6.2.2 Connecting to @ Dir€CtOry SEIVENviiiiiiiiiiri e 601
7.6.2.3 Performing an LDAP Bind Against a Directory Serverccovviiiiiiinininnnnn. 603
7.6.2.4 Performing an LDAP Unbind Against a Directory Server........cccoovvvviieinenenn. 604
7.6.2.5 Performing an LDAP Operation Against a Directory Server.........c.coevvevvenenn. 604
7.6.2.6 Following an LDAP Referral or Continuation Referencec.cocovvvivininnnnn. 605
7.6.2.7 Autoreconnecting to @ DireCtory Server......ccvviviiiiiiiiiiiiii e 607
7.6.3 External Triggered EVENTS .. .coviuieiiii it eees 608
7.6.3.1 Processing NetWOrK ErTOrsS ..o.vuieieiiiiiii et e e 608
7.6.3.2 Getting an LDAP Response from a Directory Server.......ccccvveieieieieininnnannn. 609
20/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7.6.4 Timer Triggered EVENES ..ot e 610

7.6.4.1 Timer Expiry on RequestTimer.....ooviiiiiiiii e 610
7.7 LI o O 1= i U 15 611
7.7.1 ADUDPHANAIE OVEIVIEW ..iiiiieiiiiieiee sttt s e s esesesaesarsaesaneaneaneannennannans 611
7.7.2 ADUDPHandle Abstract Data Modelccoiiiiiiiiiii s 611
7.7.3 B IE= 3PP 612
7.7.3.1 Initializing an ADUDPHaNAIEcoiviiiiiii e 612
7.7.3.2 Performing an LDAP Operation on an ADUDPHandlecccviviiiiiiinnen. 612
7.8 Transport ReQUINEMIENES .. .uiii i e 615
7.9 SECUNTY EleMENES it e 615
7.10 CommuUNICAtiONS SECUNMLY ..iuuieiitiiii i e e 615
2 J 1 3 - 1 4 T« [I = T ot] o T 617
2T 1 1T = 620
21/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

This is the primary specification for Active Directory, both Active Directory Domain Services (AD DS)
and Active Directory Lightweight Directory Services (AD LDS). When the specification does not refer
specifically to AD DS or AD LDS, it applies to both. The state model for this specification is prerequisite
to the other specifications for Active Directory: [MS-DRSR] and [MS-SRPL].

When no operating system version information is specified, information in this document applies to all
relevant versions of Windows. Similarly, when no DC functional level is specified, information in this
document applies to all DC functional levels.

AD DS first became available as part of Microsoft Windows 2000 operating system and is available as
part of Windows 2000 Server operating system products and Windows Server 2003 operating system
products; in these products it is called "Active Directory". It is also available as part of Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, Windows Server 2012 R2 operating system, and Windows Server 2016 operating
system. AD DS is not present in Windows NT 3.1 operating system, Windows NT 3.51 operating
system, Windows NT 4.0 operating system, or Windows XP operating system.

Unless otherwise specified, information in this specification is also applicable to Active Directory
Application Mode (ADAM). ADAM is a standalone application that provides AD LDS capabilities on
Windows XP and Windows Server 2003. There are two versions of ADAM, ADAM RTW and ADAM SP1;
unless otherwise specified, where ADAM is discussed in this document it refers to both versions.

Information that is applicable to AD LDS on Windows Server 2008 is also applicable to Active Directory
Lightweight Directory Services (AD LDS) for Windows Vista, except where it is explicitly specified that
such information is not applicable to that product. AD LDS for Windows Vista is a standalone
application that provides AD LDS capabilities for Windows Vista operating system. Similarly, unless it
is explicitly specified otherwise, information that is applicable to AD LDS on Windows Server 2008 R2
is also applicable to the standalone application Active Directory Lightweight Directory Services (AD
LDS) for Windows 7, which provides AD LDS capabilities for Windows 7 operating system. Similarly,
unless it is explicitly specified otherwise, information that is applicable to AD LDS on Windows Server
2012 is also applicable to the stand-alone application Active Directory Lightweight Directory Services
(AD LDS) for Windows 8 operating system, which provides AD LDS capabilities for Windows 8
operating system. Similarly, unless it is explicitly specified otherwise, information that is applicable to
AD LDS on Windows Server 2012 R2 is also applicable to the stand-alone application Active Directory
Lightweight Directory Services (AD LDS) for Windows 8.1 operating system, which provides AD LDS
capabilities for Windows 8.1 operating system. Finally, unless it is explicitly specified otherwise,
information that is applicable to AD LDS on Windows Server 2016 is also applicable to the stand-alone
application Active Directory Lightweight Directory Services (AD LDS) for Windows 10 operating
system, which provides AD LDS capabilities for Windows 10 operating system.

State is included in the state model for this specification only as necessitated by the requirement that
a licensee implementation of Windows Server protocols be able to receive messages and respond in
the same manner as a Windows Server. Behavior is specified in terms of request message received,
processing based on current state, resulting state transformation, and response message sent. Unless
otherwise specified in the sections that follow, all of the behaviors are required for interoperability.

The following typographical convention is used to indicate the special meaning of certain names:

= Underline, as in instanceType: the name of an attribute or object class whose interpretation is
specified in the following documents:

= [MS-ADA1] Attribute names whose initial letter is A through L.
= [MS-ADA2] Attribute names whose initial letter is M.

= [MS-ADA3] Attribute names whose initial letter is N through Z.

22/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= [MS-ADSC] Object class names.
= [MS-ADLS] Object class names and attribute names for AD LDS.

For clarity, bit flags are sometimes shown as bit field diagrams. In the case of bit flags for Lightweight
Directory Access Protocol (LDAP) attributes, these diagrams take on big-endian characteristics but do
not reflect the actual byte ordering of integers over the wire, because LDAP transfers an integer as the
UTF-8 string of the decimal representation of that integer, as specified in [RFC2252].

Pervasive Concepts
The following concepts are pervasive throughout this specification.

This specification uses [KNUTH1] section 2.3.4.2 as a reference for the graph-related terms oriented
tree, root, vertex, arc, initial vertex, and final vertex.

replica: A variable containing a set of objects.
attribute: An identifier for a value or set of values. See also attribute in the Glossary (section 1.1).

object: A set of attributes, each with its associated values. Two attributes of an object have special
significance:

= Identifying attribute: A designated single-valued attribute appears on every object. The value
of this attribute identifies the object. For the set of objects in a replica, the values of the
identifying attribute are distinct.

= Parent-identifying attribute: A designated single-valued attribute appears on every object. The
value of this attribute identifies the object's parent. That is, this attribute contains the value of
the parent's identifying attribute or a reserved value identifying no object (for more
information, see section 3.1.1.1.3). For the set of objects in a replica, the values of this
parent-identifying attribute define an oriented tree with objects as vertices and child-parent
references as directed arcs, with the child as an arc's initial vertex and the parent as an arc's
final vertex.

Note that an object is a value, not a variable; a replica is a variable. The process of adding,
modifying, or deleting an object in a replica replaces the entire value of the replica with a new
value.

As the term "replica" suggests, it is often the case that two replicas contain "the same objects". In
this usage, objects in two replicas are considered "the same" if they have the same value of the
identifying attribute and if there is a process in place (that is, replication) to converge the values
of the remaining attributes. When the members of a set of replicas are considered to be the same,
it is common to say "an object" as a shorthand way of referring to the set of corresponding objects
in the replicas.

object class: A set of restrictions on the construction and update of objects. An object class must be
specified when an object is created. An object class specifies a set of must-have attributes (every
object of the class must have at least one value of each) and may-have attributes (every object of
the class may have a value of each). An object class also specifies a set of possible superiors (the
parent object of an object of the class must have one of these classes). An object class is defined
by a classSchema object.

parent object: See "object", above.

child object, children: An object that is not the root of its oriented tree. The children of an object O
is the set of all objects whose parent object is O.

See section 3.1.1.1.3 for the particular use made of these definitions in this specification.

23 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.1 Glossary
This document uses the following terms:

88 object class: An object class as specified in the X.500 directory specification ([X501] section
8.4.3). An 88 object class can be instantiated as a new object, like a structural object class, and
on an existing object, like an auxiliary object class.

abstract class: See abstract object class.

abstract object class: An object class whose only function is to be the basis of inheritance by
other object classes, thereby simplifying their definition.

access check: A verification to determine whether a specific access type is allowed by checking a
security context against a security descriptor.

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are allowed,
denied, or audited.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

access mask: A 32-bit value present in an access control entry (ACE) that specifies the allowed or
denied rights to manipulate an object.

account domain: A domain, identified by a security identifier (SID), that is the SID namespace for
which a given machine is authoritative. The account domain is the same as the primary domain
for a domain controller (DC) and is its default domain. For a-Wirdews machine that is joined to a
domain, the account domain is the SID namespace defined by the local Security Accounts
Manager [MS-SAMR].

ACID: A term that refers to the four properties that any database system must achieve in order to
be considered transactional: Atomicity, Consistency, Isolation, and Durability [GRAY].

active: A state of an attributeSchema or classSchema object that represents part of the schema. It
is possible to instantiate an active attribute or an active class. The opposite term is defunct.

Active Directory: A general-purpose network directory service. Active Directory also refers to the
Windows implementation of a directory service. Active Directory stores information about a
variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory. Active Directory is either deployed as Active Directory Domain Services (AD
DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS] describes both
forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight Directory
Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory Domain Services (AD DS): A directory service (DS) implemented by a domain
controller (DC). The DS provides a data store for objects that is distributed across multiple DCs.
The DCs interoperate as peers to ensure that a local change to an object replicates correctly
across DCs. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. For
information about product versions, see [MS-ADTS] section 1. See also Active Directory.

Active Directory Lightweight Directory Services (AD LDS): A directory service (DS)
implemented by a domain controller (DC). The most significant difference between AD LDS and
Active Directory Domain Services (AD DS) is that AD LDS does not host domain naming contexts
(domain NCs). A server can host multiple AD LDS DCs. Each DC is an independent AD LDS
instance, with its own independent state. AD LDS can be run as an operating system DS or as a
directory service provided by a standalone application (ADAM). For more information, see [MS-
ADTS]. See also Active Directory.

24 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ambiguous name resolution (ANR): A search algorithm that permits a client to search multiple
naming-related attributes on objects by way of a single clause of the form "(anr=value)" in a
Lightweight Directory Access Protocol (LDAP) search filter. This permits a client to query for an
object when the client possesses some identifying material related to the object but does not
know which attribute of the object contains that identifying material.

application naming context (application NC): A specific type of naming context (NC), or an
instance of that type, that supports only full replicas (no partial replicas). An application NC
cannot contain security principal objects in Active Directory Domain Services (AD DS), but can
contain security principal objects in Active Lightweight Directory Services (AD LDS). A forest can
have zero or more application NCs in either AD DS or AD LDS. An application NC can contain
dynamic objects. Application NCs do not appear in the global catalog (GC). The root of an
application NC is an object of class domainDNS.

attribute: An identifier for a single or multivalued data element that is associated with a directory
object. An object consists of its attributes and their values. For example, cn (common name),
street (street address), and mail (email addresses) can all be attributes of a user object. An
attribute's schema, including the syntax of its values, is defined in an attributeSchema object.

attribute syntax: Specifies the format and range of permissible values of an attribute. The syntax
of an attribute is defined by several attributes on the attributeSchema object, as specified in
[MS-ADTS] section 3.1.1.2. Attribute syntaxes supported by Active Directory include Boolean,
Enumeration, Integer, Largelnteger, String(UTC-Time), Object(DS-DN), and String(Unicode).

AttributeStamp: The type of a stamp attached to an attribute.
ATTRTYP: A 32-bit quantity representing an object identifier (OID). See [MS-DRSR] section 5.14.

authentication: The act of proving an identity to a server while providing key material that binds
the identity to subsequent communications.

authorization: The secure computation of roles and accesses granted to an identity.

auxiliary object class: An object class that cannot be instantiated in the directory but can be
either added to, or removed from, an existing object to make its attributes available for use on
that object; or associated with an abstract or structural object class to add its attributes to that
abstract or structural object class.

back link attribute: A constructed attribute whose values include object references (for example,
an attribute of syntax Object(DS-DN)). The back link values are derived from the values of a
related attribute, a forward link attribute, on other objects. If f is the forward link attribute, one
back link value exists on object o for each object r that contains a value of o for attribute f. The
relationship between the forward link attributes and back link attributes is expressed using the
linkId attribute on the attributeSchema objects representing the two attributes. The forward
link's linkId is an even number, and the back link's linkld is the forward link's linkId plus one.
For more information, see [MS-ADTS] section 3.1.1.1.6.

back link value: The value of a back link attribute.

backup domain controller (BDC): A domain controller (DC) that receives a copy of the domain
directory database from the primary domain controller (PDC). This copy is synchronized
periodically and automatically with the primary domain controller (PDC). BDCs also authenticate
user logons and can be promoted to function as the PDC. There is only one PDC or PDC
emulator in a domain, and the rest are backup domain controllers.

Basic Encoding Rules (BER): A set of encoding rules for ASN.1 notation. These encoding
schemes allow the identification, extraction, and decoding of data structures. These encoding
rules are defined in [ITUX690].

25/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the
memory location with the lowest address.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

bridgehead domain controller (bridgehead DC): A domain controller (DC) that may replicate
updates to or from DCs in sites other than its own.

broadcast: A style of resource location or data transmission in which a client makes a request to
all parties on a network simultaneously (a one-to-many communication). Also, a mode of
resource location that does not use a name service.

built-in domain: The security identifier (SID) namespace defined by the fixed SID S-1-5-32.
Contains groups that define roles on a local machine such as Backup Operators.

built-in domain SID: The fixed SID S-1-5-32.

canonical name: A syntactic transformation of an Active Directory distinguished name (DN) into
something resembling a path that still identifies an object within a forest. DN "cn=Peter
Houston, ou=NTDEV, dc=microsoft, dc=com" translates to the canonical name
"microsoft.com/NTDEV/Peter Houston", while the DN "dc=microsoft, dc=com" translates to the
canonical name "microsoft.com/".

child naming context (child NC): Given naming contexts (NCs) with their corresponding
distinguished names (DNs) forming a child and parent relationship, the NC in the child
relationship is referred as the child NC. The parent of a child NC must be an NC and is referred
to as the parent naming context (parent NC).

child object, children: An object that is not the root of its tree. The children of an object o are
the set of all objects whose parent is 0. See section 1 of [MS-ADTS] and section 1 of [MS-
DRSR].

claim: An assertion about a security principal expressed as the n-tuple {Identifier, ValueType, m
Value(s) of type ValueType} where m is greater than or equal to 1. A claim with only one Value
in the n-tuple is called a single-valued claim; a claim with more than one Value is called a multi-
valued claim.

code page: An ordered set of characters of a specific script in which a numerical index (code-point
value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display and
keyboard can be configured to use a specific code page and to switch from one code page (such
as the United States) to another (such as Portugal) at the user's request.

Component Object Model (COM): An object-oriented programming model that defines how
objects interact within a single process or between processes. In COM, clients have access to an
object through interfaces implemented on the object. For more information, see [MS-DCOM].

computer object: An object of class computer. A computer object is a security principal object;
the principal is the operating system running on the computer. The shared secret allows the
operating system running on the computer to authenticate itself independently of any user
running on the system. See security principal.

configuration naming context (config NC): A specific type of naming context (NC), or an
instance of that type, that contains configuration information. In Active Directory, a single config
NC is shared among all domain controllers (DCs) in the forest. A config NC cannot contain
security principal objects.

constructed attribute: An attribute whose values are computed from normal attributes (for read)
and/or have effects on the values of normal attributes (for write).

26 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

container: An object in the directory that can serve as the parent for other objects. In the absence
of schema constraints, all objects would be containers. The schema allows only objects of
specific classes to be containers.

control access right: An extended access right that can be granted or denied on an access
control list (ACL).

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

cross-forest trust: A relationship between two forests that enables security principals from any
domain in one forest to authenticate to computers joined to any domain in the other forest.

crossRef object: An object residing in the partitions container of the config NC that describes the
properties of a naming context (NC), such as its domain naming service name, operational
settings, and so on.

DC functional level: A specification of functionality available in a domain controller (DC). See
[MS-ADTS] section 6.1.4.2 for possible values and a mapping between the possible values and
product versions.

default domain naming context (default domain NC): When Active Directory is operating as
Active Directory Domain Services (AD DS), this is the default naming context (default NC) of the
domain controller (DC). When operating as Active Directory Lightweight Directory Services (AD
LDS), this NC is not defined.

default naming context (default NC): When Active Directory is operating as Active Directory
Domain Services (AD DS), the default naming context (default NC) is the domain naming
context (domain NC) whose full replica is hosted by a domain controller (DC), except when the
DC is a read-only domain controller (RODC), in which case the default NC is a filtered partial NC
replica. When operating as AD DS, a DC's default NC is the NC of its default NC replica, and the
default NC contains the DC's computer object. When Active Directory is operating as AD LDS,
the default NC is the naming context (NC) specified by the msDS-DefaultNamingContext
attribute on the nTDSDSA object for the DC. See nTDSDSA object.

default schema: The schema of a given version of Active Directory, as defined by [MS-ADSC],
[MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, and as defined by [MS-ADLS] for Active
Directory Lightweight Directory Services (AD LDS).

defunct: A state of an attributeSchema or classSchema object that represents part of the schema.
It is not possible to instantiate a defunct attribute or a defunct class. The opposite term is
active.

deleted-object: An object that has been deleted, but remains in storage until a configured
amount of time (the deleted-object lifetime) has passed, after which the object is transformed
to a recycled-object. Unlike a recycled-object or a tombstone, a deleted-object maintains
virtually all the state of the object before deletion, and can be undeleted without loss of
information. Deleted-objects exist only when the Recycle Bin optional feature is enabled.

deleted-object lifetime: The time period that a deleted-object is kept in storage before it is
transformed into a recycled-object.

digest: The fixed-length output string from a one-way hash function that takes a variable-length
input string and is probabilistically unique for every different input string. Also, a cryptographic
checksum of a data (octet) stream.

directory: A forest.

27/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

directory object: An Active Directory object, which is a specialization of the "object" concept that
is described in [MS-ADTS] section 1 or [MS-DRSR] section 1, Introduction, under Pervasive
Concepts. An Active Directory object can be identified by the objectGUID attribute of a dsname
according to the matching rules defined in [MS-DRSR] section 5.50, DSNAME. The parent-
identifying attribute (not exposed as an LDAP attribute) is parent. Active Directory objects are
similar to LDAP entries, as defined in [RFC2251]; the differences are specified in [MS-ADTS]
section 3.1.1.3.1.

directory service (DS): A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

directory service agent (DSA): A term from the X.500 directory specification [X501] that
represents a component that maintains and communicates directory information.

discretionary access control list (DACL): An access control list (ACL) that is controlled by the
owner of an object and that specifies the access particular users or groups can have to the
object.

distinguished name (DN): In Lightweight Directory Access Protocol (LDAP), an LDAP
Distinguished Name, as described in [RFC2251] section 4.1.3. The DN of an object is the DN of
its parent, preceded by the RDN of the object. For example: CN=David Thompson, OU=Users,
DC=Microsoft, DC=COM. For definitions of CN and OU, see [RFC2256] sections 5.4 and 5.12,
respectively.

DNS name: A fully qualified domain name (FQDN).

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

domain functional level: A specification of functionality available in a domain. Must be less than
or equal to the DC functional level of every domain controller (DC) that hosts a replica of the
domain's naming context (NC). For information on defined levels, corresponding features,
information on how the domain functional level is determined, and supported domain
controllers, see [MS-ADTS] sections 6.1.4.2 and 6.1.4.3. When Active Directory is operating as
Active Directory Lightweight Directory Services (AD LDS), domain functional level does not exist.

domain joined: A relationship between a machine and some domain naming context (domain NC)
in which they share a secret. The shared secret allows the machine to authenticate to a domain
controller (DC) for the domain.

28 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

domain local group: An Active Directory group that allows user objects, global groups, and
universal groups from any domain as members. It can additionally include, and be a member of,
other domain local groups from within its domain. A group object g is a domain local group if
and only if GROUP_TYPE_RESOURCE_GROUP is present in glgroupType; see [MS-ADTS] section
2.2.12, "Group Type Flags". A security-enabled domain local group is valid for inclusion within
access control lists (ACLs) from its own domain. If a domain is in mixed mode, then a security-
enabled domain local group in that domain allows only user objects as members.

domain name: A domain name or a NetBIOS name that identifies a domain.

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names to various types of data, such as IP addresses. DNS enables the location of
computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

domain naming context (domain NC): A specific type of naming context (NC), or an instance of
that type, that represents a domain. A domain NC can contain security principal objects; no
other type of NC can contain security principal objects. Domain NCs appear in the global catalog
(GC). A domain NC is hosted by one or more domain controllers (DCs) operating as AD DS. In
AD DS, a forest has one or more domain NCs. A domain NC cannot exist in AD LDS. The root of
a domain NC is an object of class domainDNS; for directory replication [MS-DRSR], see
domainDNS.

domain prefix: A security identifier (SID) of a domain without the relative identifier (RID) portion.
The domain prefix refers to the issuing authority SID. For example, the domain prefix of S-1-5-
21-397955417-626881126-188441444-1010 is S-1-5-21-397955417-626881126-188441444.

downlevel trust: A trust in which one of the peers is running Windows NT 4.0.
DSA GUID: The objectGUID of a DSA object.
DSA object: See nTDSDSA object.

dsname: A tuple that contains between one and three identifiers for an object. The term dsname
does not stand for anything. The possible identifiers are the object's GUID (attribute
objectGuid), security identifier (SID) (attribute objectSid), and distinguished name (DN)
(attribute distinguishedName). A dsname can appear in a protocol message and as an attribute
value (for example, a value of an attribute with syntax Object(DS-DN)). Given a DSName, an
object can be identified within a set of NC replicas according to the matching rules defined in
[MS-DRSR] section 5.49.

dynamic object: An object with a time-to-die (attribute msDS-Entry-Time-To-Die). The directory
service garbage-collects a dynamic object immediately after its time-to-die has passed. The
constructed attribute entryTTL gives a dynamic object's current time-to-live, that is, the
difference between the current time and msDS-Entry-Time-To-Die. For more information, see
[RFC2589].

entry: In Active Directory, a synonym for object.
existing-object: An object that is not a tombstone, deleted-object, or recycled-object.

expunge: To permanently remove an object from a naming context (NC) replica, without
converting it to a tombstone.

Extended-Rights container: A container holding objects that correspond to control access rights.
The container is a child of configuration naming context (config NC) and has relative
distinguished name (RDN) CN=Extended-Rights.

File Replication Service (FRS): One of the services offered by a domain controller (DC), which is
advertised through the Domain Controller Location protocol. The service being offered to clients

29/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

is a replicated data storage volume that is associated with the default naming context (NC). The
running or paused state of the FRS on a DC is available through protocols documented in [MS-
ADTS] section 6.3.

filter: In the context of the Lightweight Directory Access Protocol (LDAP), the filter is one of the
parameters in a search request. The filter specifies matching constraints for the candidate
objects.

filtered attribute set: The subset of attributes that are not replicated to the filtered partial NC
replica and the filtered GC partial NC replica. The filtered attribute set is part of the state of the
forest and is used to control the attributes that replicate to a read-only domain controller
(RODC). The searchFlags schema attribute is used to define this set.

filtered GC partial NC replica: An NC replica that contains a schema-specified subset of
attributes for the objects. The attributes consist of the attributes in the GC partial attribute set
(PAS), excluding those present in the filtered attribute set. A filtered GC partial NC replica is not
writable; that is, it does not accept originating updates.

filtered partial NC replica: An NC replica that contains a schema-specified subset of attributes
for the objects it contains. The subset of attributes consists of all the attributes of the objects,
excluding those attributes in the filtered attribute set. A filtered partial NC replica is not
writable; that is, it does not accept originating updates.

flexible single master operation (FSMO): A read or update operation on a naming context
(NC), such that the operation must be performed on the single designated master replica of that
NC. The master replica designation is "flexible" because it can be changed without losing the
consistency gained from having a single master. This term, pronounced "fizmo", is never used
alone; see also FSMO role, FSMO role owner, and FSMO object.

foreign principal object (FPO): A foreignSecurityPrincipal object.

forest: For Active Directory Domain Services (AD DS), a set of naming contexts (NCs) consisting of
one schema naming context (schema NC), one configuration naming context (config NC), one or
more domain naming contexts (domain NCs), and zero or more application haming contexts
(application NCs). Because a set of NCs can be arranged into a tree structure, a forest is also a
set containing one or several trees of NCs. For AD LDS, a set of NCs consisting of one schema
NC, one config NC, and zero or more application NCs. (In Microsoft documentation, an AD LDS
forest is called a "configuration set".)

forest functional level: A specification of functionality available in a forest. It must be less than
or equal to the domain controller (DC) functional level of every DC in the forest. See [MS-ADTS]
section 6.1.4.4 for information on how the forest functional level is determined.

forest root domain NC: For Active Directory Domain Services (AD DS), the domain naming
context (domain NC) within a forest whose child is the forest's configuration naming context
(config NC). The fully qualified domain name (FQDN) of the forest root domain NC serves as the
forest's name.

forward link attribute: An attribute whose values include object references (for example, an
attribute of syntax Object(DS-DN)). The forward link values can be used to compute the values
of a related attribute, a back link attribute, on other objects. If an object o refers to object r in
forward link attribute f, and there exists a back link attribute b corresponding to f, then a back
link value referring to o exists in attribute b on object r. The relationship between the forward
and back link attributes is expressed using the linkId attribute on the attributeSchema objects
representing the two attributes. The forward link's linkId is an even number, and the back link's
linkId is the forward link's linkId plus one. A forward link attribute can exist with no
corresponding back link attribute, but not vice-versa. For more information, see [MS-ADTS].

forward link value: The value of a forward link attribute.

30/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FSMO role: A set of objects that can be updated in only one naming context (NC) replica (the
FSMO role owner's replica) at any given time. For more information, see [MS-ADTS] section
3.1.1.1.11. See also FSMO role owner.

FSMO role object: An object in a directory that represents a specific FSMO role. This object is an
element of the FSMO role and contains the fSMORoleOwner attribute.

FSMO role owner: The domain controller (DC) holding the naming context (NC) replica in which
the objects of a FSMO role can be updated.

full NC replica: A naming context (NC) replica that contains all the attributes of the objects it
contains. A full replica accepts originating updates.

fully qualified domain name (FQDN): (1) An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

(2) In Active Directory, a fully qualified domain name (FQDN) (1) that identifies a domain.

garbage collection: The process of identifying logically deleted objects (also known as
tombstones) and link values that have passed their tombstone lifetime, and then permanently
removing these objects from a naming context (NC) replica. Garbage collection does not
generate replication traffic.

GC partial attribute set (PAS): The subset of attributes that replicate to a GC partial NC replica.
A particular GC partial attribute set (PAS) is part of the state of the forest and is used to control
the attributes that replicate to global catalog servers (GC servers). The
isMemberOfPartialAttributeSet schema attribute is used to define this set.

GC partial NC replica: An NC replica that contains a schema-specified subset of attributes for the
objects it contains. The subset of attributes consists of the attributes in the GC partial attribute
set (PAS). A GC partial NC replica is not writable; for example, it does not accept originating
updates.

global catalog (GC): A unified partial view of multiple naming contexts (NCs) in a distributed
partitioned directory. The Active Directory directory service GC is implemented by GC servers.
The definition of global catalog is specified in [MS-ADTS] section 3.1.1.1.8.

global catalog server (GC server): A domain controller (DC) that contains a naming context
(NC) replica (one full, the rest partial) for each domain naming context in the forest.

global group: An Active Directory group that allows user objects from its own domain and global
groups from its own domain as members. Also called domain global group. Universal groups can
contain global groups. A group object g is a global group if and only if
GROUP_TYPE_ACCOUNT_GROUP is present in g! groupType; see [MS-ADTS] section 2.2.12,
"Group Type Flags". A global group that is also a security-enabled group is valid for inclusion
within ACLs anywhere in the forest. If a domain is in mixed mode, then a global group in that
domain that is also a security-enabled group allows only user object as members. See also
domain local group, security-enabled group.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

group: A collection of objects that can be treated as a whole.

31/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

group object: In Active Directory, a group object has an object class group. A group has a
forward link attribute member; the values of this attribute either represent elements of the
group (for example, objects of class user or computer) or subsets of the group (objects of class
group). The representation of group subsets is called "nested group membership". The back link
attribute memberOf enables navigation from group members to the groups containing them.
Some groups represent groups of security principals and some do not and are, for instance,
used to represent email distribution lists.

Group Policy: A mechanism that allows the implementer to specify managed configurations for
users and computers in an Active Directory service environment.

GUID-based DNS name: The domain naming service name of a domain controller (DC),
constructed by concatenating the dashed string representation of the objectGuid of the DC's
nTDSDSA object, the string "._msdcs.", and the syntactic transformation of the root domain's
distinguished name (DN) to a domain naming service name. If a DC's DSA GUID is "52f6c43b-
99ec-4040-a2b0-e9ebf2ec02b8", and the forest root domain NC's DNS name is "fabrikam.com",
then the GUID-based DNS name of the DC is "52f6c43b-99ec-4040-a2b0-
e9ebf2ec02b8._msdcs.fabrikam.com".

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in
[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a
curly braced GUID string, a GUIDString is not enclosed in braces.

inbound trust: A trust relationship between two domains, from the perspective of the domain that
is trusted to perform authentication.

inheritance: See object class inheritance.

interdomain trust account: An account that stores information associated with a domain trust in
the domain controllers (DCs) of the domain that is trusted to perform authentication.

intersite topology generator (ISTG): A domain controller (DC) within a given site that
computes an NC replica graph for each NC replica on any DC in its site. This DC creates,
updates, and deletes corresponding nTDSConnection objects for edges directed from NC replicas
in other sites to NC replicas in its site.

invocation ID: The invocationld attribute. An attribute of an nTDSDSA object. Its value is a
unique identifier for a function that maps from update sequence numbers (USNs) to updates to
the NC replicas of a domain controller (DC). See also nTDSDSA object.

Knowledge Consistency Checker (KCC): An-internal-WindoewsA component of the Active
Directory replication that is used to create spanning trees for domain controller to domain
controller replication and to translate those trees into settings of variables that implement the
replication topology.

LDAP connection: A TCP connection from a client to a server over which the client sends
Lightweight Directory Access Protocol (LDAP) requests and the server sends responses to the
client's requests.

LDAP ping: A specific Lightweight Directory Access Protocol (LDAP) search that returns
information about whether services are live on a domain controller (DC).

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active
Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol,
established by the Internet Engineering Task Force (IETF), which allows users to query and
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

32 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

lingering object: An object that still exists in an NC replica even though it has been deleted and
garbage-collected from other replicas. This occurs, for instance, when a domain controller (DC)
goes offline for longer than the tombstone lifetime.

link attribute: A forward link attribute or a back link attribute.
link value: The value of a link attribute.

local domain controller (local DC): A domain controller (DC) on which the current method is
executing.

Lost and Found container: A container holding objects in a given naming context (NC) that do
not have parent objects due to add and remove operations that originated on different domain
controllers (DCs). The container is a child of the NC root and has RDN CN=LostAndFound in
domain NCs and CN=LostAndFoundConfig in config NCs.

mailslot: A form of datagram communication using the Server Message Block (SMB) protocol, as
specified in [MS-MAIL].

mailslot ping: A specific mailslot request that returns information about whether services are live
on a domain controller (DC).

marshal: To encode one or more data structures into an octet stream using a specific remote
procedure call (RPC) transfer syntax (for example, marshaling a 32-bit integer).

Messaging Application Programming Interface (MAPI): A Windows programming interface
that enables email to be sent from within a Windows application.

mixed mode: A state of an Active Directory domain that supports domain controllers (DCs)
running Windows NT Server 4.0 operating system. Mixed mode does not allow organizations to
take advantage of new Active Directory features such as universal groups, nested group
membership, and interdomain group membership. See also native mode.

most specific object class: In a sequence of object classes related by inheritance, the class that
none of the other classes inherits from. The special object class top is less specific than any
other class.

multi-valued claim: A claim with more than one Value in the n-tuple {Identifier, ValueType, m
Value(s) of type ValueType?}.

name service provider interface (NSPI): A method of performing address-book-related
operations on Active Directory.

naming context (NC): An NC is a set of objects organized as a tree. It is referenced by a
DSName. The DN of the DSName is the distinguishedName attribute of the tree root. The GUID
of the DSName is the objectGUID attribute of the tree root. The security identifier (SID) of the
DSName, if present, is the objectSid attribute of the tree root; for Active Directory Domain
Services (AD DS), the SID is present if and only if the NC is a domain naming context (domain
NC). Active Directory supports organizing several NCs into a tree structure.

NC replica: A variable containing a tree of objects whose root object is identified by some naming
context (NC).

NC replica graph: A directed graph containing NC replicas as nodes and repsFrom tuples as
inbound edges by which originating updates replicate from each full replica of a given naming
context (NC) to all other NC replicas of the NC, directly or transitively.

NetBIOS: A particular network transport that is part of the LAN Manager protocol suite. NetBIOS
uses a broadcast communication style that was applicable to early segmented local area
networks. wWere W ws—N i

33/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

envirenrmentspriorte-Windows2000-—-A protocol family including name resolution, datagram,

and connection services. For more information, see [RFC1001] and [RFC1002].

NetBIOS domain name: The name registered by domain controllers (DCs) on [1C] records of the
NBNS (WINS) server (see section 6.3.4). For details of NetBIOS name registration, see [MS-
WPQ] sections 7.1.4 and 10.4.

NetBIOS Name Service (NBNS): The name service for NetBIOS. For more information, see
[RFC1001] and [RFC1002].

Netlogon: A component-ef- Windews that authenticates a computer and provides other services.
The running/paused state of Netlogon on a domain controller (DC) is available through protocols
documented in [MS-ADTS] section 6.3.

nonreplicated attribute: An attribute whose values are not replicated between naming context
(NC) replicas. The nonreplicated attributes of an object are, in effect, local variables of the
domain controller (DC) hosting the NC replica containing that object, since changes to these
attributes have no effect outside that DC.

nTDSDSA object: An object of class NnTDSDSA that is always located in the configuration naming
context (config NC). This object represents a domain controller (DC) in the forest. See [MS-
ADTS] section 6.1.1.2.2.1.2.1.1.

NULL GUID: A GUID of all zeros.

object: A set of attributes, each with its associated values. For more information on objects, see
[MS-ADTS] section 1 or [MS-DRSR] section 1.

object class: A set of restrictions on the construction and update of objects. An object class can
specify a set of must-have attributes (every object of the class must have at least one value of
each) and may-have attributes (every object of the class may have a value of each). An object
class can also specify the allowable classes for the parent object of an object in the class. An
object class can be defined by single inheritance; an object whose class is defined in this way is
a member of all object classes used to derive its most specific class. An object class is defined in
a classSchema object. See section 1 of [MS-ADTS] and section 1 of [MS-DRSR].

object class name: The IDAPDisplayName of the classSchema object of an object class. This
document consistently uses object class names to denote object classes; for example, user and
group are both object classes. The correspondence between Lightweight Directory Access
Protocol (LDAP) display names and numeric object identifiers (OIDs) in the Active Directory
schema is defined in the appendices of these documents: [MS-ADSC], [MS-ADA1], [MS-ADA2],
and [MS-ADA3].

object identifier (OID): In the Lightweight Directory Access Protocol (LDAP), a sequence of
numbers in a format described by [RFC1778]. In many LDAP directory implementations, an OID
is the standard internal representation of an attribute. In the directory model used in this
specification, the more familiar IdapDisplayName represents an attribute.

object of class x (or x object): An object o such that one of the values of its objectClass
attributes is x. For instance, if objectClass contains the value user, o is an object of class user.
This is often contracted to "user object".

object reference: An attribute value that references an object. Reading a reference gives the
distinguished name (DN) of the object.

operational attribute: An attribute that is returned only when requested by name in a
Lightweight Directory Access Protocol (LDAP) search request. An LDAP search request
requesting "all attributes" does not return operational attributes and their values.

34 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

optional feature: A non-default behavior that modifies the Active Directory state model. An
optional feature is enabled or disabled in a specific scope, such as a forest or a domain. For
more information, refer to [MS-ADTS] section 3.1.1.9.

organization: A collection of forests, including the current forest, whose
TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit of the Trust attribute ([MS-ADTS] section
6.1.6.7.9) of the trusted domain object (TDO) is not set.

oriented tree: A directed acyclic graph such that for every vertex v, except one (the root), there
is a unique edge whose tail is v. There is no edge whose tail is the root. For more information,
see [KNUTH1] section 2.3.4.2.

originating update: An update that is performed to an NC replica via any protocol except
replication. An originating update to an attribute or link value generates a new stamp for the
attribute or link value.

outbound trust: A trust relationship between two domains, from the perspective of the domain
that trusts another domain to perform authentication.

parent naming context (parent NC): Given naming contexts (NCs) with their corresponding
distinguished names (DNs) forming a child and parent relationship, the NC in the parent
relationship is referred as the parent NC.

parent object: An object is either the root of a tree of objects or has a parent. If two objects have
the same parent, they must have different values in their relative distinguished names (RDNs).
See also, object in section 1 of [MS-ADTS] and section 1 of [MS-DRSR].

partial attribute set (PAS): The subset of attributes that replicate to partial naming context (NC)
replicas. Also, the particular partial attribute set that is part of the state of a forest and that is
used to control the attributes that replicate to global catalog (GC) servers.

partial NC replica: An NC replica that contains a schema-specified subset of attributes for the
objects it contains. A partial NC replica is not writable—it does not accept originating updates.
See also writable NC replica.

Partitions container: A child object of the configuration naming context (config NC) root. The
relative distinguished name (RDN) of the Partitions container is "cn=Partitions" and its class is
crossRefContainer ([MS-ADTS] section 2.30). See also crossRef object.

prefix table: A data structure that is used to translate between an object identifier (OID) and a
compressed representation for OIDs. See [MS-DRSR] section 5.14.

primary domain controller (PDC): A domain controller (DC) designated to track changes made
to the accounts of all computers on a domain. It is the only computer to receive these changes
directly, and is specialized so as to ensure consistency and to eliminate the potential for
conflicting entries in the Active Directory database. A domain has only one PDC.

primary group: The group object ([MS-ADSC] section 2.53) identified by the primaryGroupID
attribute ([MS-ADA3] section 2.120) of a user object ([MS-ADSC] section 2.263). The primary
group's objectSid attribute ([MS-ADA3] section 2.45) equals the user's objectSid, with its
relative identifier (RID) portion replaced by the primaryGroupID value. The user is considered a
member of its primary group.

principal: A unique entity identifiable by a security identifier (SID) that is typically the requester of
access to securable objects or resources. It often corresponds to a human user but can also be a
computer or service. It is sometimes referred to as a security principal.

privilege: The right of a user to perform system-related operations, such as debugging the
system. A user's authorization context specifies what privileges are held by that user.

35/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

property set: A set of attributes, identified by a GUID. Granting access to a property set grants
access to all the attributes in the set.

RDN attribute: The attribute used in a relative distinguished name (RDN). In the RDN "cn=Peter
Houston" the RDN attribute is cn. In the Active Directory directory service, the RDN attribute of
an object is determined by the 88 object class or the most specific structural object class of the
object.

read permission: The authorization to read an attribute of an object. For more information, see
[MS-ADTS] section 5.1.3.

read-only domain controller (RODC): A domain controller (DC) that does not accept originating
updates. Additionally, an RODC does not perform outbound replication. An RODC cannot be the
primary domain controller (PDC) for its domain.

read-only full NC replica: An NC replica that contains all attributes of the objects it contains, and
does not accept originating updates.

Recycle Bin: An optional feature that modifies the state model of object deletions and undeletions,
making undeletion of deleted-objects possible without loss of the object's attribute values. For
more information, see [MS-ADTS] section 3.1.1.9.1.

recycled-object: An object that has been deleted, but remains in storage until a configured
amount of time (the tombstone lifetime) has passed, after which the object is permanently
removed from storage. Unlike a deleted-object, most of the state of the object has been
removed, and the object can no longer be undeleted without loss of information. By keeping the
recycled-object in existence for the tombstone lifetime, the deleted state of the object is able to
replicate. Recycled-objects exist only when the Recycle Bin optional feature is enabled.

relative distinguished name (RDN): The name of an object relative to its parent. This is the
leftmost attribute-value pair in the distinguished name (DN) of an object. For example, in the
DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter Houston".
For more information, see [RFC2251].

relative identifier (RID): The last item in the series of SubAuthority values in a security identifier
(SID) [SIDD]. It distinguishes one account or group from all other accounts and groups in the
domain. No two accounts or groups in any domain share the same RID.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

replica: A variable containing a set of objects.

replicated attribute: An attribute whose values are replicated to other NC replicas. An attribute is
replicated if its attributeSchema object o does not have a value for the systemFlags attribute, or
if the FLAG_ATTR_NOT_REPLICATED bit (bit 0) of o! systemFlags is zero.

replicated update: An update performed to a naming context (NC) replica by the replication
system, to propagate the effect of an originating update at another NC replica. The stamp
assigned during the originating update to attribute values or a link value is preserved by
replication.

36 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

replication: The process of propagating the effects of all originating writes to any replica of a
naming context (NC), to all replicas of the NC. If originating writes cease and replication
continues, all replicas converge to a common application-visible state.

replication cycle: Sometimes referred to simply as "cycle". A series of one or more replication
responses associated with the same invocationld, concluding with the return of a new up-to-
date vector.

replication latency: The time lag between a final originating update to a naming context (NC)
replica and all NC replicas reaching a common application-visible state.

replication traffic: Network traffic that is performed to accomplish replication.

root directory system agent-specific entry (rootDSE): The logical root of a directory server,
whose distinguished name (DN) is the empty string. In the Lightweight Directory Access Protocol
(LDAP), the rootDSE is a nameless entry (a DN with an empty string) containing the
configuration status of the server. Access to this entry is typically available to unauthenticated
clients. The rootDSE contains attributes that represent the features, capabilities, and extensions
provided by the particular server.

root domain: The unique domain naming contexts (domain NCs) of an Active Directory forest that
is the parent of the forest's config NC. The config NC's relative distinguished name (RDN) is
"cn=Configuration" relative to the root object of the root domain. The root domain is the domain
that is created first in a forest.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

SASL: The Simple Authentication and Security Layer, as described in [RFC2222]. This is an
authentication mechanism used by the Lightweight Directory Access Protocol (LDAP).

schema: The set of attributes and object classes that govern the creation and update of objects.
schema container: The root object of the schema naming context (schema NC).

schema naming context (schema NC): A specific type of naming context (NC) or an instance of
that type. A forest has a single schema NC, which is replicated to each domain controller (DC) in
the forest. No other NC replicas can contain these objects. Each attribute and class in the
forest's schema is represented as a corresponding object in the forest's schema NC. A schema
NC cannot contain security principal objects.

schema object: An object that defines an attribute or an object class. Schema objects are
contained in the schema naming context (schema NC).

SD: See security descriptor.

secret attribute: Any of the following attributes: currentValue, dBCSPwd, initialAuthIncoming,
initialAuthOutgoing, ImPwdHistory, ntPwdHistory, priorValue, supplementalCredentials,
trustAuthIncoming, trustAuthOutgoing, and unicodePwd.

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of
messages in client and server applications that communicate over open networks. SSL uses two
keys to encrypt data-a public key known to everyone and a private or secret key known only to
the recipient of the message. SSL supports server and, optionally, client authentication using
X.509 certificates{2)-. For more information, see [X509]. The SSL protocol is precursor to
Transport Layer Security (TLS). The TLS version 1.0 specification is based on SSL version 3.0
[SSL3].

security context: A data structure containing authorization information for a particular security
principal in the form of a collection of security identifiers (SIDs). One SID identifies the principal

37/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

specifically, whereas others represent other capabilities. A server uses the authorization
information in a security context to check access to requested resources.

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or
denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS-DTYP] section 2.5.1.

security identifier (SID): An identifier for security principals in-Windews-that is used to identify
an account or a group. Conceptually, the SID is composed of an account authority portion
(typically a domain) and a smaller integer representing an identity relative to the account
authority, termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section
2.4.2; a string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD]
section 1.1.1.2.

security principal: A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can be a service that offers
a resource to other security principals. Other security principals might be a group, which is a set
of principals. Groups are supported by Active Directory.

security principal object: An object that corresponds to a security principal. A security principal
object contains an identifier, used by the system and applications to name the principal, and a
secret that is shared only by the principal. In Active Directory, a security principal object has the
objectSid attribute. In Active Directory, the user, computer, and group object classes are
examples of security principal object classes (though not every group object is a security
principal object). In AD LDS, any object containing the msDS-BindableObject auxiliary class is a
security principal. See also computer object, group object, and user object.

security-enabled group: A group object with GROUP_TYPE_SECURITY_ENABLED present in its
groupType attribute. Only security-enabled groups are added to a security context. See also
group object.

server object: A class of object in the configuration naming context (config NC). A server object
can have an nTDSDSA object as a child.

service principal name (SPN) The name a client uses to |dent|fy a service for mutual

SPNFor more mformatlon see [MS-ADTS] sectlon 2.2.21 (Serwce Prmcmal Name) and

[RFC1964] section 2.1.1.

simple bind: A bind with the simple authentication option enabled according to [RFC2251].

Simple Mail Transfer Protocol (SMTP): A member of the TCP/IP suite of protocols that is used
to transport Internet messages, as described in [RFC5321].

single-valued claim: A claim with only one Value in the n-tuple {Identifier, ValueType, m
Value(s) of type ValueType?}.

site: A collection of one or more well-connected (reliable and fast) TCP/IP subnets. By defining
sites (represented by site objects) an administrator can optimize both Active Directory access

38/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

and Active Directory replication with respect to the physical network. When users log in, Active
Directory clients find domain controllers (DCs) that are in the same site as the user, or near the
same site if there is no DC in the site. See also Knowledge Consistency Checker (KCC). For more
information, see [MS-ADTS].

site object: An object of class site, representing a site.

site settings object: For a given site with site object s, its site settings object o is the child of s
such that o is of class nTDSSiteSettings and the relative distinguished name (RDN) of o is
CN=NTDS Site Settings. See also site object.

SRV record: A type of information record in DNS that maps the name of a service to the DNS
name of a server that offers that service. domain controllers (DCs) advertise their capabilities by
publishing SRV records in DNS.

SSL/TLS handshake: The process of negotiating and establishing a connection protected by
Secure Sockets Layer (SSL) or Transport Layer Security (TLS). For more information, see
[SSL3] and [RFC2246].

stamp: Information that describes an originating update by a domain controller (DC). The stamp is
not the new data value; the stamp is information about the update that created the new data
value. A stamp is often called metadata, because it is additional information that "talks about"
the conventional data values. A stamp contains the following pieces of information: the unique
identifier of the DC that made the originating update; a sequence number characterizing the
order of this change relative to other changes made at the originating DC; a version number
identifying the number of times the data value has been modified; and the time when the
change occurred.

structural object class: An object class that is not an 88 object class and can be instantiated to
create a new object.

SubAuthority: A variable-length array of unsigned, 32-bit integer values that is part of a security
identifier (SID). Each of these values is called a SubAuthority. All SubAuthority values excluding
the last one collectively identify a domain. The last value, termed as the relative identifier (RID),
identifies a particular group or account relative to the domain. For more information, see
[SIDD].

subordinate reference object (sub-ref object): The naming context (NC) root of a parent NC
has a list of all the NC roots of its child NCs in the subRefs attribute ([MS-ADA3] section 2.282).
Each entry in this list is a subordinate reference and the object named by the entry is
denominated a subordinate reference object. An object is a subordinate reference object if and
only if it is in such a list. If a server has replicas of both an NC and its child NC, then the child
NC root is the subordinate reference object, in the context of the parent NC. If the server does
not have a replica of the child NC, then another object, with distinguishedName ([MS-ADA1]
section 2.177) and objectGUID ([MS-ADA3] section 2.44) attributes equal to the child NC root,
is present in the server and is the subordinate reference object.

system access control list (SACL): An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's
SACL is controlled by a privilege typically held only by system administrators.

ticket-granting ticket (TGT): A special type of ticket that can be used to obtain other tickets.
The TGT is obtained after the initial authentication in the Authentication Service (AS) exchange;
thereafter, users do not need to present their credentials, but can use the TGT to obtain
subsequent tickets.

tombstone: An object that has been deleted, but remains in storage until a configured amount of
time (the tombstone lifetime) has passed, after which the object is permanently removed from
storage. By keeping the tombstone in existence for the tombstone lifetime, the deleted state of

39/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the object is able to replicate. Tombstones exist only when the Recycle Bin optional feature is
not enabled.

tombstone lifetime: The amount of time a deleted directory object remains in storage before it is
permanently deleted. To avoid inconsistencies in object deletion, the tombstone lifetime is
configured to be many times longer than the worst-case replication latency.

top level name (TLN): The DNS name of the forest root domain NC.

transitive membership: An indirect group membership that occurs when an object is a member
of a group that is a member of a second group. The object is a member of the second group
through a transitive membership.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Transport Layer Security (TLS): A security protocol that supports confidentiality and integrity of
messages in client and server applications communicating over open networks. TLS supports
server and, optionally, client authentication by using X.509 certificates (as specified in [X509]).
TLS is standardized in the IETF TLS working group.

trust: To accept another authority's statements for the purposes of authentication and
authorization, especially in the case of a relationship between two domains. If domain A trusts
domain B, domain A accepts domain B's authentication and authorization statements for
principals represented by security principal objects in domain B; for example, the list of groups
to which a particular user belongs. As a noun, a trust is the relationship between two domains
described in the previous sentence.

trust object: An object representing a trust.

trust secret: A pair of keys used to encrypt or sign sensitive protocol data between two trust
authorities, such as domain controllers.

trusted domain object (TDO): A collection of properties that define a trust relationship with
another domain, such as direction (outbound, inbound, or both), trust attributes, name, and
security identifier of the other domain. For more information, see [MS-ADTS].

TTL-DN: An alternative form of distinguished name (DN), applicable only to values of link valued
attributes, that includes the time until the link is no longer returned to LDAP clients.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universal group: An Active Directory group that allows user objects, global groups, and universal
groups from anywhere in the forest as members. A group object g is a universal group if and
only if GROUP_TYPE_UNIVERSAL_GROUP is present in g! groupType. A security-enabled
universal group is valid for inclusion within ACLs anywhere in the forest. If a domain is in mixed
mode, then a universal group cannot be created in that domain. See also domain local group,
security-enabled group.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not

40/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

update: An add, modify, or delete of one or more objects or attribute values. See originating
update, replicated update.

update sequence number (USN): A monotonically increasing sequence number used in
assigning a stamp to an originating update. For more information, see [MS-ADTS].

uplevel trust: A trust in which both peers are running Windows 2000 or later domain controllers.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

user object: An object of class user. A user object is a security principal object; the principal is a
person or service entity running on the computer. The shared secret allows the person or
service entity to authenticate itself, as described in ([MS-AUTHSOD] section 1.1.1.1).

UTF-16: A standard for encoding Unicode characters, defined in the Unicode standard, in which the
most commonly used characters are defined as double-byte characters. Unless specified
otherwise, this term refers to the UTF-16 encoding form specified in [UNICODES5.0.0/2007]
section 3.9.

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODES.0.0/2007] section 3.9.

Virtual List View (VLV) search: Refers to a Lightweight Directory Access Protocol (LDAP) search
operation that enables the server to return a contiguous subset of a large search result set.
LDAP controls LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE (section
3.1.1.3.4.1.17) that are used to perform a VLV search.

well-known object (WKO): An object within an naming context (NC) that can be located using a
fixed globally unique identifier (GUID).

Windows error code: A 32-bit quantity where zero represents success and nonzero represents
failure. The specific failure codes are specified in [MS-ERREF].

Windows security descriptor: See security descriptor.

writable naming context (NC) replica: A naming context (NC) replica that accepts originating
updates. A writable NC replica is always full, but a full NC replica is not always writable. Partial
replicas are not writable. See also read-only full NC replica.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

41/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[GRAY] Gray, J-., and Reuter, A., "Transaction Processing: Concepts and Techniques", San-Matee;
CAThe Morgan Kaufmann Series in Data Management Systems, San Francisco: Morgan Kaufmann
Publishers, +993;1992, Hardcover ISBN: 1$558601+502:9781558601901..

[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004,
http://www.unix.org/version3/ieee_std.html

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats -
Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December 2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2=1
40&ICS3=30

Note There is a charge to download the specification.

[ISO/IEC-14977] International Organization for Standardization, "Information technology -- Syntactic
metalanguage -- Extended BNF", ISO/IEC 14977:1996,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26153

[ISO/IEC-9899] International Organization for Standardization, "Programming Languages - C",
ISO/IEC 9899:TC2, May 2005, http://www.open-std.org/jtcl/sc22/wgl4/www/docs/n1124.pdf

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",
Recommendation X.680, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf

[ITUX690] ITU-T, "ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation X.690, July 2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

[KNUTH1] Knuth, D., "The Art of Computer Programming: Volume 1/Fundamental Algorithms (Second
Edition)", Reading, MA: Addison-Wesley, 1973, ASIN: BOOONV8YOA.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADLS] Microsoft Corporation, "Active Directory Lightweight Directory Services Schema".
[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS-CTA] Microsoft Corporation, "Claims Transformation Algorithm".

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".
[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

42/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-FRS1] Microsoft Corporation, "File Replication Service Protocol".

[MS-GKDI] Microsoft Corporation, "Group Key Distribution Protocol".

[MS-GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".
[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".
[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[MS-SRPL] Microsoft Corporation, "Directory Replication Service (DRS) Protocol Extensions for SMTP".
[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".
[MS-W32T] Microsoft Corporation, "W32Time Remote Protocol".

[MSKB-3070083] Microsoft Corporation, "Domain join against a Windows Server 2012 R2-based
domain controller fails if SPN is not unique in the forest", https://support.microsoft.com/en-
us/kb/3070083

[MSKB-3106637] Microsoft Corporation, "Incorrect results in LDAP query, domain controller restarts,
or user logons are denied in Windows Server 2012 R2", https://support.microsoft.com/en-
us/kb/3106637

[MSKB-3155495] Microsoft Corporation, "You can't use the Active Directory shadow principal groups
feature for groups that are always filtered out in Windows", revision 2.0, May 2016,
https://support.microsoft.com/en-us/kb/3155495

[MSKB-3192404] Microsoft Corporation, "October 2016 Preview of Monthly Quality Rollup for Windows
8.1 and Windows Server 2012 R2", https://support.microsoft.com/en-us/kb/3192404

[MSKB-4019217] Microsoft Corporation, "May 16, 2017 - KB4019217 (Preview of Monthly Rollup)",
https://support.microsoft.com/en-us/kb/4019217

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications"”, STD 19, RFC 1002, March 1987, http://www.rfc-
editor.org/rfc/rfc1002.txt

43 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November
1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1088] McLaughlin III, L., "A Standard for the Transmission of IP Datagrams over NetBIOS
Networks", RFC 1088, February 1989, http://www.ietf.org/rfc/rfc1088.txt

[RFC1166] Kirkpatrick, S., Stahl, M., Recker, M., "Internet Numbers", RFC 1166, July 1990,
http://www.ietf.org/rfc/rfc1166.txt

[RFC1274] Barker, P. and Kille, S., "The COSINE and Internet X.500 Schema", RFC 1274, November
1991, http://www.ietf.org/rfc/rfc1274.txt

[RFC1278] Hardcastle-Kille, S. E., "A string encoding of Presentation Address", RFC 1278, November
1991, http://www.ietf.org/rfc/rfc1278.txt

[RFC1777] Yeong, W., Howes, T., and Kille, S., "Lightweight Directory Access Protocol", RFC 1777,
March 1995, http://www.ietf.org/rfc/rfc1777.txt

[RFC1798] Young, A., "Connection-less Lightweight X.500 Directory Access Protocol", RFC 1798, June
1995, http://www.ietf.org/rfc/rfc1798.txt

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996,
http://www.rfc-editor.org/rfc/rfc1964.txt

[RFC2078] Linn, J., "Generic Security Service Application Program Interface, Version 2", RFC 2078,
January 1997, http://www.ietf.org/rfc/rfc2078.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2136] Thomson, S., Rekhter Y. and Bound, J., "Dynamic Updates in the Domain Name System
(DNS UPDATE)", RFC 2136, April 1997, http://www.ietf.org/rfc/rfc2136.txt

[RFC2222] Myers, J., "Simple Authentication and Security Layer (SASL)", RFC 2222, October 1997,
http://www.ietf.org/rfc/rfc2222.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.rfc-editor.org/rfc/rfc2246.txt

[RFC2247] Kille, S., Wahl, M., Grimstad, A., et al., "Using Domains in LDAP/X.500 Distinguished
Names", RFC 2247, January 1998, http://www.ietf.org/rfc/rfc2247.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 2251,
December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC2252] Wahl, M., Coulbeck, A., Howes, T., and Kille, S., "Lightweight Directory Access Protocol
(v3): Attribute Syntax Definitions", RFC 2252, December 1997, http://www.ietf.org/rfc/rfc2252.txt

[RFC2253] Wahl, M., Kille, S., and Howe, T., "Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names", RFC 2253, December 1997,
http://www.ietf.org/rfc/rfc2253.txt

[RFC2255] Howes, T. and Smith, M., "The LDAP URL Format", RFC 2255, December 1997,
http://www.ietf.org/rfc/rfc2255.txt

44 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC2256] Wahl, M., "A Summary of the X.500(96) User Schema for use with LDAPv3", RFC 2256,
December 1997, http://www.ietf.org/rfc/rfc2256.txt

[RFC2307] Howard, L., "An Approach for Using LDAP as a Network Information Service", RFC 2307,
March 1998, http://www.ietf.org/rfc/rfc2307.txt

[RFC2589] Yaacovi, Y., Wahl, M., and Genovese, T., "Lightweight Directory Access Protocol (v3):
Extensions for Dynamic Directory Services", RFC 2589, May 1999, http://www.ietf.org/rfc/rfc2589.txt

[RFC2696] Weider, C., Herron, A., Anantha, A., and Howes, T., "LDAP Control Extension for Simple
Paged Results Manipulation", RFC 2696, September 1999, http://www.ietf.org/rfc/rfc2696.txt

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of services
(DNS SRV)", RFC 2782, February 2000, http://www.ietf.org/rfc/rfc2782.txt

[RFC2798] Smith, M., "Definition of the inetOrgPerson LDAP Object Class", RFC 2798, April 2000,
http://www.ietf.org/rfc/rfc2798.txt

[RFC2829] Wahl, M., Alvestrand, H., Hodges, J., and Morgan, R., "Authentication Methods for LDAP",
RFC 2829, May 2000, http://www.ietf.org/rfc/rfc2829.txt

[RFC2830] Hodges, J., Morgan, R., and Wahl, M., "Lightweight Directory Access Protocol (v3):
Extension for Transport Layer Security", RFC 2830, May 2000, http://www.ietf.org/rfc/rfc2830.txt

[RFC2831] Leach, P. and Newman, C., "Using Digest Authentication as a SASL Mechanism", RFC 2831,
May 2000, http://www.ietf.org/rfc/rfc2831.txt

[RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) - Technical Specification", RFC 2849,
June 2000, http://www.ietf.org/rfc/rfc2849.txt

[RFC2891] Howes, T., Wahl, M., and Anantha, A., "LDAP Control Extension for Server Side Sorting of
Search Results", RFC 2891, August 2000, http://www.ietf.org/rfc/rfc2891.txt

[RFC3377] Hodges, J. and Morgan, R., "Lightweight Directory Access Protocol (v3): Technical
Specification", RFC 3377, September 2002, http://www.ietf.org/rfc/rfc3377.txt

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961,
February 2005, http://www.ietf.org/rfc/rfc3961.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network Authentication
Service (V5)", RFC 4120, July 2005, http://www.rfc-editor.org/rfc/rfc4120.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, http://www.rfc-editor.org/rfc/rfc4178.txt

[RFC4291] Hinden, R. and Deering, S., "IP Version 6 Addressing Architecture", RFC 4291, February
2006, http://www.ietf.org/rfc/rfc4291.txt

[RFC4370] Weltman, R., "Lightweight Directory Access Protocol (LDAP) Proxied Authorization Control",
RFC 4370, February 2006, http://www.ietf.org/rfc/rfc4370.txt

[RFC4532] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP)", Who Am I?" Operation"”, RFC
4532, June 2006, http://www.ietf.org/rfc/rfc4532.txt

45/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types Used
by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

[RFC5952] Kawamura, S., Kawashima, M., "A Recommendation for IPv6 Address Text
Representation”, RFC 5952, August 2010, https://tools.ietf.org/html/rfc5952

[RFC791] Postel, 1., Ed., "Internet Protocol: DARPA Internet Program Protocol Specification", RFC 791,
September 1981, http://www.rfc-editor.org/rfc/rfc791.txt

[X501] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: The Models",
Recommendation X.501, August 2005, http://www.itu.int/rec/T-REC-X.501-200508-S/en

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures", W3C Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC-xmlIschema-1-
20010502/

[XMLSCHEMAZ2/2] Biron, P., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second Edition",
W3C Recommendation, October 2004, http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/

[XPATH] Clark,). and DeRose, S., "XML Path Language (XPath), Version 1.0", W3C
Recommendation, November 1999, http://www.w3.0rg/TR/xpath/

1.2.2 Informative References

[ADDLG] Microsoft Corporation, "Security Briefs: Credentials and Delegation", September 2005,
http://msdn.microsoft.com/en-us/magazine/cc163740.aspx

[LISP15] McCarthy, J., Abrahams, P., Edwards, D., Hart, T., and Levin, M., "LISP 1.5 Programmers
Manual", Cambridge, MA: The M.L.T. Press, 1965, ISBN-10: 0262130114.

[MS-ADDM] Microsoft Corporation, "Active Directory Web Services: Data Model and Common
Elements".

[MS-DSSP] Microsoft Corporation, "Directory Services Setup Remote Protocol".
[MS-GPOD] Microsoft Corporation, "Group Policy Protocols Overview".
[MS-SYS] Microsoft Corporation, "Windows System Overview".

[MS-XCA] Microsoft Corporation, "Xpress Compression Algorithm".

[MSDN-gethostbyname] Microsoft Corporation, "gethostbyname function",
http://msdn.microsoft.com/en-us/library/windows/desktop/ms738524(v=vs.85).aspx

[MSKB-298713] Microsoft Corporation, "How to prevent overloading on the first domain controller
during domain upgrade", Version 6.8, December 2007, http://support.microsoft.com/kb/298713

[RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC
1122, October 1989, http://www.rfc-editor.org/rfc/rfc1122.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980, http://www.rfc-
editor.org/rfc/rfc768.txt

[RFC792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981,
http://www.ietf.org/rfc/rfc792.txt

[RFC793] Postel, 1., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

46 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[SPNNAMES] Microsoft Corporation, "Name Formats for Unique SPNs", http://msdn.microsoft.com/en-
us/library/ms677601.aspx

[VLVDRAFT] Boreham, D., Sermersheim, J., and Kashi, A., "LDAP Extensions for Scrolling View
Browsing of Search Results", draft-ietf-ldapext-ldapv3-vilv-09, November 2002,
http://tools.ietf.org/html/draft-ietf-ldapext-ldapv3-viv-09

1.3 Overview

This is the primary specification for Active Directory. The state model for this specification is
prerequisite to the other specifications for Active Directory: [MS-DRSR] and [MS-SRPL].

Active Directory is either deployed as AD DS or as AD LDS. This document describes both forms. When
the specification does not refer specifically to AD DS or AD LDS, it applies to both.

The remainder of this section describes the structure of this document.

The basic state model is specified in section 3.1.1.1. The basic state model is prerequisite to the
remainder of the document. Section 3.1.1.1 also includes descriptive content to introduce key
concepts and refer to places in the document where the full specification is given.

The schema completes the state model and is specified in section 3.1.1.2. The schema is prerequisite
to the remainder of the document.

Active Directory is a server for LDAP. Section 3.1.1.3 specifies the extensions and variations of LDAP
that are supported by Active Directory.

LDAP is an access protocol that determines very little about the behavior of the data being accessed.
Section 3.1.1.4 specifies read (LDAP Search) behaviors, and section 3.1.1.5 specifies update (LDAP
Add, Modify, Modify DN, Delete) behaviors. Section 3.1.1.6 specifies background tasks required due to
write operations, to the extent that those tasks are exposed by protocols.

One of the update behaviors is the maintenance of the change log for use by Windows NT 4.0 backup
domain controller (BDC) replication [MS-NRPC] section 3.6. The maintenance of this change log is
specified in section 3.1.1.7.

The security services that Active Directory offers clients of LDAP are specified in section 5.1.

Active Directory contains a number of objects, visible through LDAP, that have special significance to
the system. Section 6.1 specifies these objects.

A server running Active Directory is part of a distributed system that performs replication. The
Knowledge Consistency Checker (KCC) is a component that is used to create spanning trees for DC-to-
DC replication, and is specified in section 6.2.

A server running Active Directory is responsible for publishing the services that it offers, in order to
eliminate the administrative burden of configuring clients to use particular servers running Active
Directory. A server running Active Directory also implements the server side of the LDAP ping and
mailslot ping protocols to aid clients in selecting among all the servers offering the same service.
Section 6.3 specifies how a server running Active Directory publishes its services, and how a client
needing some service can use this publication plus the LDAP ping or mailslot ping to locate a suitable
server.

Computers in a network with Active Directory can be put into a state called "domain joined"; when in
this state, the computer can authenticate itself. Section 6.4 specifies both the state in Active Directory
and the state on a computer required for the domain joined state.

Each type of data stored in Active Directory has an associated function that compares two values to
determine if they are equal and, if not, which is greater. Section 3.1.1.2 specifies all but one of these
functions; the methodology for comparing two Unicode strings is specified in section 6.5.

47/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.4 Relationship to Other Protocols

This is the primary specification for Active Directory. The state model for this specification is
prerequisite to the specification for Active Directory described in [MS-DRSR]. This Active Directory
Technical Specification depends on the following protocols:

= Lightweight Directory Access Protocol (LDAP)
= Remote Procedure Call (RPC)

= Domain Name System (DNS)

| Active Directory |
I Technical Specification |

|
|

LDAP RPC

DNS

TCP/IP

Figure 1: Protocol and technical specification relationships

Other protocols make use of implementations of the Active Directory Technical Specification as a data
store.

1.5 Prerequisites/Preconditions

Active Directory requires an IP network and a DNS infrastructure.

1.6 Applicability Statement

Active Directory is not suitable for storing very large attribute values because, for instance, there is no
provision for check-pointing a large data transfer to allow restart after a failure. The bandwidth and
latency of typical networks makes Active Directory unsuitable for storing volatile data in replicated

attributes. Active Directory is especially suitable for storing security account data, including
passwords, and email address book data.

1.7 Versioning and Capability Negotiation

Capability negotiation is performed using the root DSE as described in section 3.1.1.3.2.

1.8 Vendor-Extensible Fields

LDAP is not extensible by Active Directory applications. Applications extend the directory by adding
objects, including schema objects to control the application objects.

48 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.9 Standards Assignments

Active Directory's extensions and variations of LDAP have no standards assignments. AD DS uses
private allocations for its LDAP global catalog (GC) port (3268) and LDAP GC port with Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) (3269).

49 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

The following sections specify how LDAP is transported and denote common information such as bit
flag values.

2.1 Transport

LDAP transport is specified in section 3.1.1.3, and in [RFC2251] section 5 (for LDAPv3), in [RFC1777]
section 3 (for LDAPv2), and in [RFC1798] section 3.1 (for both LDAPv2 and LDAPvV3).

2.2 Message Syntax

This section specifies types and data structures used in the remainder of this document. These type
specifications reference the following:

= DWORD and FILETIME types: [MS-DTYP] sections 2.2.9 and 2.3.3.

= repsFrom, repsTo, replUpToDateVector abstract attributes of an NC replica: [MS-DRSR] sections
5.172, 5.173, and 5.166.

= ReplUpToDateVector abstract type of a NC replica: [MS-DRSR] section 5.166.

= kCCFailedConnections, kCCFailedLinks, RPCClientContexts, RPCOutgoingContexts,
IdapConnections, and replicationQueue variables of a DC: [MS-DRSR] sections 5.111, 5.112,
5.177,5.178, 5.116, and 5.164.

= Stamp variable of an attribute: [MS-DRSR] section 5.11.
= Stamp variable of a link value: [MS-DRSR] section 5.118.

= DS_REPL_ATTR_META_DATA_2, DS_REPL_CURSOR_3W, DS_REPL_KCC_DSA_FAILUREW,
DS_REPL_NEIGHBORW, DS_REPL_OPW, DS_REPL_VALUE_META_DATA_2 types: [MS-DRSR]
section 4.1.13.1.

= IDL_DRSGetReplInfo method: [MS-DRSR] section 4.1.13.

2.2.1 LCID-Locale Mapping Table

The following table maps Windows locales (for example, French - France, Irish - Ireland) to numeric
identifiers called locale identifiers (LCIDs). These numeric identifiers are used as input to the Unicode
string comparison function specified in section 6.5. They are also used to name Display Specifier
containers, specified in section 6.1.1.2.3, "Display Specifiers Container".

LCID Language Location
0436 Afrikaans South Africa
041c Albanian Albania
0401 Arabic Saudi Arabia
0801 Arabic Iraq

0c01 Arabic Egypt

1001 Arabic Libya

1401 Arabic Algeria

50/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LCID Language Location

1801 Arabic Morocco

1c01 Arabic Tunisia

2001 Arabic Oman

2401 Arabic Yemen

2801 Arabic Syria

2c01 Arabic Jordan

3001 Arabic Lebanon

3401 Arabic Kuwait

3801 Arabic U.A.E.

3c01 Arabic Bahrain

4001 Arabic Qatar

042b Armenian Armenia

082c Azeri (Cyrillic) Azerbaijan
042c Azeri (Latin) Azerbaijan
042d Basque Basque

0423 Belarusian Belarus

201a Bosnian (Cyrillic) Bosnia and Herzegovina
141a Bosnian (Latin) Bosnia and Herzegovina
0402 Bulgarian Bulgaria

0403 Catalan Catalan

0004 Chinese Simplified

0404 Chinese Taiwan

0804 Chinese PRC

0c04 Chinese Hong Kong SAR
1004 Chinese Singapore

1404 Chinese Macao SAR
7¢c04 Chinese Traditional
041a Croatian Croatia

101a Croatian (Latin) Bosnia and Herzegovina
0405 Czech Czech Republic
0406 Danish Denmark

0465 Divehi Maldives

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

51/626

LCID Language Location
0813 Dutch Belgium
0413 Dutch Netherlands
1009 English Canada

2009 English Jamaica
2409 English Caribbean
2809 English Belize

2c09 English Trinidad
0809 English United Kingdom
1809 English Ireland

1c09 English South Africa
3009 English Zimbabwe
0c09 English Australia
1409 English New Zealand
3409 English Philippines
0409 English United States
0425 Estonian Estonia

0438 Faroese Faroe Islands
0464 Filipino Philippines
040b Finnish Finland

0c0c French Canada

040c French France

180c French Monaco

100c French Switzerland
080c French Belgium
140c French Luxembourg
0462 Frisian Netherlands
0456 Galician Galician
0437 Georgian Georgia
0407 German Germany
0807 German Switzerland
0c07 German Austria

1407 German Liechtenstein

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

52 /626

LCID Language Location
1007 German Luxembourg
0408 Greek Greece
0447 Gujarati India

040d Hebrew Israel

0439 Hindi India

040e Hungarian Hungary
040f Icelandic Iceland
0421 Indonesian Indonesia
085d Inuktitut (Latin) Canada
083c Irish Ireland
0434 isiXhosa South Africa
0435 isiZulu South Africa
0410 Italian Italy

0810 Italian Switzerland
0411 Japanese Japan

044b Kannada India

043f Kazakh Kazakhstan
0441 Kiswahili Kenya

0457 Konkani India

0412 Korean Korea

0440 Kyrgyz Kirghizstan
0426 Latvian Latvia

0427 Lithuanian Lithuania
046e Luxembourgish Luxembourg
042f Macedonian (FYROM) Macedonia, Former Yugoslav Republic of
043e Malay Malaysia
083e Malay Brunei Darussalam
043a Maltese Malta

0481 Maori New Zealand
047a Mapudungun Chile

044e Marathi India

047c Mohawk Mohawk

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

53 /626

LCID Language Location
0450 Mongolian (Cyrillic) Mongolia
0461 Nepali Nepal

0414 Norwegian (Bokmal) Norway
0814 Norwegian (Nynorsk) Norway
0463 Pashto Afghanistan
0429 Persian Iran

0415 Polish Poland
0416 Portuguese Brazil

0816 Portuguese Portugal
0446 Punjabi (Gurmukhi) India

046b Quechua Bolivia
086b Quechua Ecuador
Océb Quechua Peru

0418 Romanian Romania
0417 Romansh Switzerland
0419 Russian Russia
243b Sami, Inari Finland
143b Sami, Lule Sweden
103b Sami, Lule Norway
043b Sami, Northern Norway
083b Sami, Northern Sweden
0c3b Sami, Northern Finland
203b Sami, Skolt Finland
183b Sami, Southern Norway
1c3b Sami, Southern Sweden
044f Sanskrit India

Ocla Serbian (Cyrillic) Serbia
Ocla Serbian (Cyrillic) Montenegro
1cla Serbian (Cyrillic) Bosnia and Herzegovina
081a Serbian (Latin) Serbia
081a Serbian (Latin) Montenegro
181a Serbian (Latin) Bosnia and Herzegovina

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

54 /626

LCID Language Location
046¢ Sesotho sa Leboa South Africa
0432 Setswana South Africa
041b Slovak Slovakia
0424 Slovenian Slovenia
080a Spanish Mexico
100a Spanish Guatemala
140a Spanish Costa Rica
180a Spanish Panama
1cOa Spanish Dominican Republic
200a Spanish Venezuela
240a Spanish Colombia
280a Spanish Peru

2c0a Spanish Argentina
300a Spanish Ecuador
340a Spanish Chile

3c0a Spanish Paraguay
400a Spanish Bolivia
440a Spanish El Salvador
480a Spanish Honduras
4c0Oa Spanish Nicaragua
500a Spanish Commonwealth of Puerto Rico
380a Spanish Uruguay
0cOa Spanish (International Sort) Spain

040a Spanish (Traditional Sort) Spain

041d Swedish Sweden
081d Swedish Finland
045a Syriac Syria

0449 Tamil India

0444 Tatar Russia

044a Telugu India

O41le Thai Thailand
041f Turkish Turkey

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

55/ 626

LCID Language Location

0422 Ukrainian Ukraine

0420 Urdu Pakistan

0843 Uzbek (Cyrillic) Uzbekistan
0443 Uzbek (Latin) Uzbekistan
042a Vietnamese Vietnam

0452 Welsh United Kingdom

2.2.2 DS_REPL_NEIGHBORW_BLOB

The DS_REPL_NEIGHBORW_BLOB structure is a representation of a tuple from the repsFrom or repsTo

abstract attribute of an NC replica. This structure, retrieved using an LDAP search method, is an

alternative representation of DS_REPL_NEIGHBORW, retrieved using the IDL_DRSGetReplInfo RPC

method.

0({1(2|3|4(5|6|7(8|9|0|1(2|3|4|5|6|7(8|9]|0]1

oszNamingContext

oszSourceDsaDN

oszSourceDsaAddress

oszAsynclntersiteTransportDN

dwReplicaFlags

dwReserved

uuidNamingContextObjGuid (16 bytes)

uuidSourceDsaObjGuid (16 bytes)

uuidSourceDsalnvocationID (16 bytes)

[MS-ADTS-Diff] - v20170601
Active Directory Technical Specification

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

56 /626

uuidAsynclntersiteTransportObjGuid (16 bytes)

usnLastObjChangeSynced

usnAttributeFilter

ftimeLastSyncSuccess

ftimeLastSyncAttempt

dwLastSyncResult

cNumConsecutiveSyncFailures

data (variable)

oszNamingContext (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-
terminated Unicode string that contains the naming context (NC) to which this replication state
data pertains.

oszSourceDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-
terminated Unicode string that contains the distinguished name (DN) of the nTDSDSA object of
the source server to which this replication state data pertains. Each source server has different
associated neighbor data.

oszSourceDsaAddress (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a
null-terminated Unicode string that contains the transport-specific network address of the source
server—that is, a directory name service name for RPC/IP replication, or a Simple Mail Transfer
Protocol (SMTP) address for an SMTP replication.

oszAsynclIntersiteTransportDN (4 bytes): A 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the DN of the interSiteTransport object
(as specified in [MS-ADSC] section 2.65) that corresponds to the transport over which replication
is performed. This member contains NULL for RPC/IP replication.

57/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

dwReplicaFlags (4 bytes): A 32-bit bit field containing a set of flags that specify attributes and
options for the replication data. This can be zero or a combination of one or more of the following
flags presented in big-endian byte order.

=
N
w

X[X|IN[CIX[X[X|X|X|X|N|X|X|X|F|IFIX[X[X[X[|X|X|T|X|JAIID|S|W|X|X|X]|X
c|C S S|S W T|S|O
N N|P S S|S

X: Unused. Must be zero and ignored.
W (DS_REPL_NBR_WRITEABLE, 0x00000010): The NC replica is writable.

SOS (DS_REPL_NBR_SYNC_ON_STARTUP, 0x00000020): Replication of this NC from this
source is attempted when the destination server is booted.

DSS (DS_REPL_NBR_DO_SCHEDULED_SYNCS, 0x00000040): Perform replication on a
schedule.

AIT (DS_REPL_NBR_USE_ASYNC_INTERSITE_TRANSPORT, 0x00000080): Perform
replication indirectly through the Inter-Site Messaging Service. This flag is set only when
replicating over SMTP. This flag is not set when replicating over inter-site RPC/IP.

TWS (DS_REPL_NBR_TWO_WAY_SYNC, 0x00000200): When inbound replication is
complete, the destination server requests the source server to synchronize in the reverse
direction.

FSP (DS_REPL_NBR_FULL_SYNC_IN_PROGRESS, 0x00010000): The destination server is
performing a full synchronization from the source server.

FSN (DS_REPL_NBR_FULL_SYNC_NEXT_PACKET, 0x00020000): The last packet from the
source indicated a modification of an object that the destination server has not yet created. The
next packet to be requested instructs the source server to put all attributes of the modified
object into the packet.

NS (DS_REPL_NBR_NEVER_SYNCED, 0x00200000): A synchronization has never been
successfully completed from this source.

CC (DS_REPL_NBR_COMPRESS_CHANGES, 0x10000000): Changes received from this source
are to be compressed.

NCN (DS_REPL_NBR_NO_CHANGE_NOTIFICATIONS, 0x20000000): Applies to repsFrom
only. The domain controller (DC) storing this repsFrom is not configured to receive change
notifications from this source.

dwReserved (4 bytes): Reserved for future use.

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,
specifying the objectGUID of the NC that corresponds to oszNamingContext.

uuidSourceDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,
specifying the objectGUID of the nTDSDSA object that corresponds to oszSourceDsaDN.

uuidSourceDsalInvocationID (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,
specifying the invocationld used by the source server as of the last replication attempt.

58/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

uuidAsyncIntersiteTransportObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP]
section 2.3.4, specifying the objectGUID of the intersite transport object that corresponds to
oszAsynclntersiteTransportDN.

usnLastObjChangeSynced (8 bytes): An update sequence number (USN) value, as defined in
section 3.1.1.1.9, containing the USN of the last object update received.

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the
usnLastObjChangeSynced value at the end of the last complete, successful replication cycle, or 0 if
none.

ftimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time that the
last successful replication cycle was completed from this source. All members of this structure are
zero if the replication cycle has never been completed.

ftimeLastSyncAttempt (8 bytes): A FILETIME structure that contains the date and time of the last
replication attempt from this source. All members of this structure are zero if the replication has
never been attempted.

dwlLastSyncResult (4 bytes): A 32-bit unsigned integer specifying a Windows error code associated
with the last replication attempt from this source. Contains ERROR_SUCCESS if the last attempt
was successful or replication was not attempted.

cNumConsecutiveSyncFailures (4 bytes): A 32-bit integer specifying the number of failed
replication attempts that have been made from this source since the last successful replication
attempt or since the source was added as a neighbor, if no previous attempt succeeded.

data (variable): This field contains all the null-terminated strings that are pointed to by the offset
fields in the structure (oszNamingContext, oszSourceDsaDN, oszSourceDsaAddress,
oszAsynclntersiteTransportDN). The strings are packed into this field, and the offsets can be used
to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB

The DS_REPL_KCC_DSA_FAILUREW_BLOB structure is a representation of a tuple from the
kCCFailedConnections or kCCFailedLinks variables of a DC. This structure, retrieved using an LDAP
search method, is an alternative representation of DS_REPL_KCC_DSA_FAILUREW, retrieved using the
IDL_DRSGetReplInfo RPC method.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

oszDsaDN

uuidDsaObjGuid (16 bytes)

ftimeFirstFailure

59/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

cNumFailures

dwLastResult

data (variable)

oszDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-terminated
string that contains the DN of the nTDSDSA object of the source server.

uuidDsaObjGuid (16 bytes): A GUID structure, defined in [MS-DTYP] section 2.3.4, specifying the
objectGUID of the object represented by the oszDsaDN member.

ftimeFirstFailure (8 bytes): A FILETIME structure, the content of which depends on the requested
binary replication data.

Attribute requested Meaning

msDS- Contains the date and time that the first failure occurred when attempting to

ReplConnectionFailures establish a replica link to the source server.

msDS-ReplLinkFailures Contains the date and time that the first failure occurred when replicating
from the source server.

cNumFailures (4 bytes): A 32-bit unsigned integer specifying the number of consecutive failures
since the last successful replication.

dwlLastResult (4 bytes): A 32-bit unsigned integer specifying the error code associated with the
most recent failure, or ERROR_SUCCESS if no failures occurred.

data (variable): The data field contains the null-terminated string that contains the DN of the
nTDSDSA object of the source server.

All multibyte fields have little-endian byte ordering.

2.2.4 DS_REPL_OPW_BLOB

The DS_REPL_OPW_BLOB structure is a representation of a tuple from the replicationQueue variable
of a DC. This structure, retrieved using an LDAP search method, is an alternative representation of
DS_REPL_OPW, retrieved using the IDL_DRSGetReplInfo RPC method.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

ftimeEnqueued

ulSerialNumber

ulPriority

opType

60/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ulOptions

oszNamingContext

oszDsaDN

oszDsaAddress

uuidNamingContextObjGuid (16 bytes)

uuidDsaObjGuid (16 bytes)

data (variable)

ftimeEnqueued (8 bytes): A FILETIME structure that contains the date and time that this operation
was added to the queue.

ulSerialNumber (4 bytes): An unsigned integer specifying the identifier of the operation. The
counter used to assign this identifier is volatile; it is reset during startup of a DC. Therefore, these
identifiers are only unique between restarts of a DC.

ulPriority (4 bytes): An unsigned integer specifying the priority value of this operation. Tasks with a
higher priority value are executed first. The priority is calculated by the server based on the type
of operation and its parameters.

opType (4 bytes): Contains one of the following values that indicate the type of operation that this
structure represents.

Operation Value
DS_REPL_OP_TYPE_SYNC 0
DS_REPL_OP_TYPE_ADD 1
DS_REPL_OP_TYPE_DELETE 2
DS_REPL_OP_TYPE_MODIFY 3
DS_REPL_OP_TYPE_UPDATE_REFS 4

ulOptions (4 bytes): Zero or more bits from the Directory Replication Service (DRS) options defined
in [MS-DRSR] section 5.41, the interpretation of which depends on the OpType.

61/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

oszNamingContext (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure
to a null-terminated string that contains the DN of the NC associated with this operation (for
example, the NC to be synchronized for DS_REPL_OP_TYPE_SYNC).

oszDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a null-
terminated string that contains the DN of the nTDSDSA object of the remote server corresponding
to this operation. For example, the server from which to ask for changes for
DS_REPL_OP_TYPE_SYNC. This can be NULL.

oszDsaAddress (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a
null-terminated string that contains the transport-specific network address of the remote server
associated with this operation. For example, the DNS or SMTP address of the server from which to
ask for changes for DS_REPL_OP_TYPE_SYNC. This can be NULL.

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,
specifying the objectGUID of the NC identified by oszNamingContext.

uuidDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4, specifying
the objectGUID of the directory system agent object identified by oszDsaDN.

data (variable): This field contains all the null-terminated strings that are pointed to by the offset
fields in the structure (oszNamingContext, oszDsaDN, oszDsaAddress). The strings are
packed into this field and the offsets can be used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB

The DS_REPL_QUEUE_STATISTICSW_BLOB structure contains the statistics related to the
replicationQueue variable of a DC, returned by reading the msDS-
ReplQueueStatistics (section 3.1.1.3.2.30) rootDSE attribute.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2|3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

ftimeCurrentOpStarted

cNumPendingOps

ftimeOldestSync

ftimeOldestAdd

ftimeOldestMod

ftimeOldestDel

62 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ftimeOldestUpdRefs

ftimeCurrentOpStarted (8 bytes): A FILETIME structure that contains the date and time that the
currently running operation started.

cNumPendingOps (4 bytes): An unsigned integer specifying the number of currently pending
operations.

ftimeOldestSync (8 bytes): A FILETIME structure that contains the date and time of the oldest
synchronization operation.

ftimeOldestAdd (8 bytes): A FILETIME structure that contains the date and time of the oldest add
operation.

ftimeOldestMod (8 bytes): A FILETIME structure that contains the date and time of the oldest
modification operation.

ftimeOldestDel (8 bytes): A FILETIME structure that contains the date and time of the oldest delete
operation.

ftimeOldestUpdRefs (8 bytes): A FILETIME structure that contains the date and time of the oldest
reference update operation.

All multibyte fields have little-endian byte ordering.

2.2.6 DS_REPL_CURSOR_BLOB

The DS_REPL_CURSOR_BLOB is the packet representation of the ReplUpToDateVector type ([MS-
DRSR] section 5.166) of an NC replica. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_CURSOR_3W, retrieved using the IDL_DRSGetReplInfo RPC
method.

1 2
0({1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

w

uuidSourceDsalnvocationID (16 bytes)

usnAttributeFilter

fTimeLastSyncSuccess

oszSourceDsaDN

63/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

data (variable)

uuidSourceDsalInvocationID (16 bytes): A GUID structure, defined in [MS-DTYP] section 2.3.4,
specifying the invocationld of the originating server to which the usnAttributeFilter corresponds.

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the maximum
USN to which the destination server can indicate that it has recorded all changes originated by the
given server at USNs less than or equal to this USN. This is used to filter changes at replication
source servers that the destination server has already applied.

fTimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time of the last
successful synchronization operation.

oszSourceDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to
a null-terminated Unicode string. The string contains the distinguished name of the directory
service agent (DSA) that corresponds to the source server to which this replication state data
applies.

data (variable): This field contains the null-terminated string pointed to by the offset field in the
structure (oszSourceDsaDN). The offset can be used to determine the start of the string.

All multibyte fields have little-endian byte ordering.

2.2.7 DS_REPL_ATTR_META_DATA_BLOB

The DS_REPL_ATTR_META_DATA_BLOB packet is a representation of a stamp variable (of type
AttributeStamp) of an attribute. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_ATTR_META_DATA_2, retrieved using the IDL_DRSGetReplInfo
RPC method.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

oszAttributeName

dwVersion

ftimeLastOriginatingChange

uuidLastOriginatingDsalnvocationID (16 bytes)

usnOriginatingChange

64 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

usnLocalChange

oszLastOriginatingDsaDN

data (variable)

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure
to a null-terminated Unicode string that contains the LDAP display name of the attribute
corresponding to this metadata.

dwVersion (4 bytes): Contains the dwVersion of this attribute's AttributeStamp, as specified in
section 3.1.1.1.9.

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this attribute's
AttributeStamp, as specified in section 3.1.1.1.9.

uuidLastOriginatingDsalInvocationID (16 bytes): Contains the uuidOriginating of this attribute's
AttributeStamp, as specified in section 3.1.1.1.9.

usnOriginatingChange (8 bytes): Contains the usnOriginating of this attribute's AttributeStamp, as
specified in section 3.1.1.1.9.

usnLocalChange (8 bytes): A USN value, defined in section 3.1.1.1.9, specifying the USN on the
destination server (the server from which the metadata information is retrieved) at which the last
change to this attribute was applied. This value typically is different on all servers.

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object of the
server that originated the last replication.

data (variable): This field contains all the null-terminated strings that are pointed to by the offset
fields in the structure (oszAttributeName, oszLastOriginatingDsaDN). The strings are packed into
this field, and the offsets can be used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.8 DS_REPL_VALUE_META_DATA_BLOB

The DS_REPL_VALUE_META_DATA_BLOB packet is a representation of a stamp variable (of type
LinkValueStamp) of a link value. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_VALUE_META_DATA_2, retrieved using the
IDL_DRSGetReplInfo RPC method.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

oszAttributeName

0szObjectDn

cbData

65/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

pbData

ftimeDeleted

ftimeCreated

dwVersion

ftimeLastOriginatingChange

uuidLastOriginatingDsalnvocationID (16 bytes)

usnOriginatingChange

usnLocalChange

oszLastOriginatingDsaDN

data (variable)

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure
to a null-terminated Unicode string that contains the LDAP display name of the attribute
corresponding to this metadata.

oszObjectDn (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a
null-terminated Unicode string that contains the DN of the object that this attribute belongs to.

cbData (4 bytes): Contains the number of bytes in the pbData array.

pbData (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a buffer
that contains the attribute replication metadata. The cbData member contains the length, in
bytes, of this buffer.

ftimeDeleted (8 bytes): Contains the timeDeleted of this link value's LinkValueStamp, as specified
in section 3.1.1.1.9.

66 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ftimeCreated (8 bytes): Contains the timeCreated of this link value's LinkValueStamp, as specified
in section 3.1.1.1.9.

dwVersion (4 bytes): Contains the dwVersion of this link value's LinkValueStamp, as specified in
section 3.1.1.1.9.

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this link value's
LinkValueStamp, as specified in section 3.1.1.1.9.

uuidLastOriginatingDsalInvocationID (16 bytes): Contains the uvuidOriginating of this link value's
LinkValueStamp, as specified in section 3.1.1.1.9.

usnOriginatingChange (8 bytes): Contains the usnOriginating of this link value's LinkValueStamp,
as specified in section 3.1.1.1.9.

usnLocalChange (8 bytes): Specifies the USN, as found on the server from which the metadata
information is being retrieved, at which the last change to this attribute was applied. This value is
typically different on all servers.

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object of the
server that originated the last replication.

data (variable): This field contains all the null-terminated strings that are pointed to by the offset
fields in the structure (oszAttributeName, oszObjectDn, oszLastOriginatingDsaDN) and the buffer
pointed to by pbData. The strings and buffers are packed into this field (aligned at 32-bit
boundaries), and the offsets can be used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.9 Search Flags

The following table defines the valid search flags used on attributes, as specified in section 3.1.1.2.3.
The flags are presented in big-endian byte order.

-
N
w

X: Unused. Must be zero and ignored.
IX (FATTINDEX, 0x00000001): Specifies a hint to the DC to create an index for the attribute.

PI (fPDNTATTINDEX, 0x00000002): Specifies a hint to the DC to create an index for the container
and the attribute.

AR(fANR, 0x00000004): Specifies that the attribute is a member of the ambiguous name resolution
(ANR) set.

PR (fPRESERVEONDELETE, 0x00000008): Specifies that the attribute MUST be preserved on
objects after deletion of the object (that is, when the object is transformed to a tombstone,
deleted-object, or recycled-object). This flag is ignored on link attributes, objectCategory, and
sAMAccountType.

CP (fCOPY, 0x00000010): Specifies a hint to LDAP clients that the attribute is intended to be copied
when copying the object. This flag is not interpreted by the server.

67/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

TP (fTUPLEINDEX, 0x00000020): Specifies a hint for the DC to create a tuple index for the
attribute. This will affect the performance of searches where the wildcard appears at the front of
the search string.

ST (fSUBTREEATTINDEX, 0x00000040): Specifies a hint for the DC to create subtree index for a
Virtual List View (VLV) search.

CF (fCONFIDENTIAL, 0x00000080): Specifies that the attribute is confidential. An extended access
check (section 3.1.1.4.4) is required.

NV (fNEVERVALUEAUDIT, 0x00000100): Specifies that auditing of changes to individual values
contained in this attribute MUST NOT be performed. Auditing is outside of the state model.

RO (fRODCFilteredAttribute, 0x00000200): Specifies that the attribute is a member of the filtered
attribute set.

XL (fEXTENDEDLINKTRACKING, 0x00000400): Specifies a hint to the DC to perform additional
implementation-specific, nonvisible tracking of link values. The behavior of this hint is outside the
state model.

BO (fBASEONLY, 0x00000800): Specifies that the attribute is not to be returned by search
operations that are not scoped to a single object. Read operations that would otherwise return an
attribute that has this search flag set instead fail with operationsError /
ERROR_DS_NON_BASE_SEARCH.

SE (fPARTITIONSECRET, 0x00001000): Specifies that the attribute is a partition secret. An
extended access check is required.

Flags that specify "hints" only direct the server to create certain indices that affect the system
performance. The effects of these flags are outside the state model. Implementations are permitted to
ignore these flags.

2.2.10 System Flags

The following table defines the valid system flags used on directory objects. The flags are presented in
big-endian byte order.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

DIA|A|A|D|ID|ID[X[X[X[X|X|X[|X[|X|X|X|X|X|X|X|X|X|X|X|X|R|{B|O|C|P|N
DIR|IM|L|R|M|E P

X: Unused. Must be zero and ignored.

NR (FLAG_ATTR_NOT_REPLICATED or FLAG_CR_NTDS_NC, 0x00000001): When used on an
attributeSchema object, it specifies that this attribute is not replicated. If it is used on a crossRef
object, it specifies that the NC that the crossRef is for is an Active Directory NC.

PS (FLAG_ATTR_REQ_PARTIAL_SET_MEMBER or FLAG_CR_NTDS_DOMAIN, 0x00000002):
When used on an attributeSchema object, it specifies that the attribute is a member of a partial
attribute set (PAS). If used on a crossRef object, it specifies that the NC is a domain NC.

CS (FLAG_ATTR_IS_CONSTRUCTED or FLAG_CR_NTDS_NOT_GC_REPLICATED,
0x00000004): When used on an attributeSchema object, this flag specifies that the attribute is a
constructed attribute. If used on a crossRef object, it specifies that the NC is not to be replicated to
GCs.

68/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

OP (FLAG_ATTR_IS_OPERATIONAL, 0x00000008): Only used on an attributeSchema object. It
specifies that the attribute is an operational attribute.

BS (FLAG_SCHEMA_BASE_OBJECT, 0x00000010): Only used on attributeSchema and
classSchema objects. It specifies that this attribute or class is part of the base schema.
Modifications to base schema objects are specially restricted.

RD (FLAG_ATTR_IS_RDN, 0x00000020): Only used on an attributeSchema object. It specifies
that this attribute can be used as an RDN attribute.

DE (FLAG_DISALLOW_MOVE_ON_DELETE, 0x02000000): Specifies that the object does not
move to the Deleted Objects container when the object is deleted.

DM (FLAG_DOMAIN_DISALLOW_MOVE, 0x04000000): Specifies that if the object is in a domain
NC, the object cannot be moved.

DR (FLAG_DOMAIN_DISALLOW_RENAME, 0x08000000): Specifies that if the object is in a
domain NC, the object cannot be renamed.

AL (FLAG_CONFIG_ALLOW_LIMITED_MOVE, 0x10000000): Specifies that if the object is in the
config NC, the object can be moved, with restrictions.

AM (FLAG_CONFIG_ALLOW_MOVE, 0x20000000): Specifies that if the object is in the config NC,
the object can be moved.

AR (FLAG_CONFIG_ALLOW_RENAME, 0x40000000): Specifies that if the object is in the config
NC, the object can be renamed.

DD (FLAG_DISALLOW_DELETE, 0x80000000): Specifies that the object cannot be deleted.

2.2.11 schemaFlagsEx Flags

The following table defines the valid schemaFlagsEx flags that are used on attributes, as specified in
section 3.1.1.2.3. The flags are presented in big-endian byte order.

—
N
w

X: Unused. MUST be zero and ignored.

CR (FLAG_ATTR_IS_CRITICAL, 0x00000001): Specifies that the attribute is not a member of the
filtered attribute set even if the fRODCFilteredAttribute flag is set. For more information, see
sections 3.1.1.2.3 and 3.1.1.2.3.5.

2.2.12 Group Type Flags

Constants for defining group type. These constants define the values that are used in the groupType
attribute.

Symbolic name Value
GROUP_TYPE_BUILTIN_LOCAL_GROUP 0x00000001
GROUP_TYPE_ACCOUNT_GROUP 0x00000002

69/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Symbolic name Value

GROUP_TYPE_RESOURCE_GROUP 0x00000004
GROUP_TYPE_UNIVERSAL_GROUP 0x00000008
GROUP_TYPE_APP_BASIC_GROUP 0x00000010
GROUP_TYPE_APP_QUERY_GROUP 0x00000020
GROUP_TYPE_SECURITY_ENABLED 0x80000000

GROUP_TYPE_BUILTIN_LOCAL_GROUP: Specifies a group that is created by the system.
GROUP_TYPE_ACCOUNT_GROUP: Specifies a global group.
GROUP_TYPE_RESOURCE_GROUP: Specifies a domain local group.
GROUP_TYPE_UNIVERSAL_GROUP: Specifies a universal group.

GROUP_TYPE_APP_BASIC_GROUP: Groups of this type are not used by Active Directory. This
constant is included in this document because the value of this constant is used by Active
Directory in processing the groupType attribute (see section 3.1.1.5.4.2.2).

GROUP_TYPE_APP_QUERY_GROUP: Groups of this type are not used by Active Directory. This
constant is included in this document because the value of this constant is used by Active
Directory in processing the groupType attribute.

GROUP_TYPE_SECURITY_ENABLED: Specifies a security-enabled group.

The flag GROUP_TYPE_BUILTIN_LOCAL_GROUP is reserved for use by the system, and can be set in
combination with other flags on system-created Builtin objects (see section 6.1.1.4.12). The flag
GROUP_TYPE_BUILTIN_LOCAL_GROUP cannot be set by clients.

Otherwise, the flags GROUP_TYPE_ACCOUNT_GROUP, GROUP_TYPE_RESOURCE_GROUP,
GROUP_TYPE_UNIVERSAL_GROUP, GROUP_TYPE_APP_BASIC_GROUP, and
GROUP_TYPE_APP_QUERY_GROUP are mutually exclusive, and only one value must be set. The flag
GROUP_TYPE_SECURITY_ENABLED can be combined using a bitwise OR with flags
GROUP_TYPE_BUILTIN_LOCAL_GROUP, GROUP_TYPE_ACCOUNT_GROUP,
GROUP_TYPE_RESOURCE_GROUP, and GROUP_TYPE_UNIVERSAL_GROUP.

2.2.13 Group Security Flags

Constants for defining group security attributes.

Symbolic name Value
SE_GROUP_OWNER 0x00000008
SE_GROUP_USE_FOR_DENY_ONLY 0x00000010

SE_GROUP_OWNER: Specifies that a particular user is the owner of the group.

SE_GROUP_USE_FOR_DENY_ONLY: Specifies that the group is used only for denial of access.

2.2.14 Security Privilege Flags

Constants for defining security privilege.

70/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Symbolic name Value

SE_SECURITY_PRIVILEGE 0x00000008
SE_TAKE_OWNERSHIP_PRIVILEGE 0x00000009
SE_RESTORE_PRIVILEGE 0x00000012
SE_DEBUG_PRIVILEGE 0x00000014
SE_ENABLE_DELEGATION_PRIVILEGE 0x0000001B

SE_SECURITY_PRIVILEGE: Specifies the privilege to manage auditing and the security log.

SE_TAKE_OWNERSHIP_PRIVILEGE: Specifies the privilege to take ownership of objects.
Possession of this privilege overrides the DACL on an object and gives the possessor implicit
RIGHT_WRITE_OWNER access.

SE_RESTORE_PRIVILEGE: Specifies the privilege to restore objects.
SE_DEBUG_PRIVILEGE: Specifies the privilege to debug the system.

SE_ENABLE_DELEGATION_PRIVILEGE: Specifies the privilege to enable accounts to be trusted for

delegation.

2.2.15 Domain RID Values

Constants for defining domain relative identifiers (RIDs).

Symbolic name Value

DOMAIN_USER_RID_ADMIN 0x000001F4
DOMAIN_USER_RID_KRBTGT 0x000001F6
DOMAIN_GROUP_RID_ADMINS 0x00000200
DOMAIN_GROUP_RID_CONTROLLERS 0x00000204
DOMAIN_GROUP_RID_SCHEMA_ADMINS 0x00000206
DOMAIN_GROUP_RID_ENTERPRISE_ADMINS 0x00000207
DOMAIN_GROUP_RID_READONLY_CONTROLLERS 0x00000209
DOMAIN_ALIAS_RID_ADMINS 0x00000220
DOMAIN_ALIAS_RID_ACCOUNT_OPS 0x00000224
DOMAIN_ALIAS_RID_SYSTEM_OPS 0x00000225
DOMAIN_ALIAS_RID_PRINT_OPS 0x00000226
DOMAIN_ALIAS_RID_BACKUP_OPS 0x00000227
DOMAIN_ALIAS_RID_REPLICATOR 0x00000228

DOMAIN_USER_RID_ADMIN: The administrative user account in a domain.
DOMAIN_USER_RID_KRBTGT: The Kerberos ticket-granting ticket (TGT) account in a domain.

DOMAIN_GROUP_RID_ADMINS: The domain administrators' group.

71/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

DOMAIN_GROUP_RID_CONTROLLERS: The DCs' group. All DCs in the domain are members of the
group.

DOMAIN_GROUP_RID_SCHEMA_ADMINS: The schema administrators' group. Members of this
group can modify the Active Directory schema.

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS: The enterprise administrators' group. Members of
this group have full access to all domains in the Active Directory forest. Enterprise administrators
are responsible for forest-level operations, such as adding or removing new domains.

DOMAIN_GROUP_RID_READONLY_CONTROLLERS: The read-only domain controllers' group. All
read-only DCs in the domain are members of this group.

DOMAIN_ALIAS_RID_ADMINS: The administrators' group in the built-in domain.

DOMAIN_ALIAS_RID_ACCOUNT_OPS: A group that permits control over nonadministrator
accounts.

DOMAIN_ALIAS_RID_SYSTEM_OPS: A group that performs system administrative functions, not
including security functions. It establishes network shares, controls printers, unlocks workstations,
and performs other operations.

DOMAIN_ALIAS_RID_PRINT_OPS: A group that controls printers and print queues.

DOMAIN_ALIAS_RID_BACKUP_OPS: A group that is used for controlling assignment of file backup
and restoring user rights.

DOMAIN_ALIAS_RID_REPLICATOR: A group responsible for copying security databases to the
Windows NT operating system backup controllers.
2.2.16 userAccountControl Bits

Bit flags describing various qualities of a security account. The flags are presented in big-endian byte
order.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

N|T|P|ID|IDIN|[T|S|X|D|X|X|S|W|I|X|N|X
A|lA|E|R|K|D|D|R P T

n o

X: Unused. Must be zero and ignored.

D (ADS_UF_ACCOUNT_DISABLE, 0x00000002): Specifies that the account is not enabled for
authentication.

HR (ADS_UF_HOMEDIR_REQUIRED, 0x00000008): Specifies that the homeDirectory attribute is
required.

L (ADS_UF_LOCKOUT, 0x00000010): Specifies that the account is temporarily locked out.

NR (ADS_UF_PASSWD_NOTREQD, 0x00000020): Specifies that the password-length policy, as
specified in [MS-SAMR] section 3.1.1.8.1, does not apply to this user.

CC (ADS_UF_PASSWD_CANT_CHANGE, 0x00000040): Specifies that the user cannot change his
or her password.

ET (ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED, 0x00000080): Specifies that the
cleartext password is to be persisted.

72 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

N (ADS_UF_NORMAL_ACCOUNT, 0x00000200): Specifies that the account is the default account
type that represents a typical user.

ID (ADS_UF_INTERDOMAIN_TRUST_ACCOUNT, 0x00000800): Specifies that the account is for
a domain-to-domain trust.

WT (ADS_UF_WORKSTATION_TRUST_ACCOUNT, 0x00001000): Specifies that the account is a
computer account for a computer that is a member of this domain.

ST (ADS_UF_SERVER_TRUST_ACCOUNT, 0x00002000): Specifies that the account is a computer
account for a DC.

DP (ADS_UF_DONT_EXPIRE_PASSWD, 0x00010000): Specifies that the password does not
expire for the account.

SR (ADS_UF_SMARTCARD_REQUIRED, 0x00040000): Specifies that a smart card is required to
log in to the account.

TD (ADS_UF_TRUSTED_FOR_DELEGATION, 0x00080000): Used by the Kerberos protocol. This
bit indicates that the "OK as Delegate" ticket flag, as described in [RFC4120] section 2.8, MUST be
set.

ND (ADS_UF_NOT_DELEGATED, 0x00100000): Used by the Kerberos protocol. This bit indicates
that the ticket-granting tickets (TGTs) of this account and the service tickets obtained by this
account are not marked as forwardable or proxiable when the forwardable or proxiable ticket flags
are requested. For more information, see [RFC4120].

DK (ADS_UF_USE_DES_KEY_ONLY, 0x00200000): Used by the Kerberos protocol. This bit
indicates that only des-cbc-md5 or des-cbc-crc keys, as defined in [RFC3961], are used in the
Kerberos protocols for this account.

DR (ADS_UF_DONT_REQUIRE_PREAUTH, 0x00400000): Used by the Kerberos protocol. This bit
indicates that the account is not required to present valid preauthentication data, as described in
[RFC4120] section 7.5.2.

PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000): Specifies that the password age on the user
has exceeded the maximum password age policy.

TA (ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION, 0x01000000): Used by the
Kerberos protocol. When set, this bit indicates that the account (when running as a service) obtains
an S4U2self service ticket (as specified in [MS-SFU]) with the forwardable flag set. If this bit is
cleared, the forwardable flag is not set in the S4U2self service ticket.

NA (ADS_UF_NO_AUTH_DATA_REQUIRED, 0x02000000): Used by the Kerberos protocol. This
bit indicates that when the Key Distribution Center (KDC) is issuing a service ticket for this account,
the Privilege Attribute Certificate (PAC) MUST NOT be included. For more information, see
[RFC4120].

PS (ADS_UF_PARTIAL_SECRETS_ACCOUNT, 0x04000000): Specifies that the account is a
computer account for a read-only domain controller (RODC). If this bit is set, the
ADS_UF_WORKSTATION_TRUST_ACCOUNT must also be set. This flag is only interpreted by a DC
whose DC functional level is DS_BEHAVIOR_WIN2008 or greater.

2.2.17 Optional Feature Values

Constants for defining behaviors of optional features.

73/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Symbolic name

Value

FOREST_OPTIONAL_FEATURE 0x00000001
DOMAIN_OPTIONAL_FEATURE 0x00000002
DISABLABLE_OPTIONAL_FEATURE 0x00000004
SERVER_OPTIONAL_FEATURE 0x00000008

FOREST_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is forest-wide.

DOMAIN_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is domain-wide.

DISABLABLE_OPTIONAL_FEATURE: Specifies that the optional feature can be disabled.

SERVER_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is server-wide.

For more information, see section 3.1.1.9.

2.2.18 Claims Wire Structures

This section defines the structures related to claims using Interface Definition Language (IDL) format.

The term marshal refers to converting these structures into the appropriate wire format.

The following figure illustrates the nesting of various larger claims structures for descriptive reference

purposes.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

74 /626

Figure 2: Nesting of claims structures

2.2.18.1

CLAIM_ID

CLAIMS_SET_METADATA

CLAIMS_SET

Array of CLAIMS_ARRAY

Array of CLAIM_ENTRY

Reserved for future use

Reserved for future use

The CLAIM_ID type is a null-terminated UTF-16 string used for typing claim IDs.

typedef [string] wchar t* CLAIM ID;
typedef [string] wchar t** PCLAIM ID;

2.2,18.2

CLAIM_TYPE

The CLAIM_TYPE enumeration enumerates various value types of a claim.

typedef
{

CLAIM
CLAIM
CLAIM
CLAIM
} CLAIM

enum CLAIM TYPE

TYPE INT64 = 1
TYPE UINT64 ,
TYPE_STRING ,
TYPE BOOLEAN = 6
TYPE,

r
2
3

*PCLAIM TYPE;

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

75/ 626

CLAIM_TYPE_INT64: The value type of the claim is LONG64.
CLAIM_TYPE_UINT64: The value type of the claim is ULONG64.

CLAIM_TYPE_STRING: The value type of the claim is a null-terminated string of Unicode
characters.

CLAIM_TYPE_BOOLEAN: The value type of the claim is ULONG64; a value is set to 1 to specify
TRUE, or 0 to specify FALSE.

2.2.18.3 CLAIMS_SOURCE_TYPE

The CLAIMS_SOURCE_TYPE enumeration specifies the source of the claims.

typedef enum _CLAIMS SOURCE_TYPE
{
CLAIMS SOURCE_TYPE AD = 1,
CLAIMS SOURCE TYPE CERTIFICATE
} CLAIMS SOURCE TYPE;

Note No semantics are to be attached to these values other than those specified in section 3.

2.2.18.4 CLAIMS_COMPRESSION_FORMAT

The CLAIMS_COMPRESSION_FORMAT enumeration specifies the source of the compression algorithm
that is used for encoding claims in a CLAIMS_SET_METADATA structure.

typedef enum _CLAIMS COMPRESSION_FORMAT

{
COMPRESSION FORMAT NONE = 0,
COMPRESSION FORMAT LZNT1 = 2,
COMPRESSION FORMAT XPRESS = 3,
COMPRESSION FORMAT XPRESS HUFF = 4

} CLAIMS_COMPRESSION_ FORMAT;

COMPRESSION_FORMAT_NONE: No compression.

COMPRESSION_FORMAT_LZNT1: The LZNT1 compression algorithm is used. For more
information, see [MS-XCA] section 2.5.

COMPRESSION_FORMAT_XPRESS: The Xpress LZ77 compression algorithm is used. For more
information, see [MS-XCA] sections 2.3 and 2.4.

COMPRESSION_FORMAT_XPRESS_HUFF: The Xpress LZ77+Huffman compression algorithm is
used. For more information, see [MS-XCA] sections 2.1 and 2.2.

2.2.18.5 CLAIM_ENTRY

The CLAIM_ENTRY structure specifies a single claim.

typedef struct CLAIM ENTRY {
CLAIM ID Id;
CLAIM TYPE Type;
[switch is(Type), switch type (CLAIM TYPE)]
union {
[case (CLAIM TYPE INT64)]
struct {
[range (1, 10*1024%1024)] ULONG ValueCount;

76 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[size_is(ValueCount)] LONG64* Inté64Values;
}i
[case (CLAIM TYPE UINT64)]
struct {
[range (1, 10*1024*1024)] ULONG ValueCount;
[size is(ValueCount)] ULONG64* Uint64Values;
}i
[case (CLAIM TYPE STRING)]
struct {
[range (1, 10*1024*1024)] ULONG ValueCount;
[size is(ValueCount), string] LPWSTR* StringValues;
bi
[case(CLAIMﬁTYPEiBOOLEAN)]
struct {
[range (1, 10*1024*1024)] ULONG ValueCount;
[size_is(ValueCount)] ULONG64* BooleanValues;
bi
[default] ;
} Values;
} CLAIM ENTRY,
*PCLAIM ENTRY;

Id: Specifies the claim identifier.

Type: Specifies the type of the data in the Values union. Refer to section 2.2.18.2 for allowed values
and their interpretation.

Values: A union of arrays of the various types of claim values that a CLAIM_ENTRY can contain. The
actual type of the elements is specified by the Type member.

ValueCount: Specifies the number of array elements in the Int64Values member.
Int64Values: An array of LONG64 values of the claim. The array has ValueCount elements.
ValueCount: Specifies the number of array elements in the Uint64Values member.
Uint64Values: An array of ULONG64 values of the claim. The array has ValueCount elements.
ValueCount: Specifies the number of array elements in the StringValues member.

StringValues: An array of null-terminated, Unicode string values of the claim. The array has
ValueCount elements.

ValueCount: Specifies the number of array elements in the BooleanValues member.

BooleanValues: An array of ULONG64 values of the claim. The array has ValueCount elements.

2.2.18.6 CLAIMS_ARRAY

The CLAIMS_ARRAY structure specifies an array of CLAIM_ENTRY structures and the associated claims
source type.

typedef struct CLAIMS ARRAY {
CLAIMS SOURCE TYPE usClaimsSourceType;
ULONG ulClaimsCount;
[size is(ulClaimsCount)] PCLAIM ENTRY ClaimEntries;
} CLAIMS ARRAY,
*PCLAIMS ARRAY;

usClaimsSourceType: Specifies the source of the claims.

77 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ulClaimsCount: Specifies the number of CLAIM_ENTRY elements in the ClaimEntries member of
this structure.

ClaimEntries: An array that contains ulClaimsCount number of CLAIM_ENTRY elements.

2.2.18.7 CLAIMS_SET
The CLAIMS_SET structure specifies CLAIMS_ARRAY structures, each from a different claims source.

typedef struct CLAIMS SET {
ULONG ulClaimsArrayCount;
[size is(ulClaimsArrayCount)] PCLAIMS ARRAY ClaimsArrays;
USHORT usReservedType;
ULONG ulReservedFieldSize;
[size is(ulReservedFieldSize)] BYTE* ReservedField;
} CLAIMS_SET,
*PCLAIMS SET;

ulClaimsArrayCount: Specifies the number of CLAIMS_ARRAY elements that are in the
ClaimsArrays member. This field MUST be greater than or equal to 1.

ClaimsArrays: An array containing ulClaimsArrayCount number of CLAIMS_ARRAY structures.
usReservedType: This field is not used.
ulReservedFieldSize: Specifies the length, in bytes, of the ReservedField member.

ReservedField: A byte array containing ulReservedFieldSize bytes.

2.2,18.8 CLAIMS_SET_METADATA

The CLAIMS_SET_METADATA structure specifies an encoded CLAIMS_SET structure with information
about the encoding.

typedef struct CLAIMS SET METADATA {
ULONG ulClaimsSetSize;
[size_is(ulClaimsSetSize)] BYTE* ClaimsSet;
CLAIMS COMPRESSION_ FORMAT usCompressionFormat;
ULONG ulUncompressedClaimsSetSize;
USHORT usReservedType;
ULONG ulReservedFieldSize;
[size_is(ulReservedFieldSize)] BYTE* ReservedField;
} CLAIMS SET METADATA,
*PCLAIMS SET METADATA;

ulClaimsSetSize: Contains the size, in bytes, of the ClaimsSet member.

ClaimsSet: A byte array of length ulClaimsSetSize bytes. This field contains a CLAIMS_SET
structure that is encoded as described in section 3.1.1.11.2.5.

usCompressionFormat: Specifies the compression algorithm used for encoding a CLAIMS_SET
structure, as specified in section 3.1.1.11.2.5.

ulUncompressedClaimsSetSize: Specifies the size of the partially encoded CLAIMS_SET structure
before compression, the fully encoded version of which is stored in the ClaimsSet member.

usReservedType: The server MUST set this member to 0. The client MUST ignore this member.

ulReservedFieldSize: Specifies the size, in bytes, of the ReservedField member.

78/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ReservedField: A byte array containing ulReservedFieldSize elements.

2.2.18.9 CLAIMS_BLOB

The CLAIMS_BLOB structure is generated from a CLAIMS_SET structure, as specified in section
3.1.1.11.2.5.

typedef struct CLAIMS BLOB {
ULONG ulBlobSizeinBytes;
[size is(ulBlobSizeinBytes)] BYTE* EncodedBlob;
} CLAIMS BLOB,
*PCLAIMS BLOB;

ulBlobSizeinBytes: The size of the EncodedBlob member, in bytes.

EncodedBlob: A byte array of length ulBlobSizeinBytes bytes that contains an encoded
CLAIMS_SET_METADATA structure.

2.2.19 MSDS-MANAGEDPASSWORD_BLOB

The MSDS-MANAGEDPASSWORD_BLOB structure is a representation of a group-managed service
account's password information. This structure is returned as the msDS-
ManagedPassword (section 3.1.1.4.5.39) constructed attribute.

0123456789(1)123456789512345678981
Version Reserved
Length
CurrentPasswordOffset PreviousPasswordOffset
QueryPasswordIntervalOffset UnchangedPasswordIntervalOffset

CurrentPassword (variable)

PreviousPassword (optional) (variable)

AlignmentPadding (variable)

QueryPasswordInterval

UnchangedPasswordInterval

79/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Version (2 bytes): A 16-bit unsigned integer that defines the version of the msDS-ManagedPassword
binary large object (BLOB). The Version field MUST be set to 0x0001.

Reserved (2 bytes): A 16-bit unsigned integer that MUST be set to 0x0000.

Length (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the msDS-
ManagedPassword BLOB.

CurrentPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this structure to
the CurrentPassword field. The CurrentPasswordOffset field MUST NOT be set to 0x0000.

PreviousPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this structure to
the PreviousPassword field. If this field is set to 0x0000, then the account has no previous
password.

QueryPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this
structure to the QueryPasswordInterval field.

UnchangedPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this
structure to the UnchangedPasswordInterval field.

CurrentPassword (variable): A null-terminated WCHAR string containing the cleartext current
password for the account.

PreviousPassword (optional) (variable): A null-terminated WCHAR string containing the cleartext
previous password for the account. If PreviousPasswordOffset is 0x0000, then this field MUST
be absent.

AlignmentPadding (variable): A padding field used to align the QueryPasswordInterval field to a
64-bit boundary. This field is ignored by the receiver. This field SHOULD set to zero and MUST be
ignored on receipt.

QueryPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of time, in units
of 10~ (-7) seconds, after which the receiver must requery the password. The
QueryPasswordInterval field MUST be placed on a 64-bit boundary.

UnchangedPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of time, in
units of 10"~ (-7) seconds, before which password queries will always return this password value.
The UnchangedPasswordInterval field MUST be placed on a 64-bit boundary.

2.2.20 Key Credential Link Structures

2.2.20.1 Key Credential Link Constants

The KEYCREDENTIALLINK_BLOB structure (section 2.2.20.2) contains a Version field that can be set
to one of the following values.

Symbolic name Value

KEY_CREDENTIAL_LINK_VERSION_2 0x00000200

The KEYCREDENTIALLINK_ENTRY of type KeyUsage (section 2.2.20.5) can have one of the following
values.

80/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Symbolic name Value

KEY_USAGE_NGC 0x01

The KEYCREDENTIALLINK_ENTRY of type KeySource can have one of the following values.

Symbolic name Value

KEY_SOURCE_AD 0x00

2.2.20.2 KEYCREDENTIALLINK_BLOB

The KEYCREDENTIALLINK_BLOB structure is a representation of a single credential stored as a series
of values. This structure is stored as the binary portion of the msDS-KeyCredentialLink DN-Binary
attribute. The structure contains a Version field followed by an array of KEYCREDENTIALLINK_ENTRY
structures. The KEYCREDENTIALLINK_ENTRY structures must be sorted by their Identifier fields in
increasing order.

0/1/2(3|4|5/6|7|8/(9/0|1{2/3|4|5/6(7|8|9/0|1/2({3|4|5/6(7|8|9(0|1

Version

First KEYCREDENTIALLINK_ENTRY (variable)

Second KEYCREDENTIALLINK_ENTRY (variable)

Nth KEYCREDENTIALLINK_ENTRY (variable)

Version (4 bytes): A 32-bit unsigned integer that defines the version of the
KEYCREDENTIALLINK_BLOB. The Version field MUST be set to
KEY_CREDENTIAL_LINK_VERSION_2.

KEYCREDENTIALLINK_ENTRY (variable): A sequence of KEYCREDENTIALLINK_ENTRY structures
(section 2.2.20.3) that describe various aspects of a single credential.

2.2.20.3 KEYCREDENTIALLINK_ENTRY

0/1(2(3|4|5/6|7|8(9/0|1/{2/{3|4|5(/6(7|8|/9(/0|1/2({3|4|5/6(7|8|9(0|1

Length Identifier Value (variable)

81 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Length (2 bytes): A 16-bit unsigned

integer that specifies the length of the Value field.

Identifier (1 byte): An 8-bit unsigned integer that specifies the type of data that is stored in the

Value field.

Value (variable): A series of bytes whose size and meaning are defined by the Identifier field.

The available identifiers and the semantics of the related data are defined in section 2.2.20.5.

2.2.20.4 CUSTOM_KEY_INFORMATION

0/1/(2(3|4|5(6|7|8/9/0|12

3\4/5/6/7/8/9|/0/1/2|3|4/5/6|/7(8(9|0/|1

Version Flags

Reserved (variable)

Version (1 byte): An 8-bit unsigned integer that must be set to 1.

Flags (1 byte): An 8-bit unsigned integer that specifies zero or more of the following bit-flag values:

Name and Value Description
CUSTOMKEYINFO_FLAGS_ATTESTATION Reserved for future use.

0x01

CUSTOMKEYINFO_FLAGS_MFA_NOT_USED During creation of this key, the requesting client
0x02 authenticated using only a single credential.

Reserved (variable): Reserved for future use.

2.2.20.5 KEYCREDENTIALLINK_ENTRY Identifiers

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Length of data in the | Description of the data stored in the
Identifier value Value field, in bytes Value field
KeyID (0x01) 32 A SHA256 hash of the KeyMaterial field
KeyHash (0x02) 32 A SHA256 hash of all fields following this

field.
KeyMaterial (0x03) Variable Key material of the credential
KeyUsage (0x04) 1 Must be set to KEY_USAGE_NGC
KeySource (0x05) 1 Must be set to KEY_SOURCE_AD
Deviceld (0x06) 16 Must contain all zeros
82 /626

Length of data in the | Description of the data stored in the
Identifier value Value field, in bytes Value field

CustomKeyInformation (0x07) 2 Must contain a
CUSTOM_KEY_INFORMATION structure.

KeyApproximateLastLogonTimeStamp 8 The approximate time this key was last
(0x08) used, in FILETIME format.
KeyCreationTime (0x09) 8 The approximate time this key was created,

in FILETIME format.

All keys MUST contain KeyID and KeyMaterial. Keys SHOULD contain KeyHash, KeyUsage,
KeyApproximatelLastLogonTimeStamp and KeyCreationTime.

2.2.21 Service Principal Name

The name a client uses to identify a service for mutual authentication. For more information, see
[RFC1964] section 2.1.1.

A service principal name (SPN) is a string with the following format:

serviceclass "/" hostname [":"port | ":"instancename] ["/" servicename]

An SPN consists of either two parts or three parts, each separated by a forward slash ("/"). The first
part is the service class, the second part is the host name, and the third part (if present) is the service
name. The host name part can optionally be suffixed with either a ":port" component or an
":instancename" component. A port component is distinguished from an instancename component by
being entirely composed of numeric digits.

For example, "ldap/dc-01.fabrikam.com/fabrikam.com" is a three-part SPN where "ldap" is the service
class name, "dc-01.fabrikam.com" is the host name, and "fabrikam.com" is the service name.

See Mutual Authentication (section 5.1.1.4) for an example of how three-part SPNs are used. See
[SPNNAMES] for more information about SPN format and composing a unique SPN.

83 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Details

The following sections specify details of the abstract data model and directory operations for Active
Directory.

When an LDAP operation results in an error, the error is expressed in this document in the form:
= [DAP error /| Extended error code
Where the Extended error code is either a Windows error code or the literal string "<unrestricted>".

The LDAP error is specified in the resultCode field of an LDAP response. See [RFC2251] section
4.1.10 for the specification of resultCode in an LDAP response. See section 3.1.1.3.1.9 for the
specification of Extended error codes in an LDAP response.

Note This document contains tables that specify the capabilities of various Windows Server operating
system or ADAM versions. The table columns are indexed, as appropriate, using the following key:

Column index Product version

A Windows 2000 operating system

B Windows 2000 operating system Service Pack 1 (SP1)

C Windows 2000 Server operating system Service Pack 3 (SP3)

D Windows Server 2003 operating system

E Windows Server 2003 operating system with Service Pack 1
(SP1)

F Windows Server 2003 operating system with Service Pack 3
(SP3)

G Active Directory Application Mode (ADAM)

H ADAM RTW

I ADAM SP1

] Windows Server 2008 operating system

K Windows Server 2008 AD DS

L Windows Server 2008 AD LDS

M Windows Server 2008 R2 operating system

N Windows Server 2008 R2 AD DS

P Windows Server 2008 R2 AD LDS

R Windows Server 2012 operating system

S Windows Server 2012 AD DS

T Windows Server 2012 AD LDS

U Windows Server 2012 R2 operating system

\Y Windows Server 2012 R2 AD DS

w Windows Server 2012 R2 AD LDS

84 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Column index Product version
X Windows Server 2016 operating system
Y Windows Server 2016 AD DS
4 Windows Server 2016 AD LDS
ActiveD EE;EG ’7;9 tweight Birectory-Services {(ABLBS)fo

3.1 Common Details

3.1.1 Abstract Data Model

Sections 3.1.1.1 and 3.1.1.2 describe a conceptual model of possible data organization that an
implementation maintains to participate in this protocol. The described organization is provided to
facilitate the explanation of how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that
described in this document.

3.1.1.1 State Model

3.1.1.1.1 Scope

The specification of all Active Directory protocols is based on a definition, shared by all Active
Directory protocols, of the state of a server running Active Directory that is implied by the protocols.
Call this the "state model" of Active Directory.

The Active Directory state model is divided into two categories:

1.

Certain state that is represented as objects and attributes within Active Directory is promoted
directly into the state model. State within Active Directory becomes part of the state model if it
satisfies one of the following conditions:

1. Itis replicated.

2. Itis nonreplicated, but a protocol exists in the Windows Server operating system protocol
documentation set whose behavior is dependent upon the state.

The representation of nonreplicated state that is only accessed by a process running on the same
server, that is itself implementing Active Directory, is private to the implementation. Therefore,
such attributes are not promoted directly into the state model. It might still be required for this
state to be modeled as described in category 2 later in this section.

Excluded from the second condition above is all generic access by browsing tools such as Idp.exe
that can access any attribute of any object in the directory. If Idp.exe or a similar tool covered by
a Windows license can display or even modify a nonreplicated attribute of an object using only the
attribute's syntax as defined by the schema, that does not make the attribute part of the state
model. If Idp.exe or a similar tool covered by a Windows license accesses a nonreplicated attribute
and decodes or encodes its value using information outside the attribute's syntax as defined by
the schema, that nonreplicated attribute is included in the state model under condition 1 (2)
above. For example, by using LDP, it is possible to look at a nonreplicated attribute using an
attribute's syntax of type String(Unicode). However, if the string stored in that attribute would be
an XML content defined by an external XSD, then if LDP had special knowledge of how to interpret

85 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

that XML, that nonreplicated attribute would be included in the state model under condition 1 (2)
above.

2. Other state, however represented within Active Directory, is "abstracted" in the state model. Such
state is included only as necessitated by the requirement that a licensee implementation of
Windows Server protocols be able to receive messages and respond in the same manner as a
Windows Server.

For example, certain values sent by the Active Directory replication protocol [MS-DRSR] are
accompanied by metadata. If the replicated values are stored by the receiving system, it must
also store the metadata associated with the values. Otherwise, the receiving system will make
incorrect responses to subsequent replication requests. These incorrect responses will, in general,
prevent replication from converging. So this metadata must be included within the state model.
The specific way that this metadata is stored by Active Directory, and the algorithms that optimize
access to this metadata, are excluded from the state model.

The various indexes used by the Active Directory implementation to improve the performance of
directory search are another example of state within Active Directory. These indexes have no
effect, other than performance, on the protocol responses that Active Directory makes. Therefore,
these indexes are not included in the state model.

In this specification, the first category of state is modeled in a variant of LDAP information structures:
naming contexts, objects, attributes, and values. These structures are defined precisely in the
following sections. The set of replicated attributes is defined in [MS-ADA1], [MS-ADA2], and [MS-
ADA3]. The set of nonreplicated attributes covered under condition 1 (2) (described earlier in this
section) consists of the repsFrom and repsTo attributes documented in [MS-DRSR] sections 5.172 and
5.173.

Note Only the schema elements and instances of objects that are fundamental to Active Directory are
described in this specification. If a protocol defines its own schema objects or otherwise creates its
own objects in the directory, those objects are described in that protocol's specification. A summary of
schema elements defined by such other protocols is included in [MS-ADA1], [MS-ADA2], [MS-ADA3],
[MS-ADSC], and [MS-ADLS] as a convenience for the reader, but the documentation for the protocols
using those schema elements should be consulted for a complete description.

In this specification, the second category of state is modeled using standard mathematical concepts.
The concepts used and their associated notational conventions are described in the next section.

LDAP mandates very little about the behavior of a directory. Active Directory has many specific
behaviors that are observable through LDAP. The remainder of this section describes the most
pervasive of these behaviors. The remainder of the specification completes the discussion.

3.1.1.1.2 State Modeling Primitives and Notational Conventions

Attribute names are underlined in this document, as specified in section 1. If a variable o refers to an
object, and a is an attribute name, then ola denotes the value or values of attribute @ on object o. If
attribute a is not present on o, the value of ola is null.

The specification uses the LDAP display names of attributes and object classes when referring to
specific attributes and object classes. So if o refers to an object,

o!'name
denotes the name attribute of object o.

Some attributes in this specification are abstract in the sense of [MS-DRSR] section 3.3.3. Abstract
attribute names are also underlined, for example, repsFrom. rootDSE attribute names are also
underlined, for example, dumpDatabase, even though rootDSE attributes are not declared as
attributes in the schema.

86 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This specification models state in category 2 from the previous section using the standard
mathematical concepts of set, sequence, directed graph, and tuple.

The notation [first .. last] stands for the subrange first, first+1, ... , last. The type byte is the
subrange [0.. 255].

A sequence is an indexed collection of variables, which are called the elements of the sequence. The
elements all have the same type. The index type of a sequence is a zero-based subrange. S[i] denotes
the element of the sequence S corresponding to the value i of the index type. The number of elements
in a sequence S is denoted S.length. Therefore the index type of a sequence S is [0 .. S.length-1].

A fixed-length sequence can be constructed using the notation:
[first element, second element, ... , last element]

A tuple is a set of name-value pairs: [namej: value;, name;: valuey, ... , namen: value,] where namey
is an identifier and valuey is the value bound to that identifier. Tuple types are defined as in this
example:

= type DSName = [dn: DN, guid: GUID, sid: SID]

This defines DSName as a type of tuple with a DN-valued field dn, a GUID-valued field guid, and a
SID-valued field sid.

3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior

The LDAP data model is defined by [RFC3377]. Because the LDAP RFCs and their underlying ITU
specifications have been interpreted in a variety of ways, this section defines a more specific model
that correctly represents the behavior of Active Directory objects and attributes and describes the
correspondence between this model and the LDAP model.

The model is based on the general definitions of Replica, Object, and Attribute given in section 1, and
repeated here for convenience:

A replica is a variable containing a set of objects.
An attribute is an identifier for a set of values.

An object is set of attributes, each with its associated values. Two attributes of an object have special
significance:

= Identifying attribute. A designated single-valued attribute appears on every object; the value of
this attribute identifies the object. For the set of objects in a replica, the values of the identifying
attribute are distinct.

= Parent-identifying attribute. A designated single-valued attribute appears on every object; the
value of this attribute identifies the object's parent. That is, this attribute either contains the value
of the parent's identifying attribute, or contains a reserved value (NULL GUID, as described later
in this section) identifying no object. For the set of objects in a replica, the values of this parent-
identifying attribute define an oriented tree with objects as vertices and child-parent references as
directed edges, with the child as an edge's tail and the parent as an edge's head.

Note that an object is a value, not a variable; a replica is a variable. The process of adding, modifying,
or deleting an object in a replica replaces the entire value of the replica with a new value.

As the word replica suggests, it is often the case that two replicas contain "the same objects". In this

usage, objects in two replicas are considered "the same" if they have the same value of the identifying
attribute and if there is a process in place (replication) to converge both the set of objects in existence
and the values of the non-identifying attributes as originating updates take place in replicas. When the

87/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

members of a set of replicas are considered to be the same, it is common to say "an object" as a
shorthand referring to the set of corresponding objects in the replicas.

A child object is an object that is not the root of its oriented tree. The children of an object o is the set
of all objects whose parent is o.

The directory model used in this specification instantiates the preceding definitions as follows. The
identifying attribute is objectGUID and the parent-identifying attribute is parent, an abstract attribute.
Both attributes have GUID values. No actual object has objectGUID equal to the NULL GUID. The root
object has parent equal to the NULL GUID.

This specification uses the following s-expression representation ([LISP15]) of directory values,
attributes, objects, and replicas to provide a notation for examples:

= Represent an attribute and its values as a list (Attr Val; Val, ... Val,) where Attr is an atom whose
name is the attribute's name (its IDAPDisplayName, defined in section 3.1.1.2) and each Valx is a
value. The attribute comes first, but the ordering of values in the list is not significant, with the
exception of the values of the objectClass attribute explained later in this section. If a value is a
GUID, represent it as a 128-bit unsigned integer instead of using a representation that reflects the
internal structure of a GUID. To aid the readability of examples, the GUIDs used in examples are
unrealistically small integers.

= Represent an object as a list (Attrvali Attrval; ...Attrval,) where each Attrvali is the representation
of an attribute and its values; the ordering of this list is not significant.

= Represent a replica as a list (Obj;1 Obj ... Objn) where each Obji is the representation of an
object; the ordering of this list is not significant.

The following list

(

((objectGUID 5) (parent 0) (dc "microsoft"))

((objectGUID 2) (parent 5) (ou "NTDEV"))

((objectGUID 9) (parent 2) (cn "Peter Houston"))
)

is one representation of the value of some replica containing three objects. The object with
objectGUID = 5 is the root, the object with objectGUID = 2 is the only child of the root, and the object
with objectGUID = 9 is the only grandchild of the root. Each object in this example has one additional
attribute whose meaning has not yet been described.

Representing an attribute as its IDAPDisplayName makes examples readable. In the actual state
model, an attribute is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can be
mapped to and from an object representing an attribute. This mapping is specified in section
3.1.1.2.6.

Active Directory's objectGUID attribute has special behavior. A GUID that is generated by the DC is
assigned to the objectGUID attribute of an object during its creation (LDAP Add), and this attribute is
read-only thereafter. This is the first of many examples of an attribute with special behavior. Section
3.1.1.5 specifies the behavior of every attribute that has special behavior.

Active Directory includes the objectSid attribute on certain objects, called security principal objects.
The objectSid attribute has special behavior. A fresh SID is assigned to the objectSid attribute of an
object during its creation (LDAP Add), and this attribute is read-only thereafter, unless the object
moves to another NC (LDAP Modify DN; see section 3.1.1.5 for the specification of such moves). More
on objectSid generation can be found in section 3.1.1.1.5.

3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes

88 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A directory object is constrained by the directory's schema, which is a set of predicates. A few schema
concepts are mentioned here. A full understanding of these concepts is not required to understand this
section; additional information is available in the Glossary or in section 3.1.1.2.

When an object is created, it is assigned a most specific structural object class or an 88 object class,
plus the sequence of object classes that this class inherits from. The set of inherited classes always
includes the class top. The value of an object's objectClass attribute is the full set of object classes
(each identified by IDAPDisplayName) assigned to the object. The example in the previous section is
elaborated in the following list.

(objectGUID 5) (parent 0) (dc "microsoft")
(objectClass top ... domainDNS))

(objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit))
(objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user))

This list represents three objects, including their first and last objectClass values. The intermediate
objectClass values are elided. Unlike all other multivalued attributes, the ordering of objectClass
values is significant—top is always listed first; the most specific structural object class (or the 88
object class used in place of the structural class) is always listed last. So, for instance, the most
specific structural object class of the root is domainDNS.

Representing a class as its IDAPDisplayName makes examples readable. In the actual state model, a
class is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can be mapped to and
from the schema object representing a class. This mapping is specified in section 3.1.1.2.6.

In Active Directory, each object has an RDN attribute, which is determined by the most specific
structural object class of the object when the object is created. The RDN attribute is the attribute that
defines an object's name relative to its parent. In Active Directory, the RDN attribute of an object
class has String(Unicode) syntax; that is, its value is a Unicode string, and the RDN attribute of an
object always has exactly one value. (See section 3.1.1.2 for more on the topic of attribute syntax.)

Confusingly, the Active Directory schema includes an attribute whose attributeSchema object's cn is
"RDN"; this is the name attribute, described later in this section. The term "RDN attribute" never
refers to the name attribute in this document.

The relative distinguished name (RDN) of an object is a string of the form "att=val" where att is the
IDAPDisplayName of the RDN attribute of the object and val is the value of the RDN attribute on this
object. In the preceding example, the object class user has RDN attribute cn, as can be confirmed by
consulting [MS-ADSC]. Therefore the RDN of the object with objectGUID = 9 is "cn=Peter Houston".
An RDN can also be written using the attributeID of the RDN attribute in place of its
IDAPDisplayName; the example just given becomes "2.5.4.3=Peter Houston". The RDN form based on
IDAPDisplayName is used throughout this document.

Active Directory requires that the value parts of the RDNs of all children of an object be distinct. This
guarantees that the RDNs of all children of an object are distinct.

The DN of an object is defined recursively as follows. The DN of the root has an assigned value; the
way Active Directory assigns this value is described later in section 3.1.1.1.5. The DN of a child object
is the RDN of the child, followed by "," and the DN of the parent. In the preceding example, suppose
the assigned DN of the root object is "dc=microsoft,dc=com". Then the DN of the object with
objectGUID = 9 is "cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com".

The correspondence between this model and the LDAP data model is as follows. An object with its
attributes and values corresponds to an LDAP entry with its attributes and values. This model and
LDAP agree on the definition of the objectClass attribute. The definition of RDN in this model is a

89 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

subset of LDAP's definition; all RDNs in this model are valid LDAP RDNs, but not vice versa. For
example, the following multivalued RDN is a valid LDAP RDN, but it is not valid in this model:
"cn=Peter Houston+employeeID=ABC123". Given the RDN definition, the definition of DN in this
model is the same as LDAP's definition. In the LDAP data model, the child-parent relationship is
represented in the DNs of the child and parent, whereas in the Active Directory data model, the child-
parent relationship is represented in the parent attribute and the DN is derived. Active Directory does
not expose the model's parent attribute through LDAP.

Active Directory includes the distinguishedName attribute on every object; the value is the object's
DN. The following example elaborates the previous example to include a value of distinguishedName
on each object.

(

((objectGUID 5) (parent 0) (dc "microsoft")

(
(objectClass top ... domainDNS)
(distinguishedName "dc=microsoft,dc=com"))
(objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit)
(distinguishedName "ou=NTDEV,dc=microsoft,dc=com"))
(objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user)
(distinguishedName

"cn=Peter Houston, ou=NTDEV,dc=microsoft,dc=com"))

But including distinguishedName on each object this way is misleading, because the
distinguishedName attribute is not stored as a string on each object. If it were stored as a string on
each object, renaming an object would require updating every object in the subtree rooted at the
renamed object. For a large subtree, this would take a long time and would either interfere with other
directory activity (if performed as a single transaction) or would expose observable inconsistency to
clients (if performed as multiple transactions). Active Directory does neither of these, so its state
model can't imply that it does.

The distinguishedName attribute is not declared in the schema as a constructed attribute, but it
behaves like one. Normal attributes, including attributes with special behavior such as objectGUID,
have their values stored as part of an object's representation. Constructed attributes have the
property that they have values computed from normal attributes (for read) and/or have effects on the
values of normal attributes (for write). Constructed attributes are not included in the state model.
Because the distinguishedName attribute behaves like a constructed attribute in that it also
contributes no state to an instance of an object, it is not considered to be part of the state model.

Active Directory includes the name attribute on every object. An object's value of name equals the
value of the object's RDN attribute. The following example removes the incorrect modeling of
distinguishedName from the previous example, then elaborates that example to include name.

(

((objectGUID 5) (parent 0) (dc "microsoft")
(objectClass top ... domainDNS)
(name "microsoft"))
(objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit)
(name "NTDEV"))
(objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user)
(name "Peter Houston"))

The name attribute has special behavior. Even if an object is renamed (LDAP Modify DN), the object's
name attribute remains equal to the object's RDN attribute. As with the distinguishedName attribute,
the name attribute is not declared in the schema as a constructed attribute, but it behaves like one.

90/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Because Active Directory requires that the value parts of the RDNs of all children of an object be
distinct, it follows that the name attribute of all children of an object are distinct.

Active Directory includes the rdnType attribute on every object. An object's value of rdnType is the
object's RDN attribute at object creation time—the identifier, not its associated value. The following
example elaborates the previous example to include rdnType.

(

((objectGUID 5) (parent 0) (dc "microsoft")

(
(objectClass top ... domainDNS)
(name "microsoft") (rdnType dc))
((objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit)
(name "NTDEV") (rdnType ou))
((objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user)
(name "Peter Houston") (rdnType cn))

The rdnType attribute, like the parent attribute, is not declared in the Active Directory schema. [MS-
DRSR] section 5.159 specifies the special behavior of the rdnType attribute.

A secret attribute is any attribute from the following set: currentValue, dBCSPwd, initialAuthIncoming,
initialAuthOutgoing, ImPwdHistory, ntPwdHistory, priorValue, supplementalCredentials,
trustAuthIncoming, trustAuthOutgoing, and unicodePwd.

3.1.1.1.5 NC, NC Replica

The type DSNAME is defined as a C structure in [MS-DRSR] section 5.50; this state model uses the
simpler DSName, which contains the same information in a tuple of the form:

DSName: [dn: DN; guid: GUID; sid: SID]

An NC is a set of objects organized as a tree. It is referenced by a DSName containing a non-NULL dn
and a non-NULL GUID. This DSName also references the NC root, which is the root object of the tree
of objects in the NC. The NC root has the IT_NC_HEAD bit set in the instanceType attribute. Any
instance of the NC on any DC is called an NC replica. It is convenient to say "the NC x" where x is the
DSName referencing the NC.

A replica of NC x is a replica as already defined, with its root object r constrained as follows:
= rlobjectGUID = x.guid

= rldistinguishedName = x.dn

= If x.sid # NULL then rlobjectSid = x.sid, otherwise rlobjectSid = NULL

Mutation of a replica in the general sense is unconstrained. In the case of a replica of a specific NC,
the root object cannot be replaced, because doing so would change the objectGUID (and objectSid if
any), and this must equal the NC's guid. In a replica of a given NC the root object's DN cannot be
changed, because the root object's DN must equal the NC's dn.

All replicas in Active Directory are NC replicas.

NC replicas are mutable. The term originating update means any mutation to an NC replica performed
via any protocol except replication.

Active Directory performs replication between replicas of the same NC to converge their states, so an
update originated on one replica is reflected in all the others. The replication algorithm has the
property that if originating updates to all replicas ceases and communication between replicas is

91/626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

maintained, the application-visible states of the replicas will eventually converge to a common value.
Applications of Active Directory can read from several replicas of a given NC and observe the
differences, but applications typically bind to a single replica.

Active Directory supports four NC types:
Domain NC: A domain naming context (domain NC). The sid field of a domain NC is not NULL.

Config NC: An NC that stores Active Directory configuration information. The sid field of a config
NC is NULL.

Schema NC: An NC that stores Active Directory schema information. The sid field of a schema NC
is NULL.

Application NC: An application NC. The sid field of an application NC is NULL.
The dn of a domain NC or an AD DS application NC takes the form:
dc=ni,dc=n3, ... dc=nx

where each nj satisfies the syntactic requirements of a DNS name component [RFC1034]. Such a DN
corresponds to the DNS name:

ni.No.Ng
This is the DNS name of the NC. The mapping just specified follows [RFC2247].

In AD LDS, an application NC can have any valid DN; therefore an AD LDS application NC does not
necessarily have a DNS name.

Replicas of a domain NC have one of these two subtypes:
= Full. A replica whose objects contain their full state as defined by all originating updates.

= Partial. A replica whose objects contain a filtered view of the full state as defined by all originating
updates. There are three types of the partial replica:

= GC partial NC replica: The filter removes all attributes (and their values) that are not in the
partial replica's GC partial attribute set.

= Filtered partial NC replica: The filter removes all the attributes (and their values) that are in
the filtered attribute set. The default naming context (default NC), config NC, and application
NC on a RODC are filtered partial NC replicas.

= Filtered GC partial NC replica: The filter removes all the attributes (and their values) that are
not in the partial replica's GC partial attribute set, as well as all the attributes (and their
values) in the filtered attribute set. Domain NCs, excluding the default domain NC, that are
hosted on an RODC are filtered GC partial NC replicas. Such domain NCs will exist on the
RODC when the RODC is a GC.

Replicas of other NC types are always full. A full replica is either writable, that is, it accepts originating
updates, or is read-only. A partial replica is read-only.

This section has introduced many concepts without describing how they are reflected in the state
model. To a great extent this obligation will be discharged in other sections of this document. The
schema NC is described in section 3.1.1.2, while the other NC types are described in section 6.1. Here
are three elaborations of the state model that can be explained without making a forward reference:

1. NC replicas are modeled by making a DSName, converted into a string formatted as specified in
[MS-DRSR] section 5.16.2.1, the first element of a replica.

92 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. The root object of a domain NC or an AD DS application NC has class domainDNS. The RDN
attribute of domainDNS is dc. Therefore both the dc and name attributes of the root object of a
domain NC or an AD DS application NC equal the first component (for example, ni for DNS name
ni.nz.ng) of the NC's DNS name. The root object of an AD LDS application NC can have any
object class except dMD or configuration.

3. In AD DS, the generation of objectSid values is constrained by the sid of a domain NC as follows.
The sid of a domain NC, the domain SID, is a SID with four SubAuthority values. The root object
of a domain NC has objectSid equal to the domain SID, as required by the definition of NC replica.
Every security principal object o in a domain NC has o'!objectSid equal to the domain SID plus the
RID portion (that is, it has five SubAuthority values). The RID portion of olobjectSid is a humber
not assigned as the RID portion of the objectSid to any other object of the domain, including
objects that existed earlier but have been deleted.

Section 3.1.1.5.2.4 specifies how AD DS assigns RIDs. The same section specifies how AD LDS
generates objectSid values for new AD LDS security principals.

Continuing the example, let the example NC be a domain NC, and let the object with name "Peter
Houston" be assigned the RID value 2055 (decimal). Then the state of the example NC is as follows.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;
dc=microsoft,dc=com"
((objectGUID 5) (parent 0) (dc "microsoft")
(objectClass top ... domainDNS)
(name "microsoft") (rdnType dc)
(objectSid 0x0105...94E1F2E6))
(objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit)
(name "NTDEV") (rdnType ou))
(objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user)
(name "Peter Houston") (rdnType cn)
(objectSid 0x0105...94E1F2E607080000))

The DNS name of this domain NC is microsoft.com. Note that the domain SID is a prefix of the "Peter
Houston" object's objectSid. Portions of the (long) SID values have been elided for clarity; consider
the elided portions to be the following hex digits

0000000000051500000089598D33D3C56B68

and the example SID will be a valid SID.

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime

The tombstone lifetime is controlled by the tombstoneLifetime attribute of the Directory Services
object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no value is specified for
the tombstoneLifetime attribute of the Directory Services object, the tombstone lifetime defaults to 60
days. The minimum value that can be specified is 2 days. If a value of less than 2 days is specified,
tombstone lifetime defaults to 60 days, except for Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, where the tombstone lifetime defaults to 2 days.

The deleted-object lifetime is controlled by the msDS-DeletedObjectLifetime attribute of the Directory
Services object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no value is
specified for the msDS-DeletedObjectLifetime attribute of the Directory Services object, deleted-object
lifetime defaults to the tombstone lifetime as calculated above. The minimum value that can be
specified is 2 days. If a value less than 2 days is specified, deleted-object lifetime defaults to 2 days.

93/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-
Known Objects

The complete set of attribute syntaxes supported by Active Directory are specified in section 3.1.1.2.
The representation used by the abstract data model for values of each attribute syntax is specified in
[MS-DRSR] section 5.16.2. These representations of each syntax can be returned in an LDAP response
without conversion, that is, the values are represented in the abstract data model in the same format
as used by the LDAP protocol.

The following five attribute syntaxes are called object reference syntaxes:
= Object(DS-DN)

* Object(DN-String)

= Object(DN-Binary)

= Object(Access-Point)

= Object(OR-Name)

The values of an attribute with Object(DS-DN) syntax are DNs, which represent references to objects.
The values of attributes with the other object reference syntaxes have two portions; one portion is a
DN, which represents a reference to an object, and the other has information specific to each syntax.
The five object reference syntaxes have a special behavior called "referential integrity"; no other
attribute syntax have special behavior intrinsic to the syntax. The referential integrity behavior applies
only to the DN portion of the syntax (the portion that represents a reference to an object), leaving the
remaining portion unchanged. For this reason, and because the referential integrity is the same for the
DN portion of all five object reference syntaxes, it suffices to specify the referential integrity behavior
of syntax (the portion that represents a reference to an object), leaving the remaining portion
unchanged. For this reason, and because the referential integrity is the same for the DN portion of all
five object reference syntaxes, it suffices to specify the referential integrity behavior only for the
Object(DS-DN) syntax (the simplest of the object reference syntaxes).

To specify referential integrity, some background on object deletion is required; object deletion is
specified fully in section 3.1.1.5.

When the Recycle Bin optional feature is not enabled, object deletion is performed in two stages.

1. In the first stage, the object to be deleted is transformed into a tombstone. A tombstone is a
special object, part of a replica's state. The state of a deleted object's tombstone resembles the
state of the object before deletion; it has the same objectGUID but a different DN. Specifically, its
RDN is changed to a "delete-mangled RDN" and, in most cases, it is moved into the Deleted
Objects container of its NC, as described in section 3.1.1.5.5. A tombstone is generally not an
object from the LDAP perspective: a tombstone is not returned by a normal LDAP Search request,
only by a Search request with extended control LDAP_SERVER_SHOW_DELETED_OID or
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3.

2. In the second stage, after a significant delay (the tombstone lifetime), a tombstone is garbage
collected, which removes it from the replica's state.

When the Recycle Bin optional feature is enabled, object deletion is performed in three stages.

1. In the first stage, the object being deleted is transformed into a deleted-object. A deleted-object is
a special object, part of a replica's state. The deleted-object also resembles the state of the object
before deletion; it has the same objectGUID but a different DN. Specifically, its RDN is changed to
a "delete-mangled RDN" and, in most cases, it is moved into the Deleted Objects container of its
NC, as described in section 3.1.1.5.5. A deleted-object is generally not an object from the LDAP
perspective: a deleted-object is not returned by a normal LDAP Search request, only by a Search

94/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

request with extended control LDAP_SERVER_SHOW_DELETED_OID OID or
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3.

2. In the second stage, after a significant delay (the deleted-object lifetime), a deleted-object is
transformed into a recycled-object. A recycled-object is a special object, part of a replica's state.
The recycled-object also resembles the state of the object before deletion; it has the same
objectGUID but a different DN. Specifically, its RDN has been changed and, in most cases, the
object moved, as described in the first stage. A recycled-object is also generally not an object
from the LDAP perspective: a recycled-object is not returned by a normal LDAP Search request,
only by a Search request with extended control LDAP_SERVER_SHOW_RECYCLED_OID, as
described in section 3.1.1.3.

Note that this transformation from deleted-object to recycled-object is only initiated on DCs where
the deleted-object is in a writable naming context (NC) replica. On DCs where the deleted-object
is not in a writable NC replica, the transformation from deleted-object to recycled-object occurs as
the result of replication in this state change from a DC that holds a writable copy of the object.

3. In the third and final stage, after a significant delay (the tombstone lifetime), a recycled-object is
garbage collected, which removes it from the replica's state.

In situations where a deletion does not need to be replicated, an object is expunged (that is, removed
in a single step from the replica's state) instead. A deletion does not need to be replicated in the
following cases: removal of a lingering object (section 3.1.1.3.3.15), removal of an object being
moved during a cross-domain move (section 3.1.1.5.4.2), and removal of a dynamic object (section
6.1.7).

An application is not limited to specifying a DN when creating an object reference; using the syntax
specified in section 3.1.1.2, it can specify any combination of DN, SID, or GUID as the reference as
long as it specifies at least one. A DSName is created using the specified references and is resolved to
an object using DSName equality as defined in [MS-DRSR] section 5.50, DSNAME.

The state kept with an attribute to represent an object reference is a DSName.

When reading an object reference, an application can request the full DSName in the representation
specified in [MS-DRSR] section 5.16.2.1 instead of a DN by passing the
LDAP_SERVER_EXTENDED_DN_OID extended control as described in section 3.1.1.3.

A single-valued Object(DS-DN) attribute a on object src behaves as follows:

= When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses
the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. If no such
object exists, including the case where the object has been deleted and exists as a tombstone,
deleted-object, or recycled-object, the request fails with error noSuchObject /
ERROR_DS_OBJ_NOT_FOUND. The values dst!distinguishedName, dst!objectGUID and
dstlobjectSid are used to populate the DSName representing the object reference within attribute
src.a. If the object dst has no objectSid attribute, the "SID=" portion of the DSName
representation is omitted.

= If object dst has not been deleted, reading attribute a gives the DN (or extended format as
described in section 3.1.1.3) of object dst, even if dst has been renamed since a was written.

= If the object dst has been deleted or expunged, reading src.a gives a DN field that corresponds to
no object. Either this DN is impossible to create via LDAP Add and LDAP Modify DN, or this DN
changes (that is, the value of src.a changes) when an LDAP Add or Modify DN would give some
other object this DN.

The multivalued case is similar; a multivalued attribute is capable of containing multiple object
references that behave as described.

95/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Each object reference syntax exists in two versions. The description just given is for the "nonlink"
version. The other version is the "forward link". The Object(DS-DN) syntax also exists in a "back link"
version.

A forward link Object(DS-DN) attribute supports the definition of a corresponding back link Object(DS-
DN) attribute. The back link attribute is a read-only constructed attribute; clients MUST NOT write to
the back link attribute, and servers MUST reject any such writes. If an object o contains a reference to
object r in forward link attribute f, and there exists a back link attribute b corresponding to f, then a
back link value referencing o exists in attribute b on object r. The correspondence between the
forward and back link attributes is expressed in the schema; see section 3.1.1.2 for details. A forward
link attribute can exist with no corresponding back link attribute, but not vice versa.

If the syntax of a forward link attribute is not Object(DS-DN), a corresponding back link attribute has
syntax Object(DS-DN), not the syntax of the forward link. The non-reference portion of the forward
link, if any, is ignored in computing the back link. If ignoring the non-reference portion of the forward
link results in duplicate back references, the duplicates are present in the values of the back link
attribute.

The referential integrity behavior of a forward link attribute differs from that of a nonlink attribute as
follows:

= When an object o is expunged or transformed into a tombstone or recycled-object, any forward
link reference to o is removed from the attribute that contains it.

= When an object o is transformed into a deleted-object, any forward link reference to o is
maintained, but is made invisible to LDAP operations that do not specify the
LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control.

= When a deleted-object o is transformed into an object that is not a deleted-object, a tombstone,
or a recycled-object, any forward link reference to o from object p where p is not a deleted-object
is made visible to LDAP operations. Similarly, any forward link reference from o to p is made
visible to LDAP operations.

Since a back link attribute is constructed, its referential integrity behavior follows from that of the
corresponding forward link attribute.

The distinction between nonlink and forward link references is not visible in the part of the state model
described in this section; it is a schema difference only. There is no difference in the state kept with
an attribute to represent the object reference. There is a difference in the replication metadata
accompanying the object reference, as will be described in section 3.1.1.1.9.

The behavior described in this section is for object references within a single NC replica. Additional
behaviors, specified in section 3.1.1.1.12, are possible when an object reference crosses an NC replica
boundary.

Extend the running example by adding a group object named "DSYS" as a child of
"ou=NTDEV,dc=microsoft,dc=com". The object class group includes the attribute member with
Object(DS-DN) syntax. In this example, the "DSYS" group has the user object "Peter Houston" as its
only member.

(
"<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com"
((objectGUID 5) (parent 0) (dc "microsoft")
objectClass top ... domainDNS)
name "microsoft") (rdnType dc)
objectSid 0x0105...94E1F2E6))

(
(
(
(objectGUID 2) (parent 5) (ou "NTDEV")
(
(
(
(

objectClass top ... organizationalUnit)
name "NTDEV") (rdnType ou))

((objectGUID 9) (parent 2) (cn "Peter Houston")
objectClass top ... user)

96 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

(name "Peter Houston") (rdnType cn)
(objectSid 0x0105...94E1F2E607080000))
(objectGUID 6) (parent 2) (cn "DSYS")
(objectClass top ... group)
(
(
(

name "DSYS") (rdnType cn)
objectSid 0x0105...94E1F2E60B080000)
member

"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"))

Note that the group "DSYS" is a security principal object within the domain NC, with the distinct RID
value 2059 (decimal).

The root object of each NC contains the attribute wellKknownObjects. The purpose of this attribute is to
provide a location-independent way to access certain objects within the NC. For instance, the Deleted
Objects container where most tombstones live can be found using wellKknownObjects.

The wellKnownObjects attribute has syntax Object(DN-Binary). Each value consists of an object
reference ref and a byte string binary that is 16 bytes long. The byte string binary contains a GUID
identifying a well-known object (WKO) within an NC; the object reference ref is a reference to the
corresponding object. A table of the GUIDs that identify well-known objects is given in section 6.1.1.4.

The following procedure implements well-known object location using the wellKnownObjects attribute.
This procedure will be used throughout the rest of this specification:

= procedure GetWellknownObject(nc: NC, guid: GUID): DSName
= If there is no replica of NC nc on the server executing this procedure, return null.

= Let v be the value of nc'wellKknownObjects on the server's replica satisfying v.binary = guid; if
no such v exists, return null.

= Return v.ref.
Assignments to the wellKnownObjects attribute are specially checked as described in section 3.1.1.5.

LDAP supports access to well-known objects using an extended DSName syntax as described in
section 3.1.1.3.

3.1.1.1.7 Forest, Canonical Name

An Active Directory forest is a set of NCs. Every forest contains one schema NC and one config NC.
The other types of NCs present in a forest depends on whether it is an AD DS forest or an AD LDS
forest:

= AD DS: Every forest also contains one or more domain NCs, and zero or more application NCs.
= AD LDS: Every forest also contains zero or more application NCs.
The NCs within a forest are related by their assigned DNs as follows:

= In AD DS there must exist a domain NC root such that the config NC's dn equals
Cat("cn=Configuration", root.dn) (where Cat is the string concatenation function). This unique
domain NC is called the root domain NC of the forest.

Describe this DN relationship as "The config NC is a child of the root domain NC". Technically these
NCs are not related in the same way that a child object and its parent object are related within an
NC; the parent relationship stops at the root of an NC. But their DNs are related in the same way
as the DNs of a child object and its parent object within an NC. Given NCs with their corresponding

97/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

DNs forming a child and parent relationship, it is convenient to refer to the NCs as the child NC
and the parent NC.

In AD LDS, the config NC does not have a parent NC. An AD LDS forest contains no domain NCs,
so there is no forest root domain NC, either. The DN of an AD LDS config NC takes the form
"CN=Configuration, CN={G}" where G is a GUID in dashed-string form ([RFC4122] section 3). For
example,

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81}
is a possible DN of the config NC in an AD LDS forest.
= The schema NC is a child of the config NC, with RDN "cn=Schema".

= If short and long are NCs with DNS names (domain NCs or application NCs), and short is a suffix
of long, then each DNS name obtained by removing DNS name components successively from the
front of /ong until the result is short must also name NCs with DNS names. For instance, if a forest
contains both NCs microsoft.com and nttest.ntdev.microsoft.com, it must also contain NC
ntdev.microsoft.com.

= If app is an application NC and dom is a domain NC, then dom must not be a child of app.

= If root is the root domain NC and dom is another domain NC in the forest, then root must not be a
child of dom.

Extend the running example by adding the config NC and schema NC as follows.

"<GUID=4>;cn=Configuration,dc=microsoft,dc=com"
((objectGUID 4) (parent 0) (cn "Configuration")
(objectClass top ... configuration)
(name "Configuration") (rdnType cn))

"<GUID=8>;cn=Schema, cn=Configuration, dc=microsoft,dc=com"
((objectGUID 8) (parent 0) (cn "Schema")

(objectClass top ... dMD)

(name "Schema") (rdnType cn))

"<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com"
((objectGUID 5) (parent 0) (dc "microsoft")
(objectClass top ... domainDNS)

(name "microsoft") (rdnType dc)

(objectSid 0x0105...94E1F2E6))

(objectGUID 2) (parent 5) (ou "NTDEV")
(objectClass top ... organizationalUnit)

(name "NTDEV") (rdnType ou))

(objectGUID 9) (parent 2) (cn "Peter Houston")
(objectClass top ... user)

(name "Peter Houston") (rdnType cn)

(objectSid 0x0105...94E1F2E607080000))
(objectGUID 6) (parent 2) (cn "DSYS")

(
(
(
(

objectClass top ... group)

name "DSYS") (rdnType cn)

objectSid 0x0105...94E1F2E60B080000)
members

"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston, ou=NTDEV,dc=microsoft,dc=com"))

This example illustrates the dn relationships between the root domain NC, config NC, and schema NC.
It shows that in a forest, the parent relationship does not cross NC boundaries. It also illustrates the

98/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

object classes of the config NC and schema NC root objects and the lack of a sid in these NCs. It does
not show the contents of these NCs, which are specified in sections 6.1 and 3.1.1.2.

Every object in a forest has a canonical name. The canonical name of an object is a syntactic
transformation of its DN into something resembling a pathname that still identifies the object. A
canonical name is a DNS name, followed by a "/", followed by a sequence of zero or more names
separated by "/". The DNS name is the translation of the final sequence of "dc=" DN components into
an equivalent DNS name (following [RFC2247]). The sequence of hames is the sequence of names in
the non-"dc=" DN components, appearing in the reverse order to the order they appeared in the DN.
Here are several examples of this translation drawn from the preceding example.

DN: cn=Peter Houston, ou=NTDEV, dc=microsoft,
dc=com
canonical name: microsoft.com/NTDEV/Peter Houston

DN: cn=Configuration, dc=microsoft, dc=com
canonical name: microsoft.com/Configuration

DN: dc=microsoft, dc=com
canonical name: microsoft.com/

Active Directory supports a constructed attribute canonicalName on every object. Its value is the
object's canonical name.

3.1.1.1.8 GC
In AD DS, the global catalog (GC) is a partial view of a forest's NCs, with these properties:
= The GC view includes all domain NCs, the config NC, and the schema NC.

= The GC view is partial. It includes all objects in the included NCs, but only those attributes defined
as members of the partial attribute set in the schema NC (as specified in section 3.1.1.2). If the
GC is an RODC, the attribute list is further restricted to those attributes not present in the filtered
attribute set in the schema NC (as specified in section 3.1.1.2).

= The GC view is read-only.

The GC has no state model impact outside the schema NC, which defines the forest's partial attribute
set. The implementation of the GC (that is, actually providing the specified view to LDAP clients) does
have impact, explained in section 3.1.1.1.9.

In AD LDS there is no support for the GC.

3.1.1.1.9 DCs, usn Counters, and the Originating Update Stamp

The model defines the state of a DC as a tuple of type DC.

type DC = [
serverGuid: GUID,
invocationId: GUID,
usn: 64-bit integer,
prefixTable: PrefixTable,
defaultNC: domain NC replica,
configNC: config NC replica,
schemaNC: schema NC replica,
partialDomainNCs: set of partial domain NC replica,
appNCs: set of application NC replica,
pdcChangeLog: PDCChangeLog
nt4ReplicationState: NT4ReplicationState
ldapConnections: LDAPConnections,
replicationQueue: ReplicationQueue,

99/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

kccFailedConnections: KCCFailedConnections,
kccFailedLinks: KCCFailedLinks,
rpcClientContexts: RPCClientContexts,
rpcOutgoingContexts: RPCOutgoingContexts,
fLinkValueStampEnabled: boolean,
nt4EmulatorEnabled: boolean,

fEnableUpdates: boolean

dnsRegistrationSettings: DNSRegistrationSettings
minimumGetChangesRequestVersion: integer
minimumGetChangesReplyVersion: integer

The variable dc is the only global variable in this specification. It contains the state of the DC.

dc: DC

serverGuid is initialized to a GUID when the dc is created and does not change thereafter. Section
6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; serverGuid equals the objectGUID of the DC's
nTDSDSA object. serverGuid is independent of the objectGUID of the computer object for the
computer playing the role of this DC.

invocationld is initialized to a GUID that is generated by the DC when the dc is created. This GUID
MUST NOT be the NULL GUID. The circumstances under which a DC changes its invocationld are
outside the effects of the state model. A DC changes its invocationId when Active Directory is restored
from a backup. Section 6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; invocationId equals the
invocationId of the DC's nTDSDSA object.

usn is a counter used in assigning replication metadata to every originating update to an NC replica in
the DC, as detailed later in this section. The invocationld of dc's nTDSDSA object is an "epoch
number" for usn; if an observer reads a dc at times t; and t; with t; < tz, and invocationld is the
same, then usn at time t; is less than or equal to usn at time t;. If the invocationld has been changed
between t; and tz, the DC at t; is treated as a different DC then at t; for the purposes of replication,
and the usn of the DC is not compared.

prefixTable is the PrefixTable used to translate all ATTRTYP values stored in this DC's NC replicas;
section 3.1.1.2.6 specifies the translation process.

The default NC replica of an AD DS DC, modeled as dc.defaultNC, is a domain NC replica of some
domain NC in the forest. In an AD LDS DC, dc.defaultNC is null.

The fields dc.configNC and dc.schemalNC contain replicas of the forest's config NC and schema NC.

If dc is not an AD DS GC server (as determined by the state of the GC bit of the options attribute of
the nTDSDSA object as specified in section 6.1.1.2.2.1.2.1.1), then dc.partialDomainNCs is null.
Otherwise it contains a partial domain NC replica for each domain NC in the forest, excluding the
default domain NC of dc.

The field dc.appNCs contains replicas of the application NCs hosted by the DC. An AD DS DC can be an
RODC; [MS-DRSR] section 5.7, AmIRODC, specifies how this is determined by state in the config NC.

All NC replicas of an RODC are read-only; that is, they do not accept originating updates. In other
DCs, all NC replicas are writable except for dc.partialDomainNCs, but writes to these NC replicas are
controlled by the constraints and processing specifics described in section 3.1.1.5. Also, on an RODC
the dc.defaultNC is a filtered partial domain NC replica. On other DCs, the dc.defaultNC is a full
domain NC replica, and is the only full domain NC replica in the state of a DC.

The nt4ReplicationState and pdcChangelLog variables contain state used by the
IDL_DRSGetNT4ChangelLog method ([MS-DRSR] section 4.1.11.3). Section 3.1.1.7 specifies the
format of these variables and how they are maintained during state changes in AD DS.

100/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IdapConnections, replicationQueue, kccFailedConnections, kccFailedLinks, rpcClientContexts, and
rpcOutgoingContexts fields of a DC are volatile state. Each volatile field is set to the empty sequence
on server startup. The other fields are persistent state, updated using transactions.

The construction of the kccFailedConnections and kccFailedLinks fields of a DC are discussed in section
6.2. The construction of the replicationQueue, kccFailedConnections, and rpcOutgoingContexts fields
are discussed in [MS-DRSR]. The construction of the fLinkValueStampEnabled field is described later in
this section.

The nt4dEmulatorEnabled field determines how the DC responds to a Mailslot Ping request, as
described in section 6.3.5. The nt4EmulatorEnabled field is not configurable through the Active
Directory. The nt4EmulatorEnabled field can be configured by an implementation-dependent
mechanism. On Windows Server, the field nt4EmulatorEnabled can be configured at the following
registry key path:

HKEY LOCAL MACHINE\system\currentcontrolset\services\netlogon\parameters\NT4Emulator

This registry value is of type REG_DWORD. If the value is 0 or not present, the field
nt4EmulatorEnabled is set to FALSE; otherwise, the field is set to TRUE. By default, this registry value
is not set.

The fEnableUpdates field determines whether or not a DC allows updates, as described in section
3.1.1.5.1.9. The field is initialized to TRUE.

The dnsRegistrationSettings field contains the settings that determine whether the DC registers DNS
records (for the purpose of DC location), and which DNS records it registers. The field is of type
DNSRegistrationSettings (section 6.3.1.10) and is initialized as described in section 6.3.1.10.

The minimumGetChangesRequestVersion field contains a value limiting the acceptable versions of the
input message for a replication request. See [MS-DRSR] section 4.1.10.5.1. The value is set by DSA
Heuristics (section 6.1.1.2.4.1.2).

The minimumGetChangesReplyVersion field contains a value limiting the acceptable versions of the
output message for a replication request. See [MS-DRSR] section 4.1.10.5.20. The value is set by DSA
Heuristics (section 6.1.1.2.4.1.2).

Each originating update on a DC creates replication metadata values (AttributeStamp and
LinkValueStamp values), as will now be described.

AttributeStamp and LinkValueStamp values contain times read from the system clock of the server
creating the value. If clocks on different DCs disagree by a significant fraction of the tombstone
lifetime, then it is probable that different DCs will eventually disagree about whether some objects
have been deleted or not; see section 3.1.1.1.15. DCs use Kerberos for mutual authentication, and
Kerberos does not mutually authenticate two DCs whose clocks are more than 5 minutes out of sync.
The tombstone lifetime is generally several months, so synchronization within 5 minutes is much
better than required to avoid object lifetime issues.

The type AttributeStamp is defined authoritatively in [MS-DRSR] section 5.11. In summary, it is the
following tuple.

AttributeStamp: [
dwVersion: 32-bit Integer;
timeChanged: 64-bit number of seconds
since January 1, 1601, 12:00:00am;
uuidOriginating: GUID;
usnOriginating: 64-bit Integer]

101/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Similarly, the type LinkValueStamp is defined authoritatively in [MS-DRSR] section 5.118. In
summary, it is an AttributeStamp tuple extended on the bottom with the following fields:

= timeCreated: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M.
= timeDeleted: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M.

An AttributeStamp stamp is associated with all replicated attributes, except forward link attributes
updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or
dc.fLinkValueStampEnabled is TRUE, that have ever had values on an object. For forward link
attributes updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or
dc.fLinkValueStampEnabled is TRUE, a LinkValueStamp stamp is associated with each value of the
attribute, both current link values and tombstoned link values. More details on tombstoned link values
are given later in this section.

Together with forest functional level, dc.fLinkValueStampEnabled regulates whether a DC creates
replication metadata for forward link attributes. dc.fLinkValueStampEnabled is initialized to TRUE when
the forest functional level is greater than DS_BEHAVIOR_WIN2000. When the forest functional level is
DS_BEHAVIOR_WIN2000, dc.fLinkValueStampEnabled is initialized to FALSE. When a DC receives an
update containing LinkValueStamp values, it sets dc.fLinkValueStampEnabled to TRUE. (For more
information, see [MS-DRSR] sections 4.1.10.5.5 and 4.1.10.6.1.)

When an originating write occurs, either the AttributeStamp or the LinkValueStamp of the attribute's
value is updated, but not both. This chart specifies the conditions under which each is updated.

LinkValueStamp

Attribute type

Forest functional level

AttributeStamp
associated with
the attribute

associated with
the attribute's
values

Any type of attribute other than a Any Updated Not updated
forward link attribute
Forward link attribute DS_BEHAVIOR_WIN2000 Updated Not updated

Forward link attribute

Greater than
DS_BEHAVIOR_WIN2000

Not updated

Updated

Whether an attribute value has an AttributeStamp or LinkValueStamp depends on the state at the
time of the originating update. The data model does not require an attribute to have an
AttributeStamp or LinkValueStamp. If an attribute has never had a value, it will not have an

AttributeStamp.

A forward link attribute will have an AttributeStamp if it is updated when the forest functional level is
DS_BEHAVIOR_WIN2000. However, if the forest functional level is changed to be greater than
DS_BEHAVIOR_WIN2000, then any further updates will cause the attribute's value to have a
LinkValueStamp. The previously associated AttributeStamp of the attribute will be left unchanged.

On the other hand, if the attribute is a forward link attribute that was never updated when the forest
functional level was DS_BEHAVIOR_WIN2000, it will not have an associated AttributeStamp. If a value
of the attribute is updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000,
the attribute value will have a LinkValueStamp and the attribute will still not have an AttributeStamp.

Let ola.stamp denote the AttributeStamp associated with replicated attribute a on object 0. When an
originating update creates or modifies replicated attribute a on object o, the value of ola.stamp is

determined as follows:

= dwVersion: If the attribute did not exist on this object before the originating update (that is, an
LDAP Add operation of this object, or an LDAP Modify operation creating the initial value of this

[MS-ADTS-Diff] - v20170601

102 / 626

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

attribute on this object), dwVersion equals one. Otherwise dwVersion equals o!a.stamp.dwVersion
before the update, plus one.

= timeChanged: The time of the originating update, according to the system clock on this DC.
* wuidOriginating: the invocationId of the dc's nTDSDSA object.
= usnOriginating: dc.usn.

Once a replicated attribute exists on an object, it will continue to exist for the lifetime of the object, in
order to carry the stamp. If all values have been removed from the attribute, the attribute will be
absent from the LDAP perspective, but it remains present in the state model in order to preserve the
stamp. If a value is added to o!a and o!a.stamp exists, even if ola had no values before the addition,
the value of ola.stamp.dwVersion is used as described previously in creating the new stamp's
dwVersion.

Let ola.r denote a single link value r that is part of a replicated forward link attribute a, and let
ola.r.stamp denote the LinkValueStamp associated with this value. An originating update cannot
modify a single link value r that is part of a forward link attribute, except to delete it or to re-create it.
A link value r is deleted, but exists as a tombstone, if r.stamp.timeDeleted # 0. When the current time
minus r.stamp.timeDeleted exceeds the tombstone lifetime, the link value r is garbage-collected; that
is, removed from its containing forward link attribute.

When an originating update creates a link value r of a forward link attribute a of object o, the
LinkValueStamp o'a.r.stamp is computed as follows:

= dwVersion: 1.

= timeChanged: The time of the originating update, according to the system clock on this DC.
* uuidOriginating: the invocationld of dc's nTDSDSA object.

» usnOriginating: dc.usn.

= timeCreated: The time of the originating update, according to the system clock on this DC.
= timeDeleted: Zeros.

When an originating update re-creates a link value r of a forward link attribute a of object o, that is, a
create occurs when the same link value exists as a tombstone, the LinkValueStamp ola.r.stamp is
computed as follows:

= dwVersion: o'a.r.stamp.dwVersion before the originating update, plus one.

= timeChanged: The time of the originating update, according to the system clock on this DC.
* wuidOriginating: the invocationld of dc's nTDSDSA object.

» usnOriginating: dc.usn.

= timeCreated: ola.r.stamp.timeCreated before the originating update.

» timeDeleted: Zeros.

When an originating update deletes a link value r of a forward link attribute a of object o, the
LinkValueStamp o!a.r.stamp is computed as follows:

= dwVersion: ola.r.stamp.dwVersion before the originating update, plus one.
= timeChanged: The time of the originating update, according to the system clock on this DC.

= uuidOriginating: the invocationId of dc's nTDSDSA object.

103/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= usnOriginating: dc.usn.
= timeCreated: ola.r.stamp.timeCreated before the originating update.
= timeDeleted: The time of the originating update, according to the system clock on this DC.

The stamp values created by originating updates are used by protocols described in [MS-DRSR]. Some
stamp values maintained in this state model are not used by those protocols; see [MS-DRSR] section
4.1.10.5.6 (FilterAttribute) for specifics on the stamps that are filtered out.

When all updates associated with an originating update request are complete, the variable dc.usn is
increased by at least one. Between originating updates, the variable dc.usn does not decrease.

The effects of an originating update are captured in the state model by committing a transaction.
When the originating update is initiated by a protocol request, such as an LDAP Modify, the transaction
is committed before sending the appropriate protocol response. The transaction has the ACID
properties [GRAY] and provides at least degree 2 isolation of concurrent read and update requests
[GRAY].

Each read request is performed as a transaction. When multiple read requests are used to retrieve a
large set of results, each request is its own transaction. Section 3.1.1.5 specifies the transaction
boundaries that are used for all originating updates. To preview: An originating update is almost
always performed as a single transaction; a few are processed as multiple transactions. In some
cases, an originating update request will cause transactions to occur after the response has been sent;
section 3.1.1.5 specifies all cases where processing of an update continues after the response.

The following example illustrates the effects of originating updates on stamp values. In this example,
the forest functional level is assumed to be greater than DS_BEHAVIOR_WIN2000, so
LinkValueStamps are used for updates to forward link attributes. In the example, stamp values are
represented as lists whose elements are the elements of the stamp, in the order listed in the type
definition. Thus dwVersion is always first, and timeDeleted is last in a LinkValueStamp. An
AttributeStamp is placed between the attribute's IDAPDisplayName and the first value, if any. A
LinkValueStamp is placed immediately following the link value.

This example shows the stamp values on two attributes of a single group object: the description
attribute and the member attribute (a forward link attribute). In the initial state neither attribute is
present.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

((objectGUID 6) (parent 2) (cn "DSYS")
(objectClass top ... group)
(name "DSYS") (rdnType cn)
(objectsid 0x0105...94E1F2E60B080000)
)
)

An LDAP Modify adds a value for description. This DC's invocationld is 103, and its usn is 501 at the
time of the originating update.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

((objectGUID 6) (parent 2) (cn "DSYS")
(objectClass top ... group)
(name "DSYS") (rdnType cn)
(objectSid 0x0105...94E1F2E60B080000)
(description (1 Ox2FA9AT74EA 103 501) "QWERTY")
)

104 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

An LDAP Modify adds a value for member. This originating update occurred one second after the
previous one, with no updates in between. This pattern continues for the rest of this example.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

(

(objectClass top ... group)

(name "DSYS") (rdnType cn)

(objectSid 0x0105...94E1F2E60B080000)
(description (1 Ox2FA9AT74EA 103 501) "QWERTY")
(

"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"
(1 Ox2FA9AT74EB 103 502 0x2FA9AT4EB 0))

An LDAP Modify removes the values of both description and member.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"
objectGUID 6) (parent 2) (cn "DSYS")
objectClass top ... group)
name "DSYS") (rdnType cn)
objectSid 0x0105...94E1F2E60B080000)
description (2 O0x2FA9A74EC 103 503))
member
"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"
(2 0x2FASAT4EC 103 503 Ox2FA9AT4EB O0x2FA9AT4EC))

(

An LDAP Modify sets member back to the value it had before the previous update. The stamp it
receives is not what it had before.

"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft, dc=com"

((objectGUID 6) (parent 2) (cn "DSYS")
(objectClass top ... group)
(name "DSYS") (rdnType cn)
(objectSid 0x0105...94E1F2E60B080000)
(description (2 O0x2FA9AT74EC 103 503))
(member
"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"
(3 0x2FASAT4ED 103 504 Ox2FA9AT4EB 0))

Finally, an LDAP Modify sets description to a new value.

(
"<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft, dc=com"

((objectGUID 6) (parent 2) (cn "DSYS")

105/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

(objectClass top ... group)

(name "DSYS") (rdnType cn)

(objectSid 0x0105...94E1F2E60B080000)
(description (3 0x2fa%a74ee 103 505) "SHRDLU")
(

"<GUID=9>;<SID=0x0105...07080000>;
cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"
(3 O0x2FA9AT74ED 103 504 Ox2FA9AT4EB 0))

3.1.1.1.10 GC Server

An AD DS DC can be a GC server as determined by state in the config NC, as specified in section
6.1.1.2.2.1.2.1.1. A GC server provides LDAP access to the GC view of the forest via a special LDAP
port, as specified in section 3.1.1.3.

3.1.1.1.11 FSMO Roles

Each DC accepts originating updates for most attributes of most objects within its writable NC replicas.
But certain updates are only accepted if the DC is the single designated "master" DC for the update,
as specified in this section. The mechanism is called FSMO roles, which stands for flexible single
master operation (FSMO) roles.

If some or all of the updates to an object are single-mastered, that object belongs to a defined set of
objects. [MS-DRSR] section 4.1.10.5.3 (GetReplScope) specifies these sets, which are called FSMO
roles. Each FSMO role is contained within a single NC. Each domain NC contains three FSMO roles
called InfrastructureMasterRole, RidAllocationMasterRole, and PdcEmulationMasterRole. A config NC
contains one FSMO role called DomainNamingMasterRole. A schema NC contains one FSMO role called
SchemaMasterRole. An application NC has no FSMO roles.

Since a DC operating as AD LDS does not host domain NCs, it cannot own any of the three roles
contained by domain NCs. It can own the Schema Master and Domain Naming FSMO roles.

In a given NC, each FSMO role is represented by an object. [MS-DRSR] section 4.1.10.5.3
(GetReplScope) specifies these objects, which are called FSMO role objects.

The fSMORoleOwner attribute of each FSMO role object is an object reference to the nTDSDSA object
of the DC that owns the role; that is, the DC that performs updates to objects in the role. nTDSDSA
objects and how they represent DCs are specified in section 6.1.

An originating update to an object within a FSMO role generates an LDAP referral if the DC that
receives the request cannot perform the update; the referral is to the DC represented by the
nTDSDSA object referenced by the FSMO role object's fSMORoleOwner attribute on the DC that
received the request.

The processing of updates affected by FSMO roles is fully specified in section 3.1.1.5.

The IDL_DRSGetNCChanges method ([MS-DRSR] section 4.1.10) makes an originating update to the
fSMORoleOwner attribute of a FSMO role object while preserving single-mastering of updates to the
FSMO role. The ability to update the fSMORoleOwner attribute in this way is exposed through LDAP as
the root DSE updates becomeDomainMaster, becomelnfrastructureMaster, becomePdc,
becomePdcWithCheckPoint, becomeRidMaster, and becomeSchemaMaster specified in section 3.1.1.3.

Reading the rootDSE attribute validFSMOs on a DC returns the set of all FSMO roles (represented as
FSMO role objects) that the DC will update; this is specified in section 3.1.1.3.

3.1.1.1.12 Cross-NC Object References

106 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Section 3.1.1.1.6 specifies the referential integrity behavior of attributes with object reference
syntaxes. That section only specifies the case of references within a single NC. This section specifies
the differences for the case of object references that cross an NC boundary.

Suppose src and dst are objects in different NCs, src has an attribute a with an object reference
syntax, and dc is a DC hosting a writable replica of src's NC.

= When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses
the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. The
behavior is identical to the single NC case, with two exceptions:

1. Locating the object dst can fail if dc does not host a replica of dst and if dc fails to
communicate with a server that hosts a dst replica; the response is error unavailable /
<unrestricted>.

2. Certain cross-NC references are not allowed; the specific references that are not allowed are
specified in section 3.1.1.2.2.3. If the reference is not allowed, the response is error
constraintViolation /| ERROR_DS_NAME_REFERENCE_INVALID.

= After the assignment, the referential integrity behavior is the same as if the reference did not
cross an NC boundary, except that reference src.a reflects the state of object dst at some time tin
the past, not at the current time. If the distributed system of DCs in the forest is functioning
normally, the difference between the current time and the time t of the previous sentence is
bounded by an administrator-configurable amount of time. (During this period of time, between t
and the current time, the cross-NC reference can refer to the object by its previous name or at its
previous location, or it can refer to the object after the object has been deleted.) The phrase
"functioning normally" shown previously means that the DCs are running and communicating as
needed, with only transient failures.

The mechanism the system uses for restoring the integrity of object references is specified in section
3.1.1.6.

3.1.1.1.13 NC Replica Graph

This section uses directed graphs to model replication topology. Use [KNUTH1] section 2.3.4.2 as a
reference for the terms directed graph, vertex, arc, initial vertex, final vertex, path, and strongly-
connected.

This section introduces concepts that are used in specifying the KCC in section 6.2. The concepts are
simplified here because this section ignores the SMTP replication transport [MS-SRPL] and RODCs.
Section 6.2 specifies the concepts in full generality.

Associated with each NC replica is a repsFrom abstract attribute as specified in [MS-DRSR] section
5.172. The value of this attribute is a set of tuples. Each tuple contains a field uuidDsa that contains
the objectGUID of an nTDSDSA object. The nTDSDSA object represents a DC as specified in section
6.1.

Given a forest and an NC within the forest, define the NC replica graph as follows:
= Each DC of the given forest is a vertex of the directed graph.
= For each DC d containing a replica of the given NC:
= Set rto the given NC's repsFrom on the DC d, as a sequence in any order.
= Foriin [0 .. r./ength-1]:

» r[i].uuidDsa is a directed arc to d (the final vertex of the arc) from the DC represented by
the nTDSDSA object with objectGUID = rfi].uuidDsa (the initial vertex of the arc).

107 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Each arc in the directed graph represents a replication relationship. The DC at the final vertex of an
arc performs cycles of IDL_DRSGetNCChanges requests ([MS-DRSR] section 4.1.10.1) to the DC at
the initial vertex of that arc, applying the results of these requests to update the replica of the given
NC at the final vertex. The events that trigger a cycle of IDL_DRSGetNCChanges request over a given
arc of the NC replica graph are specified in the next section.

The KCC is an automated management component of Active Directory that controls the repsFrom
values on each DC and thereby controls the NC replica graph for each NC. One of the KCC's goals is to
keep each NC replica graph of the forest in a good state, defined as follows:

1. Each DC in the NC replica graph contains a replica of the given NC.

2. If the DC at the initial vertex of an arc contains a partial replica of the given NC, so does the DC at
the final vertex of that arc.

3. Ifdis any DC that contains a partial replica of the given NC, there is a path to d from some DC
that contains a full replica of the given NC.

4. Define F as the set of all DCs that contain full replicas of the given NC. The subgraph of the NC
replica graph whose vertex set is F is strongly-connected.

For example, the following NC replica graph contains five DCs. DC 1, DC 2, and DC 3 contain full
replicas of the given NC and DC 4 and DC 5 contain partial replicas of the given NC.

DC 1 Full
Replica

DC 4 Partial
Replica

DC 5 Partial
Replica

DC 2 Full
Replica

DC 3 Full
Replica

Figure 3: A sample NC replica graph

Per item 1 in the numbered list above, every DC present in the graph contains a replica of the given
NC.

There is an arc from DC 4 to DC 5. DC 4 is the initial vertex of this arc and DC 5 is the final vertex. Per
item 2 in the list above, because DC 4 contains a partial replica of the NC, DC 5 also contains a partial
replica of the NC.

Per item 3 in the list above, there is a path from DC 1, which contains a full replica of the NC, to both
DC 4 and DC 5 that contains a partial replica of the NC.

Per item 4 in the list above, the subgraph of the NC replica graph made by DC 1, DC 2, and DC 3 that
contains a full replica of the NC is strongly connected because there is a path from each vertex in the
subgraph to every other vertex in the subgraph.

108 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The KCC performs this management by first creating connection objects (specified in section
6.1.1.2.2.1.2.1.2), then creating repsFrom values from those connection objects (specified in section
6.2). An administrator can create specially marked connection objects, with the
NTDSCONN_OPT_IS_GENERATED bit not set in the options attribute, that the KCC will not modify but
will use in creating repsFrom values.

3.1.1.1.14 Scheduled and Event-Driven Replication

If client and server are two DCs in the NC replica graph of a given NC and forest, where server is the
initial vertex of an arc and client is the final vertex of the same arc, client will perform a replication
cycle from server by calling IDL_DRSGetNCChanges ([MS-DRSR] section 4.1.10) until the cycle is
complete in either of these two cases:

1. The DC client's repsFrom tuple for server contains a schedule field that calls for replication at the
current time. The schedule contains a REPLTIMES structure as specified in [MS-DRSR] section
5.165. This is scheduled replication.

2. The DC server calls the IDL_DRSReplicaSync method ([MS-DRSR] section 4.1.23.2) on the client.
This is event-driven replication. The events that cause this form of replication are specified later in
this section.

A precondition for event-driven replication involves server's repsTo abstract attribute, specified in
[MS-DRSR] section 5.173. The repsTo abstract attribute is a sequence tuples, like repsFrom. Like
repsFrom, each repsTo tuple contains a field uuidDsa that contains the objectGUID of an nTDSDSA
object. The nTDSDSA object represents a DC as specified in section 6.1. If server's repsTo abstract
attribute contains a tuple whose uuidDsa field contains the objectGUID of client's nTDSDSA object,
server performs event-driven replication to client.

It remains to specify how a DC's repsTo abstract attribute is populated, and to specify the events that
trigger event-driven replication.

A DC's repsTo abstract attribute is populated as follows:

1. A DC server's repsTo abstract attribute is populated for event-driven replication to client if client's
repsFrom tuple for server has the DRS_ADD_REF bit set in its replicaFlags field, and client calls
the IDL_DRSGetNCChanges method on server during scheduled replication. The DC client sets the
DRS_ADD_REF bit in Request.ulFlags on the scheduled call to IDL_DRSGetNCChanges on server
([MS-DRSR] section 4.1.10.4.1) and server updates repsTo for event-driven replication to client as
a result ([MS-DRSR] section 4.1.10.5.2).

Since the KCC running on client writes client's repsFrom, this behavior is controlled by the state of
KCC objects as specified in section 6.2.

2. A DC server's repsTo abstract attribute is populated for event-driven replication to DC client if the
IDL_DRSReplicaAdd method ([MS-DRSR] section 4.1.19.2) is called on client, specifying server as
the replication source (either pmsgln.V1.pszSourceDsaAddress or pmsgln.V2.pszDsaSrc,
depending upon the request version used). If the IDL_DRSReplicaAdd adds a new tuple to client's
repsFrom, it proceeds to call IDL_DRSUpdateRefs ([MS-DRSR] section 4.1.26.2) on server to
update server's repsTo abstract attribute.

Since IDL_DRSReplicaAdd is an RPC method, this behavior is controlled by any authorized
requester of this method. Within Active Directory itself, IDL_DRSReplicaAdd is called by the KCC
to maintain repsFrom.

The events that trigger event-driven replication from a DC server are as follows:

1. The DC server receives an update, either originating or replicated, as specified in section
3.1.1.5.1.7 (Urgent Replication).

109/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. A configurable time expires after DC server receives any update, as specified in section 3.1.1.5.1.6
(Replication notification).

3.1.1.1.15 Replication Latency and Tombstone Lifetime

Replication latency is the delay between the time of an originating update to an NC and the time when
this update is reflected in all replicas of that NC. Some updates are superseded before reaching all
replicas, but for the purposes of this simplified definition, consider an attribute update that is not
followed by other updates to that attribute for a long time.

Administrators of Active Directory control replication latency by setting several variables, specified in
section 6.1 and section 6.2. These variables ultimately control the schedules used for scheduled
replication, and they control the use of event-driven replication. Replication latency is not fully
predictable in a real system, because it depends upon the volume of read requests to DCs, the volume
of originating update requests to DCs, and the availability of DCs and communications links.

If the typical replication latency is larger than the tombstone lifetime (the value of the
tombstonelLifetime attribute of the Directory Services object specified in section 6.1.1.2.4.1.1,
interpreted as a number of days), some tombstones or recycled-objects will be garbage collected
before they have replicated to every NC replica. As a result, some objects will never be deleted in
some replicas. To restore consistency of object existence, an administrator cleans up such lingering
objects with utility programs.

3.1.1.1.16 Delayed Link Processing

When an update to an object would result in removal of more than 10,000 forward link values, or the
update would result in more than 10,000 forward link values to be made either visible or invisible to
LDAP operations that do not specify the LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control, then
at least 10,000 of the value changes so directed are completed within the transaction encompassing
the modification (that is, the "originating transaction").

Note In Windows Server 2003, Windows Server 2003 R2 operating system, and Windows Server
2008, the number is 1,000 instead of 10,000.

Any values not so changed within the originating transaction are changed by continuing processing
after and outside of that originating transaction. These changes that occur outside the originating
transactions are called "delayed link processing". Delayed link processing occurs within one or more
transactions subsequent to the originating transaction.

Although delayed link processing always uses at least one subsequent transaction, there is no
constraint on the upper bound of the number of transactions that Active Directory uses during delayed
link processing. Therefore, there is no requirement that at any given time all such values have been
removed, made visible, or made invisible. It is possible that there is a period of time during which an
object that should not have a specific value for a link valued attribute will continue to have that value.
Likewise, it is possible that there is a period of time during which an object that should have a specific
value for a link valued attribute be either visible or invisible might not have that value in the correct
state. Although the protocol places no boundary or requirements on the length of this period of time,

it is recommended that implementations minimize the length of this period of time to improve usability
of the directory for clients.

The server MUST guarantee that all such changes to values of link valued attributes are eventually
made to all affected link valued attributes.

Note In Windows 2000 Server operating system, delayed link processing is not supported.

3.1.1.2 Active Directory Schema

In Active Directory, the schema contains definitions for the objects that can be stored in the directory,
and it enforces the rules that govern both the structure and the content of the directory. The schema

110/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

consists of a set of classes, attributes, and syntaxes. A class is a category of objects that share a set
of common characteristics. It is a formal description of a discrete, identifiable type of object that can
be stored in the directory. Each object in the directory is an instance of one or more classes in the
schema. Attributes define the types of information that an object can hold. For each class, the schema
specifies the mandatory attributes and optional attributes that constitute the set of shared
characteristics of the class. A syntax is the data type of a particular attribute. Syntaxes determine
what data type an attribute can have. Active Directory uses a set of predefined syntaxes. The
predefined syntaxes do not actually appear in the directory, and new syntaxes cannot be added.

The schema itself is represented in Active Directory by a set of objects known as schema objects. For
each class in the schema, there is a schema object that defines the class. This object is a classSchema
object. For each attribute in the schema, there is a schema object that defines the attribute. This
object is an attributeSchema object. Therefore, every class is actually an instance of the classSchema
class, and every attribute is an instance of the attributeSchema class. Administrators and applications
can extend the schema by adding new attributes and classes and by modifying existing ones.

A schema object cannot be deleted, but it can be made defunct by setting the isDefunct attribute to
true. A schema object that is not defunct is active. The primary effect of the defunct state is to
prevent the schema object from being used in the creation or modification of new objects. For
instance, attempts to perform an LDAP Add of an object with a defunct class fails, just as an attempt
to perform an LDAP Add of a nonexistent class fails. The full effects of the defunct state are specified
later in this section.

3.1.1.2.1 Schema NC
The schema NC contains all of the objects that define object classes and attributes used in a forest.
The root object of the schema NC, called the schema container, is an instance of class dMD.

The contents of the schema NC is established when a forest is created. To enable a DC of a forest to
be upgraded to a newer version of Windows Server, a schema upgrade process is first performed. This
process updates the portion of the schema that Windows Server depends upon.

The attribute objectVersion on the schema container object stores the schema version of the forest.
This attribute is set during the creation of the first domain in a forest and is changed during schema
upgrade after the schema is successfully upgraded to a newer version. In AD DS, to add a DC running
a particular Windows Server version to an existing forest, the objectVersion of the forest's schema
container must be greater than or equal to the value for that Windows Server version. In AD LDS, this
is not a requirement. In AD LDS, to add a DC running a particular Windows Server version to an
existing forest, the objectVersion of the forest's schema container can be less than the value for that
Windows Server version. The correspondence between Windows Server versions and values of the
schema container objectVersion is:

= Windows 2000 Server: 13

= Windows Server 2003: 30

= Windows Server 2003 R2: 31

= Windows Server 2008 (AD DS): 44

= Windows Server 2008 R2 (AD DS): 47
= Windows Server 2012 (AD DS): 56

= Windows Server 2012 R2 (AD DS): 69
= Windows Server 2016 (AD DS): 87

= ADAM: 30

111/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= Windows Server 2008 (AD LDS): 30
= Windows Server 2008 R2 (AD LDS): 31
= Windows Server 2012 (AD LDS): 31
= Windows Server 2012 R2 (AD LDS): 31
= Windows Server 2016 (AD LDS): 31

Attribute schemalnfo on the schema container stores a String(Octet) value of length 21 bytes. This
attribute is updated on every original schema Add or Modify in the same transaction, and it is
replicated to all the domain controllers in the forest upon completion of schema NC replication. The
first byte of schemalnfo is OXFF. The next 4 bytes are a 32-bit integer in big-endian byte order, used
as the version of the update. The last 16 bytes are the invocationld of the DC where the schema
change is made. The version starts from 1 for a new forest. Once a schema change is done, the
version is incremented by one, and the invocationld of the DC where the schema change is done is
written into the GUID part of the string. The invocationld attribute is specified in section 3.1.1.1.9.

For example, here is a value of schemalnfo:

OxFF 0x00 0x00 0x07 0xC7 0x20 0x79 0x92 OxE6 0x84 0xB6 O0xF6 0x40 0x99 0x47 0x21 0x8B 0xC9
OXEO OxF1 OxF3

After a schema change is done on the schema master, the following is the new value:

OxFF 0x00 0x00 0x07 0xC8 0x20 0x79 0x92 OxE6 0x84 0xB6 OxF6 0x40 0x99 0x47 0x21 0x8B 0xC9
OXEO OxF1 OxF3

There is a child of the schema container with RDN cn=Aggregate and class subSchema. This object
has several constructed attributes that are compliant with [RFC2251] section 4.5.2, through which the
client can retrieve the forest's current schema. See constructed attributes in section 3.1.1.4.5. This
object cannot be modified.

3.1.1.2.2 Syntaxes

3.1.1.2.2.1 Introduction

This section describes the LDAP syntaxes used in attributes in Active Directory DCs.

3.1.1.2.2.2 LDAP Representations

The LDAP syntaxes supported by DCs are as shown in the following table. The set of syntaxes
supported is not extensible by schema modifications. Each syntax is identified by the combination of
the attributeSyntax, oMSyntax and, in select cases, oMObjectClass attributes of an attributeSchema
object. The cases for which oMObjectClass is not used are indicated by the presence of a hyphen in
the oMObjectClass column in the table. The combinations shown in the following table are exhaustive;
this table is consistent and identical for Windows 2000 Server, Windows Server 2003, Windows Server
2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows
Server 2016.

While oMObjectClass conceptually contains an object identifier (OID), it is declared in the schema as
String(Octet) syntax, requiring that values read from and written to it be expressed as the Basic
Encoding Rules (BER) encoding of the OID (BER encoding is defined in [ITUX690]). In the table, both
the BER-encoded form and the dotted string form of the OID are given.

LDAP syntax name attributeSyntax oMSyntax oMObjectClass

Boolean 2.5.5.8 1 -

112 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LDAP syntax name attributeSyntax oMSyntax oMObjectClass

Enumeration 2.5.5.9 10 -

Integer 2.5.5.9 2 -

Largelnteger 2.5.5.16 65 -

Object(Access-Point) 2.5.5.14 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00
0x85 0x3E (1.3.12.2.1011.28.0.702)

Object(DN-String) 2.5.5.14 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01
0x01 0x01 0x0C
(1.2.840.113556.1.1.1.12)

Object(OR-Name) 2.5.5.7 127 0x56 0x06 0x01 0x02 0x05 0x0B 0x1D
(2.6.6.1.2.5.11.29)

Object(DN-Binary) 2.5.5.7 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01
0x01 0x01 0x0B
(1.2.840.113556.1.1.1.11)

Object(DS-DN) 2.5.5.1 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00
0x85 0x4A (1.3.12.2.1011.28.0.714)

Object(Presentation-Address) 2.5.5.13 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00
0x85 0x5C (1.3.12.2.1011.28.0.732)

Object(Replica-Link) 2.5.5.10 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01
0x01 0x01 0x06
(1.2.840.113556.1.1.1.6)

String(Case) 2.5.5.3 27 -

String(IA5) 2.5.5.5 22 -

String(NT-Sec-Desc) 2.5.5.15 66 -

String(Numeric) 2.5.5.6 18 -

String(Object-Identifier) 2.5.5.2 6 -

String(Octet) 2.5.5.10 4 -

String(Printable) 2.5.5.5 19 -

String(Sid) 2.5.5.17 4 -

String(Teletex) 2.5.5.4 20 -

String(Unicode) 2.5.5.12 64 -

String(UTC-Time) 2.5.5.11 23 -

String(Generalized-Time) 2.5.5.11 24 -

The representation for many of the preceding syntaxes is adopted from [RFC2252]. The following
table lists the syntaxes whose representation is adopted from that RFC, the [RFC2252] name of that
syntax, and the associated section of [RFC2252] that specifies the representation.

LDAP syntax name RFC 2252 name Section of RFC 2252

Boolean Boolean 6.4

113 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LDAP syntax name RFC 2252 name Section of RFC 2252
Enumeration INTEGER 6.16

Integer INTEGER 6.16%*

Largelnteger INTEGER 6.16%*

Object(DS-DN) DN 6.9 (see also [RFC2253])**
Object(Presentation-Address) Presentation Address 6.28%**
Object(Replica-Link) Binary 6.2

String(IA5) IA5 String 6.15"
String(Numeric) Numeric String 6.23""
String(Object-Identifier) OID 6.25""

String(Octet) Binary 6.2

String(Printable) Printable String 6.29""""
String(Unicode) Directory String 6.10
String(UTC-Time) UTC Time 6.3171T
String(Generalized-Time) Generalized Time 6.14711T

* The Integer syntax in Active Directory is restricted to 32-bit integers. The Largelnteger syntax is
restricted to 64-bit integers.

** While Active Directory uses the [RFC2252] and [RFC2253] representation of DNs, it can also use
alternative forms of the DN representation when it accepts requests and sends responses, if requested
by the client. This is documented in LDAP_SERVER_EXTENDED_DN_OID (section 3.1.1.3.4.1.5).

*** No validation is done by the DC to confirm that the value conforms to the representation specified
in [RFC1278].

" Values restricted to ASN.1 IA5 strings (as specified in [ITUX680]).
™" Values restricted to ASN.1 Numeric strings (as specified in [ITUX680]).

T Values of attributes of syntax String(OID) are accepted in either the numericoid (numeric OID) or
descr (the LDAP display name of the attribute or class identified by that OID) format, as defined in
[RFC2252] section 4.1. The server determines the format of returning OID values using the first
matching rule in the following set of processing rules:

1. If a "Binary Option" is present on the AttributeDescription (as described in [RFC2251] section
4.1.5.1) of the request, the server MUST return the OID converted to binary format as described
in [RFC2252] section 4.3.1. The result is a binary encoded value using Basic Encoding Rules
defined in [ITUX690].

2. If a value of either attributeID of an AttributeSchema object or governsID of a ClassSchema object
is requested, the server MUST return the OID in numericoid (Numeric OID) format.

3. If the attribute requested is not attributeID or governsID, but the value of the attribute identifies
an attribute or class, the server MUST return the value in Descr format.

4. If none of the above applies, the server MUST return the OID in numericoid (Numeric OID) format.

114 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

11T Active Directory has two differences from the character set specified in [RFC2252]:

1. The quote character ("), or ASCII 0x22, is part of the character set in the RFC but not in Active
Directory.

2. The "@" symbol, or ASCII 0x40, is not part of the character set in the RFC, but it is part of the
character set in Active Directory.

T Times are measured in granularity of 1 second.

The remaining syntaxes are represented as shown in the following sections.

3.1.1.2.2.2.1 Object(DN-String)
A value with this syntax is a UTF-8 string in the following format:
S:byte_count:string_value:object_DN

where byte_count is the humber (in decimal) of bytes in the string_value string, object_DN is a
DN in Object(DS-DN) form, and all remaining characters are string literals. Since string_value is a
UTF-8 string, one character can require more than one byte to represent it.

3.1.1.2.2.2.2 Object(Access-Point)
A value with this syntax is a UTF-8 string in the following format:
presentation_address#X500:0bject_DN

where presentation_address is a value encoded in the Object(Presentation-Address) syntax,
object_DN is a DN in Object(DS-DN) form, and all remaining characters are string literals.

3.1.1.2.2.2.3 Object(DN-Binary)
A value with this syntax is a UTF-8 string in the following format:
B:char_count:binary_value:object_DN

where char_count is the nhumber (in decimal) of hexadecimal digits in binary_value, binary_value
is the hexadecimal representation of a binary value, object_DN is a DN in Object(DS-DN) form, and
all remaining characters are string literals. Each byte is represented by a pair of hexadecimal
characters in binary_value, with the first character of each pair corresponding to the most-significant
nibble of the byte. The first pair in binary_value corresponds to the first byte of the binary value,
with subsequent pairs corresponding to the remaining bytes in sequential order. Note that
char_count is always even in a syntactically-valid Object(DN-Binary) value.

3.1.1.2.2.2.4 Object(OR-Name)

A value with this syntax is a UTF-8 string in the following format:
object_DN

where object_DN is a DN in Object(DS-DN) form.
3.1.1.2.2.2.5 String(Case)

A value with this syntax is a case-sensitive UTF-8 string, but the server does not enforce that a value
of this syntax must be a valid UTF-8 string.

3.1.1.2.2.2.6 String(NT-Sec-Desc)

115/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A value with this syntax contains a Windows security descriptor in binary form. The binary form is that
of a SECURITY_DESCRIPTOR structure and is specified in [MS-DTYP] section 2.4.6. It is otherwise
encoded the same as the String(Octet) syntax.

3.1.1.2.2.2.7 String(Sid)

A value with this syntax contains a SID in binary form. The binary form is that of a SID structure (the
SID structure is specified in [MS-DTYP] section 2.4.2.2; all multibyte fields have little-endian byte
ordering). It is otherwise encoded the same as the String(Octet) syntax.

3.1.1.2.2.2.8 String(Teletex)

A value with this syntax is a UTF-8 string restricted to characters with values between 0x20 and Ox7E,
inclusive.

3.1.1.2.2.3 Referential Integrity

Attributes with object reference syntaxes have special behavior, called referential integrity, as
specified in section 3.1.1.1.6. The following are object reference syntaxes:

= Object(Access-Point)
* Object(DN-String)

= Object(OR-Name)

= Object(DN-Binary)

= Object(DS-DN)

For the four syntaxes other than Object(DS-DN), referential integrity only applies to the object_DN
portion of the value.

Active Directory imposes restrictions on which objects can be referenced by an attribute that has
referential integrity. An attribute can reference any object in the same NC as the object on which that
attribute is located. Additionally, attributes on an object in the domain NC, schema NC, or config NC
can reference any object in any domain NC in the forest, any object in the schema NC or the config
NC, or the root object of any application NC. For objects in application NCs, such attributes can
reference any object in the config NC or the schema NC, or the root object of any application NC, in
addition to any object in the same application NC as the object doing the referencing. All other
references are disallowed by the server.

These restrictions are identical for AD DS and for AD LDS. Because AD LDS does not support domain
NCs, the only cross-NC references in an AD LDS forest are from any NC to any object in the config and
schema NCs or to the root of an application NC.

3.1.1.2.2.4 Supported Comparison Operations

In addition to determining what can be stored in an attribute, the syntaxes determine what
comparison operations the server permits on an attribute in an LDAP search filter, as well as how the
server performs those comparisons. The following table maps each of the LDAP syntaxes to a
comparison rule. All syntaxes of the same comparison rule support the same comparison operations
and are compared using the same comparison rules.

LDAP syntax Comparison rule
Boolean Bool
Enumeration Integer

116 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LDAP syntax

Comparison rule

Integer Integer
Largelnteger Integer
Object(Access-Point) DN-String
Object(DN-String) DN-String
Object(OR-Name) DN-Binary
Object(DN-Binary) DN-Binary
Object(DS-DN) DN
Object(Presentation-Address) PresentationAddress
Object(Replica-Link) Octet
String(Case) CaseString
String(IA5) CaseString
String(NT-Sec-Desc) SecDesc
String(Numeric) CaseString
String(Object-Identifier) OID
String(Octet) Octet
String(Printable) CaseString
String(Sid) Sid
String(Teletex) NoCaseString
String(Unicode) UnicodeString
String(UTC-Time) Time
String(Generalized-Time) Time

The following table (split into three parts for readability) shows which of the choices in an LDAP filter
(that is, which comparison operations) are supported for each comparison rule. The LDAP filter
structure is defined in [RFC2251] section 4.5.1. Each comparison rule (for example, the rule for
comparing two Bool values) is discussed following the table. The "and", "or", and "not" choices in an
LDAP filter are not included in this table because they are not comparisons performed against an
attribute value. Active Directory treats approxMatch as equivalent to equalityMatch. For details on the

three extensible matching rules, see section 3.1.1.3.4.4.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Comparison rule present equalityMatch approxMatch
Bool X X X
Integer X X X
DN-String X X X
DN-Binary X X X
DN X X X
117/ 626

Comparison rule

present

equalityMatch

approxMatch

PresentationAddress

X

X

Octet

X

X

CaseString

SecDesc

OID

Sid

NoCaseString

UnicodeString

Time

Solx x| x| x|x|x]|x]|x

< | x| x| x| x

< | x| x| x| x

Comparison rule

lessOrEqual

greaterOrEqu

substrings

Bool

X

X

Integer

X

X

DN-String

DN-Binary

DN

PresentationAddress

Octet

CaseString

SecDesc

oID

Sid

NoCaseString

UnicodeString

Time

X | X | x| X

X | X< | x<|X

Note In the following table, the constant names in the headers for the extensibleMatch columns are
prefixed with "LDAP_MATCHING_RULE_". For example, "...BIT_AND" is actually

"LDAP_MATCHING_RULE_BIT_AND".

Comparison rule

extensibleMatch:
...BIT_AND

extensibleMatch:
...BIT_OR

extensibleMatch:

...TRANSITIVE_EVAL

Bool

Integer

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

118/ 626

extensibleMatch: | extensibleMatch: | extensibleMatch:
Comparison rule ...BIT_AND ...BIT_OR ...TRANSITIVE_EVAL

DN-String X*

DN-Binary X*

DN X*

PresentationAddress

Octet

CaseString

SecDesc

OID

Sid

NoCaseString

UnicodeString

Time

* Supported only if the attribute is a link attribute. Evaluates to Undefined otherwise.

3.1.1.2.2.4.1 Bool Comparison Rule

A value of true is considered to be greater than a value of false.

3.1.1.2.2.4.2 Integer Comparison Rule

A signed comparison of integer values is performed.

3.1.1.2.2.4.3 DN-String Comparison Rule

Values of String(DN-String) or String(Access-Point) are equal if the object_DN components name the
same object and the string_value or presentation_address components are equal according to the
UnicodeString comparison rule.

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as
documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating a
filter clause that uses this rule; string_value or presentation_address is ignored.

3.1.1.2.2.4.4 DN-Binary Comparison Rule

Values of String(DN-Binary) or String(OR-Name) are equal if the object_DN components name the
same object and the binary_value or OR_address components are identical in length and in
content.

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as
documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating a
filter clause that uses this rule; binary_value or OR_address is ignored.

3.1.1.2.2.4.5 DN Comparison Rule

DN values are equal when they name the same object.

119/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as
documented in section 3.1.1.3.4.4.

3.1.1.2.2.4.6 PresentationAddress Comparison Rule

Two Object(Presentation-Address) values are equal when they have the same length and content.

3.1.1.2.2.4.7 Octet Comparison Rule

Two values are equal when they are the same length and have identical contents. A value S1 is less
than a value S2, where L is the smaller of the length of S1 and the length of S2, if either the first L
bytes of S1 are less than the first L bytes of S2, or if the first L bytes of S1 and S2 are identical but
the length of S1 is less than the length of S2. Given L = 1, S1 is less than S2 if the value of the first
byte of S1 is less than the value of the first byte of S2. Given L > 1, for the first L bytes of S1 to be
less than the first L bytes of S2 means that there exists an N (where N<L) such that bytes 0...N-1 of
S1 and S2 are identical, and byte N of S1 is less than byte N of S2.

For substring purposes, each byte in the value is treated as if it was a character. Values are compared
using the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1. The "characters"
are treated as if they were case-sensitive; that is, two characters are considered identical if and only if
the bytes that represent them are identical.

3.1.1.2.2.4.8 CaseString Comparison Rule

When compared using this comparison rule, two values are equal if they have identical length and
contents. A value S1 is less than a value S2, where L is the smaller of the length of S1 and the length
of S2, if either the first L bytes of S1 are less than the first L bytes of S2, or if the first L bytes of S1
and S2 are identical but the length of S1 is less than the length of S2. Given L = 1, S1 is less than S2
if the value of the first byte of S1 is less than the value of the first byte of S2. Given L > 1, for the
first L bytes of S1 to be less than the first L bytes of S2 means that there exists an N (where N<L)
such that bytes 0...N-1 of S1 and S2 are identical, and byte N of S1 is less than byte N of S2.

For substring purposes, this comparison rule treats values as if they were case-sensitive strings of
characters and obey the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1. In
this comparison, two characters are considered identical if and only if the bytes that represent them
are identical.

3.1.1.2.2.4.9 SecDesc Comparison Rule

SecDescs are compared as octet strings as in section 3.1.1.2.2.4.7.

3.1.1.2.2.4.10 OID Comparison Rule

Two String(Object-Identifier) values are equal when they are the same OID.

3.1.1.2.2.4.11 Sid Comparison Rule

String(SID) values are treated as the binary representation of the SID (see section 3.1.1.2.2.2.7). The
binary representations of the SID are compared using the Octet comparison rule.

3.1.1.2.2.4.12 NoCaseString Comparison Rule

This comparison rule is identical to the CaseString comparison rule, except that for each comparison,
characters are treated in a case-insensitive fashion. For equality, ordering (greater-than-or-equals and
less-than-or-equals), and substrings, two characters are identical if the bytes that represent them are
identical or if the characters differ from each other only by their case. The "C" locale, as defined in
[ISO/IEC-9899], is used for determining whether two characters differ by case.

120/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.2.2.4.13 UnicodeString Comparison Rule

Comparison of values using this comparison rule is performed via Unicode comparison, which is
specified in section 6.5. If an LDAP_SERVER_SORT_OID extended control (see section 3.1.1.3.4) is
attached to the search request and specifies a locale in its orderingRule field, the locale specified is
used for the Unicode comparison. Otherwise, the Unicode comparison is performed using United
States English (LCID 0409). The comparison function is independent of the server locale and therefore
gives the same result on all DCs. The comparison function operates on Unicode strings containing
characters from all alphabets and does not, for instance, involve reducing the string to the alphabet
used by United States English before performing the comparison. This comparison function is used to
determine both equality and ordering (greater-than-or-equals and less-than-or-equals), as well as to
determine equality of substrings when performing a substring comparison.

This comparison rule is used in processing search filters, not in sorting search results. See section
3.1.1.3.4.1.13 for per-locale sorting of search results.

3.1.1.2.2.4.14 Time Comparison Rule

Time T1 is greater than time T2 if T1 denotes a time subsequent to T2.

3.1.1.2.3 Attributes
The attributes of class attributeSchema are specified in the following table.

The term "Unique" (in quotation marks) in the following table, and in the similar table for classSchema
in section 3.1.1.2.4.8, means that the value satisfies the following constraint:

= If the forest functional level is less than DS_BEHAVIOR_WIN2003, the value is unique among all
values of this attribute in the set containing every attributeSchema and classSchema object in the
schema NC.

= If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the value is unique among all
values of this attribute in the set containing every attributeSchema and classSchema object S in
the schema NC that satisfies at least one of the following three conditions:

= SlisDefunct # true, thatis, S is active.
= FLAG_ATTR_IS_RDN is present in S!systemFlags (defined in the following table).
= S = CIrDNALttID (section 3.1.1.2.4.8) for some classSchema object C.

The term system-only in the following table means that the attribute is defined with systemOnly true.
The value of the system-only attributes in the table can be specified on Add (except where noted) but
cannot be modified on existing objects by LDAP Modify requests (except as specified in section
3.1.1.5.3.2), only by the system. The table is ordered with the system-only attributes before the other
attributes.

Attribute Description

objectClass Equals the sequence [top, classSchema]. System-only.

attributeID "Unique" OID that identifies this attribute. System-only.

schemalDGUID "Unique" GUID that identifies this attribute, used in security descriptors (SDs). If

not specified on Add, the DC generates a GUID. This GUID MUST NOT be the
NULL GUID. System-only.

msDS-IntId Not specified on Add (if specified in the Add request, the DC returns error
unwillingToPerform / <unrestricted>); the value (a 32-bit unsigned integer in
the subrange [0x80000000..0xBFFFFFFF]) is generated by the DC. Present on

121 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute Description

attributeSchema objects added when forest functional level is
DS_BEHAVIOR_WIN2003 or greater with FLAG_SCHEMA_BASE_OBJECT not
present in systemFlags (below). The value of msDS-Intld is the ATTRTYP of this
attributeSchema object. Unique among all values of this attribute on objects in
the schema NC, regardless of forest functional level. System-only.

linkID Optional. If present, and not zero, this is a link attribute, and the linkID value is
unique among all values of this attribute on objects in the schema NC,
regardless of forest functional level. If linkID is even, the attribute is a forward
link attribute; otherwise it is a back link attribute. The linkID for back link
attribute equals to the linkID of the corresponding forward link attribute plus
one. Special auto-generation behavior for the linkID attribute is specified in
section 3.1.1.2.3.1. System-only.

mAPIID Optional. "Unique" integer that identifies this attribute, used by Messaging
Application Programming Interface (MAPI) clients. Not present on
attributeSchema objects in AD LDS. Special auto-generation behavior for the
mAPIID attribute is specified in section 3.1.1.2.3.2. System-only. If the DC
functional level is DS_BEHAVIOR_WIN2008 or greater, the mAPIID attribute can
be modified on attributeSchema objects that do not include
FLAG_SCHEMA_BASE_OBIJECT as the systemFlags attribute. Otherwise, the
mAPIID attribute cannot be modified.

attributeSyntax One of the three attributes that identify the syntax of the attribute. See section
3.1.1.2.2. System-only.

oMSyntax One of the three attributes that identify the syntax of the attribute. See section
3.1.1.2.2. System-only.

oMObjectClass Optional. One of the three attributes that identify the syntax of the attribute.
See section 3.1.1.2.2. System-only.

isSingleValued True if this attribute is single-valued; false, if it is multivalued. If an attribute is
multivalued, all values have the syntax specified for the attribute. System-only.

systemFlags Optional. Flags that determine specific system operations; see section 2.2.10 for
values. The systemFlags values specific to an attributeSchema object are:

FLAG_ATTR_NOT_REPLICATED: This attribute is nonreplicated.

Note If the FLAG_ATTR_NOT_REPLICATED bit is not specified on Add and the
linkID value is odd (denoting a back link attribute), the DC adds the
FLAG_ATTR_NOT_REPLICATED bit to the systemFlags value using a bitwise OR.

FLAG_ATTR_REQ_PARTIAL_SET_MEMBER: This attribute is a member of PAS
regardless the value of attribute isMemberOfPartialAttributeSet.

FLAG_ATTR_IS_CONSTRUCTED: This attribute is a constructed attribute.

FLAG_ATTR_IS_OPERATIONAL: This attribute is an operational attribute, as
defined in [RFC2251] section 3.2.1.

FLAG_SCHEMA_BASE_OBIJECT: This class is part of the base schema.
Modifications to a base schema object are restricted as described in section
3.1.1.2.5.

FLAG_ATTR_IS_RDN: This attribute can be used as an RDN attribute of a class.
System-only.

systemOnly Optional. The value of a system-only attribute cannot be modified on existing
objects by LDAP Modify requests (except as specified in section 3.1.1.5.3.2),
only by the system. System-only.

cn RDN for the schema object.

IDAPDisplayName "Unique" name that identifies this attribute, used by LDAP clients. If not
specified on Add, the DC generates a value as specified in section 3.1.1.2.3.4.

122 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute

Description

The syntax of IDAPDisplayName is described in [RFC2251] section 4.1.4.

attributeSecurityGUID

Optional. GUID by which the security system identifies the property set of this
attribute. If present, this value MUST NOT be the NULL GUID. See the
specification of property sets in section 3.1.1.2.3.3.

extendedCharsAllowed

Optional. If true, character set constraint is not enforced on values of this
attribute. Applies to attributes of syntax String(IA5), String(Numeric),
String(Teletex), String(Printable).

rangeLower

Optional. Lower range of values that are allowed for this attribute. For syntax
Integer, Largelnteger, Enumeration, String(UTC-Time), and String(Generalized-
Time), rangeLower equals the minimum allowed value. For syntax Object(DN-
binary), Object(DN-String), rangeLower equals the minimum length of the
binary_value or string_value portion of the given value. For String(Unicode),
rangeLower is the minimum length in characters. rangeLower does not affect the
allowed values for syntax Boolean and Object(DS-DN). For all other syntaxes,
rangeLower equals the minimum length in bytes. Note that rangeLower is a 32-
bit integer and cannot express the full range of Largelnteger, String(UTC-Time),
and String(Generalized-Time).

rangeUpper

Optional. Upper range of values that are allowed for this attribute. For syntax
Integer, Largelnteger, Enumeration, String(UTC-Time), and String(Generalized-
Time), rangeUpper equals the maximum allowed value. For syntax Object(DN-
binary), Object(DN-String), rangeUpper equals the maximum length of the
binary_value or string_value portion of the given value. For String(Unicode),
rangeUpper is the maximum length in character. rangeUpper does not affect the
allowed values for syntax Boolean and Object(DS-DN). For all other syntaxes,
rangeUpper equals the maximum length in bytes. Note that rangeUpper is a 32-
bit integer and cannot express the full range of Largelnteger, String(UTC-Time),
and String(Generalized-Time).

searchFlags

Optional. The searchFlags attribute specifies whether an attribute is indexed,
among other things; see section 2.2.9 for values. It contains bitwise flags as
follows:

fATTINDEX: *

fPDNTATTINDEX: *

fANR: Add this attribute to the ambiguous name resolution (ANR) set. If this flag
is set, then fATTINDEX must also be set. See 3.1.1.3.1.3.4 for ANR search.
fPRESERVEONDELETE: Specifies that the attribute values MUST be preserved on
objects after deletion of the object (that is, when the object is transformed to a
tombstone or recycled-object). This flag is ignored for the attributes
objectCategory and sAMAccountType, plus all linked attributes.

fCOPY: Specifies a hint to LDAP clients that the attribute is intended to be copied
when copying the object. This flag is not interpreted by the server.

fTUPLEINDEX: *
fSUBTREEATTINDEX: *

fCONFIDENTIAL: This attribute is confidential, special access check is needed;
see section Reads:Access Checks in section 3.1.1.4.

fNEVERVALUEAUDIT: Auditing of changes to values contained in this attribute
MUST NOT be performed. Auditing is outside the state model.

fRODCFilteredAttribute: This attribute is part of the filtered attribute set. This
flag is only effective on a DC whose DC functionality level is
DS_BEHAVIOR_WIN2008 or greater. See section 3.1.1.2.3.5 for additional
restrictions.

fEXTENDEDLINKTRACKING: The effects of this search flag are outside the state
model. Suggests that a DC do additional internal tracking for link changes. This
flag can be ignored by other implementations but must not be used in a
conflicting way that would affect the performance of Windows DCs.

[MS-ADTS-Diff] - v20170601

123/ 626

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

Attribute Description

fBASEONLY: This attribute is returned only on searches scoped to one object.

fPARTITIONSECRET: This attribute requires extended access checks to add,
read, and update.

The effects of searchFlags marked * are outside the state model. They direct the
server to construct certain indexes that affect system performance. These flags
can be ignored by other implementations but must not be used in a conflicting
way that would affect the performance of Windows DCs.

schemaFlagsEx Optional. The schemaFlagsEx attribute specifies whether an attribute can be part
of the filtered attribute set; see section 2.2.11 for values. It contains bitwise
flags as follows:

FLAG_ATTR_IS_CRITICAL: If this flag is set and the fRODCFilteredAttribute flag
in searchFlags is also set, the fRODCFilteredAttribute flag is ignored. If
fRODCFilteredAttribute is not set, then setting this flag has no effect. This flag is
effective only on a DC whose DC functionality level is DS_BEHAVIOR_WIN2008
or greater; it is ignored by a DC that is not at that level or greater.

isMemberOfPartialAttribu | Optional. If true, the attribute is a member of the forest's partial attribute set.

teSet An attribute is a member of the forest's partial attribute set if and only if either
(1) this attribute is true or (2) the FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit
is set in the systemFlags attribute.

If this attribute is true and the FLAG_ATTR_NOT_REPLICATED bit is set in the
systemFlags attribute, and if the attribute is modified on a DC that is also a GC
server, then the value of the attribute is accessible through that GC server, but
the value of the attribute does not replicate. If the
FLAG_ATTR_NOT_REPLICATED bit is set in the systemFlags attribute, the
attribute value does not replicate to other GC servers.

3.1.1.2.3.1 Auto-Generated linkID

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.50 as the value of
the linkID attribute, the DC sets the linkID attribute to an even integer that does not already appear
as the linkID on a schema object. The attribute created by the Add is a forward link attribute.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is
created with LDAP Add, and the Add request assigns either the attributeID or the IDAPDisplayName of
an existing forward link attribute as the value of the linkID attribute, the DC sets the linkID attribute
to the linkID of the given forward link attribute plus one. The attribute created by the Add is a back
link attribute corresponding to the given forward link attribute.

The aforementioned values that trigger auto-generation behavior for the linkID are of syntax
String(Object-Identifier) or String(Unicode), and therefore do not conform to the declared syntax of
the linkID attribute. The DC accepts these values without the error that would normally occur in such
a case.

3.1.1.2.3.2 Auto-Generated mAPIID

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, and an attributeSchema object is
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.49 as the value of
the mAPIID attribute, the DC sets the mAPIID attribute to an integer that does not already appear as
the mAPIID on a schema object. An implementation can use any algorithm to choose the next integer
as long as that algorithm satisfies this uniqueness constraint. This mAPIID uniqueness spans all the
mAPIID attributes on schema objects that are currently persisted in the directory.

124 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The aforementioned value that triggers auto-generation behavior for mAPIID is of syntax String
(Object-Identifier), which does not conform to the declared syntax of the mAPIID attribute. The DC
accepts these values without the error that would normally occur in such a case.

3.1.1.2.3.3 Property Set

A property set consists of a set of related attributes. An attribute whose attributeSchema object has a
value for the attributeSecurityGUID attribute belongs to that property set; the property set is
identified by the property set GUID, which is the attributeSecurityGUID value.

A property set GUID can be used instead of the schemalDGUID of an attribute when defining a
security descriptor, as specified in section 5.1.3.2, to grant or deny access to all attributes in one
access control entry (ACE).

The following table lists the property sets present in the default AD DS schema.

Name Property set GUID

Domain Password & C7407360-20BF-11D0-A768-00AA006E0529
Lockout Policies

General Information 59BA2F42-79A2-11D0-9020-00C04FC2D3CF
Account Restrictions 4C164200-20C0-11D0-A768-00AA006E0529
Logon Information 5F202010-79A5-11D0-9020-00C04FC2D4CF
Group Membership BCOAC240-79A9-11D0-9020-00C04FC2D4CF
Phone and Mail Options E45795B2-9455-11D1-AEBD-0000F80367C1
Personal Information 77B5B886-944A-11D1-AEBD-0000F80367C1
Web Information E45795B3-9455-11D1-AEBD-0000F80367C1
Public Information E48D0154-BCF8-11D1-8702-00C04FB96050
Remote Access Information 037088F8-0AE1-11D2-B422-00A0C968F939
Other Domain Parameters B8119FD0-04F6-4762-AB7A-4986C76B3F9A

(for use by SAM)

DNS Host Name Attributes 72E39547-7B18-11D1-ADEF-00C04FD8D5CD
MS-TS-GatewayAccess (*) FFA6F046-CA4B-4FEB-B40D-04DFEE722543

Private Information (*) 91E647DE-D96F-4B70-9557-D63FF4F3CCD8
Terminal Server License Server (*) 5805BC62-BDC9-4428-A5E2-856A0F4C185E

(*) The last three property sets are present only in Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 AD DS forests.

To determine the set of attributes that belong to a property set, search for the corresponding
property-set GUID in [MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, or in [MS-ADLS] for AD
LDS. All attributeSchema classes that have their attributeSecurityGUID set as the property-set GUID
belong to that property set.

New property sets can be created by adding controlAccessRight objects to the Extended-Rights
container as described in section 5.1.3.2.1. The rightsGuid attribute of the controlAccessRight object is
the property set GUID. This GUID MUST NOT be the NULL GUID.

125/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

AD LDS installs a reduced schema by default. The default AD LDS schema only includes the following
property sets:

General Information
Account Restrictions
Logon Information
Group Membership
Phone and Mail Options
Personal Information
Web Information

Public Information

3.1.1.2.3.4 IDAPDisplayName Generation

When IDAPDisplayName is not given explicitly when creating an attribute or class, the system will
generate a default one from the value of cn with the following routine:

String generateldapDisplayName (IN cn: String)
{
Identify the substrings in cn that are delimited by
one or more characters in the set {' ', '-', ' '},
let S be a string array containing all the substrings;
Let T be a string array with the same number of elements
as S, such that
1. First string in T (T[1]) is exactly the same string
as S[1l], except the first character of T[1l] is the
lower case form of the first character of S[1];
2. For the remaining strings, T[i] is the same as S[i],
except the first character of T[i] is the upper case
of the first character of S[i];
Let string st be the concatenation of the strings in T;
Return st;

}

For example, if the cn of a new class is Sam-Domain, the default IDAPDisplayName is samDomain.

3.1.1.2.3.5 Flag fRODCFilteredAttribute in Attribute searchFlags

An attribute cannot be a member of a filtered attribute set if one of the following conditions is true:

The FLAG_ATTR_NOT_REPLICATED bit is set in attribute systemFlags of the attributeSchema
object;

The FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit is set in attribute systemFlags of the
attributeSchema object;

The FLAG_ATTR_IS_CONSTRUCTED bit is set in attribute systemFlags of the attributeSchema
object;

The FLAG_ATTR_IS_CRITICAL bit is set in attribute schemaFlagsEx of the attributeSchema object;
Attribute systemOnly of the attributeSchema object is true;

The attribute is in the following list: currentValue, dBCSPwd, unicodePwd, ntPwdHistory,
priorValue, supplementalCredentials, trustAuthIncoming, trustAuthOutgoing, ImPwdHistory,

126 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

initialAuthIncoming, initialAuthOutgoing, msDS-ExecuteScriptPassword, displayName, codePage,
creationTime, lockoutDuration, lockOutObservationWindow, logonHours, lockoutThreshold,
maxPwdAge, minPwdAge, minPwdLength, nETBIOSName, pwdProperties, pwdHistoryLength,
pwdLastSet, securityldentifier, trustDirection, trustPartner, trustPosixOffset, trustType, rid,
domainReplica, accountExpires, nTMixedDomain, operatingSystem, operatingSystemVersion,
operatingSystemServicePack, fSMORoleOwner, trustAttributes, trustParent, flatName, sIDHistory,
dNSHostName, lockoutTime, servicePrincipalName, isCriticalSystemObject, msDS-
TrustForestTrustIinfo, msDS-SPNSuffixes, msDS-AdditionalDnsHostName, msDS-
AdditionalSamAccountName, msDS-AllowedToDelegateTo, msDS-KrbTgtLink, msDS-
AuthenticatedAtDC, msDS-SupportedEncryptionTypes.

If one of the conditions is true, the attribute will not be in the filtered attribute set even if the flag
fRODCEFilteredAttribute is set in attribute searchFlags of the attributeSchema object.

3.1.1.2.4 Classes

3.1.1.2.4.1 Class Categories
There are four categories of classes:
Structural classes: Structural classes are the classes that can have instances in the directory.

Abstract classes: Abstract classes are templates that are used to derive new classes. Abstract
classes cannot be instantiated in the directory.

Auxiliary classes: Auxiliary classes contain a list of attributes. Adding the auxiliary class to the
definition of a structural or abstract class adds the auxiliary class's attributes to the definition. An
auxiliary class cannot be instantiated by itself in the directory.

88 classes: 88 classes do not fall into any of the preceding categories. An 88 class can be used as an
abstract class, a structural class, or an auxiliary class.

Structural class, abstract class, and auxiliary class are defined in [X501] section 8.3. 88 class
corresponds to the definition of object classes described in [X501] section 8.3.4. 88 class is included
for compatibility with this older standard and is not intended to be used in new schema extensions.

3.1.1.2.4.2 Inheritance

Inheritance is the ability to build new classes from existing classes. The new class is defined as a
subclass of another class, called its superclass. A subclass inherits from its superclass the mandatory
and optional attributes and its structural parent classes in the directory hierarchy. All classes are
subclasses, directly or indirectly, of a single abstract object class, called top. In Active Directory, a
class has exactly one superclass; top is its own superclass. An ordered set of superclasses of a class,
ending with class top, is its superclass chain ([X501]). The superclass chain of a class does not include
the class itself, except that the superclass chain of top is the single-element sequence [top 1.

Abstract classes can inherit only from abstract classes, auxiliary classes can inherit from all classes
except structural classes, and structural classes can inherit from all classes except auxiliary classes.
Classes of the category 88 class (section 3.1.1.2.4.1) can inherit from all classes.

3.1.1.2.4.3 objectClass

Attribute objectClass is a multivalued attribute that appears on all the objects in the directory. When
instantiating a structural class or an 88 object class, the objectClass attribute of the new object
contains a sequence of class names. The first element is always class top. The last element is the
name of the structural class or the 88 object class that was instantiated (referred to as the most
specific class). The rest of the classes in the superclass chain are listed in between in the order of
inheritance from class top. For example, a user object has the following four-element sequence as the
value of objectClass:

127 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[top, person, organizationalPerson, user]

For information on instantiating auxiliary classes see section 3.1.1.2.4.6.

3.1.1.2.4.4 Structure Rules

Structure rules define the possible tree structures. In Active Directory, the structure rules (for
directory hierarchy, see section 3.1.1.2.4.2) are completely expressed by the possSuperiors and
systemPossSuperiors attributes that are present on each classSchema object. The union of values in
these two attributes specifies the list of classes, instances of which are allowed to be parents of an
object instance of the class in question.

3.1.1.2.4.5 Content Rules

Content rules determine the mandatory and optional attributes of the class instances that are stored
in the directory. In Active Directory, the content rules are completely expressed by the mustContain,
mayContain, systemMustContain, and systemMayContain attributes of the schema definitions for each
class. The union of values in the mustContain and systemMustContain attributes specifies the
attributes that are required to be present on an object instance of the class in question. The union of
values in the mustContain, systemMustContain, mayContain, and systemMayContain attributes
specifies the attributes that are allowed to be present on an object instance of the class in question.

3.1.1.2.4.6 Auxiliary Class

Active Directory provides support for statically linking auxiliary classes to the classSchema definition of
another object class. When an auxiliary class aux is statically linked to some other class c/, it is as if all
of the mandatory and optional attributes of the auxiliary class aux are added to the class cl.

The governsID of auxiliary class aux is contained in the auxiliaryClass attribute of c/ if aux was
statically linked to c/ by modifying the auxiliaryClass attribute of c/'s classSchema definition as
specified in section 3.1.1.3.1.1.5. The governsID of auxiliary class aux is contained in the
systemAuxiliaryClass attribute of c/ if aux was statically linked to c/ by modifying the
systemAuxiliaryClass attribute of c/'s classSchema definition as specified in section 3.1.1.3.1.1.5.

A statically linked auxiliary class with mandatory attributes must be linked to the class c/ through the
systemAuxiliaryClass attribute of c/ at the time c/ is defined as described in section 3.1.1.3.1.1.5. The
objectClass attribute of objects of class c/ does not include the names of statically linked auxiliary
classes or the classes in their superclass chains.

Active Directory also provides support for dynamically linking auxiliary classes on objects, which
reflects the model of auxiliary object classes described in [X501] section 8.3.3. In this case, the
dynamically linked auxiliary class affects only the individual object to which it is linked, as opposed to
a statically linked auxiliary class, which is linked to a class and affects every object of that class. The
classSchema of the class is not affected by dynamic auxiliary classes. When an auxiliary class is
dynamically linked to an object, the mandatory and optional attributes of the auxiliary class become
mandatory and optional attributes of the object. Refer to section 3.1.1.3.1.1.5 for auxiliary class
related LDAP operations supported by Active Directory.

If an object is dynamically linked to one or more auxiliary classes, attribute objectClass of the object
contains the following values in the order described below.

1. Class top remains as the first value;

2. Then it is followed by the set of dynamic auxiliary classes and the classes in their superclass
chains, excluding those already present in the superclass chain of the most specific structural
class. There is no specific order among the classes in this set, and no class is listed more than
once.

128 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. Next, the classes in the superclass chain of the most specific structural class are listed after that,
in the order of inheritance from top.

4. The most specific structural class remains last in the sequence.
The auxiliaryClass or systemAuxiliaryClass attributes are not affected by dynamic auxiliary classes.

For example, a user object with auxiliary class mailRecipient dynamically added has the following five-
element sequence as the value of objectClass:

[top, mailRecipient, person, organizationalPerson, user]

Dynamic auxiliary classes are not supported when the forest functional level is
DS_BEHAVIOR_WIN2000.

3.1.1.2.4.7 RDN Attribute of a Class

Each class designates an RDN attribute. The RDN attribute's name and value provide the RDN for the
class, for example "ou=ntdev", "cn=Peter Houston". If not specified in a class by attribute rDNAttID,
the RDN attribute is inherited from the superclass of the class. The RDN attribute is of syntax
String(Unicode).

3.1.1.2.4.8 Class classSchema
The attributes of class classSchema are specified in the following table.
The term "Unique" (in quotation marks) in the table is defined in section 3.1.1.2.3.

The term system-only in the table is defined in section 3.1.1.2.3.

Attribute Description

objectClass Equals the sequence [top, classSchema]. System-only.

governsIiD "Unique" OID that identifies this class. System-only.

schemalDGUID "Unique" GUID that identifies this class, used in security descriptors. If not

specified on Add, the DC generates a GUID. This GUID MUST NOT be the NULL
GUID. System-only.

msDS-IntId Optional. 32-bit unsigned integer. System-only.

rDNAttID Optional. attributeID of the RDN attribute. If the rDNAttID is not present, the RDN
attribute is inherited from the superclass of this class. System-only.

subClassOf governsID of the superclass of this class. System-only. Also see section
3.1.1.2.5.2 for auto-generated behavior when a new classSchema object is
created.

systemMustContain Optional. attributeIDs of the mandatory attributes of this class. This attribute is

system-only.

systemMayContain Optional. attributelDs of the optional attributes of this class. This attribute is
system-only.

systemPossSuperiors Optional. governsIDs of the classes that can be parents of this class within an NC
tree. This attribute is system-only.

systemAuxiliaryClass Optional. governsIDs of the auxiliary classes that are statically linked to this class.
This attribute is system-only.

objectClassCategory Class category (section 3.1.1.2.4.1), encoded as follows:

129 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute

Description

0: 88 Class

1: Structural class
2: Abstract class
3: Auxiliary class
System-only.

systemFlags

Optional. Flags that determine specific system operations; see section 2.2.10 for
values. The single systemFlags value specific to a classSchema object is:

FLAG_SCHEMA_BASE_OBJECT: this class is part of the base schema. Modifications
to a base schema object are restricted as described in section 3.1.1.2.5.

System-only.

systemOnly Optional. Only a DC can create (section 3.1.1.5.2.2) and modify (section
3.1.1.5.3.2) instances of a system-only class. System-only.
cn RDN for the schema object.

IDAPDisplayName

"Unique" name that identifies this class, used by LDAP clients. If not specified on
Add, the DC generates a value as specified in section 3.1.1.2.3.4. The syntax of
IDAPDisplayName is described in [RFC2251] section 4.1.4.

mustContain

Optional. attributeIDs of the mandatory attributes of this class in addition to the
systemMustContain attributes.

mayContain

Optional. attributeIDs of the optional attributes of this class in addition to the
systemMayContain attributes.

possSuperiors

Optional. governsIDs of the classes that can be parents of this class within an NC
tree, in addition to the systemPossSuperiors classes.

auxiliaryClass

Optional. governsIDs of the auxiliary classes that are statically linked to this class,
in addition to the systemAuxiliaryClass classes.

defaultSecurityDescriptor

Optional. The default security descriptor (in SDDL format, [MS-DTYP] section
2.5.1) that is assigned to new instances of this class if no security descriptor is
specified during creation of the class or is merged into a security descriptor if one
is specified. The rules for security descriptor merging are specified in [MS-DTYP]
section 2.5.3.4.

defaultObjectCategory

A reference to some classSchema object. This value is the default value of the
objectCategory attribute of new instances of this class if none is specified during
LDAP Add. Also see section 3.1.1.2.5.2 for auto-generated behavior when a new
classSchema object is created.

defaultHidingValue

Optional. If defaultHidingValue is true on a classSchema object, then when an Add
creates an instance of this class (that is, where this class is the most specific
class) and the Add does not specify a value for the showInAdvancedViewOnly
attribute, it is as if the Add had specified true for the showInAdvancedViewOnly
attribute.

The showInAdvancedViewOnly attribute is interpreted by LDAP clients, not by the
DC. If true, certain user interfaces do not display the object.

showInAdvancedViewOnly

Specifies whether the attribute is to be visible in the advanced mode of user
interfaces.

Also see defaultHidingValue defined previously and section 3.1.1.2.5.2 for auto-
generated behavior when a new classSchema object is created.

3.1.1.2.5 Schema Modifications

[MS-ADTS-Diff] - v20170601

130/ 626

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

This section documents the special behavior of schema objects with respect to LDAP Add, Modify,
Modify DN, and Delete requests.

Only the DC that owns the Schema Master FSMO role performs originating updates of objects in the
schema NC, as specified in section 3.1.1.1.11.

All transactions that perform originating updates to objects in the schema NC are serialized, even if
the updates do not appear to conflict and thus do not seem to require serialization.

Many attributes of attributeSchema and classSchema objects are system-only, as specified in sections
3.1.1.2.3 and 3.1.1.2.4. An LDAP Modify request that attempts to modify a system-only attribute
(except as specified in section 3.1.1.5.3.2) fails with error constraintViolation /

ERROR_DS _CANT_MOD_SYSTEM_ONLY.

A Delete of an attributeSchema or classSchema object fails, with error unwillingToPerform /
ERROR_DS _CANT_DELETE.

There is no constraint on the amount of time between when an object in the schema NC is successfully
added or modified and when the DC enforces the updated schema. Therefore, it is possible that there
is a period of time during which the schema enforced by the DC does not reflect the schema
represented by the objects in the schema NC. Although the protocol places no boundary or
requirements on the length of this time period, it is recommended that implementations minimize the
length of this time period to improve the usability of the directory for clients.

The server MUST guarantee that all successful schema modifications are eventually enforced.

3.1.1.2.5.1 Consistency and Safety Checks

This section documents schema object special behaviors that are not closely tied to the defunct state.
These special behaviors are divided into two classes:

= Consistency checks
= Safety checks

Consistency checks maintain the consistency of the schema. Safety checks reduce the possibility of a
schema update by one application breaking another application.

If an Add or Modify request fails either a consistency or a safety check, the response is error
unwillingToPerform / <unrestricted>.

3.1.1.2.5.1.1 Consistency Checks
The term "Unique" (in quotation marks) in the following statements is defined in section 3.1.1.2.3.

An Add or Modify request on an attributeSchema object succeeds only if the resulting object passes all
of the following tests:

= The value of IDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4.

= The values of attributelID, IDAPDisplayName, mAPIID (if present) and schemalDGUID are
"Unique".

= A nonzero linkID, if any, is unique among all values of the linkID attribute on objects in the
schema NC, regardless of forest functional level. If a linkID is an odd number, it is not one, and an
object exists whose linkID is the even number one smaller.

= The values of attributeSyntax, oMSyntax, and oMObjectClass match some defined syntax (section
3.1.1.2.2).

131/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= Flag fANR is only present in the searchFlags attribute if the syntax is String(Unicode), String(IA5),
String(Printable), String(Teletex) or String(Case).

= If rangeLower and rangeUpper are present, rangeLower is smaller than or equal to rangeUpper.

An Add or Modify request on a classSchema object succeeds only if the resulting object passes all of
the following tests.

= The value of IDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4.
= The values of governsID, IDAPDisplayName, and schemalIDGUID are "Unique".

= All attributes that are referenced in the systemMayContain, mayContain, systemMustContain, and
mustContain lists exist and are active.

= All classes that are referenced in the subClassOf, systemAuxiliaryClass, auxiliaryClass,
systemPossSuperiors, and possSuperiors lists exist and are active.

= All classes in the systemAuxiliaryClass and auxiliaryClass attributes have either 88 class or
auxiliary class specified as their objectClassCategory.

= All classes in the systemPossSuperiors and possSuperiors attributes have either 88 class or
structural class specified as their objectClassCategory.

= The superclass chain of a class follows the rules for inheritance as specified in section 3.1.1.2.4.2.
= The dynamicObject class is not referenced by the subClassOf attribute of a class.
= The attribute specified in the rDNAttID attribute has syntax String(Unicode).

= Attribute defaultSecurityDescriptor, if present, is a valid SDDL string.

3.1.1.2.5.1.2 Safety Checks

The following checks reduce the possibility of schema updates by one application breaking another
application.

These checks apply to all schema objects:
= A Modify adds no attributes to the mustContain or systemMustContain of an existing class.

= A Modify does not add an auxiliary class to the auxiliaryClass or systemAuxiliaryClass of an
existing class, if doing so would effectively add either mustContain or systemMustContain
attributes to the class.

= A Modify does not change the objectClassCategory of an existing class.

= A Modify does not change a constructed attribute (an attribute with
FLAG_ATTR_IS_CONSTRUCTED in systemFlags).

= A Modify does not change class top, except to add back link attributes as may-contains, either by
adding back link attributes to mayContain of top, or by adding auxiliary classes to auxiliaryClass of
top whose only effect on top is adding back link attributes as may-contains.

= A Modify does not change the subSchema object.

= A Modify does not change the fRODCEFilteredAttribute bit of the searchFlags attribute of an
attributeSchema object, if the DC functional level is DS_BEHAVIOR_WIN2008 or higher, and the
attributeSchema object cannot be a member of the filtered attribute set (see section 3.1.1.2.3.5).

132 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

These checks apply to schema objects that include FLAG_SCHEMA_BASE_OBIJECT in the systemFlags
attribute:

= A Modify does not change the IDAPDisplayName or cn of an attributeSchema or classSchema
object, or the defaultObjectCategory of a classSchema object.

= A Modify does not change the classSchema objects attributeSchema, classSchema, subSchema
and dMD.

= A Modify does not change the fCONFIDENTIAL bit of the searchFlags attribute of an
attributeSchema object.

= A Modify does not change the attributeSecurityGUID on the following fixed list of attributeSchema
objects: accountExpires, badPwdCount, codePage, countryCode, description, displayName,
domainReplica, forceLogoff, homeDirectory, homeDrive, memberOf, lastLogoff, lastLogon,
lockOutObservationWindow, lockoutDuration, lockoutThreshold, logonCount, logonHours,
logonWorkstation, maxPwdAge, member, minPwdAge, minPwdLength, modifiedCount, objectSid,
oEMInformation, profilePath, primaryGrouplID, pwdHistoryLength, pwdProperties,
sAMAccountName, scriptPath, serverState, serverRole, uASCompat, comment, pwdLastSet,
userAccountControl, userParameters.

3.1.1.2.5.2 Auto-Generated Attributes

If a classSchema object is created with an LDAP Add operation and the following attributes are not
included as part of the Add, they must be created on the object as specified in the following table.

Attribute Default auto-generated value

subClassOf Must refer to class top
showInAdvancedViewOnly TRUE

defaultObjectCategory Must refer to the new classSchema object itself

3.1.1.2.5.3 Defunct

A schema object with isDefunct = true is defunct; a schema object that is not defunct is active. This
section documents the special behavior of attributeSchema and classSchema objects related to the
defunct state.

The effect of being defunct depends upon the forest functional level as specified in the following
subsections. The following statements are independent of the forest functional level.

= The isDefunct attribute being not present on an attributeSchema or classSchema object is
equivalent to isDefunct = false; modifications that move between these two representations of the
active state have no special behavior.

= If an LDAP Modify changes the isDefunct attribute (giving it a value of true or false, or removing
it), this change must be the only change in the LDAP Modify request; otherwise, the request fails
with error unwillingToPerform /| ERROR_DS_ILLEGAL_MOD_OPERATION.

= If a Modify sets isDefunct to true but the attributeSchema or classSchema object is base (that is,
it has FLAG_SCHEMA_BASE_OBIJECT present in its systemFlags attribute), the Modify fails, with
error unwillingToPerform / ERROR_DS_ILLEGAL_BASE_SCHEMA_MOD.

= LDAP Add cannot create instances of a defunct class (section 3.1.1.5.2.2), and LDAP Add and
Modify cannot create instances of a defunct attribute (see sections 3.1.1.5.2.2 and 3.1.1.5.3.2).

133/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Making an attributeSchema or classSchema object defunct has no effect on the state of existing
objects that use the defunct attribute or class, but it changes the behavior of reads and updates of
such objects as described in sections 3.1.1.4.8 (Search), 3.1.1.5.2.2 (Add), 3.1.1.5.3.2 (Modify),
and 3.1.1.5.5 (Delete).

3.1.1.2.5.3.1 Forest Functional Level Less Than WIN2003

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a DC behaves as follows with
respect to the defunct state:

The isDefunct attribute can be changed from not present (or false) to true on an attributeSchema
or classSchema object. This modification is subject to the following checks:

= If the modification is to an attributeSchema object and the object is a mustContain,
systemMustContain, mayContain, or systemMayContain of an active class, the modification
fails.

= If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or
possSuperiors of an active class, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform /| <unrestricted>.

When isDefunct is true on an attributeSchema or classSchema object, an LDAP Modify can set
isDefunct to false (or remove the isDefunct attribute). This modification is subject to the following
check:

= If the modification is to a classSchema object and the object references any defunct attributes
through its mustContain, systemMustContain, mayContain, or systemMayContain attributes, or
references any defunct classes through its subClassOf, auxiliaryClass, or possSuperiors
attributes, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform /| <unrestricted>.

No other modification to a defunct attributeSchema or classSchema object is allowed. The error if
the modification fails is noSuchObject / <unrestricted>.

3.1.1.2.5.3.2 Forest Functional Level WIN2003 or Greater

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, a DC behaves as follows with
respect to the defunct state:

An LDAP Modify can change the isDefunct attribute from not present (or false) to true on an
attributeSchema or classSchema object. This modification is subject to the following checks, in
addition to the checks performed when the forest functional level is less than
DS_BEHAVIOR_WIN2003:

= If the modification is to an attributeSchema object and the object is a mustContain,
systemMustContain, mayContain, systemMayContain, or rDNAttID of an active class, the
modification fails.

= If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or
possSuperiors of an active class, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>.

An LDAP Modify can change the isDefunct attribute from true to false (or not present) on an
attributeSchema or classSchema object. This modification is subject to the following checks, in
addition to the checks performed when the forest functional level is less than
DS_BEHAVIOR_WIN2003:

134 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= If the modification is to a classSchema object and the object references any defunct attributes
through its mustContain, systemMustContain, mayContain, systemMayContain or rDNAttID
attributes, or references any defunct classes through its subClassOf, auxiliaryClass, or
possSuperiors attributes, the modification fails.

= The same uniqueness checks are performed when setting isDefunct to false as would have
been performed if the same object were being added to a schema where it was not present. In
particular, the uniqueness checks on attributeID, governsID, schemalDGUID, mAPIID, linkID,
and IDAPDisplayName must pass.

The error if the isDefunct modification fails is unwillingToPerform /| <unrestricted>.

= An LDAP Modify can change the other attributes of defunct schema objects subject to the same
checks that apply to changes to active schema objects.

Therefore, for instance, a Modify can change the IDAPDisplayName of a defunct attributeSchema
object, or the IDAPDisplayName, mustContain, mayContain, subClassOf, auxiliaryClass, and
possSuperiors of a defunct classSchema object.

Because the checks that apply to changes to active schema objects are still in force, Modify cannot
(for instance) change the attributeID, governsID, schemalDGUID, mAPIID, linkID,
attributeSyntax, oMSyntax, and oMObjectClass attributes of defunct schema objects.

= Section 3.1.1.4.8 specifies the effects of the defunct state on reads of OID-valued attributes that
identify schema objects (mustContain, systemMustContain, mayContain, systemMayContain,
subClassOf, auxiliaryClass, and possSuperiors).

3.1.1.2.6 ATTRTYP

Any OID-valued quantity stored on an object is stored as an ATTRTYP, a 32-bit unsigned integer. The
ATTRTYP space is 32 bits wide and is divided into the following ranges.

Range Description

[0x00000000..0x7FFFFFFF] ATTRTYPs that map to OIDs via the prefix table.
[0x80000000..0xBFFFFFFF] ATTRTYPs used as values of msDS-Intld attribute.
[0xC0000000..0xFFFEFFFF] Reserved for future use.

[OXFFFF0000.. OXFFFFFFFF] Reserved for internal use (never appear on the wire).

The mapping from ATTRTYPs A to OID O works as follows:

= If Ain [0x00000000..0x7FFFFFFF], A maps to O via a prefix table as specified in [MS-DRSR]
section 5.16.4 (the OidFromAttid procedure).

= If Ain [0x80000000..0xBFFFFFFF], let X be the object such that X!msDS-Intld equals A. If X is an
attributeSchema object, O is X!attributeID; otherwise X is an classSchema object, and O is
XlgovernsID.

Given an OID O, the schema object X representing the class or attribute identified by O is the object X
such that either X!attributeID equals O or X!governsID equals O.
3.1.1.3 LDAP

Active Directory is a server for LDAP. This section specifies the extensions and variations of LDAP that
are supported by Active Directory. Except as otherwise noted, all material applies to both AD DS and
AD LDS. Also, except as noted, all information applies to all versions of AD DS and AD LDS.

135/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This section is structured as follows:

= Section 3.1.1.3.1 documents the interpretation of the LDAP RFCs made by Active Directory and
deviations from the LDAP RFCs.

= The rootDSE (empty DN) is a mechanism for clients of an LDAP server to interact with the server
itself, rather than with particular objects contained by the server. Section 3.1.1.3.2 specifies the
rootDSE reads supported by Active Directory, and section 3.1.1.3.3 specifies the rootDSE updates.

= LDAP has several extension mechanisms in addition to the rootDSE. Section 3.1.1.3.4 specifies the
LDAP extensions that Active Directory supports.

3.1.1.3.1 LDAP Conformance

The purpose of this section is to document how the implementation of Active Directory DCs interprets
the LDAP v3 RFCs, including differences from those RFCs. Except as noted in the following
subsections, Active Directory is compliant to [RFC3377].

Active Directory DCs nominally implement support for LDAP v2 [RFC1777]. However, except as noted
in the next paragraph, Active Directory processes LDAP v2 requests and generates responses as if
LDAP v3 had been requested by the client.

When processing an LDAP v2 request, Active Directory exhibits the following behavioral differences
from processing an LDAP v3 request:

= Instead of using the UTF-8 character encoding for LDAPString [RFC2251], the system's configured
code page is used. The code page is configured locally on the DC by the DC's administrator.

= Referrals and continuation references are generated using the format for LDAP v2 referrals as
specified in section 3.1.1.3.4.

All LDAP error codes returned by Active Directory are taken from the resultCode enumeration of the
LDAPResult structure defined in [RFC2251] section 4.1.10.

3.1.1.3.1.1 Schema

This section discusses the implementation of the schema in Active Directory DCs, as it relates to the
IETF RFC standards for LDAP schemas.

3.1.1.3.1.1.1 subSchema

Per [RFC2251] and [RFC2252], Active Directory exposes a subSchema object that is pointed to by the
subschemaSubentry attribute on the rootDSE. In accord with [RFC2251] section 3.2.2, this
subSchema object contains the required cn, objectClass, objectClasses, and attributeTypes attributes.
Additionally, it contains the dITContentRules attribute. It does not contain the matchingRules,
matchingRuleUse, dITStructureRules, nameForms, or ldapSyntaxes attributes. It contains the
modifyTimeStamp attribute but not the createTimeStamp attribute. The subSchema object does not
support the createTimeStamp attribute even though its object class derives from top, which contains
the createTimeStamp attribute as part of systemMayContain. In contrast to [RFC2252] section 7.2, in
Active Directory the subSchema class is defined to be structural rather than auxiliary.

The meaning of the attributeTypes, objectClasses, and dITContentRules attributes are as described in
those RFCs. However, the values stored in these attributes use only a subset of the
AttributeTypeDescription, ObjectClassDescription, and DITContentRuleDescription grammars described
in [RFC2252]. The following grammars are used by Active Directory. Other than the removal of certain
elements, these grammars are identical to those of [RFC2252].

AttributeTypeDescription = " (" whsp
numericoid whsp ; attributeID

136 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

["NAME" gdescrs] ; 1DAPDisplayName

["SYNTAX" whsp noidlen whsp] ; see RFC 2252 section 4.3
["SINGLE-VALUE" whsp] ; default multi-valued
["NO-USER-MODIFICATION" whsp] ; default user modifiable
whsp ")"
ObjectClassDescription = " (" whsp
numericoid whsp ; governsID
["NAME" gdescrs] ; 1DAPDisplayName
["SUP" oids] ; governsIDs of superior object classes

[("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]
; default structural

["MUST" oids] ; attributelIDs of required attributes
["MAY" oids] ; attributeIDs of optional attributes
whsp ") "

DITContentRuleDescription = " ("
numericoid ; governsID of structural object class
["NAME" qgdescrs] 1DAPDisplayName

["AUX" oids] ; governsIDs of auxiliary classes
["MUST" oids] ; attributelIDs of required attributes
["MAY" oids] ; attributeIDs of optional attributes

"y

Active Directory supports additional SYNTAX values not defined in [RFC2252]. The following table lists
the SYNTAX values returned for each LDAP syntax name. See section 3.1.1.2.2 for more information
on syntaxes.

LDAP syntax name

SYNTAX Value

Boolean

1.3.6.1.4.1.1466.115.121.1.7

Enumeration

1.3.6.1.4.1.1466.115.121.1.27

Integer

1.3.6.1.4.1.1466.115.121.1.27

Largelnteger

1.2.840.113556.1.4.906

Object(Access-Point)

1.3.6.1.4.1.1466.115.121.1.2

Object(DN-Binary)

1.2.840.113556.1.4.903

Object(DN-String)

1.2.840.113556.1.4.904

Object(DS-DN)

1.3.6.1.4.1.1466.115.121.1.12

Object(OR-Name)

1.2.840.113556.1.4.1221

Object(Presentation-Address)

1.3.6.1.4.1.1466.115.121.1.43

Object(Replica-Link)

OctetString

String(Case)

1.2.840.113556.1.4.1362

String(Generalized-Time)

1.3.6.1.4.1.1466.115.121.1.24

String(IA5)

1.3.6.1.4.1.1466.115.121.1.26

String(NT-Sec-Desc)

1.2.840.113556.1.4.907

String(Numeric)

1.3.6.1.4.1.1466.115.121.1.36

String(Object-Identifier)

1.3.6.1.4.1.1466.115.121.1.38

String(Octet)

1.3.6.1.4.1.1466.115.121.1.40

137/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LDAP syntax name SYNTAX Value
String(Printable) 1.3.6.1.4.1.1466.115.121.1.44
String(Sid) 1.3.6.1.4.1.1466.115.121.1.40
String(Teletex) 1.2.840.113556.1.4.905
String(Unicode) 1.3.6.1.4.1.1466.115.121.1.15
String(UTC-Time) 1.3.6.1.4.1.1466.115.121.1.53

In addition to the preceding attributes, Active Directory contains two additional subSchema attributes,
named extendedClassInfo and extendedAttributeIlnfo. These return additional data about the classes
and attributes in a format similar to objectClasses and attributeTypes, respectively. The grammar
used for extendedClassInfo is as follows.

ObjectClassDescriptionExtended = " (" whsp
numericoid whsp ; governsID
["NAME" gdescrs] ; 1DAPDisplayName
["CLASS-GUID" whsp guid] ; schemaIDGUID
thp ") "

The NAME field is as in the ObjectClassDescription grammar. The CLASS-GUID field contains the value
of the class's schemalIDGUID attribute. That value, which is a GUID, is expressed not in the dashed-
string GUID format of [RFC4122] section 3 but rather as the hexadecimal representation of the binary
format of the GUID. For example, the GUID whose dashed-string representation is "3fdfee4f-47f4-
11d1-a9c3-0000f80367c1" would be expressed as "4feedf3ff447d111a9c30000f80367c1" in the
CLASS-GUID field.

The grammar for extendedAttributelInfo is as follows.

AttributeTypeDescriptionExtended = " (" whsp
numericoid whsp ; attributelD
["NAME" gdescrs] ; 1DAPDisplayName
["RANGE-LOWER" whsp numericstring] ; rangelower
["RANGE-UPPER" whsp numericstring] ; rangeUpper
["PROPERTY-GUID" whsp guid] ; schemaIDGUID
["PROPERTY-SET-GUID" whsp guid] ; attributeSecurityGUID
["INDEXED" whsp] ; fATTINDEX in searchFlags
["SYSTEM-ONLY" whsp] ; systemOnly
whsp ") "

The NAME field is as in the AttributeTypeDescription grammar. The RANGE-LOWER and RANGE-UPPER
fields are only present if the attribute's attributeSchema contains values for the rangeLower and
rangeUpper attributes, respectively. If present, those fields contain the values of those attributes. The
PROPERTY-GUID field contains the value of the attribute's schemalIDGUID. If the attribute has an
attributeSecurityGUID attribute, the PROPERTY-SET-GUID field contains the value of that attribute;
otherwise, it contains the value of the NULL GUID. For both PROPERTY-GUID and PROPERTY-SET-
GUID, the GUID is represented in the same form as that CLASS-GUID from the
ObjectClassDescriptionExtended grammar. If the fATTINDEX bit of the attribute's searchFlags is set,
the INDEXED field is present. If the attribute's systemOnly attribute is true, the SYSTEM-ONLY field is
present.

The attributeTypes, objectClasses, dITContentRules, extendedClassInfo, and extendedAttributeInfo
attributes on the subSchema object are read-only. They permit applications to discover the schema on
the DC, but they are not the mechanism for changing the schema on the DC. DCs change their
schema in response to the addition or modification of classSchema and attributeSchema objects in the
schema NC. These objects also contain attributes that supply additional information about the schema

138/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

that is not present in the attributes of the subSchema object, such as the systemFlags attribute, which
specifies additional properties of an attribute (for example, whether it is a constructed attribute). The
attributeSchema and classSchema objects and their associated attributes are specified in section
3.1.1.2.

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the attributeTypes,
dITContentRules, extendedAttributeInfo, extendedClassInfo, and objectClasses attributes on the
subSchema object do not contain defunct attributes or classes, only active attributes or classes.

3.1.1.3.1.1.2 Syntaxes

The syntaxes used in Active Directory are based on [RFC2252] section 6. Where Active Directory and
[RFC2252] have syntaxes in common, the same means of encoding the value into the syntax is used.
However, Active Directory has a number of syntaxes that are not defined in [RFC2252], and vice
versa. Additionally, even when Active Directory and [RFC2252] have syntaxes in common, in many
cases they use different names for the same syntax, and in all cases they use different OIDs to
identify the same syntax.

Active Directory does not use the syntaxes defined in [RFC2256] section 6. The list of syntaxes in
Active Directory, their encodings, and how they map to the [RFC2252] syntaxes are documented in
section 3.1.1.2.2.

3.1.1.3.1.1.3 Attributes

Sections 5.1 through 5.4 of [RFC2252], as well as section 5 of [RFC2256] and section 2 of [RFC2798],
define a set of attributes common to LDAP directories. Additionally, portions of the Active Directory
schema are derived from [RFC1274] and [RFC2307]. The following tables show, for each of these
RFCs, the attributes that are either included in the Active Directory default schemas of Windows
Server 2003, ADAM, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, or present as readable attributes of the rootDSE
of Windows 2000, Windows Server 2003, ADAM, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 DCs (both AD DS and AD
LDS). Some of these attributes were added to the schema of Windows Server 2003 or Windows Server
2003 R2 but were not present in the Windows 2000 schema; [MS-ADA1], [MS-ADA2], and [MS-ADA3]
specify the attributes included in each version of the schema. For more information about rootDSE
attributes, which are not part of the schema, see section 3.1.1.3.2.

RFC 1274
Attribute Included by AD DS? Included by AD LDS?
objectClass Yes Yes
knowledgelnformation Yes No
serialNumber Yes Yes
streetAddress Yes Yes
title Yes Yes
description Yes Yes
searchGuide Yes Yes
businessCategory Yes Yes
postalAddress Yes Yes
postalCode Yes Yes

139/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute Included by AD DS? Included by AD LDS?
postOfficeBox Yes Yes
physicalDeliveryOfficeName Yes Yes
telephoneNumber Yes Yes
telexNumber Yes Yes
teletexTerminalldentifier Yes Yes
facsimileTelephoneNumber Yes Yes
x121Address Yes Yes
internationalISDNNumber Yes Yes
registeredAddress Yes Yes
destinationIndicator Yes Yes
preferredDeliveryMethod Yes Yes
presentationAddress Yes No
supportedApplicationContext Yes No
member Yes Yes
owner Yes Yes
roleOccupant Yes No
seeAlso Yes Yes
userPassword Yes* Yes*
userCertificate Yes Yes
cACertificate Yes No
authorityRevocationList Yes No
certificateRevocationList Yes No
crossCertificatePair Yes No
textEncodedORAddress Yes No
roomNumber Yes Yes
photo Yes Yes
userClass Yes No
host Yes No
manager Yes Yes
documentldentifier Yes No
documentTitle Yes No
documentVersion Yes No

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

140/ 626

Attribute

Included by AD DS?

Included by AD LDS?

documentAuthor Yes No
documentLocation Yes No
secretary Yes Yes
otherMailbox Yes No
associatedDomain Yes No
associatedName Yes No
homePostalAddress Yes Yes
personalTitle Yes Yes
organizationalStatus Yes No
buildingName Yes No
audio Yes Yes
documentPublisher Yes No
aliasedObjectName No No
commonName No No
surname No No
countryName No No
localityName No No
stateOrProvinceName No No
organizationName No No
mhsDeliverableContentLength No No
mhsDeliverableContentTypes No No
mhsDeliverableEits No No
mhsDLMembers No No
mhsDLSubmitPermissions No No
mhsMessageStoreName No No
mhsORAddresses No No
mhsPreferredDeliveryMethods No No
mhsSupportedAutomaticActions No No
mhsSupportedContentTypes No No
mhsSupportedOptionalAttributes No No
userid No No
rfc822Mailbox No No

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

141/ 626

Attribute Included by AD DS? Included by AD LDS?
info No No
favouriteDrink No No
homeTelephoneNumber No No
lastModifiedTime No No
lastModifiedBy No No
domainComponent No No
aRecord No No
mXRecord No No
nSRecord No No
sOARecord No No
cNAMERecord No No
mobileTelephoneNumber No No
pagerTelephoneNumber No No
friendlyCountryName No No
uniqueldentifier No No
janetMailbox No No
mailPreferenceOption No No
dSAQuality No No
singleLevelQuality No No
subtreeMinimumQuality No No
subtreeMaximumQuality No No
personalSignature No No
dITRedirect No No

* Active Directory uses the userPassword attribute to set or change passwords only in limited
circumstances. See section 3.1.1.3.1.5.

RFC 2252
Attribute Included by AD DS? Included by AD LDS?
createTimeStamp Yes Yes
modifyTimeStamp Yes Yes
subSchemaSubEntry Yes Yes
attributeTypes Yes Yes
objectClasses Yes Yes

142 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute Included by AD DS? Included by AD LDS?
namingContexts Yes Yes
supportedExtension Yes Yes
supportedControl Yes Yes
supportedSASLMechanisms Yes Yes
supportedLDAPVersion Yes Yes
dITContentRules Yes Yes
creatorsName No No
modifiersName No No
matchingRules No No
matchingRulesUse No No
altServer No No
IdapSyntaxes No No
dITStructureRules No No
nameForms No No
RFC 2256
Attribute Included by AD DS? Included by AD LDS?
objectClass Yes Yes
knowledgelnformation Yes No
cn Yes Yes
sn Yes Yes
serialNumber Yes Yes
C Yes Yes
I Yes Yes
st Yes Yes
street Yes Yes
o] Yes Yes
ou Yes Yes
title Yes Yes
description Yes Yes
searchGuide Yes Yes
businessCategory Yes Yes

143 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute Included by AD DS? Included by AD LDS?
postalAddress Yes Yes
postalCode Yes Yes
postOfficeBox Yes Yes
physicalDeliveryOfficeName Yes Yes
telephoneNumber Yes Yes
telexNumber Yes Yes
teletexTerminalldentifier Yes Yes
facsimileTelephoneNumber Yes Yes
x121Address Yes Yes
internationalISDNNumber Yes Yes
registeredAddress Yes Yes
destinationIndicator Yes Yes
preferredDeliveryMethod Yes Yes
presentationAddress Yes No
supportedApplicationContext Yes No
member Yes Yes
owner Yes Yes
roleOccupant Yes No
seeAlso Yes Yes
userPassword Yes* Yes*
userCertificate Yes Yes
cACertificate Yes No
authorityRevocationList Yes No
certificateRevocationList Yes No
crossCertificatePair Yes No
name Yes Yes
givenName Yes Yes
initials Yes Yes
generationQualifier Yes Yes
x500uniqueldentifier Yes Yes
distinguishedName Yes Yes
uniqueMember Yes Yes

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

144 / 626

Attribute Included by AD DS? Included by AD LDS?
houseldentifier Yes No
deltaRevocationList Yes No
dmdName Yes Yes
aliasedObjectName No No
dnQualifier No No
protocolInformation No No
supportedAlgorithms No No

* Active Directory uses the userPassword attribute to set or change passwords only in limited

circumstances. See section 3.1.1.3.1.5.

RFC 2798
Attribute Included by AD DS? Included by AD LDS?
carlLicense Yes Yes
departmentNumber Yes Yes
displayName Yes Yes
employeeNumber Yes Yes
employeeType Yes Yes
jpegPhoto Yes Yes
preferredLanguage Yes Yes
userSMIMECertificate Yes Yes
userPKCS12 Yes Yes
RFC 2307
Attribute Included by AD DS? Included by AD LDS?
uidNumber Yes No
gidNumber Yes No
gecos Yes No
homeDirectory Yes No
loginShell Yes No
shadowLastChange Yes No
shadowMin Yes No
shadowMax Yes No
shadowWarning Yes No

145/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute Included by AD DS? Included by AD LDS?
shadowInactive Yes No
shadowExpire Yes No
shadowFlag Yes No
memberUid Yes No
memberNisNetgroup Yes No
nisNetgroupTriple Yes No
ipServicePort Yes No
ipServiceProtocol Yes No
ipProtocolNumber Yes No
oncRpcNumber Yes No
ipHostNumber Yes No
ipNetworkNumber Yes No
ipNetmaskNumber Yes No
macAddress Yes No
bootParameter Yes No
bootFile Yes No
nisMapName Yes No
nisMapEntry Yes No

3.1.1.3.1.1.4 Classes

Section 7 of [RFC2252], as well as section 7 of [RFC2256] and section 3 of [RFC2798], defines a set of
classes common to LDAP directories. In addition, portions of the Active Directory schema are derived
from [RFC1274] and [RFC2307]. The following tables show, for each of these RFCs, the classes
included in the Active Directory default schemas of Windows Server 2003, ADAM, Windows Server
2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows
Server 2016. Some of these classes were added to the schema of Windows Server 2003 or Windows
Server 2003 R2 but were not present in the Windows 2000 schema; [MS-ADSC] specifies the classes

included in each version of the schema.

RFC 1274
Class Included by AD DS? Included by AD LDS?
top Yes Yes
country Yes Yes
locality Yes Yes
organization Yes Yes

[MS-ADTS-Diff] - v20170601
Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

146 / 626

Class Included by AD DS? Included by AD LDS?
organizationalUnit Yes Yes
person Yes Yes
organizationalPerson Yes Yes
organizationalRole Yes No
groupOfNames Yes Yes
residentialPerson Yes No
applicationProcess Yes No
applicationEntity Yes No
dSA Yes No
device Yes No
certificationAuthority Yes No
account Yes No
document Yes No
room Yes No
documentSeries Yes No
domain Yes Yes
rFC822LocalPart Yes No
domainRelatedObject Yes No
friendlyCountry Yes No
simpleSecurityObject Yes No
Alias No No
strongAuthenticationUser No No
mhsDistributionList No No
mhsMessageStore No No
mhsMessageTransferAgent No No
mhsOrganizationalUser No No
mhsResidentialUser No No
mhsUserAgent No No
pilotObject No No
pilotPerson No No
dNSDomain No No
pilotOrganization No No

147 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Class Included by AD DS? Included by AD LDS?
pilotDSA No No
qualityLabelledData No No
RFC 2252
Class Included by AD DS? Included by AD LDS?
subSchema Yes Yes
extensibleObject No No
RFC 2256
Class Included by AD DS? Included by AD LDS?
top Yes Yes
country Yes Yes
locality Yes Yes
organization Yes Yes
organizationalUnit Yes Yes
person Yes Yes
organizationalPerson Yes Yes
organizationalRole Yes No
groupOfNames Yes Yes
residentialPerson Yes No
applicationProcess Yes No
applicationEntity Yes No
dSA Yes No
device Yes No
certificationAuthority Yes No
groupOfUniqueNames Yes No
cRLDistributionPoint Yes No
dMD Yes Yes
alias No No
strongAuthenticationUser No No
userSecurityInformation No No
certificationAuthority-V2 No No
RFC 2798

148 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Class Included by AD DS? Included by AD LDS?

inetOrgPerson Yes Yes
RFC 2307
Class Included by AD DS? Included by AD LDS?
posixAccount Yes No
shadowAccount Yes No
posixGroup Yes No
ipService Yes No
ipProtocol Yes No
oncRpc Yes No
ipHost Yes No
ipNetwork Yes No
nisNetgroup Yes No
nisMap Yes No
nisObject Yes No
ieee802Device Yes No
bootableDevice Yes No

3.1.1.3.1.1.5 Auxiliary Classes

Windows 2000 had limited support for LDAP auxiliary classes. An auxiliary class would be associated
with the schema definition of a particular class C when the auxiliary class was added to the
auxiliaryClass or systemAuxiliaryClass attribute of the classSchema object that defines C. In this case,
all instances of C will inherit the attributes of the auxiliary class.

The server permits adding or removing an auxiliary class to or from the auxiliaryClass attribute of C at
any point in time. Doing so adds or removes the auxiliary class from every existing instance of C but
does not cause the object class of the auxiliary class to appear in the objectClass attribute of those
instances. Such an auxiliary class can have optional (mayContain) attributes but not mandatory
(mustContain) attributes. This is because there can be existing instances of C, in which case adding a
new mandatory attribute would cause those existing instances to violate the modified schema.

The server permits adding an auxiliary class to the systemAuxiliaryClass attribute of C only when C is
defined, that is, when C's classSchema object is added to the schema NC. After a classSchema object
has been created, its systemAuxiliaryClass attribute cannot be modified. An auxiliary class that is
associated with C by the addition of it to ClsystemAuxiliaryClass can have mandatory (mustContain)
as well as optional (mayContain) attributes. As in the previous case, the auxiliary classes added in this
manner are not shown in the objectClass attribute of the instances of C.

Dynamic auxiliary class support was introduced in Windows Server 2003 in addition to the Windows
2000 auxiliary class mechanism, and continues to be supported in Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016. This
dynamic auxiliary class mechanism reflects the model of auxiliary object classes described in [X501]

149 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

section 8.3.3. The server permits adding an auxiliary class to any instance I of a class by a request to
add that auxiliary class to I'objectClass. This will cause only that instance I to inherit the attributes of
the auxiliary class. The dynamic auxiliary class will be removed from I, after the values of all
attributes in the auxiliary class have been cleared by the client, by a request to remove the auxiliary
class from I'objectClass. Dynamic auxiliary classes can have both mandatory (mustContain) and
optional (mayContain) attributes.

If the dynamic auxiliary class that is added to I is a subclass of another auxiliary class, both auxiliary
classes are added to I when the child auxiliary class is added to I. However, removing the child
auxiliary class does not cause the server to remove its parent from I. A parent auxiliary class can be
removed from I only when all child auxiliary classes that inherit from the parent are also removed
from I.

For each I, I'objectClass contains the structural, abstract, and dynamic auxiliary object classes of
which I is an instance (and their inheritance chains). I!structuralObjectClass includes only the
structural class of which I is an instance and its inheritance chain. I'msDS-Auxiliary-Classes contains
the dynamic auxiliary classes of which I is an instance along with their inheritance chain, except it
does not include those classes in the inheritance chain that are in I!structuralObjectClass.

3.1.1.3.1.2 Object Naming

This section discusses the naming of objects via distinguished names in Active Directory, as it differs
from the appropriate RFCs.

3.1.1.3.1.2.1 Naming Attributes

As with [RFC2253] section 2.3, Active Directory permits any attribute to be used as the AttributeType
in an RDN. However, Active Directory imposes the additional restriction that the AttributeType used
must be of String(Unicode) syntax. Furthermore, all objects of the same class use the same attribute
in their RDN. The attribute to be used in the RDN is specified by the rDNAttID attribute in the
classSchema object that defines the class. The rDNAttID attribute contains the attribute to be used in
the RDN. Multivalued RDNs are not permitted (see section 3.1.1.3.1.2.3), so if the attribute A
specified by rDNAttID is multivalued, an attempt to add an additional value to A on an object O for
which OIrDNAttID = A is rejected with the error invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX if
it takes place at the time of the object's creation, or the error notAllowedOnRDN / <unrestricted> if it
takes place in a subsequent LDAP Modify operation.

The AttributeValue of the RDN must be unique among sibling objects. For example, the following two
DNs cannot coexist in the directory, because two identical AttributeValues ("Abc") would exist in the
same container ("OU=Users,DC=Fabrikam,DC=com"):

= CN=Abc,0OU=Users,DC=Fabrikam,DC=com
= L=Abc,0U=Users,DC=Fabrikam,DC=com

The server will reject an attempt to create such a non-uniquely named object with the error
entryAlreadyExists /| <unrestricted>. This requirement for unique AttributeValues guarantees the
uniqueness of canonical names.

3.1.1.3.1.2.2 NC Naming

The DN of a domain NC is derived from the DNS name of the domain using the transformation
algorithm of [RFC2247] section 3. The object at the root of each domain NC is a domainDNS object, in
accord with section 5.2 of that RFC. The rDNAttID for the domainDNS class is dc, in accord with
section 4 of the RFC. While the same attribute OID is used for the dc attribute in Active Directory as in
section 4 of the RFC, the syntax of the attribute in Active Directory is String(Unicode) rather than the
specified String(IA5). The dcObject auxiliary class, specified in section 5.1 of the RFC, is not present in
Active Directory.

150/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When operating as AD DS, the DN for the config NC is the RDN "CN=Configuration", followed by the
DN of the domain NC of the forest root domain. When operating as AD LDS, the DN for the config NC
is the RDN "CN=Configuration, CN={guid}", where guid is a GUID in dashed-string form ([RFC4122]
section 3). For example,

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81}
is a possible DN of the config NC when operating as AD LDS.
The DN for the schema NC is the RDN "CN=Schema" followed by the DN of the config NC.

When operating as AD DS, an application NC is named in the same way as a domain NC; the root of
each AD DS application NC is a domainDNS object. When operating as AD LDS, the DN of an
application NC consists of one or more RDNs.

3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs

[RFC2253] section 2 defines the following grammar rule for RelativeDistinguishedName, which
explicitly allows RDNs to contain multiple attributes and values:

= RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

Active Directory is conformant with this rule, with the restriction that MAX equals 1 within the scope of
the rule. As a result, multivalued RDNs that consist of multiple attributes (sometimes referred to as
"multi-AVA RDNs"), or multiple instances of the same attribute, are both disallowed in Active
Directory. An attempt to create such a DN is considered an attempt to create a syntactically invalid
DN, and returns the error invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX. For example, assuming
that F is a multivalued attribute of String(Unicode) syntax, the following two DNs are both disallowed
because they contain multivalued RDNs:

= F=John Smith+F=David Jones, OU=Users,DC=Fabrikam,DC=com
= F=John Smith+I=Redmond, OU=Users,DC=Fabrikam,DC=com

(Note that, if it is assumed that these DNs represent an object of a class C for which CIrDNAttID = F,
the second example is also disallowed because it contains the / attribute in the RDN. The server will
return a namingViolation |/ <unrestricted> error when an attempt is made to add an object of class C
whose RDN contains a different AttributeType than that declared in C!rDNAttID.)

3.1.1.3.1.2.4 Alternative Forms of DNs

In addition to the form of the DN defined in [RFC2253], Active Directory supports several alternative
forms of DNs that can be used to specify objects in requests sent to the DC, for example, as the
baseObject in a SearchRequest or as an AttributeValue in a ModifyRequest.

The first alternative form is in the format

<GUID=object guid>

where object_guid is a GUID that corresponds to the value of the objectGUID attribute of the object
being specified. All DCs support object_guid expressed as the hexadecimal representation of the
binary form of a GUID ([MS-DTYP] section 2.3.4). Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
DCs also support the dashed-string form of a GUID ([RFC4122] section 3).

The second alternative form is in the format

<SID=sid>

151 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

where sid is the security identifier (SID) that corresponds to the value of the objectSid attribute of the
object being specified. The sid is expressed as either the hexadecimal representation of a binary SID
structure ([MS-DTYP] section 2.4.2.2) in little-endian byte order, or as a SID string ([MS-DTYP]
section 2.4.2.1). Windows 2000 DCs support only the hexadecimal representation.

The third alternative form is in the format

<WKGUID=guid, object DN>

where guid is a GUID expressed as the hexadecimal representation of the binary form of the GUID. A
DN of this form is resolved to an object O by applying the following algorithm.

MapWellKnownGuidToDN (GUID guid, DN object DN)

This algorithm resolves a well-known GUID, expressed as a GUID, guid, and an object, object_DN,
into the DN of the object O that is identified by that well-known GUID.

= If object_DN does not name an object in the directory, reject the DN.
= Otherwise, let C be the object named by object_DN.

= If there exists a value V in ClwellKnownObjects such that the binary portion of V contains the
same GUID as guid, then the DN of O is the DN portion of V.

= Otherwise, if there exists a value V' in ClotherWellKnownObjects such that the binary portion of V'
contains the same GUID as guid, then the DN of O is the DN portion of V'.

= Otherwise, reject the DN.
The fourth alternative form is referred to as a TTL-DN.

Note The TTL-DN form is not supported by Windows 2000, Windows Server 2003, Windows Server
2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or Windows Server
2012 R2. Additionally, this form is only valid under the following conditions.

= When the Privileged Access Management optional feature is enabled (see section 3.1.1.9.2).
= When specifying or retrieving values for link valued attributes.

The TTL-DN form is in the format

<TTL=seconds, <dn>>

where seconds is the humber of seconds, expressed as an integer in ASCII text, until the expiry time
for the link valued attribute value, and dn is any valid form of DN, including alternative forms of DNs
except for this fourth alternative form. DCs MUST treat the literal "TTL" in a case-insensitive manner.
This protocol does not specify the character case to use when a DC creates a TTL-DN.

When a client adds a new value or modifies an existing value for a link valued attribute, and provides
a TTL-DN where seconds is 0, any existing expiry time associated with the link value is removed and
the link no longer has an expiry time.

When a client provides any DN form other than a TTL-DN, the server MUST treat that as a value
without an expiry time; that is, in the same manner as a TTL-DN where seconds is 0.

Normally, Active Directory will return DNs in the [RFC2253] format. However, clients can request that
Active Directory return DNs in the "extended DN" format. This format combines an RFC 2253-style DN

152 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

with a representation of the object's objectGUID and objectSid attributes. This form is documented in
the LDAP section 3.1.1.3.4.1.5, which defines the LDAP_SERVER_EXTENDED_DN_OID control that is
used by the client to request that the DC use the "extended DN" form when returning DNs. The
"extended DN" form is not accepted as a means of specifying DNs in requests sent to the DC. The
"extended DN" form is only used in LDAP responses from the DC, and only when the
LDAP_SERVER_EXTENDED_DN_OID control is used to request such a form.

Additionally, clients can request that Active Directory return DNs for link valued attributes in the TTL-
DN form. This form is documented in the LDAP section 3.1.1.3.4.1.36, which defines the
LDAP_SERVER_LINK_TTL_OID control that is used by the client to request that the DC use the TTL-DN
form when returning DNs.

When returning a TTL-DN, seconds is the remaining number of seconds until the expiry time
associated with the link value.

A DC MUST NOT return a TTL-DN for a link value with no associated expiry time, even if
LDAP_SERVER_LINK_TTL_OID has been specified. Another DN format MUST be used.

Note that a request for a TTL-DN can be combined with a request for an extended DN. In this case,
the DN portion of the TTL-DN is an extended DN.

3.1.1.3.1.2.5 Alternative Form of SIDs

Attributes of String(SID) syntax contain a SID in binary form. However, a client can instead specify a
value for such an attribute as a UTF-8 string that is a valid SDDL SID string beginning with "S-" (see
[MS-DTYP] section 2.4.2.1). The server will convert such a string to the binary form of the SID and
use that binary form as the value of the attribute.

3.1.1.3.1.3 Search Operations

3.1.1.3.1.3.1 Search Filters

Active Directory does not support the extensible match rules defined in [RFC2252] section 8,
[RFC2256] section 8, and [RFC2798] section 9. Active Directory exposes extensible match rules, which
are defined in section 3.1.1.3.4.4. Other than these rules, the rules that Active Directory uses for
comparing values (for example, comparing two String(Unicode) attributes for equality or ordering) are
not exposed as extensible match rules. These comparison rules are documented for each syntax type
in section 3.1.1.2.2.4. When performing an extensible match search against Active Directory, if the
type field of the MatchingRuleAssertion is not specified ([RFC2251] section 4.5.1), the extensible
match filter clause is evaluated to "Undefined". The dnAttributes field of the MatchingRuleAssertion is
ignored and always treated as if set to false.

Active Directory supports the approxMatch filter clause of [RFC2251] section 4.5.1. However, it is
implemented identically to equalityMatch; for example, the filter is true if the values are equal. No
approximation is performed. Filter clauses of the form "(X=Y)" and "(X~=Y)" can be freely substituted
for each other.

Active Directory in Windows 2000 does not implement three-value logic for search filter evaluation as
defined in [RFC2251] section 4.5.1. In Windows 2000, filters evaluate to either "true" or "false". Filters
that would evaluate to "Undefined", as per the RFC, are instead evaluated to "false". Active Directory
in Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 uses three-value logic for evaluating search
filters, in conformance with the RFC.

Active Directory does not support constructed attributes (defined in section 3.1.1.4.5) in search filters.
When a search operation is performed with such a search filter, Active Directory fails with
inappropriateMatching ([RFC2251] section 4.1.10).

3.1.1.3.1.3.2 Selection Filters

153/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Active Directory supports the ability to filter the values of an attribute that are returned. By default, all
values up to the default range of a given attribute are returned. A selection filter is used to filter
values to be returned by the server. When no selection filter is specified, the returned values of an
attribute MUST NOT be filtered. An explicit selection filter specifies the filtering on the attribute values
to be returned by the server.

Selection filtering is requested by specifying an Attribute Description ([RFC2251] section 4.1.5) with
the "filtered" option. This option takes the form

filtered=B:char_count:binary_value

where char_count is the nhumber (in decimal) of hexadecimal digits in binary_value and
binary_value is the hexadecimal representation of a binary value. Each byte is represented by a pair
of hexadecimal characters in binary_value, with the first character of each pair corresponding to the
most-significant nibble of the byte. The first pair in binary_value corresponds to the first byte of the
binary value, with subsequent pairs corresponding to the remaining bytes in sequential order. Note
that char_count is always even in a syntactically valid selection filter.

The binary value is a BER encoded filter, as specified in [RFC2251] section 4.5.1.
Selection filters are available in DCs with a functional level of DS_BEHAVIOR_WIN2012R2 or greater.

3.1.1.3.1.3.3 Range Retrieval of Attribute Values

When retrieving the values from a multivalued attribute, Active Directory limits the number of values
that can be retrieved from one attribute in a single search request. The maximum number of values
that will be returned by Active Directory at one time is determined by the MaxValRange policy (see
section 3.1.1.3.4.6). To permit all the values of a multivalued attribute to be retrieved, Active
Directory provides a "range retrieval" mechanism. This mechanism permits a client-specified subset of
the values to be retrieved in a search request. By performing multiple search requests, each retrieving
a distinct subset, the complete set of values for the attribute can be retrieved.

Range retrieval is requested by attaching a range option to the name of the attribute (for example,
the AttributeDescription, as specified in [RFC2251] section 4.1.5) to be retrieved by the search
request. This option takes the form

range=low-high

where low is the zero-based index of the first value of the attribute to retrieve, and high is the zero-
based index of the last value of the attribute to retrieve. For example, to retrieve the 100" through
the 500t values of the member attribute, the attributes list in the SearchRequest would specify the
AttributeDescription "member;range=99-499". Zero is used for low to specify the first entry. A client
can substitute an asterisk for high to indicate all remaining entries (subject to any limitations imposed
by the server on the maximum number of values to return). The server can return fewer values than
requested.

When the server receives a range retrieval request, it will include a range option in the
AttributeDescription returned. This range option will take the same form as described previously, with
low indicating the zero-based index of the first value of the attribute that the server returned and
high indicating the zero-based index of the last value of the attribute that the server returned.
However, if the set of attributes returned includes the last value in the attribute, the server will
substitute an asterisk for high, indicating to the client that there are no more values to be retrieved.

If a SearchRequest does not contain a range option for a given attribute, but that attribute has too
many values to be returned at one time, the server returns a SearchResultEntry containing (1) the
attribute requested without the range option and with no values, and (2) the attribute requested with
a range option attached and with the values corresponding to that range option.

154 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ordering of the values returned in a range retrieval request is arbitrary but consistent across
multiple range retrieval requests on the same LDAP connection, provided that the attribute is not
modified between successive range retrieval requests.

3.1.1.3.1.3.4 Ambiguous Name Resolution

ANR is a search algorithm in Active Directory that permits a client to search multiple naming-related
attributes on objects via a single clause in a search filter. A substring search against the aNR attribute
is interpreted by the DC as a substring search against a set of attributes, known as the "ANR attribute
set". The intent is that the attributes in the ANR attribute set are those attributes that are commonly
used to identify an object, such as the displayName and name attributes, thereby permitting a client
to query for an object when the client possesses some identifying material related to the object but
does not know the attribute of the object that contains that identifying material. The ANR attribute set
consists of those attributes whose searchFlags attribute contains the fANR flag (see section 3.1.1.2.3).

A server performs an ANR search by rewriting a search filter that contains one or more occurrences of
the aNR attribute so that the filter no longer contains any occurrences of the aNR attribute, then
performing a regular LDAP search using the rewritten search filter. The search filter is rewritten
according to the following algorithm:

1. If the ANR attribute set does not contain the attribute legacyExchangeDN, then let S be the ANR
attribute set and let PLegacy be false. Otherwise, let S be the ANR attribute set excluding
legacyExchangeDN and let PLegacy be true. In either case, S is a set containing attributes Al...An.

2. Let P1 be the value of the fSupFirstLastANR heuristic of the dSHeuristics attribute (see section
6.1.1.2.4.1.2). Let P2 be the value of the fSupLastFirstANR heuristic of the dSHeuristics attribute.

3. Let F be the search filter of the search request.

4. For each LDAP search filter clause C of the form "(aNR=*)" in F, resolve the clause to "false".
(Such a clause tests for the presence of a value for the aNR attribute itself, and this attribute is
not present on any object.)

5. For each LDAP search filter clause C of the form "(aNR=substringFilter)", where substringFilter
is an LDAP substring filter of the form "i*f", in F:

1. Ifjis the empty string, resolve clause C to the value "Undefined" (see [RFC2251] section
4.5.1).

2. Ifiis non-empty, replace clause C with the clause "(aNR=/)" and apply the rule for
"(aNR=value) in the next step of this algorithm.

6. For each LDAP search filter clause C of the form "(aNR=value)" or "(aNR~=value)" or
"(aNR>=value)" or "(aNR<=value)" in F:

1. If value's first non-space character is an equal sign ("=") similar to "=valuel" or " =valuel",
it is used for an exact string search instead of a substring search. Set "value" to "valuel”,
apply the following steps in rule 6, and replace all the "value*" with "value".

2. If value does not contain any space characters, or if P1 is true and P2 is true, construct an
LDAP search filter clause C' of the form "(|(Al=value*)...(An=value*))" if PLegacy is false, or
of the form "(|(Al=value*)...(An=value*)(legacyExchangeDN=value)" if PLegacy is true.
(This clause resolves to "true" for an object if value is a prefix of the value of any attribute in
the ANR set on that object, except an exact match is always performed on the
legacyExchangeDN attribute.)

3. If value does contain one or more space characters, then:

1. Split value into two components, valuel and value2, at the location of the first space,
discarding that space.

155/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. If PLegacy is false, do the following:

1. If P1is false and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(&(givenName=valuel*) (sn=value2*))
(&(givenName=value2*)(sn=valuel*)))". (This clause resolves to "true" for an
object if value is a prefix of the value of any attribute in the ANR set on that object, or
if the two parts of the split value are prefixes of the givenName and sn attributes on
that object, regardless of which part matches which attribute.)

2. If P1is true and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(&(givenName=value2*) (sn=valuel*)))". (This
clause will resolve to "true" for an object if value is a prefix of the value of any
attribute in the ANR set on that object, or if the first part of the split value is a prefix
of the sn attribute and the second part is a prefix of the givenName attribute on that
object.)

3. If P1is false and P2 is true, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(&(givenName=valuel*) (sn=value2*)))". (This
clause will resolve to "true" for an object if value is a prefix of the value of any
attribute in the ANR set on that object, or if the first part of the split value is a prefix
of the givenName attribute and the second part is a prefix of the sn attribute on that
object.)

3. If PLegacy is true, do the following:

1. If P1is false and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(legacyExchangeDN=value)(&(givenName=valuel1*)
(sn=value2*)) (&(givenName=value2*)(sn=valuel1*)))". (This clause resolves to
"true" for an object if value equals the value of legacyExchangeDN on that object or
value is a prefix of the value of any attribute in the ANR set on that object, or if the
two parts of the split value are prefixes of the givenName and sn attributes on that
object, regardless of which part matches which attribute.)

2. If P1is true and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(legacyExchangeDN=value) (&(givenName=value2*)
(sn=value1*)))". (This clause will resolve to "true" for an object if value equals the
value of legacyExchangeDN on that object or value is a prefix of the value of any
attribute in the ANR set on that object, or if the first part of the split value is a prefix
of the sn attribute and the second part is a prefix of the givenName attribute on that
object.)

3. If P1is false and P2 is true, then construct an LDAP search filter clause C' of the form
"(|(Al=value*)...(An=value*)(legacyExchangeDN=value) (&(givenName=valuel*)
(sn=value2*)))". (This clause will resolve to "true" for an object if value equals the
value of legacyExchangeDN on that object or value is a prefix of the value of any
other attribute in the ANR set on that object, or if the first part of the split value is a
prefix of the givenName attribute and the second part is a prefix of the sn attribute on
that object.)

4. Remove clause C from F, and insert C' into F at the position vacated by C.

Note that the replacement clause C' always contains equality matches, regardless of the type of match
in the original clause C.

3.1.1.3.1.3.5 Searches Using the objectCategory Attribute

When an LDAP search filter F contains a clause C of the form "(objectCategory=V)", if V is not a DN
but there exists an object O such that Ol!objectClass = classSchema and O!IDAPDisplayName =V,

156 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

then the server treats the search filter as if clause C was replaced in F with the clause
"(objectCategory=V")", where V' is O!defaultObjectCategory.

For example, if the LDAP search filter contains clause "(objectCategory=contact)", because the
defaultObjectCategory of class contact is
CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com, Active Directory will treat the
clause as "(objectCategory=CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com)".

3.1.1.3.1.3.6 Restrictions on rootDSE Searches

When performing a search against the rootDSE and specifying a list of attributes to be returned, the
attributes to be returned must be specified by their LDAP display name. Specifying the attribute by
their numeric OID will be treated by the server the same as specifying a nonexistent attribute. The
server supports specifying the attributes to be returned by their numeric OIDs in searches that do not
use the rootDSE as the search base.

When performing a search against the rootDSE, the server will ignore the contents of the search filter,
except as noted in section 6.3.

3.1.1.3.1.4 Referrals in LDAPv2 and LDAPvVv3

When using the LDAPv3 protocol, Active Directory returns referrals and continuation references in
accord with [RFC2251] section 4.5.3. When using the LDAPv2 protocol, Active Directory also returns
referrals and continuation references, although these are not part of the LDAPv2 protocol, as defined
in [RFC1777].

When Active Directory generates a referral in the LDAPv2 protocol, it sets the resultCode field in the
LDAPResult structure (defined in [RFC1777]) to the value 9. This is a value not defined in [RFC1777]
or [RFC2251] but that, by convention, is used by LDAPv2 servers to indicate the presence of a referral
in the response.

The contents of the referral are conveyed in the errorMessage field of the LDAPResult. This field
consists of the string "Referral:", followed by a newline character, followed by one or more LDAPURLs
(defined in [RFC2255]). Each LDAPURL is separated by a newline character. The meaning of these
LDAPURLs is equivalent to that of an LDAPURL in an LDAPv3 referral; that is, they indicate a server or
servers against which the operation can be retried.

Active Directory uses the same mechanism to return continuation references in LDAPv2. When a
continuation reference is required, the DC will return a SearchResponse message (defined in
[RFC1777]) in which the resultCode and errorMessage fields in the embedded LDAPResult are set as
described previously for LDAPv2 referrals. As with the LDAPv2 referrals, the meaning of the LDAPURLs
embedded in the errorMessage field is equivalent to their LDAPv3 equivalent; that is, they indicate
another server or NC in which the search can be continued.

3.1.1.3.1.5 Password Modify Operations

Active Directory provides the ability to change the password of a security principal (that is, the
Windows password for that security principal) by performing LDAP Modify operations. The password
change is modeled as an LDAP modify of either the unicodePwd or userPassword attribute of the
security principal object. The difference between these two attributes is discussed in the sections that
follow. However, regardless of whether the password is modified via unicodePwd or userPassword, the
same attribute on the object is modified. If running as AD DS, both are treated like a write to the
clearTextPassword attribute in [MS-SAMR] section 3.1.1.8.5. If running as AD LDS, a write to
userPassword updates unicodePwd.

3.1.1.3.1.5.1 unicodePwd

Active Directory stores the password on a user object or inetOrgPerson object in the unicodePwd
attribute. This attribute is written by an LDAP Modify under the following restricted conditions.

157 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Windows 2000 servers require that the client have a 128-bit (or better) SSL/TLS-encrypted connection
to the DC in order to modify this attribute. On Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016, the DC
also permits modification of the unicodePwd attribute on a connection protected by 128-bit (or better)
Simple Authentication and Security Layer (SASL)-layer encryption instead of SSL/TLS. In Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and
Windows Server 2016, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the
dSHeuristics attribute (section 6.1.1.2.4.1.2) is true and Active Directory is operating as AD LDS, then
the DC permits modification of the unicodePwd attribute over a connection that is neither SSL/TLS-
encrypted nor SASL-encrypted. The unicodePwd attribute is never returned by an LDAP search.

When a DC receives an LDAP Modify request to modify this attribute, it follows the following
procedure:

= If the Modify request contains a delete operation containing a value Vdel for unicodePwd followed
by an add operation containing a value Vadd for unicodePwd, the server considers the request to
be a request to change the password. The server decodes Vadd and Vdel using the password
decoding procedure documented later in this section. Vdel is the old password, while Vadd is the
new password.

= If the Modify request contains a single replace operation containing a value Vrep for unicodePwd,
the server considers the request to be an administrative reset of the password, that is, a password
modification without knowledge of the old password. The server decodes Vrep using the password
decoding procedure documented later in this section and uses it as the new password.

For the password change operation to succeed, the server enforces the requirement that the user or
inetOrgPerson object whose password is being changed must possess the "User-Change-Password"
control access right on itself, and that Vdel must be the current password on the object. For the
password reset to succeed, the server enforces the requirement that the client possess the "User-
Force-Change-Password" control access right on the user or inetOrgPerson object whose password is
to be reset.

The syntax of the unicodePwd attribute is Object(Replica-Link). However, the DC requires that the
password value be specified in a UTF-16 encoded Unicode string containing the password surrounded
by quotation marks, which has been BER-encoded as an octet string per the Object(Replica-Link)
syntax. BER encoding and decoding is defined in [ITUX690]. To decode such a value V, the server
follows this password decoding procedure:

= If Vis not a valid BER-encoding of an octet string, reject the password operation with the error
protocolError / ERROR_DS_DECODING_ERROR.

= BER-decode V to produce Vdecoded.

= If the first and last characters of Vdecoded are not the UTF-16 Unicode representation of
quotation marks, reject the password operation with the error constraintViolation/
ERROR_DS_UNICODEPWD_NOT_IN_QUOTES.

= Remove the first and last characters from Vdecoded to produce Vpassword.

Vpassword is the value the DC uses for the password—the actual password, not a password hash.
This encoding is used for both the old and the new passwords in a password change request.

Following is an example of the first steps of password encoding. Suppose the implementer wants to
set unicodePwd to the string "new".

ASCII "new": 0x6E 0x65 0x77
UTF-16 "new": 0x6E 0x00 0x65 0x00 0x77 0x00
UTF-16 "new"
with quotes: 0x22 0x00 O0x6E 0x00 0x65 0x00 0x77 0x00 0x22 0x00

158/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The 10-byte octet string is then BER-encoded and sent in an LDAP Modify request as described
previously.

3.1.1.3.1.5.2 userPassword

Active Directory supports modifying passwords on objects via the userPassword attribute, provided
that (1) either the DC is running as AD LDS, or the DC is running as AD DS and the domain functional
level is DS_BEHAVIOR_WIN2003 or greater, and (2) the fUserPwdSupport heuristic is true in the
dSHeuristics attribute (section 6.1.1.2.4.1.2). If fUserPwdSupport is false, the userPassword attribute
is treated as an ordinary attribute and has no special semantics associated with it. If fUserPwdSupport
is true but the DC is running as AD DS and the domain functional level is less than
DS_BEHAVIOR_WIN2003, the DC fails the operation with the error constraintViolation /
ERROR_NOT_SUPPORTED.

As with the unicodePwd attribute, changing a password via the userPassword attribute is modeled as
an LDAP Modify operation containing a Delete operation followed by an Add operation, and resetting a
password is modeled as an LDAP Modify operation containing a single Replace operation. The control
access rights required are the same as for the unicodePwd attribute, as is the requirement that when
changing a password, Vdel must match the object's current password.

The special encoding required for updating the unicodePwd attribute is not used with the
userPassword attribute; that is, Vpassword = V. The same restrictions on SSL/TLS- or SASL-
protected connections are enforced. The password values are sent to the server as UTF-8 strings, and
surrounding quotation marks are not used. For example, the following LDAP Data Interchange Format
(LDIF) sample changes a password from oldPassword to newPassword.

dn: CN=John Smith, OU=Users,DC=Fabrikam, DC=com
changetype: modify

delete: userPassword

userPassword: oldPassword

add: userPassword
userPassword: newPassword

The following example uses LDIF to reset the password to newPassword.

dn: CN=John Smith, OU=Users,DC=Fabrikam, DC=com
changetype: modify

replace: userPassword

userPassword: newPassword

Optionally, when performing a password change operation, the add operation portion of the LDAP
modify can be omitted. The server treats this as a request to change the user or inetOrgPerson
object's password to the empty string.

3.1.1.3.1.6 Dynamic Objects

The Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 versions of Active Directory have support for
dynamic objects, as specified in [RFC2589]. The Active Directory implementation is conformant to that
RFC, except that it does not implement the dynamicSubtrees attribute used to represent which NCs
support dynamic objects.

Dynamic objects are supported in all NCs except for the schema NC and the config NC. A dynamic
object cannot be the parent of an object that is not dynamic, and the server will reject such a request
with the error unwillingToPerform /| ERROR_DS UNWILLING_TO_PERFORM. When a dynamic object

159 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

reaches the end of its time-to-live, the object is expunged from the directory by the server and does
not leave behind a tombstone.

3.1.1.3.1.7 Modify DN Operations

Because Active Directory does not support multivalued RDNs (see section 3.1.1.3.1.2.3), the
deleteoldrdn field of a ModifyDNRequest (defined in [RFC2251] section 4.9) must always be set to
true. If deleteoldrdn is set to false, the server fails the request with the error unwillingToPerform /
ERROR_INVALID_PARAMETER.

3.1.1.3.1.8 Aliases

LDAP aliases, the class for which is defined in [RFC2256] section 7.2 and which are discussed in
[RFC2251] section 4.1.10, are not supported in Active Directory.

3.1.1.3.1.9 Error Message Strings

When the server fails an LDAP operation with an error, and the server has sufficient resources to
compute a string value for the errorMessage field of the LDAPResult, it includes a string in the
errorMessage field of the LDAPResult (see [RFC2251] section 4.1.10). The string contains further
information about the error.

The first eight characters of the errorMessage string are a 32-bit integer, expressed in hexadecimal.
Where protocol specifies the extended error code "<unrestricted>" there is no restriction on the value
of the 32-bit integer. It is recommended that implementations use a Windows error code for the 32-
bit integer in this case in order to improve usability of the directory for clients. Where protocol
specifies an extended error code which is a Windows error code, the 32-bit integer is the specified
Windows error code. Any data after the eighth character is strictly informational and used only for
debugging. Conformant implementations need not put any value beyond the eighth character of the
errorMessage field.

When the server returns a referral and not an error, the errorMessage field is used as described in
section 3.1.1.3.1.1.4.

3.1.1.3.1.10 Ports

An AD DS DC accepts LDAP connections on the standard LDAP and LDAPS (LDAP over SSL/TLS) ports:
389 and 636. If the AD DS DC is a GC server, it also accepts LDAP connections for GC access on port
3268 and LDAPS connections for GC access on port 3269.

An AD LDS DC accepts LDAP and LDAPS connections on ports that are configured when creating the
DC.

3.1.1.3.1.11 LDAP Search Over UDP

Active Directory supports search over UDP only for searches against rootDSE. It encodes the results of
an LDAP search performed over UDP in the same manner as it does a search performed over TCP;
specifically, as one or more SearchResultEntry messages followed by a SearchResultDone message, as
described in [RFC2251]. This means that the search response is not encoded as described in
[RFC1798]. Only LDAP search and LDAP abandon operations are supported over UDP by Active
Directory.

3.1.1.3.1.12 Unbind Operation

Upon receipt of an unbind request on an LDAP connection, all outstanding requests on the connection
are abandoned, and the Active Directory DC closes the connection.

3.1.1.3.2 rootDSE Attributes

160/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This section specifies the readable attributes on the rootDSE of Windows 2000, Windows Server 2003,
ADAM, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, and Windows Server 2016 DCs (both AD DS and AD LDS).

All of these rootDSE attributes are read-only; an LDAP request to modify any of them will be rejected

with the error unwillingToPerform / <unrestricted>.

The rootDSE attributes are not described by the schema, but occurrences of rootDSE attribute names

are underlined in this document as per the convention for any other LDAP attribute.

The following table specifies which of these rootDSE attributes are supported by each Windows Server

or ADAM version.

The table contains information for the following product versions. See section 3 for more information.

= A --> Windows 2000

= D --> Windows Server 2003

= G-->ADAM

= K --> Windows Server 2008 AD DS
= L --> Windows Server 2008 AD LDS

= N --> Windows Server 2008 R2 AD DS

= P --> Windows Server 2008 R2 AD LDS

= S --> Windows Server 2012 AD DS
= T--> Windows Server 2012 AD LDS
= V --> Windows Server 2012 R2 AD DS

= W --> Windows Server 2012 R2 AD LDS

= Y --> Windows Server 2016 AD DS
= Z--> Windows Server 2016 AD LDS
= AA—>-AD-LDSfeor-Windows10-v1703

L P

4

Attribute name A
configurationNamingContext X
currentTime X
defaultNamingContext X
dNSHostName X
dsSchemaAttrCount X
dsSchemaClassCount X
dsSchemaPrefixCount X
dsServiceName X
highestCommittedUSN X

X | X[X [X[|X|X]|X]|X|[X

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

161 /626

Attribute name A|D| G KN|LP|S|T| V| W) Y| Z| AA
isGlobalCatalogReady X | X X X X X
isSynchronized X | X[X]|X X X|X|X|X X | X | %
IdapServiceName X | X X X X X
namingContexts X | X[X]|X X X | X | X | X X | X | %
netlogon X | X X X X X
pendingPropagations XX [XX X X | X | X | X X | X | %
rootDomainNamingContext X | X X X X X
schemaNamingContext X | X[X]|X X XX | X|X X | X | %
serverName X | X[X]|X X XX | XX X | X | %
subschemaSubentry X | X [X]|X X X| X | X|X X | X | %
supportedCapabilities X | X | X |X X X | X[X | X | X]|X]|*
supportedControl X | X | X |X X X | X[X | X | X]|X]|*
supportedLDAPPolicies XX [XX X X | X | X | X X | X | %
supportedLDAPVersion X | X[X]|X X X|X|X|X X | X | %
supportedSASLMechanisms X | X | X |X X X | X[X | X | X]|X]|*
domainControllerFunctionality X | X |X X X|X|X|X X | X | %
domainFunctionality X X X X X
forestFunctionality X | X | X X X | X[X | X | X]|X]|*
msDS-ReplAllInboundNeighbors X | X [X X X | X | X | X X | X | %
msDS-ReplAllOutboundNeighbors X | X | X X X | X[X | X | X|X]|*
msDS-ReplConnectionFailures X | X | X X X | X[X | X | X|X]|*
msDS-ReplLinkFailures X | X [X X X | X | X | X X | X | %
msDS-ReplPendingOps X | X | X X X | X[X | X | X]|X]|*
msDS-ReplQueueStatistics X | XX X X|X|X|X X | X | %
msDS-TopQuotaUsage X | X |X X X|X|X|X X | X | %
supportedConfigurableSettings X | X | X X X | X[X | X | X|X]|*
supportedExtension X | XX X X|X|X|X X | X | %
validFSMOs X | X [X X X | X | X | X X | X | %
dsaVersionString X | X X X| X | X|X X | X | %
msDS-PortLDAP X | X X XX | X [X | X]|X]|X*X
msDS-PortSSL X | X X X | X | X | X X | X | %
msDS-PrincipalName X | X X X | X | X | X X | X | %

162 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Attribute name K,N|LP|S V| W |Y|Z|AA
serviceAccountInfo X X X X | X | X|X]| X%
spnRegistrationResult X X X X | X X | X | %
tokenGroups X X X X | X X | X | *
usnAtRifm X X X X | X X | X | %
approximateHighestInternalObjectID X X | X [X | X]| X
databaseGuid X | X [X]| X]| %X
schemalndexUpdateState X | X X | X | *
dumplLdapNotifications X | X | *
msbS-Arenalnfo *
msDS-ProcessLinksOperations_* X | X x
msDS-ThreadStatesSegmentCachelnfo ** X | X X

* The msDS-ProcessLinksOperations rootDSE attribute is available in Windows Server 2012 R2 only if

[MSKB-3192404] is installed.

** The msDS-SegmentCachelnfo rootDSE attribute is available in Windows Server 2012 R2 only if

[MSKB-4019217] is installed.

The following table shows, for each rootDSE attribute, whether or not the attribute is operational (that
is, whether the server returns the attribute only when it is explicitly requested) and the LDAP syntax

of the returned value.

Attribute name Operational? | LDAP syntax
configurationNamingContext N Object(DS-DN)
currentTime N String(Generalized-Time)
defaultNamingContext N Object(DS-DN)
dNSHostName N String(Unicode)
dsSchemaAttrCount Y Integer
dsSchemacClassCount Y Integer
dsSchemaPrefixCount Y Integer
dsServiceName N Object(DS-DN)
highestCommittedUSN N Largelnteger
isGlobalCatalogReady N Boolean
isSynchronized N Boolean
IdapServiceName N String(Unicode)

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

163/ 626

Attribute name

Operational?

LDAP syntax

namingContexts N Object(DS-DN)
netlogon Y String(Octet)
pendingPropagations Y Object(DS-DN)
rootDomainNamingContext N Object(DS-DN)
schemaNamingContext N Object(DS-DN)
serverName N Object(DS-DN)
subschemaSubentry N Object(DS-DN)
supportedCapabilities N String(Object-Identifier)
supportedControl N String(Object-Identifier)
supportedLDAPPolicies N String(Unicode)
supportedLDAPVersion N Integer
supportedSASLMechanisms N String(Unicode)
domainControllerFunctionality N Integer
domainFunctionality N Integer
forestFunctionality N Integer
msDS-ReplAllInboundNeighbors Y String(Unicode)*
msDS-ReplAllOutboundNeighbors Y String(Unicode)*
msDS-ReplConnectionFailures Y String(Unicode)*
msDS-ReplLinkFailures Y String(Unicode)*
msDS-ReplPendingOps Y String(Unicode)*
msDS-ReplQueueStatistics Y String(Unicode)*
msDS-TopQuotaUsage Y String(Unicode)**
supportedConfigurableSettings Y String(Unicode)
supportedExtension Y String(Object-Identifier)
validFSMOs Y Object(DS-DN)
dsaVersionString Y String(Unicode)
msDS-PortLDAP Y Integer
msDS-PortSSL Y Integer
msDS-PrincipalName Y String(Unicode)
serviceAccountInfo Y String(Unicode)
spnRegistrationResult Y Integer
tokenGroups Y String (SID)

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

164 / 626

Attribute name Operational? | LDAP syntax
usnAtRifm Y Largelnteger
approximateHighestInternalObjectID Y Integer
databaseGuid Y String(Teletex)
schemalndexUpdateState Y Integer
dumpLdapNotifications Y String(Unicode)
confi SettinasEffect] ¥ String(Uni)
DAPPoficiesEffecti ¥ String(Uni)
DA Inf ¥ String(Uni)
msDS-ProcessLinksOperations Y String(Unicode)
msDS-FhreadStatesSegmentCachelnfo Y String(Unicode)

* These values contain XML. At the client's request, the server will return the value as binary data in
String(Octet) syntax instead.

** This value contains XML.
3.1.1.3.2.1 configurationNamingContext
Returns the DN of the root of the config NC on this DC.

3.1.1.3.2.2 currentTime

Returns the current system time on the DC, as expressed as a string in the Generalized Time format
defined by ASN.1 (see [ISO-8601] and [ITUX680], as well as the documentation for the LDAP
String(Generalized-Time) syntax in 3.1.1.2.2.2).

3.1.1.3.2.3 defaultNamingContext

Returns the DN of the root of the default NC of this DC. For AD LDS, the defaultNamingContext
attribute does not exist if a value has not been set for the msDS-DefaultNamingContext attribute of
the DC's nTDSDSA object.

3.1.1.3.2.4 dNSHostName
Returns the DNS address of this DC.

3.1.1.3.2.5 dsSchemaAttrCount

Returns an integer specifying the total number of attributes that are defined in the schema.

3.1.1.3.2.6 dsSchemaClassCount

Returns an integer specifying the total number of classes that are defined in the schema.

3.1.1.3.2.7 dsSchemaPrefixCount

Returns the number of entries in the DC's prefix table: the field prefixTable of the variable dc specified
in [MS-DRSR] section 5.30.

165/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.2.8 dsServiceName

Returns the DN of the nTDSDSA object for the DC.

3.1.1.3.2.9 highestCommittedUSN

Returns the USN of this DC. In terms of the state model of section 3.1.1.1 this is dc.usn.

3.1.1.3.2.10 isGlobalCatalogReady

Returns a Boolean value indicating if this DC is a global catalog that has completed at least one
synchronization of its global catalog data with its replication partners. Returns true if it meets this
criteria or false if either the global catalog on this DC has not completed synchronization or this DC
does not host a global catalog.

3.1.1.3.2.11 isSynchronized

Returns a Boolean value indicating if the DC has completed at least one synchronization with its
replication partners. Returns either true, if it is synchronized, or false, if it is not.

3.1.1.3.2.12 IdapServiceName

Returns the LDAP service name for the LDAP server on the DC. The format of the value is <DNS
name of the forest root domain>:<Kerberos principal name>, where Kerberos principal
name is a string representation of the Kerberos principal name for the DC's computer object, as
defined in [RFC1964] section 2.1.1.

3.1.1.3.2.13 namingContexts

Returns a multivalued set of DNs. For each NC-replica n hosted on this DC, this attribute contains the
DN of the root of n.

3.1.1.3.2.14 netlogon

LDAP searches that request this rootDSE attribute get resolved as LDAP ping operations, as specified
in section 6.3. Active Directory supports LDAP searches for this attribute via both UDP and TCP/IP. See
section 3.1.1.3.1.11 for details on LDAP over UDP.

3.1.1.3.2.15 pendingPropagations

Returns a set of DNs of objects whose nTSecurityDescriptor attribute (that is, the object's security
descriptor) has been updated but the inheritable portion of the update has not yet been propagated to
descendant objects (see Security Descriptor Requirements, section 6.1.3). An object is included in the
set only if the update that caused the temporary inconsistency in the object's nTSecurityDescriptor
was performed on the LDAP connection that is reading the pendingPropagations rootDSE attribute.

3.1.1.3.2.16 rootDomainNamingContext

Returns the DN of the root domain NC for this DC's forest.

3.1.1.3.2.17 schemaNamingContext

Returns the DN of the root of the schema NC on this DC.

3.1.1.3.2.18 serverName

Returns the DN of the server object, contained in the config NC, that represents this DC.

166 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.2.19 subschemaSubentry

Returns the DN for the location of the subSchema object where the classes and attributes in the
directory are defined. The subSchema object pointed to by this attribute contains a read-only copy of
the schema described in the format specified in section 3.1.1.3.1.1.1

3.1.1.3.2.20 supportedCapabilities

Returns a multivalued set of OIDs specifying the capabilities supported by this DC. The definition of
each OID is explained in section 3.1.1.3.4.3.

3.1.1.3.2.21 supportedControl

Returns a multivalued set of OIDs specifying the LDAP controls supported by this DC. The definition of
each OID is explained in section 3.1.1.3.4.1

3.1.1.3.2.22 supportedLDAPPolicies

Returns a multivalued set of strings specifying the LDAP administrative query policies supported by
this DC. The policy strings returned are listed in section 3.1.1.3.4.6.

3.1.1.3.2.23 supportedLDAPVersion

Returns a set of integers specifying the versions of LDAP supported by this DC. Active Directory
supports version 2 and version 3 of LDAP, so it returns {2,3} as an LDAP multivalue.

3.1.1.3.2.24 supportedSASLMechanisms
Returns a multivalued set of strings specifying the security mechanisms supported for SASL

negotiation (see [RFC2222], [RFC2829], and [RFC2831]). The definition of each value is explained in
section 3.1.1.3.4.5.

3.1.1.3.2.25 domainControllerFunctionality

Returns an integer indicating the functional level of the DC. This value is populated from the msDS-
Behavior-Version attribute on the nTDSDSA object that represents the DC (section 6.1.4.2).

Value Identifier

0 DS_BEHAVIOR_WIN2000

2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2
5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2
7 DS_BEHAVIOR_WIN2016

3.1.1.3.2.26 domainFunctionality

167 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Returns an integer indicating the functional level of the domain. This value is populated from the
msDS-Behavior-Version attribute on the domain NC root object and the crossRef object that
represents the domain (section 6.1.4.3).

Value Identifier

0 DS_BEHAVIOR_WIN2000

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS
2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2

5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2

7 DS_BEHAVIOR_WIN2016

3.1.1.3.2.27 forestFunctionality

Returns an integer indicating the functional level of the forest. This value is populated from the msDS-
Behavior-Version attribute on the crossRefContainer object (section 6.1.4.4).

Value Identifier

0 DS_BEHAVIOR_WIN2000

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS
2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2

5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2

7 DS_BEHAVIOR_WIN2016

3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures, msDS-
ReplLinkFailures, and msDS-ReplPendingOps

Returns alternate representations of the structures returned by IDL_DRSGetReplInfo() (see [MS-
DRSR] section 4.1.13), either as binary data structures or as XML. The relationship between each of
these rootDSE attributes and the IDL_DRSGetReplInfo data is shown in the following table.

rootDSE Equivalent DS_REPL_

attribute name INFO_TYPE XML structure Binary structure

msDS- DS_REPL_INFO_NEIGHBORS DS_REPL_NEIGHBORW | DS_REPL_NEIGHBORW_BL
ReplAllInboundNei OB

168/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

rootDSE Equivalent DS_REPL_

attribute name INFO_TYPE XML structure Binary structure

ghbors

msDS- DS_REPL_INFO_KCC_DSA_CONNE DS_REPL_KCC_DSA_F DS_REPL_KCC_DSA_FAILU
ReplConnectionFai | CT_FAILURES AILUREW REW_BLOB

lures

msDS- DS_REPL_INFO_KCC_DSA_LINK_F DS_REPL_KCC_DSA_F DS_REPL_KCC_DSA_FAILU
ReplLinkFailures AILURES AILUREW REW_BLOB

msDS- DS_REPL_INFO_PENDING_OPS DS_REPL_OPW DS_REPL_OPW_BLOB
ReplPendingOps

For each rootDSE attribute named in the first column, the information returned is exactly the same
information that is returned by a call to IDL_DRSGetReplInfo, specifying the value in the second
column as the DRS_MSG_GETREPLINFO_REQ_V1.InfoType or
DRS_MSG_GETREPLINFO_REQ_V2.InfoType. See [MS-DRSR] for the definition of these, as well as for
the definition of the following constants and structures used in the table above:

= DS_REPL_INFO_NEIGHBORS

= DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES

= DS_REPL_INFO_KCC_DSA_LINK_FAILURES

= DS_REPL_INFO_PENDING_OPS

= DS_REPL_NEIGHBORW

= DS_REPL_KCC_DSA_FAILUREW

= DS_REPL_OPW

The remaining structures in the table above are documented in section 2.2.

Without any attribute qualifier, the data is returned as XML. The parent element of the XML is the
name of the structure contained in the "XML structure" column in the table, and the child element
names and order in the XML exactly follow the names of the fields in that structure as well. The
meaning of each child element is the same as the meaning of the corresponding field in the structure.
Values of integer types are represented as decimal strings. Values of FILETIME type are represented
as XML dateTime values in Coordinated Universal Time (UTC), for example, "04-07T18:39:09Z", as
defined in [XMLSCHEMAZ2/2]. Values of GUID fields are represented as GUIDStrings.

If the ";binary" attribute qualifier is specified when the attribute is requested, the value of this
attribute is returned as binary data, specifically, the structure contained in the "Binary structure"
column. In this representation, fields that would contain strings are represented as integer offsets
(relative to the beginning of the binary data) to a null-terminated UTF-16 encoded string embedded in
the returned binary data.

3.1.1.3.2.29 msDS-ReplAllIOutboundNeighbors

This attribute is equivalent to msDS-ReplAllInboundNeighbors, except that it returns representations
of each value of the repsTo abstract attribute for each NC-replica (for example, outbound replication),
while msDS-ReplAllInboundNeighbors returns representations of each value of the repsFrom abstract
attribute (for example, inbound replication). Like msDS-ReplAllInboundNeighbors, the server will
return the data in either XML or binary form, depending on the presence of the ";binary" attribute
qualifier, and uses the DS_REPL_NEIGHBOR and DS_REPL_NEIGHBORW_BLOB structures for its XML
and binary representations, respectively.

169/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.2.30 msDS-ReplQueueStatistics
Reading the msDS-ReplQueueStatistics attribute returns replication queue statistics.

Like the other ms-dsRepl* rootDSE attributes, the server returns either XML or binary data, depending
on the presence of the ";binary" attribute qualifier. For XML, it returns the following representation:

<DS_REPL_QUEUE_STATISTICSW>

<ftimeCurrentOpStarted> ftimeCurrentOpStartedValue </ftimeCurrentOpStarted>
<cNumPendingOps> cNumPendingOpsValue </cNumPendingOps>
<ftimeOldestSync> ftimeOldestSyncValue </ftimeOldestSync>

<ftimeOldestAdd> ftimeOldestAddValue </ftimeOldestAdd>

<ftimeOldestMod> ftimeOldestModValue </ftimeOldestMod>

<ftimeOldestDel> ftimeOldestDelValue </ftimeOldestDel>

<ftimeOldestUpdRefs> ftimeOldestUpdRefsValue </ftimeOldestUpdRefs>
</DS_REPL_QUEUE_STATISTICSW>

The structure returned by this attribute for the binary representation is
DS_REPL_QUEUE_STATISTICSW_BLOB (section 2.2.5).

The information returned by reading this attribute is derived from the field replicationQueue of the
variable dc specified in [MS-DRSR] section 5.30. dc.replicationQueue is used to serialize
IDL_DRSReplicaSync, IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, and
IDL_DRSUpdateRefs request processing [MS-DRSR] on the DC. msDS-ReplQueueStatistics returns the
following information about the current state of this queue:

= ftimeCurrentOpStartedValue is the date and time that the current IDL_DRSReplicaSync,
IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs request
left the queue and started running.

= cNumPendingOpsValue is the number of queued IDL_DRSReplicaSync, IDL_DRSReplicaAdd,
IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs requests.

= ftimeOldestSyncValue is the date and time that the oldest queued IDL_DRSReplicaSync request
entered the queue.

= ftimeOldestAddValue is the date and time that the oldest queued IDL_DRSReplicaAdd request
entered the queue.

= ftimeOldestModValue is the date and time that the oldest queued IDL_DRSReplicaModify
request entered the queue.

= ftimeOldestDelValue is the date and time that the oldest queued IDL_DRSReplicaDel request
entered the queue.

= ftimeOldestUpdRefsValue is the date and time that the oldest queued IDL_DRSUpdateRefs
request entered the queue.

cNumPendingOpsValue is an integer represented as a decimal string. The remaining values are
represented as XML dateTime values in UTC, defined in [XMLSCHEMA2/2].

If a designated request does not exist, the corresponding portion of the msDS-ReplQueueStatistics
response contains a zero filetime in the binary format, and the XML dateTime value "1601-01-

170/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

01T00:00:00Z" in XML format. For instance, if there is no IDL_DRSUpdateRefs request in the
replication queue, the msDS-ReplQueueStatistics XML response includes:

<ftimeOldestUpdRefs>1601-01-01T00:00:00Z</ftimeOldestUpdRefs>

3.1.1.3.2.31 msDS-TopQuotaUsage

Returns a multivalued set of strings specifying the top 10 quota users in all NC-replicas on this DC.
The format of each value is as follows, where quota usage is measured in humber of objects:

<MS_DS_TOP_QUOTA_USAGE>

<partitionDN> DN of NC-replica </partitionDN>

<ownerSID> Security Identifier (SID) of quota user </ownerSID>
<quotaUsed> Amount of quota used by this quota user </quotaUsed>

<tombstoneCount> Number of tombstoned objects owned by this quota user
</tombstoneCount>

<liveCount> Number of live (non-deleted) objects owned by this quota user </liveCount >
</MS_DS_TOP_QUOTA_USAGE>

A client qualifies the attribute description for this attribute in an LDAP query with a "range qualifier" to
specify a different range of quota users to return other than the top 10. The DC responds to this by
returning the quota usage for the requested range of quota users. Following are examples of range
qualifiers and what would be returned:

= An attribute specification of the form msDS-TopQuotaUsage,;Range=0-* will return the complete
list of quota usage.

= An attribute specification of the form msDS-TopQuotaUsage;Range=1-9 will return the second
highest through the 10t highest quota usage.

= An attribute specification of the form msDS-TopQuotaUsage,;Range=2-2 will return the third
highest quota usage.

The caller must have the RIGHT_DS_READ_PROPERTY access right on the Quotas container (see
section 6.1.1.4.3). If the caller does not have this access right, the search operation will succeed but
no results will be returned.

3.1.1.3.2.32 supportedConfigurableSettings

Returns a multivalued set of strings specifying the configurable settings supported by this DC. The
setting strings returned are listed in section 3.1.1.3.4.7.

3.1.1.3.2.33 supportedExtension

Returns a multivalued set of OIDs specifying the extended LDAP operations that the DC supports. The
definition of each OID is explained in section 3.1.1.3.4.2.

3.1.1.3.2.34 validFSMOs

Returns a set of DNs of objects representing the FSMO roles owned by this DC. Each object identifies a
distinct FSMO role.

The valid types of FSMO role, and the object used to represent an instance of that type in the
validFSMOs attribute, are as follows:

171/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

» Schema Master FSMO Role - the root of the schema NC

= Domain Naming FSMO Role - the Partitions container in the config NC

» Infrastructure Master FSMO Role - the Infrastructure container in a domain NC

= Primary Domain Controller (PDC) Emulator FSMO Role - the root of a domain NC

= RID Master FSMO Role - the RID Manager object of a domain NC, which is the object referenced
by the rIDManagerReference attribute on the root of the domain NC

Because an AD LDS forest does not contain domain NCs, it does not contain instances of the
Infrastructure Master, PDC Emulator, and RID Master FSMO roles, and the corresponding objects will
not be present in the validFSMOs attribute of any DC running AD LDS.

A server indicates that it owns a given FSMO role F only if IsEffectiveRoleOwner(RoleObject(nc, e))
returns true, where the procedures IsEffectiveRoleOwner and RoleObject are defined in section
3.1.1.5.1.8. The parameters nc and e are defined as follows for each FSMO Role F:

= Schema Master FSMO

= nc: Schema NC

= e: SchemaMasterRole
= Domain Naming FSMO

= nc: Config NC

= e: DomainNamingMasterRole
= Infrastructure Master FSMO

= nc: Default NC (AD DS)

= e: InfrastructureMasterRole
= RID Master FSMO

= nc: Default NC (AD DS)

= e: RidAllocationMasterRole
= PDC Emulator FSMO

= nc: Default NC (AD DS)

= @: PdcEmulationMasterRole

3.1.1.3.2.35 dsaVersionString

Returns a string indicating the version of Active Directory running on the DC. For instance, when
running Windows Server 2008 Beta 2, the Active Directory version string is "6.0.5384.32
(winmain_beta2.060727-1500)".

This rootDSE attribute is readable by Domain Administrators (section 6.1.1.6.5) and Enterprise
Administrators (section 6.1.1.6.10) only.

3.1.1.3.2.36 msDS-PortLDAP

Returns the integer TCP/UDP port number on which the DC is listening for LDAP requests. For AD DS,
this always equals 389. For AD LDS, the port is configurable.

172 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-
PortLDAP.

3.1.1.3.2.37 msDS-PortSSL

Returns the integer TCP/UDP port humber on which the DC is listening for TLS/SSL-protected LDAP
requests. For AD DS, this always equals 636. For AD LDS, the port is configurable.

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-PortSSL.

3.1.1.3.2.38 msDS-PrincipalName

Returns a string name of the security principal that has authenticated on the LDAP connection. If the
client authenticated as a Windows security principal, the string contains either (1) the NetBIOS
domain name, followed by a backslash ("\"), followed by the sAMAccountName of the security
principal, or (2) the SID of the security principal, in SDDL SID string format ([MS-DTYP] section
2.4.2.1). If the client authenticated as an AD LDS security principal, the string contains the DN of the
security principal. If the connection is not authenticated (only possible if the fLDAPBlockAnonOps
heuristic in the dSHeuristics attribute is false; see section 6.1.1.2.4.1.2), the string is "NT
AUTHORITY\ANONYMOUS LOGON".

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-
PrincipalName.

3.1.1.3.2.39 serviceAccountInfo
Returns a set of strings, each string containing a name-value pair encoded as name=value.

The serviceAccountInfo attribute contains information outside the state model. The possible name-
value pairs are as follows:

replAuthenticationMode: The value is the value of the msDS-ReplAuthenticationMode attribute on
the root of the config NC, or "1" if that attribute is not set. See section 6.1.1.1.2 for the effects of the
msDS-ReplAuthenticationMode attribute.

accountType: If the service account is a domain account account, the value is "domain". Otherwise
the service account is a local account, and the value is "local".

systemAccount: If the service account is a system account (meaning it has one of the SIDs SID "S-
1-5-20" and "S-1-5-18") the value is "true"; otherwise the value is "false".

domainType: If the DC is running on a computer that is part of an Active Directory domain (always
the case for an AD DS DC), the value is "domainWithKerb". If the DC is running on a computer that
is part of an NT (pre—Active Directory) domain, the value is "domainNoKerb". Otherwise the DC is
running on a computer that is not part of a domain, and the value is "nonMember".

serviceAcccountName: If the value of replAuthenticationMode is "0", the value is the SAM name
of the DC's service account. Otherwise this name-value pair is not present.

machineDomainName: If domainType is "domainWithKerb" or "domainNoKerb" the value is
the NetBIOS name of the domain. Otherwise the value is the NetBIOS name of the computer.

3.1.1.3.2.40 spnRegistrationResult

When running as AD DS on Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, or Windows Server 2016, this value is 0. When running as AD LDS, if the DC was unable to
register its service principal names (SPNs) ([MS-DRSR] section 2.2.2), this attribute returns the
Windows error code associated with the failure. Otherwise, it returns zero.

173/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Note When running as AD DS on Windows Server 2003 or Windows Server 2008, this value is the
Windows error code that is associated with the failure if the DC was unable to register its SPNs, or
ZEero upon Success.

3.1.1.3.2.41 tokenGroups

Returns the SIDs contained in the security context as which the client has authenticated the LDAP
connection. Refer to section 5.1.3 for details on LDAP Authorization. Refer to section 3.1.1.4.5.19 for
details on the algorithm used to compute this attribute.

3.1.1.3.2.42 usnAtRifm

This attribute contains information outside the state model. If the DC is an RODC and was installed
using the Install From Media feature, reading the usnAtRifm attribute returns the value of dc.usn
(section 3.1.1.1.9) that was present in the Active Directory database on the installation media.

3.1.1.3.2.43 approximateHighestInternalObjectID
This attribute contains information outside the state model. Reading

approximateHighestInternalObjectID returns an approximation of the highest value a DC has for an
implementation-specific object identifier.

3.1.1.3.2.44 databaseGuid

This attribute contains information outside the state model. Reading this attribute returns a GUID.
There is no significance to the value of the GUID.

3.1.1.3.2.45 schemalndexUpdateState

This attribute contains information outside the state model. Reading this attribute returns the value
'3". There is no significance to this value.

3.1.1.3.2.46 dumpLdapNotifications

If the requestor is not a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2),
attempting to read this attribute will return an error. Reading this attribute returns an XML-formatted
string that describes the asynchronous notifications that have been registered with the DC (section
3.1.1.3.4.1.9). The specific contents of the XML string are implementation-defined.

174 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

S31-13-2-563.1.1.3.2.47 _msDS-ProcessLinksOperations

Reading this attribute returns an XML-formatted string that contains a list of objects for which delayed
link processing (section 3.1.1.1.16) has not completed. The list contains no more than 500 values,
even if there are more such objects. No ordering of objects is implied by the list. The specific contents
of the XML string are implementation-defined.

attemptingteread-thisattribute-willreturran-errer—This attribute contains information that is outside
the state model. Reading this attribute returns arxMt-fermatteda string that describes memory and
processor usage of the instance. The specific contents of the- XMk string are implementation-defined.

3.1.1.3.3 rootDSE Modify Operations

This section specifies the modifiable attributes on the rootDSE of Windows 2000, Windows Server
2003, ADAM, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows
Server 2012 R2, and Windows Server 2016 DCs (both AD DS and AD LDS).

rootDSE modify operations are used to trigger behaviors on a specific DC. For example, one such
operation causes the DC to acquire the Schema Master FSMO. All of these rootDSE attributes are
write-only; an LDAP request to read will be treated as if the attribute does not exist.

The following table specifies the set of modifiable rootDSE attributes included in each Windows or
ADAM version.

The table contains information for the following product versions. See section 3 for more information.
= A --> Windows 2000

» B --> Windows 2000 SP1

= D --> Windows Server 2003

» F --> Windows Server 2003 with SP3

= H-->ADAM RTW

= I--> ADAM SP1

= K --> Windows Server 2008 AD DS

= L --> Windows Server 2008 AD LDS

= N --> Windows Server 2008 R2 AD DS
= P --> Windows Server 2008 R2 AD LDS
= S --> Windows Server 2012 AD DS

= T --> Windows Server 2012 AD LDS

= V --> Windows Server 2012 R2 AD DS

= W --> Windows Server 2012 R2 AD LDS
= Y --> Windows Server 2016 AD DS

= 7 --> Windows Server 2016 AD LDS

175/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

= AA—> AD-LDS for Windows10-v1703

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

Attribute name A|B|D|F K N S A" Y | Z|AA
becomeDomainMaster XX | X|X X X X X X | X | %
becomelnfrastructureMaster X | X | XX X X X X X
becomePdc XX | X |X X X X X X
becomePdcWithCheckPoint XX | X |X X X X X X
becomeRidMaster X | X | XX X X X X X
becomeSchemaMaster X | X | XX X X X X X | X | %
checkPhantoms X | X | X |[X X X X X X
doGarbageCollection XX | X |X X X X X X | X | %
dumpDatabase XX | X |X X X X X X | X | %
fixupInheritance X | X | X |[X X X X X X | X | %
invalidateRidPool X | X | XX X X X X X
recalcHierarchy XX | X |X X X X X X
schemaUpdateNow X | X | X |[X X X X X X | X | %
schemaUpgradelnProgress X | X X X X X X
removelingeringObject X | X | X X X X X X | X | %
doLinkCleanup X | X X X X X X | X | *
doOnlineDefrag X | X X X X X X | X | %
replicateSingleObject X | X X X X X X | X | %
updateCachedMemberships X | X X X X X X
doGarbageCollectionPhantomsNow X X X X X X | X | %
invalidateGCConnection X X X X X | X | %
renewServerCertificate X X X X X | X | %
rODCPurgeAccount X X X X X
runSamUpgradeTasks X X X X X
sgmRunOnce X | %
runProtectAdminGroupsTask X X X X
disableOptionalFeature X X X X | X | %
enableOptionalFeature X X X X | X | %
dumpReferences X
sidCompatibilityVersion X X X
dumplLinks X X | X | %
176 / 626

Attribute name A|B D/ F H|I K|L N|P|S|T|V|W|Y|Z|AA
schemaUpdatelIndicesNow X | X X | X | *
null X | X [X|X]| X%
dumpQuota X | X X | X | %
dumplLinksExtended X | X | %
dumpLDAPState X | X | %
TsDS-ProcessLinksAbandonOperation X | X X
msDS-ProcessLinksScheduleOperation X | X *

*

* These rootDSE operations are available in Windows Server 2012 R2 only if [MSKB-3192404] is
installed.

Each of these operations is executed by performing an LDAP Modify operation with a NULL DN for the
object to be modified (indicating the rootDSE) and specifying the name of the operation as the
attribute to be modified. In [RFC2849] terminology the rootDSE attribute to be modified is the
"AttributeDescription" of the "mod-spec" associated with the "change-modify" record. In many of the
cases, the type of the modify (add or replace) and the values specified do not matter and are ignored.
Whether the type and values matter, and what the client specifies if they do matter, will be indicated
for each operation in the following sections. Examples are given as LDAP Data Interchange Format
(LDIF) samples, described in [RFC2849]. In Windows, LDIF is implemented by the Idifde.exe
command-line tool.

To perform many of these operations, the caller must be authenticated as a user that has a particular
control access right or privilege; or, in some cases, as a user that is a member of a particular group.
In each section that follows, the rights, privileges, or group membership, if any, that are required of
the caller to perform a specific operation are specified. If the caller does not have the required rights,
privileges, or group membership, the server returns the error insufficientAccessRights /
ERROR_ACCESS_DENIED.

3.1.1.3.3.1 becomeDomainMaster

Performing this operation causes the DC to request a transfer of the Domain Naming FSMO to itself,
per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must have
the "Change-Domain-Master" control access right on the Partitions container in the config NC for this
to succeed. This operation cannot be performed on an RODC; an RODC will return error
unwillingToPerform /| ERROR_INVALID_PARAMETER. The LDAP operation returns success after the
transfer of the Domain Naming FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeDomainMaster
becomeDomainMaster: 1

3.1.1.3.3.2 becomelnfrastructureMaster

177/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Performing this operation causes the DC to request a transfer of the Infrastructure Master FSMO to
itself, per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must have
the "Change-Infrastructure-Master" control access right on the Infrastructure container in the domain
NC replica. This operation cannot be performed on an RODC; an RODC will return the error
unwillingToPerform / ERROR_INVALID PARAMETER. The LDAP operation returns success after the
transfer of the Infrastructure Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeInfrastructureMaster
becomeInfrastructureMaster: 1

3.1.1.3.3.3 becomePdc

Performing this operation causes the DC to request a transfer of the PDC Emulator FSMO to itself, per
the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_PDC). The requester must have
the "Change-PDC" control access right on the root of the domain NC replica. This operation cannot be
performed on an RODC; an RODC will return the error unwillingToPerform /
ERROR_INVALID_PARAMETER. The LDAP operation returns success after the transfer of the PDC
Emulator FSMO has completed successfully.

Prior to transferring the PDC FSMO to the DC, if the domain is in mixed mode, the DC attempts to
synchronize with the DC that is currently the Owner of the PDC FSMO in such a way as to avoid
causing a full synchronization by BDCs running Windows NT 4.0 operating system (see section
3.1.1.7). However, the FSMO role transfer will be performed even if this synchronization is
unsuccessful.

In order to perform this operation, the requester must provide the domain's SID, in binary format
(defined in [MS-DTYP] section 2.4.2), as the value of the modify operation. In LDIF, this would be
performed as follows. Note that LDIF requires that binary values be base-64 encoded.

dn:

changetype: modify

add: becomePdc

becomePdc:: base-64 encoding of the domain SID in binary

3.1.1.3.3.4 becomePdcWithCheckPoint

This operation is the same as becomePdc except for the following. Prior to transferring the PDC FSMO,
if the domain is in mixed mode, the DC attempts to synchronize with the DC that is the current the
owner of the PDC FSMO. becomePdc transfers the PDC FSMO role even if this synchronization is
unsuccessful, while becomePdcWithCheckPoint does not.

3.1.1.3.3.5 becomeRidMaster

Performing this operation causes the DC to request a transfer of the RID Master FSMO to itself, per
the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_RID_REQ_ROLE). The requester must
have the "Change-RID-Master" control access right on the RID Manager object, which is the object
referenced by the rIDManagerReference attribute located on the root of the domain NC. The requester
must also have read permission on the previously mentioned rIDManagerReference attribute. This

178/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

operation cannot be performed on an RODC; an RODC returns the error unwillingToPerform /
ERROR_INVALID_PARAMETER. The LDAP operation returns success after the transfer of the RID
Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: becomeRidMaster
becomeRidMaster: 1

3.1.1.3.3.6 becomeSchemaMaster

Performing this operation causes the DC to request a transfer of the Schema Master FSMO to itself,
per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must have
the "Change-Schema-Master" control access right on the root of the schema NC replica. This operation
cannot be performed on an RODC; an RODC will return the error unwillingToPerform /
ERROR_INVALID PARAMETER. The LDAP operation returns success after the transfer of the Schema
Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeSchemaMaster
becomeSchemaMaster: 1

3.1.1.3.3.7 checkPhantoms

This operation requests that the reference update task (see section 3.1.1.6.2) be immediately
performed on the DC. During the operation, if the referential integrity on any of the objects is found to
be incorrect and it cannot be corrected, then the operation returns an error and does not process any
of the remaining objects. This task runs periodically; on a correctly functioning DC, there is no need to
run it explicitly. The requester must have the "DS-Check-Stale-Phantoms" control access right on the
nTDSDSA object for the DC.

No action is taken if the Recycle Bin optional feature is not enabled and the operation is performed
against a DC that does not own the Infrastructure Master FSMO.

No action is taken if the operation is performed against a DC that is a global catalog.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: checkPhantoms
checkPhantoms: 1

3.1.1.3.3.8 doGarbageCollection

179/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

This operation requests that garbage collection be immediately performed on the DC. Tombstones and
recycled-objects are subject to the requirement that they must be kept for at least the tombstone
lifetime (see 3.1.1.6.2), but they can be kept longer. Deleted-objects are subject to the requirement
that they must be kept for at least the deleted-object lifetime. Garbage collection identifies
tombstones and recycled-objects that have been kept for at least the tombstone lifetime and removes
them. Additionally, garbage collection identifies deleted-objects that have been kept for at least the
deleted-object lifetime and transforms them to recycled-objects. On a correctly functioning DC, there
is no need to manually trigger garbage collection via this operation. The requester must have the "Do-
Garbage-Collection" control access right on the DC's DSA object.

This operation is triggered by setting the doGarbageCollection attribute to "1".

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: doGarbageCollection
doGarbageCollection: 1

3.1.1.3.3.9 dumpDatabase

This operation is triggered by setting the attribute to a space-separated list of attributes. The
requester must be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation for the description and sn attributes.

dn:

changetype: modify

add: dumpDatabase
dumpDatabase: description sn

The effects of dumpDatabase are outside the state model. An update of dumpDatabase causes the
contents of the DC's database to be written to a text file on the DC's disk. All the attributes specified
in the dumpDatabase value are included in the dump, except that certain security-sensitive attributes
are omitted from the dump even if requested. The dump can include attributes that were not explicitly
requested.

3.1.1.3.3.10 fixupInheritance

The fixupInheritance attribute permits administrative tools to request that the DC recompute inherited
security permissions on objects to ensure that they conform to the security descriptor requirements
(see section 6.1.3), in case the current state of the permissions on the object is erroneous. This
operation is not necessary on a correctly functioning DC. The requester must have the "Recalculate-
Security-Inheritance" control access right on the nTDSDSA object for the DC. The LDAP operation
returning success means the system accepts the request to perform security-descriptor propagation.

This operation is triggered by setting the fixupInheritance attribute to "1".

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: fixupInheritance
fixupInheritance: 1

180/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

In Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, setting the fixupInheritance attribute to the
special values "forceupdate" and "downgrade" has effects outside the state model.

In Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, the fixupInheritance attribute can trigger
security-descriptor propagation under an object, specified using an identifier outside the state model,
rather than throughout the directory. This is performed by setting the fixupInheritance attribute to the
string "dnt:" followed by an implementation-specific identifier representing the object. Consider the
following example.

dn:

changetype: modify

add: fixupInheritance
fixupInheritance: dnt:54758

3.1.1.3.3.11 invalidateRidPool

This operation causes the DC to discard its current pool of RIDs, used for allocating security principals
in the directory. The DC requests a fresh pool of RIDs from the DC that owns the RID Master FSMO,
per the procedure documented in [MS-DRSR] section 4.1.10.4.3 (PerformExtendedOpRequestMsg,
ulExtendedOp = EXOP_FSMO_REQ_RID_ALLOC). The LDAP operation returns success when the RID
pool has been invalidated. Obtaining a fresh pool of RIDs from the DC that owns the RID Master FSMO
is an asynchronous operation.

The requester must have the "Change-RID-Master" control access right on the RID Manager object,
which is the object referenced by the rIDManagerReference attribute located on the root of the domain
NC. The requester must also have read permission on the previously mentioned rIDManagerReference
attribute. This operation cannot be performed on an RODC; an RODC returns the error
unwillingToPerform /| ERROR_INVALID PARAMETER.

In order to perform this operation, the requester provides the domain's SID, in binary format (defined
in [MS-DTYP] section 2.4.2), as the value of the modify operation.

The following shows an LDIF sample that performs this operation. LDIF requires that binary values,
like the domain SID, be base-64 encoded.

dn:

changetype: modify

add: invalidateRidPool

invalidateRidPool:: base-64 encoding of the binary-format domain SID

3.1.1.3.3.12 recalcHierarchy

The requester must have the "Recalculate-Hierarchy" control access right on the nTDSDSA object for
the DC. The type of modification can be add or replace, and the values specified in the LDAP Modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: recalcHierarchy
recalcHierarchy: 1

181/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The effects of recalcHierarchy are outside the state model. An update of recalcHierarchy causes the
hierarchy table used to support the MAPI address book to be recalculated immediately.

3.1.1.3.3.13 schemaUpdateNow

The requester must have the "Update-Schema-Cache" control access right on the nTDSDSA object for
the DC or on the root of the schema NC. After the completion of this operation, the subschema
exposed by the server reflects the current state of the schema as defined by the attributeSchema and
classSchema objects in the schema NC.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1

The other effects of schemaUpdateNow are outside the state model. An update of schemaUpdateNow
causes the in-memory cache of the schema to be recalculated from the copy of the schema stored in
the schema NC.

3.1.1.3.3.14 schemaUpgradelInProgress

This operation causes the fschemaUpgradeInProgress field of LDAPConnection instances in
dc.LDAPConnections ([MS-DRSR] section 5.116) to be set. schemaUpgradelnProgress causes the DC
to skip certain constraint validations when adding, updating, or removing directory objects. The
skipped constraint validations are documented in the applicable constraint sections of this document.
The requester must have the "Change-Schema-Master" control access right on the root of the schema
NC-replica.

On the Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, and Windows Server 2016, when schemaUpgradelnProgress is set to 1 the
fschemaUpgradelInProgress field is set to true on the LDAPConnection instance in
dc.ldapConnections that corresponds to the LDAP connection on which the schemaUpgradelnProgress
operation was performed. On these operating systems, when schemaUpgradelnProgress is set to zero
the fschemaUpgradeInProgress field is set to false on the LDAPConnection instance in
dc.ldapConnections that corresponds to the LDAP connection on which the schemaUpgradelnProgress
operation was performed.

On the Windows Server 2003 and Windows Server 2003 R2, when schemaUpgradelnProgress is set to
1 the fschemaUpgradeInProgress field is set to true in every LDAPConnection instance in
dc.ldapConnections. On these operating systems, when schemaUpgradelnProgress is set to zero the
fschemaUpgradeInProgess field is set to false on every LDAPConnection instance in
dc.ldapConnections.

The type of modification can be add or replace. The following shows an LDIF sample that performs this
operation.

dn:

changetype: modify

add: schemaUpgradeInProgress
schemaUpgradeInProgress: 1

schemaUpgradelnProgress operation permits modifications to be performed that would otherwise
violate constraints had schemaUpgradelnProgress not been set.

182 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.3.15 removelLingeringObject

This operation causes the DC to expunge a lingering object. A DC that was offline for longer than the
value of the tombstone lifetime can contain objects that have been deleted on other DCs and for which
tombstones no longer exist. The result is that when that DC is brought back online, any such objects
can continue to exist in its NC replica even though the objects should have been deleted. Such objects
are known as lingering objects.

Expunge is specified in section 3.1.1.1.6. Lingering object expunge can be performed on an object in a
read-only NC. For more details on the lingering object expunge process, see
IDL_DRSReplicaVerifyObjects and IDL_DRSGetObjectExistence in [MS-DRSR] sections 4.1.24 and
4.1.12.

The requester must have the "DS-Replication-Synchronize" control access right on the root of the NC
replica that contains the lingering object.

The value specified for this operation contains (1) the DN of the DSA object of a DC holding a writable
replica of the NC containing the lingering object, and (2) the DN of the lingering object. These are
encoded in the value string as two DNs separated by a colon: "DSA Object DN:Lingering Object DN".
Each DN specified is either an [RFC2253]-style DN or one of the alternative DN formats described in
section 3.1.1.3.1.2.4. If the value is not in the specified format, the server rejects the request with the
error operationsError / ERROR_DS_OBJ_NOT_FOUND.

The DC performing the modify request first verifies that the lingering object specified in the request
does not exist on the DC specified in the request. If this verification fails for any reason, the request
returns the error operationsError /| ERROR_DS_GENERIC _ERROR. If the verification succeeds, the DC
expunges the lingering object specified in the request and then returns success.

The following shows an LDIF sample that performs this operation. The sample requests that the
lingering object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be removed, and
specifies that the server whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-
01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com" be
used to verify the nonexistence of the lingering object.

dn:

changetype: modify

replace: removelLingeringObject

removelLingeringObject: CN=NTDS Settings,
CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name,
CN=Sites,CN=Configuration,DC=Fabrikam,DC=com:CN=TestObject,
CN=Users, DC=Fabrikam, DC=com

3.1.1.3.3.16 dolLinkCleanup

This operation causes the DC to immediately begin performing any delayed link processing necessary
to satisfy the requirements of delayed link processing, as specified in section 3.1.1.1.16. This
processing runs automatically as needed to satisfy those requirements; on a correctly functioning DC,
there is no need to explicitly request such processing. The requester must have the "Do-Garbage-
Collection" control access right on the nTDSDSA object for the DC.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: doLinkCleanup
doLinkCleanup: 1

183/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.3.17 doOnlineDefrag

This operation is triggered by setting the doOnlineDefrag attribute to a non-negative integer. The
requester must have the "Do-Garbage-Collection" control access right on the nTDSDSA object for the
DC. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
replace: doOnlineDefrag
doOnlineDefrag: 60

The effects of doOnlineDefrag are outside the state model. An update of doOnlineDefrag causes an
online defragmentation of the DC's directory database. If the doOnlineDefrag value is positive, it starts
the defragmentation task, which runs until complete or until the specified humber of seconds have
elapsed. If the doOnlineDefrag value is zero, the defragmentation task is stopped if it is running.

3.1.1.3.3.18 replicateSingleObject

This operation causes the DC to request replication of a single object, specified in the modify request,
from a source DC to the DC processing the request. The requester must have the "DS-Replication-
Synchronize" control access right on the root of the NC that contains the object to be replicated.

The type of modification specified in the LDAP modify operation does not matter; however the value
specified does matter. The value specified for the replicateSingleObject attribute in the modify request
contains (1) the DN of the DSA object of the source DC, and (2) the DN of the object to be replicated.
These are encoded in the value string as two DNs separated by a colon: "DSA Object DN:Object To
Be Replicated DN". Each DN specified is either an [RFC2253]-style DN or one of the alternative DN
formats described in section 3.1.1.3.1.2.4. If the value is not in the specified format, the server
rejects the request with the error operationsError / ERROR_DS_0OBJ_NOT_FOUND.

If the DC is an RODC, an additional colon can be added to the end of the value string, followed by the
literal string "SECRETS_ONLY". The presence of this additional parameter indicates that the RODC
must request replication of the object's secret attributes instead of the other attributes. When this flag
is specified, the "DS-Replication-Synchronize" control access right is not checked. Instead, the
requester must possess the "Read-Only-Replication-Secret-Synchronization" control access right on
the root of the NC containing the object whose secret attributes are to be replicated.

This operation is a synchronous operation. The LDAP response is returned by the server after the
replication of the object from the source DC to the DC processing the request has completed.
However, if the object to be replicated does not exist on the source DC, or if the object to be
replicated has been deleted on the source DC, or if the object to be replicated does not have a parent
object on the DC processing the request, an error is returned and the replication is not performed.

The following shows an LDIF sample that performs the replicateSingleObject operation. This sample
requests that the object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be
replicated from the DC whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-
01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com".

dn:

changetype: modify

replace: replicateSingleObject

replicateSingleObject: CN=NTDS Settings,
CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name,
CN=Sites,CN=Configuration, DC=Fabrikam, DC=com:CN=TestObject,
CN=Users, DC=Fabrikam, DC=com

184 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.3.19 updateCachedMemberships

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The requester must have the "Refresh-Group-Cache" control access right on the
nTDSDSA object for the DC.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: updateCachedMemberships
updateCachedMemberships: 1

The effects of updateCachedMemberships are outside the state model. An update of
updateCachedMemberships causes the DC to refresh its cache of universal group memberships from a
GC server.

3.1.1.3.3.20 doGarbageCollectionPhantomsNow

This operation is triggered by setting the doGarbageCollectionPhantomsNow attribute to "1". The
requester must have the "Do-Garbage-Collection" control access right on the nTDSDSA object for the
DC.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: doGarbageCollectionPhantomsNow
doGarbageCollectionPhantomsNow: 1

The effects of doGarbageCollectionPhantomsNow are outside the state model. An update of
doGarbageCollectionPhantomsNow causes a garbage-collector to run that reclaims storage used to
implement referential integrity.

3.1.1.3.3.21 invalidateGCConnection

The type of modification to the invalidateGCConnection attribute and the values specified in the LDAP
Modify operation do not matter. The requester must be a member of either the
BUILTIN\Administrators group (section 6.1.1.4.12.2) or the BUILTIN\Server Operators group (section
6.1.1.4.12.18).

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: invalidateGCConnection
invalidateGCConnection: 1

The effects of invalidateGCConnection are outside the state model. This operation causes the DC to
rediscover the GC server that it uses in its implementation of referential integrity (section 3.1.1.1.6).

3.1.1.3.3.22 renewServerCertificate

185/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The persistent state of a DC does not include the certificates that are necessary to authenticate the DC
when a client makes an LDAPS (LDAP over SSL/TLS) connection. A DC obtains the certificates it needs
by querying the operating system for them at startup. This operation provides a means for the
requester to request that the DC repeat the query to the operating system for the certificates—for
example, if the available certificates have changed since startup. The requester must have the
"Reload-SSL-Certificate" control access right on the nTDSDSA object for the DC.

An LDAP Modify of the renewServerCertificate attribute causes the DC to query the operating system
for certificates. When the operation returns, the DC has performed the query and the certificates it
found are available for use in LDAPS connections.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: renewServerCertificate
renewServerCertificate: 1

3.1.1.3.3.23 rODCPurgeAccount

An LDAP Modify of the rODCPurgeAccount attribute causes the RODC to purge cached secret attributes
of a specified security principal. The requester must have the "Read-Only-Replication-Secret-
Synchronization" control access right on the root of the default NC. The Modify request must be
directed to an RODC that hosts an NC replica that contains the specified RODC object. If the RODC to
which the operation is directed does not host such an NC, then the error operationsError /

ERROR_DS CANT_FIND EXPECTED_NC is returned. If the operation is sent to a DC that is not an
RODC, then the error operationsError / ERROR_DS_GENERIC _ERROR is returned.

The value specified for the rODCPurgeAccount attribute in the LDAP modify request must be the DN of
the object whose secret attributes are to be purged. The DN specified is either an [RFC2253]-style DN
or one of the alternative DN formats described in section 3.1.1.3.1.2.4. If the value is not in the
specified format or the object does not exist, the server rejects the request with the error
operationsError / ERROR_DS_OBJ_NOT_FOUND. The server returns success upon successfully purging
the secret attributes of the specified security principal.

The following shows an LDIF sample that performs this operation. This sample purges the cached
secret attributes of the user whose DN is "CN=TestUser, CN=Users, DC=Fabrikam, DC=com" from the
RODC to which this operation is sent.

dn:

changetype: modify

replace: rODCPurgeAccount

rODCPurgeAccount: CN=TestUser, CN=Users, DC=Fabrikam, DC=com

3.1.1.3.3.24 runSamUpgradeTasks

An LDAP Modify of the runSamUpgradeTasks attribute causes the default groups and memberships (as
specified in [MS-SAMR] section 3.1.4.2) to be created in the domain if they are not already created.
This operation is useful in a domain with different versions of domain controllers where the default
groups and memberships are not yet created.

If a partial set of these modifications has already been performed in the domain through this task, the
Modify operation of this attribute MUST cause the rest of the operations to be performed. If all such

186 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

modifications have already been performed, the Modify operation of this attribute MUST NOT make
any changes in the domain.

The requester MUST be a member of the "Domain Admins" group in the domain to perform this
operation.

The DC, on receiving this request, MUST verify that the otherWellKknownObjects attribute on the object
"CN=Server, CN=System, DC=<domain>" on the DC with the PDC role contains "B:32:
6ACDD74F3F314AE396F62BBE6B2DB961:X", where <domain> is the domain NC DN, and X is the DN
of the nTDSDSA object of the DC receiving the request. If this condition is not satisfied, the LDAP
Modify returns operationsError / ERROR_DS_GENERIC_ERROR.

If these conditions are satisfied, the default groups and memberships (as specified in [MS-SAMR]
section 3.1.4.2) are created in the domain.

The type of modification and values specified in the LDAP Modify operation do not matter. The
following shows an LDIF sample that performs this operation. This sample triggers the default groups
and memberships created on the target domain.

dn:

changetype: modify

add: runSamUpgradeTasks
runSamUpgradeTasks: 1

3.1.1.3.3.25 sqmRunOnce

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The requester must have the SE_DEBUG_PRIVILEGE.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: sgmRunOnce
sgmRunOnce: 1

The effects of sgqmRunOnce are outside the state model. An update of sgqmRunOnce causes the DC to
report statistical data on the types and numbers of operations that the DC has performed using an
implementation-defined reporting mechanism.

3.1.1.3.3.26 runProtectAdminGroupsTask

The type of modification made to the runProtectAdminGroupsTask attribute and the values specified in
the LDAP Modify operation have no significance. If the DC is the PDC FSMO role owner, an LDAP
Modify of the runProtectAdminGroupsTask attribute causes the DC to run the AdminSDHolder
protection operation (section 3.1.1.6.1). Otherwise, the Modify request does not have any effect. The
requester must have the "Run-Protect-Admin-Groups-Task" control access right on the domain root of
the DC. The LDAP server returns success after the AdminSDHolder operation has completed.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: runProtectAdminGroupsTask
runProtectAdminGroupsTask: 1

187/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.3.27 disableOptionalFeature

This operation requests that an optional feature (as described in section 3.1.1.9) be disabled for some
scope. The requester must have the correct "Manage-Optional-Features" control access on the object
representing the scope.

This operation is triggered by setting the disableOptionalFeature attribute to a value that contains the
DN of the object that represents the scope, followed by the colon (:) character, followed by the GUID
of the optional feature to be disabled, expressed as a GUIDString.

If the server does not recognize the GUID as identifying a known feature, the server will return the
error operationsError / ERROR_INVALID PARAMETER.

If the DN represents an existing object but the object does not represent a scope, the server will
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent an
existing object, the server will return the error operationsError /| ERROR_INVALID_PARAMETER.

If the feature is not marked as being valid for the specified scope, the server will return the error
unwillingToPerform /| ERROR_DS_NOT_SUPPORTED.

If the specified scope is forest-wide, and this operation is not performed against the DC that holds the
Domain Naming Master role, the server will return the error unwillingToPerform /
ERROR_DS_NOT_SUPPORTED.

If the feature is not marked as being able to be disabled, the server will return the error
unwillingToPerform /| ERROR_DS_NOT_SUPPORTED.

If the specified optional feature is not already enabled in the specified scope, the server will return the
error noSuchAttribute /| ERROR_DS_CANT_REM_MISSING_ATT_VAL.

The LDAP server returns success when the specified optional feature has been successfully disabled.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: disableOptionalFeature

disableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso, DC=Com:766DDCD8-ACD0-445E~
F3B9-A7F9B6744F2A

3.1.1.3.3.28 enableOptionalFeature

This operation requests that an optional feature (as described in section 3.1.1.9) be enabled for some
scope. The requester must have the "Manage-Optional-Features" control access right on the object
representing the scope.

This operation is triggered by setting the enableOptionalFeature attribute to a value that contains the
DN of the object that represents the scope, followed by the ':' character, followed by the GUID of the
optional feature to be enabled, expressed as a GUIDString.

If the server does not recognize the GUID as identifying a known feature, the server will return the
error operationsError / ERROR_INVALID PARAMETER.

If the DN represents an existing object but the object does not represent a scope, the server will
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent an
existing object, the server will return the error operationsError / ERROR_INVALID PARAMETER.

If the feature is not marked as being valid for the specified scope, the server will return the error
unwillingToPerform /| ERROR_DS_NOT_SUPPORTED.

188/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the specified scope is forest-wide and this operation is not performed against the DC that holds the
Domain Naming Master role, the server will return the error unwillingToPerform /
ERROR_DS_NOT_SUPPORTED.

If the specified optional feature is already enabled in the specified scope, the server will return the
error attributeOrValueExists | ERROR_DS _ATT VAL ALREADY EXISTS.

The LDAP server returns success when the specified optional feature has been successfully enabled.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: enableOptionalFeature

enableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso,DC=Com:766DDCD8-ACD0-445E~
F3B9-ATFI9B6744F2A

3.1.1.3.3.29 dumpReferences

This operation is triggered by setting the attribute to the DN of an existing object. The requester must
be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation for the object whose DN is
"CN=TestObject,CN=Users,DC=Fabrikam,DC=com":

dn:

changetype: modify

add: dumpReferences

dumpReferences: CN=TestObject,CN=Users, DC=Fabrikam, DC=com

The effects of dumpReferences are outside the state model. An update of dumpReferences causes all
attributes that reference the given DN and all objects containing those attributes to be written to a
text file on the DC's disk.

3.1.1.3.3.30 sidCompatibilityVersion

The requester must have the "Allocate-Rids" control access right on the domain root of the DC. The
requester must have the SE_DEBUG_PRIVILEGE. The DC must be the RID Master FSMO role owner. If
any of these constraints are not met, an error is returned.

This operation is triggered by setting the attribute to a decimal number that represents the
sidCompatibilityVersion. The type of the modification can be add or replace. Allowed values are "0"
and "1". The DC returns an error if the value is not one of the allowed values. This operation updates
the value of the rIDAvailablePool attribute on the RID Manager object (section 6.1.5.3).

When the caller sets the SID compatibility version to "0", the updated value for the attribute is
calculated as follows:

updatedValue = Ox3FFFFFFFO0000000 | (existingValue & OxFFFFFFFF)

When the caller sets the SID compatibility version to "1", the updated value for the attribute is
calculated as follows:

updatedValue = 0x7FFFFFFFO0000000 | (existingValue & OxFFFFFFFF)

If updatedValue is less than existingValue, an error is returned. Otherwise, updatedValue replaces
existingValue.

189/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: sidCompatibilityVersion
sidCompatibilityVersion: 1

3.1.1.3.3.31 dumplinks

The type of modification made to the dumpLinks attribute and the values specified in the LDAP Modify
operation have no significance. The requester must be a member of the BUILTIN\Administrators group
(section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: dumpLinks
dumpLinks: 1

The effects of dumpLinks are outside the state model. An update of dumpLinks causes the portion of
the contents of the DC's database relating to link values to be written to a text file on the DC's disk.

3.1.1.3.3.32 schemaUpdateIndicesNow

The requester must have the "Update-Schema-Cache" control access right on the nTDSDSA object for
the DC or on the root of the schema NC. This operation is supported only when the
fDisableAutoIndexingOnSchemaUpdate heuristic (section 6.1.1.2.4.1.2) is "2". If
fDisableAutoIndexingOnSchemaUpdate is not "2", the operation fails with an error. After the
completion of this operation, the subschema exposed by the server reflects the current state of the
schema as defined by the attributeSchema and classSchema objects in the schema NC.

The type of modification can be add or replace, and the values specified in the LDAP modify operation
do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: schemaUpdateIndicesNow
schemaUpdateIndicesNow: 1

The other effects of schemaUpdatelndicesNow are outside the state model. An update of
schemaUpdatelndicesNow causes the DC to verify its data indices. See section 3.1.1.3.4.1.32.1 for a
note on indices.

3.1.1.3.3.33 nuli

The type of modification made to the null attribute and the values specified in the LDAP Modify
operation have no significance. Writing to this attribute has no effect.

3.1.1.3.3.34 dumpQuota

The type of modification made to the dumpQuota attribute and the values specified in the LDAP Modify
operation have no significance. The requester must be a member of the BUILTIN\Administrators group
(section 6.1.1.4.12.2).

190/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following shows an LDIF sample that performs this operation for the description and sn attributes.

dn:

changetype: modify
add: dumpQuota
dumpQuota: 1

The effects of dumpQuota are outside the state model. An update of dumpQuota causes the portion of
the contents of the DC's database related to quotas (section 3.1.1.5.2.5) to be written to a text file on
the DC's disk. The data written is implementation specific.

3.1.1.3.3.35 dumplinksExtended

This operation is triggered by setting the attribute to a two-digit hexadecimal nhumber followed by the
colon (':") character. The requester must be a member of the BUILTIN\Administrators group (section
6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify
add: dumpLinksExtended
dumpLinksExtended: 1

The effects of dumpLinksExtended are outside the state model. An update of dumpLinksExtended
causes the portion of the contents of the DC's database relating to link values to be written to a text
file on the DC's disk. The hexadecimal number provides implementation-specific modifiers as to what
data is to be written. The data written is implementation specific.

3.1.1.3.3.36 dumpLDAPState

The type of modification made to the dumpLDAPState attribute and the values specified in the LDAP
Modify operation have no significance. The requester must be a member of the
BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation for the description and sn attributes.

dn:

changetype: modify
add: dumpLDAPState
dumpLDAPState: 1

The effects of dumpLDAPState are outside the state model. An update of dumpLDAPState causes
implementation-specific data related to a DC's LDAP client connections to be written to a text file on
the DC's disk. The data written is implementation specific.

3.1.1.3.3.37 msDS-ProcessLinksAbandonOperation
The value specified for this operation contains the DN of an object.

The type of modification can be add or replace, and the value specified in the LDAP modify operation is
the DN of an existing object. The requester must have the SE_ DEBUG_PRIVILEGE. If any of these
constraints are not met, an error is returned.

191 /626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: msDS-ProcessLinksAbandonOperation
msDS-ProcessLinksAbandonOperation: cn=Userl,DC=Contoso, DC=Com

Writing this attribute causes the instance to abandon any pending delayed link processing (section
3.1.1.1.16) for the specified DN.

3.1.1.3.3.38 msDS-ProcessLinksScheduleOperation

The type of modification can be add or replace, and the value specified in the LDAP modify operation is
the DN of an existing object. The requester must have the SE_ DEBUG_PRIVILEGE. If any of these
constraints are not met, an error is returned.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: msDS-ProcessLinksScheduleOperation
msDS-ProcessLinksScheduleOperation: cn=Userl,DC=Contoso, DC=Com

Writing this attribute causes the instance to schedule pending delayed link processing (section
3.1.1.1.16) for the specified DN.

3.1.1.3.4 LDAP Extensions

This section describes the extensions to LDAP that are supported by Active Directory DCs in Windows
2000, Windows Server 2003, ADAM, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, and Windows Server 2016. These extensions are:

= LDAP extended controls

= LDAP extended operations
= LDAP capabilities

= Matching rules

= SASL mechanisms

= Policies

= Configurable settings

= IP Deny list

3.1.1.3.4.1 LDAP Extended Controls

LDAP extended controls are an extensibility mechanism in version 3 of LDAP, as discussed in
[RFC2251] section 4.1.12. The following sections describe the LDAP extended controls implemented
by DCs in Windows 2000, Windows Server 2003, ADAM, Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 (both AD DS and AD
LDS).

192 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LDAP extended controls supported by a DC are exposed as OIDs in the supportedControl attribute
of the rootDSE. Each OID corresponds to a human-readable name, as shown in the following table.

Extended control name

OID

LDAP_PAGED_RESULT_OID_STRING

1.2.840.113556.1.4.319

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID

1.2.840.113556.1.4.521

LDAP_SERVER_DIRSYNC_OID

1.2.840.113556.1.4.841

LDAP_SERVER_DOMAIN_SCOPE_OID

1.2.840.113556.1.4.1339

LDAP_SERVER_EXTENDED_DN_OID

1.2.840.113556.1.4.529

LDAP_SERVER_GET_STATS_OID

1.2.840.113556.1.4.970

LDAP_SERVER_LAZY_COMMIT_OID

1.2.840.113556.1.4.619

LDAP_SERVER_PERMISSIVE_MODIFY_OID

1.2.840.113556.1.4.1413

LDAP_SERVER_NOTIFICATION_OID

1.2.840.113556.1.4.528

LDAP_SERVER_RESP_SORT_OID

1.2.840.113556.1.4.474

LDAP_SERVER_SD_FLAGS_OID

1.2.840.113556.1.4.801

LDAP_SERVER_SEARCH_OPTIONS_OID

1.2.840.113556.1.4.1340

LDAP_SERVER_SORT_OID

1.2.840.113556.1.4.473

LDAP_SERVER_SHOW_DELETED_OID

1.2.840.113556.1.4.417

LDAP_SERVER_TREE_DELETE_OID

1.2.840.113556.1.4.805

LDAP_SERVER_VERIFY_NAME_OID

1.2.840.113556.1.4.1338

LDAP_CONTROL_VLVREQUEST

2.16.840.1.113730.3.4.9

LDAP_CONTROL_VLVRESPONSE

2.16.840.1.113730.3.4.10

LDAP_SERVER_ASQ_OID

1.2.840.113556.1.4.1504

LDAP_SERVER_QUOTA_CONTROL_OID

1.2.840.113556.1.4.1852

LDAP_SERVER_RANGE_OPTION_OID

1.2.840.113556.1.4.802

LDAP_SERVER_SHUTDOWN_NOTIFY_OID

1.2.840.113556.1.4.1907

LDAP_SERVER_FORCE_UPDATE_OID

1.2.840.113556.1.4.1974

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID

1.2.840.113556.1.4.1948

LDAP_SERVER_RODC_DCPROMO_OID

1.2.840.113556.1.4.1341

LDAP_SERVER_DN_INPUT_OID

1.2.840.113556.1.4.2026

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

1.2.840.113556.1.4.2065

LDAP_SERVER_SHOW_RECYCLED_OID

1.2.840.113556.1.4.2064

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID

1.2.840.113556.1.4.2066

LDAP_SERVER_DIRSYNC_EX_OID

1.2.840.113556.1.4.2090

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

193/ 626

Extended control name

OID

LDAP_SERVER_UPDATE_STATS_OID

1.2.840.113556.1.4.2205

LDAP_SERVER_TREE_DELETE_EX_OID

1.2.840.113556.1.4.2204

LDAP_SERVER_SEARCH_HINTS_OID

1.2.840.113556.1.4.2206

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID

1.2.840.113556.1.4.2211

LDAP_SERVER_POLICY_HINTS_OID

1.2.840.113556.1.4.2239

LDAP_SERVER_SET_OWNER_OID

1.2.840.113556.1.4.2255

LDAP_SERVER_BYPASS_QUOTA_OID

1.2.840.113556.1.4.2256

LDAP_SERVER_LINK_TTL_OID

1.2.840.113556.1.4.2309

The following table lists the set of LDAP extended controls supported in each Windows Server or ADAM
version.

The table contains information for the following product versions. See section 3 for more information.

A --> Windows 2000

D --> Windows Server 2003

E --> Windows Server 2003 with SP1

H --> ADAM RTW
I --> ADAM SP1

J --> Windows Server 2008

M --> Windows Server 2008 R2

R --> Windows Server 2012

U --> Windows Server 2012 R2

X --> Windows Server 2016

Extended control name

LDAP_PAGED_RESULT_OID_ST
RING

LDAP_SERVER_CROSSDOM_M
OVE_TARGET_OID

LDAP_SERVER_DIRSYNC_OID

LDAP_SERVER_DOMAIN_SCOP
E_OID

_OID

LDAP_SERVER_EXTENDED_DN

LDAP_SERVER_GET_STATS_OI
D

LDAP_SERVER_LAZY_COMMIT_

J M R
X X X
X X X
X X X
X X X
X X X
X X X
X X X

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation

Release: June 1, 2017

194 / 626

Extended control name A D E H I J M R U X
OID

LDAP_SERVER_PERMISSIVE_M | X X X X X X X X X X
ODIFY_OID

LDAP_SERVER_NOTIFICATION X X X X X X X X X X
_OID

LDAP_SERVER_RANGE_OPTIO X X X X X X X X X X
N_OID*

LDAP_SERVER_RESP_SORT_OI | X X X X X X X X X X
D

LDAP_SERVER_SD_FLAGS_OID | X X X X X X X X X X
LDAP_SERVER_SEARCH_OPTIO | X X X X X X X X X X
NS_OID

LDAP_SERVER_SORT_OID X X X X X X X X X X
LDAP_SERVER_SHOW_DELETE | X X X X X X X X X X
D_OID

LDAP_SERVER_TREE_DELETE_ | X X X X X X X X X X
OID

LDAP_SERVER_VERIFY_NAME_ | X X X X X X X X X X
OID

LDAP_CONTROL_VLVREQUEST X X X X X X X X X
LDAP_CONTROL_VLVRESPONS X X X X X X X X X
E

LDAP_SERVER_ASQ_OID X X X X X X X X X
LDAP_SERVER_QUOTA_CONTR X X X X X X X X X
OL_OID

LDAP_SERVER_SHUTDOWN_N X X X X X X X
OTIFY_OID**

LDAP_SERVER_FORCE_UPDATE X X X X X
_OID

LDAP_SERVER_RANGE_RETRIE X X X X X X
VAL_NOERR_OID

LDAP_SERVER_RODC_DCPROM X X X X X
O_0OID

LDAP_SERVER_DN_INPUT_OID X X X X X
LDAP_SERVER_SHOW_DEACTI X X X X
VATED_LINK_OID

LDAP_SERVER_SHOW_RECYCL X X X X
ED_OID

LDAP_SERVER_POLICY_HINTS X X X X

_DEPRECATED_OID

195/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Extended control name A D E H I J M R U X

LDAP_SERVER_DIRSYNC_EX_O X X X
ID

LDAP_SERVER_UPDATE_STATS X X X
_OID

LDAP_SERVER_TREE_DELETE X X X
EX_OID

LDAP_SERVER_SEARCH_HINTS X X X
_OID

LDAP_SERVER_EXPECTED_ENT X X X
RY_COUNT_OID

LDAP_SERVER_POLICY_HINTS X X X
_OID

LDAP_SERVER_SET_OWNER_O X X
ID

LDAP_SERVER_BYPASS_QUOT X X
A_OID

LDAP_SERVER_LINK_TTL_OID X

* This OID does not identify an LDAP extended control. Its presence in the supportedControl attribute
indicates that the DC is capable of range retrieval (see section 3.1.1.3.1.3.3) of LDAP multivalued
attributes. However, its absence does not indicate lack of support for range retrieval. This OID is not
present in the supportedControl attribute of Windows 2000 DCs, but those DCs do support range
retrieval.

** Although exposed on the supportedControl attribute of Windows Server 2003 SP1, Windows Server
2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows
Server 2016 DCs, this control is only functional on DCs running the Small Business Server version of
that operating system.

A client sends a control to the DC by attaching a Control structure (defined in [RFC2251] section
4.1.12) to an LDAP operation. The client sets the controlType field to the control's OID and the
controlValue field as specified in the discussion for the control that follows. If the controlValue field
contains data that is not in conformance with the specification of the control, including the case where
the controlValue field contains data and the specification of the control states that the controlValue
field is omitted, then if the control is marked critical the server returns the error
unavailableCriticalExtension /| ERROR_INVALID PARAMETER. If the controlValue field is incorrect but
the control is not marked critical, the server ignores the control.

A control sent by the client to a DC is known as a request control. In some cases, the server includes
a corresponding Control structure attached to the response for the LDAP operation. These controls,
known as response controls, are discussed below in conjunction with the request control that causes
that response control to be returned.

A brief description of each LDAP control is given in the following table. Additionally, each control is
discussed in more detail in the sections that follow. References to ASN.1 and BER encoding in the
following section are references to [ITUX680] and [ITUX690], respectively.

Extended control name Description
LDAP_PAGED_RESULT_OID_STRING Splits the results of an LDAP search across multiple result
sets.

196 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Extended control name

Description

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID

Used with an LDAP Modify DN operation to move an object
from one domain to another domain.

LDAP_SERVER_DIRSYNC_OID

Used with an LDAP search operation to retrieve the changes
made to objects since a previous
LDAP_SERVER_DIRSYNC_OID search was performed.

LDAP_SERVER_DOMAIN_SCOPE_OID

Instructs the DC not to generate LDAP continuation
references in response to a search operation.

LDAP_SERVER_EXTENDED_DN_OID

Used to request than an LDAP search operation return DNs
in an extended format containing the values of the
objectGUID and objectSid attributes.

LDAP_SERVER_GET_STATS_OID

Used with an LDAP search request to instruct the DC to
return statistical data related to how the search was
performed.

LDAP_SERVER_LAZY_COMMIT_OID

Instructs the DC that it MAY sacrifice durability guarantees
on updates to improve performance.

LDAP_SERVER_PERMISSIVE_MODIFY_OID

Instructs the DC that an LDAP modify must succeed even if
it attempts to add a value already present on the attribute
or remove a value not present on the attribute.

LDAP_SERVER_NOTIFICATION_OID

Used with an LDAP search operation to register the client to
be notified when changes are made to an object in the
directory.

LDAP_SERVER_SD_FLAGS_OID

Instructs the DC which portions of a Windows security
descriptor to retrieve during an LDAP search operation.

LDAP_SERVER_SEARCH_OPTIONS_OID

Used to pass flags to the DC to control search behaviors;
specifically, to prevent LDAP continuation references from
being generated and to search all NC replicas that are
subordinate to the search base, even if the search base is
not instantiated on the DC.

LDAP_SERVER_SORT_OID and
LDAP_SERVER_RESP_SORT_OID

Request and response controls, respectively, for instructing
the DC to sort the search results.

LDAP_SERVER_SHOW_DELETED_OID

Used with an LDAP operation to specify that tombstones and
deleted-objects are visible to the operation.

LDAP_SERVER_TREE_DELETE_OID

Used with an LDAP delete operation to cause the server to
recursively delete the entire subtree of objects located
under the object specified in the search request (including
the specified object).

LDAP_SERVER_VERIFY_NAME_OID

Permits the client to specify which GC the DC is to use when
processing an add or modify request to verify the existence
of any objects pointed to by DN attribute values.

LDAP_CONTROL_VLVREQUEST and
LDAP_CONTROL_VLVRESPONSE

Request and response control, respectively, used with an
LDAP search operation to retrieve a "sliding window" subset
of the objects that satisfy the search request.

LDAP_SERVER_ASQ_OID

Used to specify that an LDAP search operation must not be
performed against the object specified as the base in the
search, but rather against the set of objects named by a
specified attribute of Object(DS-DN) syntax on the base
object.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

197/ 626

Extended control name

Description

LDAP_SERVER_QUOTA_CONTROL_OID

Used with an LDAP search operation to retrieve the quota of
a user.

LDAP_SERVER_RANGE_OPTION_OID

Indicates that the server is capable of range retrieval (see
section 3.1.1.3.1.3.3).

LDAP_SERVER_SHUTDOWN_NOTIFY_OID

Used with an LDAP search operation to cause the client to
be notified when the DC is shutting down.

LDAP_SERVER_FORCE_UPDATE_OID

When attached to an LDAP update operation, causes the DC
to perform the update even if that update would not affect
the state of the DC.

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID

Instructs the DC that, when performing a search using
range retrieval (see section 3.1.1.3.1.3.3) on an attribute
whose values are forward link values or back link values and
the value of low is greater than or equal to the number of
values in the attribute, no error is to be returned.

LDAP_SERVER_RODC_DCPROMO_OID

This control is used as part of the process of promoting a
computer to be an RODC.

LDAP_SERVER_DN_INPUT_OID

This control is used to specify the DN of an object during an
LDAP operation. Currently this control is used only while
retrieving the constructed attribute msDS-
IsUserCachableAtRodc (see section 3.1.1.3.4.1.24).

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

Used with an LDAP search operation to specify that link
attributes that refer to deleted-objects are visible to the
search operation. If used in conjunction with
LDAP_SERVER_SHOW_DELETED_OID or
LDAP_SERVER_SHOW_RECYCLED_OID, link attributes that
are stored on deleted-objects are also visible to the search
operation. This applies both to the search filter and the set
of attributes returned by the search operation.

LDAP_SERVER_SHOW_RECYCLED_OID

Used with an LDAP operation to specify that tombstones,
deleted-objects, and recycled-objects are visible to the
operation.

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID

The LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID
control has the exact semantics and behaviors as
LDAP_SERVER_POLICY_HINTS_OID (section
3.1.1.3.4.1.27); this control MAY be used by clients when
the server does not support
LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD use
LDAP_SERVER_POLICY_HINTS_OID when it is supported by
the server.

LDAP_SERVER_DIRSYNC_EX_OID

Used with an LDAP search operation to retrieve the changes
made to objects since a previous
LDAP_SERVER_DIRSYNC_EX_OID search was performed.

LDAP_SERVER_UPDATE_STATS_OID

The LDAP_SERVER_UPDATE_STATS_OID control indicates
that the requester requires statistics from the DC.

LDAP_SERVER_TREE_DELETE_EX_OID

Used with an LDAP delete operation to cause the server to
recursively delete the entire subtree of objects, up to a
specified number of objects, located under the object
specified in the search request (including the specified
object).

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

198 / 626

Extended control name Description

LDAP_SERVER_SEARCH_HINTS_OID Provides hints to the DC during LDAP search operations.

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID Monitors the result of an LDAP search operation and
potentially modifies the return code.

LDAP_SERVER_POLICY_HINTS_OID Used with an LDAP operation to enforce password history
policies during password set.

LDAP_SERVER_SET_OWNER_OID Used with an LDAP add operation to set the owner of the
object to a SID other than that of the requester.

LDAP_SERVER_BYPASS_QUOTA_OID Used with an LDAP add operation to specify that quota limits
do not apply for the add operation.

LDAP_SERVER_LINK_TTL_OID Used to request that an LDAP search operation return link
values in the TTL-DN form.

3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING

This control, which is used as both a request control and a response control, is documented in
[RFC2696].

DCs limit the number of objects that can be returned in a single search operation to the value
specified by the MaxPageSize policy defined in section 3.1.1.3.4.6. The use of the
LDAP_PAGED_RESULT_OID_STRING control permits clients to perform searches that return more
objects than this limit by splitting the search into multiple searches, each of which returns no more
objects than this limit.

3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID

The LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control is used with an LDAP Modify DN
operation to instruct the DC to move an object from one domain to another (see the Modify DN
operation in section 3.1.1.5). This control is used by the client when moving an object from one
domain to another. The client sends the LDAP Modify DN operation to which this control is attached to
a DC in the domain containing the object to be moved. If the client does not specify the
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control in the LDAP Modify DN request, then the
server interprets the update as an intradomain Modify DN operation.

When operating as AD LDS, a DC rejects this control with the error operationsError / <unrestricted>.

When sending this control to the DC, the controlValue field is set to a UTF-8 string containing the
fully qualified domain name (1) of a DC in the domain to which the object is to be moved. The string is
not BER-encoded. Sending this control to the DC does not cause the server to include any controls in
its response.

3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID

The LDAP_SERVER_DIRSYNC_OID control is used with an LDAP search operation to retrieve the
changes made to objects since a previous search with an LDAP_SERVER_DIRSYNC_OID control was
performed. The LDAP_SERVER_DIRSYNC_OID control can only be used to monitor for changes across
an entire NC replica, not a subtree within an NC replica.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure.

DirSyncRequestValue ::= SEQUENCE ({

199/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Flags INTEGER
MaxBytes INTEGER
Cookie OCTET STRING

The Flags value has the following format presented in big-endian byte order. X denotes unused bits

set to 0 by the client and ignored by the server.

2
7(8[9(0(1(2|3|4|5|6|7|8|9|0|1

w

X|IP|IXIAIX[X[X[X[|X]|X|X|X|X|X]|O
D F S
) o

The Flags value is a combination of zero or more bit flags from the following table, and is used to
specify additional behaviors for the LDAP_SERVER_DIRSYNC_OID control.

Bit flag name and value

Description

LDAP_DIRSYNC_OBJECT_SECURITY (0OS)
0x00000001

Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016: If this flag is
present, the client can only view objects and attributes
that are otherwise accessible to the client. If this flag is
not present, the server checks if the client has access
rights to read the changes in the NC.

Windows 2000: Not supported.

LDAP_DIRSYNC_ANCESTORS_FIRST_ORDER (AFO)
0x00000800

The server returns parent objects before child objects.

LDAP_DIRSYNC_PUBLIC_DATA_ONLY (PDO)
0x00002000

Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016: This flag can
optionally be passed to the DC, but it has no effect.

Windows 2000: Not supported.

LDAP_DIRSYNC_INCREMENTAL_VALUES (IV)
0x80000000

Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016: If this flag is not
present, all of the values, up to a server-specified limit,
in @ multivalued attribute are returned when any value
changes. If this flag is present, only the changed values
are returned, provided the attribute is a forward link
value.

Windows 2000: Not supported.

MaxBytes specifies the maximum number of bytes to return in the reply message.

The minimum value for MaxBytes is 0x100000. When a lower value is specified, the value is ignored
and the maximum number of bytes in the reply message is 0x100000.

The maximum value for MaxBytes is determined by the size, in bytes, of a response with the
maximum number of objects that can be returned in a single search as specified by the MaxPageSize
policy, section 3.1.1.3.4.6. When a higher value is specified, the value is ignored and the maximum
number of bytes in the reply message is the size, in bytes, of a response with the MaxPageSize

number of objects.

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

200/ 626

Cookie is an opaque value that was returned by the DC on a previous search request that included
the LDAP_SERVER_DIRSYNC_OID control. The contents of Cookie are defined by the server and
cannot be interpreted by the client. A search request with the LDAP_SERVER_DIRSYNC_OID control
attached will return the changes made to objects since the point in time when the previous search
request, which returned the value of Cookie that is being used in the current search request, took
place. If there was no previous LDAP_SERVER_DIRSYNC_OID search request, Cookie is NULL, in
which case the search will return all objects that satisfy the search request, along with a value of
Cookie to use for the next LDAP_SERVER_DIRSYNC_OID search request.

If the base of the search is not the root of an NC, and the LDAP_DIRSYNC_OBJECT_SECURITY bit in
the Flags field is not set, the server will return the error insufficientAccessRights /
ERROR_DS_DRA_ACCESS_DENIED. If the LDAP_DIRSYNC_OBIJECT_SECURITY bit in the Flags field is
set, the server will return the error unwillingToPerform / <unrestricted>. If the search scope is not
subtree scope, the server will treat the search as if subtree scope was specified.

Any valid LDAP search filter can be specified.

Any attributes can be requested in the search. Only those objects for which these attributes have been
created or modified since the time represented by Cookie will be considered for inclusion in the
search.

If the list of requested attributes contains an asterisk (*) plus some attribute, then the asterisk is
ignored. That is, the list is effectively equal to the list with only the attributes explicitly requested.

The search results MUST always contain the objectGUID and instanceType attributes of each object,
even if those attributes were not specified in the search request.

When the server receives a search request with the LDAP_SERVER_DIRSYNC_OID control attached to
it, it includes a response control in the search response. The controlType field of the returned Control
structure is set to the OID of the LDAP_SERVER_DIRSYNC_OID control, and the controlValue is the
BER encoding of the following ASN.1 structure.

DirSyncResponseValue ::= SEQUENCE {
MoreResults INTEGER
unused INTEGER
CookieServer OCTET STRING

The structure of the controlValue in the response control is the same as the structure of the
controlValue in the request control, but the fields are interpreted differently. MoreResults is nonzero
if there are more changes to retrieve, unused is not used, and CookieServer is the value to be used
for Cookie in the next LDAP_SERVER_DIRSYNC_OID control sent in a search request to the server to
retrieve more changes.

Further details about how this control is processed are described in the pseudocode for the
ProcessDirSyncSearchRequest procedure in [MS-DRSR] section 5.115.3.

3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID

The LDAP_SERVER_DOMAIN_SCOPE_OID control is used to instruct the DC not to generate any LDAP
continuation references when performing an LDAP operation. The effect of this is to limit any search
using it to the single NC replica in which the object that serves as the root of the search is located.

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID

201/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LDAP_SERVER_EXTENDED_DN_OID control is used with an LDAP search request to cause the DC
to return extended DNs. The extended form of an object's DN includes a string representation of the
object's objectGUID attribute; for objects that have an objectSid attribute, the extended form also
includes a string representation of that attribute. The DC uses this extended DN for all DNs in the
LDAP search response. Attributes with Object(OR-Name) syntax are not affected by this control,
because in those cases, the DC always uses the DN form as specified in [RFC2253].

The extended DN format is as follows:
<GUID=guid_value>;<SID=sid_value>;dn

where guid_value is the value of the object's objectGUID attribute, sid_value is the value of the
object's objectSid attribute, and dn is the object's [RFC2253] DN. For objects that do not have an
objectSid attribute, the format is instead as follows:

<GUID=guid_value>;dn

When sending this control to a Windows 2000 DC, the controlValue field is omitted. When sending this
control to a Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2, or Windows Server 2016 DC, the controlValue field is either omitted
or is set to the BER encoding of the following ASN.1 structure:

ExtendedDNRequestValue ::= SEQUENCE ({
Flag INTEGER
}

If the controlValue field is omitted, the value of Flag is treated as 0.

If the value of Flag is 0, the DC returns the values of the objectGUID and objectSid attributes as a
hexadecimal representation of their binary format.

If the value of Flag is 1, the DC returns the GUID in dashed-string format ([RFC4122] section 3) and
the SID in SDDL SID string format ([MS-DTYP] section 2.4.2.1). The returned SDDL SID string begins
with "S-".

If the value of Flag is neither 0 nor 1, then it does not conform with the specification of this control
and the server behaves as described in section 3.1.1.3.4.1.

For example, setting Flag to 0 (or omitting the controlValue field) might return the following extended
DN:

<GUID=b3d4bfbd3c45ee4298e27b4a698a61b8>;<SID=01050000000000051500000061eb5b8c50ef7
05befda808bf4010000>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com

While setting Flag to 1 would return the same object's extended DN in the following form:

<GUID=bdbfd4b3-453c-42ee-98e2-7b4a698a61b8>; <SID=S-1-5-21-2354834273-1534127952-
2340477679-500>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com

Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID
The LDAP_SERVER_GET_STATS_OID control is used with an LDAP search operation.

When sending this control to a DC running Windows 2000, the client omits the controlValue field.
When sending this control to a DC running Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016, the client

202 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

either omits the controlValue field or sets the controlValue field to one of the 32-bit unsigned integer
values in the following table. The values are not BER-encoded.

Value name Value | Description

SO_NORMAL 0 Perform the search as if no LDAP_SERVER_GET_STATS_OID control was
included in the search request.

SO_STATS 1 Perform the search and return data related to the resources consumed
performing the search, as well as the actual search results.

SO_ONLY_OPTIMIZE | 2 Return data related to how the search would be performed, but do not
actually return the search results.

SO_EXTENDED_FMT | 4 Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016: Returns the data in
an alternative format documented later in this section.

Windows 2000, Windows Server 2003, and ADAM: Not supported.

Omitting the controlValue field is equivalent to specifying the SO_STATS value.

When the server receives a search request with the LDAP_SERVER_GET_STATS_OID control attached
to it, it includes a response control in the search response. The controlType field of the returned
Control structure is set to the OID of the LDAP_SERVER_GET_STATS_OID control. The controlValue
field is included in the returned Control structure.

The response to this control contains information outside the state model. This control instructs the
server to return internal data related to how the LDAP search was performed.

For Windows 2000 DCs, the returned controlValue is the BER encoding of the following ASN.1
structure

StatsResponseValueVl ::= SEQUENCE ({
threadCountTag INTEGER
threadCount INTEGER
coreTimeTag INTEGER
coreTime INTEGER
callTimeTag INTEGER
callTime INTEGER
searchSubOperationsTag INTEGER
searchSubOperations INTEGER

where threadCountTag, coreTimeTag, callTimeTag, and searchSubOperationsTag are equal to
1, 2, 3, and 4, respectively. threadCount is the number of threads that were processing LDAP
requests on the DC at the time the search operation was performed, coreTime is the time, in
milliseconds, that the core logic in the DC spent processing the request, callTime is the overall time,
in milliseconds, that the DC spent processing the request, and searchSubOperations is the number
of individual operations that the DC performed in processing the request.

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows 2000 DC MUST return the value 0
for the searchSubOperations field of this structure.

For Windows Server 2003 and ADAM DCs, the controlValue of the response control is the BER
encoding of the following ASN.1 structure.

StatsResponseValueV2 ::= SEQUENCE ({
threadCountTag INTEGER
threadCount INTEGER
callTimeTag INTEGER

203/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

callTime INTEGER

entriesReturnedTag INTEGER
entriesReturned INTEGER
entriesVisitedTag INTEGER
entriesVisited INTEGER
filterTag INTEGER
filter OCTET STRING
indexTag INTEGER
index OCTET STRING

In this structure, threadCountTag, threadCount, callTimeTag, and callTime are as in the
Windows 2000 structure. entriesReturnedTag, entriesVisitedTag, filterTag, and indexTag are 5,
6, 7, and 8, respectively. entriesReturned is the humber of objects returned in the search result.
entriesVisited is the number of objects that the DC considered for inclusion in the search result.
filter is a UTF-8 string that represents the optimized form of the search filter that is used by the DC to
perform a search. index is a string, defined by the system default code page, that indicates which
database indexes were used by the DC to perform the search.

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows Server 2003 or ADAM DC MUST
return the value 0 for the entriesReturned and entriesVisited fields of this structure. The server
MUST return NULL for the filter and index fields of this structure.

For Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2016 DCs, the controlValue of the response control is the BER encoding of the
following ASN.1 structure if the SO_EXTENDED_FMT flag is not specified.

StatsResponseValueV3 ::= SEQUENCE {
threadCountTag INTEGER
threadCount INTEGER
callTimeTag INTEGER
callTime INTEGER
entriesReturnedTag INTEGER
entriesReturned INTEGER
entriesVisitedTag INTEGER
entriesVisited INTEGER
filterTag INTEGER
filter OCTET STRING
indexTag INTEGER
index OCTET STRING
pagesReferencedTag INTEGER
pagesReferenced INTEGER
pagesReadTag INTEGER
pagesRead INTEGER
pagesPrereadTag INTEGER
pagesPreread INTEGER
pagesDirtiedTag INTEGER
pagesDirtied INTEGER
pagesRedirtiedTag INTEGER
pagesRedirtied INTEGER
logRecordCountTag INTEGER
logRecordCount INTEGER
logRecordBytesTag INTEGER
logRecordBytes INTEGER

In this structure, fields with the same name as fields in the Windows Server 2003 structure are as in
the Windows Server 2003 structure. pagesReferencedTag, pagesReadTag, pagesPrereadTag,
pagesDirtiedTag, pagesRedirtiedTag, logRecordCountTag, and logRecordCountBytesTag are
9,10, 11, 12, 13, 14, and 15, respectively. pagesReferenced is the number of database pages
referenced by the DC in processing the search. pagesRead is the number of database pages read
from disk, and pagesPreread is the nhumber of database pages preread from disk by the DC in
processing the search. pagesDirtied is the number of clean database pages modified by the DC in

204 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

processing the search, while pagesRedirtied is the number of previously modified database pages
that were modified by the DC in processing the search. logRecordCount and logRecordBytes are
the number and size in bytes, respectively, of database log records generated by the DC in processing
the search.

For Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2016 DCs, if the SO_EXTENDED_FMT flag is specified, an alternative format is
used for the controlValue of the response control instead of the format shown previously. Unlike the
previous formats in which each statistic is assigned a fixed position within the structure, in the
alternative format the ordering of the statistics can change. Rather than relying on position, each
statistic has an associated human-readable string that specifies what that statistic is. Additionally, the
use of these associated strings alleviates the need to hard-code the positional information into the
client-side parser of the response control, permitting the DC to be updated to return addition statistics
without necessitating a corresponding client-side change.

When using the alternative format, the controlValue of the response control is the BER encoding of the
following ASN.1 structure.

StatsResponseValueV4 ::= SEQUENCE OF SEQUENCE {
statisticName OCTET STRING
CHOICE {
intStatistic [0] INTEGER
stringStatistic [1] OCTET STRING

If the human-readable string in an element of the StatsResponseValueV4 structure is the empty
string, then the element contains an undefined value of no significance.

Effectively, this is an array of statistics, in which each statistic has a human-readable name (the
statisticName field) and a value. If it is an integer-valued statistic, the value is stored in the
intStatistic field. If it is a string-valued statistic, the value is stored in the stringStatistic field.

When the SO_EXTENDED_FMT flag is specified, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 DCs return the same
statistics as if the flag was not specified. The only difference is the format used to return the statistics.
The wording of the statisticName field is implementation-defined. Currently, the wording as it maps
to each statistic as specified in the non-SO_EXTENDED_FMT version of the structure is as follows.

threadCount "Thread count"

callTime "Call time (in ms)"
entriesReturned "Entries Returned"
entriesVisited "Entries Visited"

filter "Used Filter"

index "Used Indexes"
pagesReferenced "Pages Referenced"
pagesRead "Pages Read From Disk"
pagesPreread "Pages Pre-read From Disk"
pagesDirtied "Clean Pages Modified"
pagesRedirtied "Dirty Pages Modified"
logRecordCount "Log Records Generated"
logRecordBytes "Log Record Bytes Generated"

For a Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or Windows Server
2012 R2 DC, a requestor is said to have debug search stats permitted when it holds the
SE_DEBUG_PRIVILEGE. For a Windows Server 2016 DC, a requestor is said to have debug search
stats permitted if it holds the SE_DEBUG_PRIVILEGE or if it has the control access right identified by
the GUID {b3ab0434-7863-4891-bdbd-9ca79f1c099b} on the queryPolicy object for the DC (section
3.1.1.3.4.6).

205/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the client does not have debug search stats permitted, a Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, or Windows Server 2016 DC MUST return
the value 0 for the entriesReturned, entriesVisited, pagesReferenced, pagesRead,
pagesPreread, pagesDirtied, pagesRedirtied, logRecordCount, and logRecordBytes fields,
regardless of the format in which the data is returned. The server MUST return NULL for the filter and
index fields, regardless of the format in which the data is returned.

When the SO_EXTENDED_FMT flag is specified and the client has debug search stats permitted,
Windows Server 2016 DCs additionally return the following statistics: indicesRequiredToOptimize,
queryOptimizerState, atqDelay, cpuTime, and searchSignature.

indicesRequiredToOptimize is a space-separated list of attributes for which no indices exist and for
which the implementation could have performed a more optimized search if such indices existed.
queryOptimizerState is a description of the final processing state of the implementation's query pre-
processing. This statistic is only returned when the SO_STATS or SO_ONLY_OPTIMIZE flags are
specified in addition to the SO_EXTENDED_FMT flag. atqDelay is an approximation of the amount of
time (in milliseconds) that the request spent on a queue on the DC before the DC began to actively
process the request. cpuTime is an approximation of the amount of time (in milliseconds) that the DC
spent to actively process the request. There is no protocol requirement regarding the accuracy of
these approximations. searchSignature is an implementation-defined value that encapsulates some
of the search parameters. The choice of which parameters to encapsulate and how to encapsulate
them is an implementation detail and not normatively defined by the protocol. Informally, the intent of
this statistic is to assign the same signature to "similar" searches. The wording of the statisticName
field as it maps to these additional statistics is as follows.

indicesRequiredToOptimize "Indices required to optimize"

queryOptimizerState "Query optimizer state"
atgDelay "Atg Delay"

cpuTime "CPU Time"
searchSignature "Search Signature"

3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID

The LDAP_SERVER_LAZY_COMMIT_OID control is used to modify the behavior of any LDAP operation.
The presence of this control instructs the DC that it can sacrifice durability guarantees on updates to
improve performance.

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID

The LDAP_SERVER_PERMISSIVE_MODIFY_OID control is used to modify the behavior of an LDAP
modify operation. An LDAP modify operation normally returns an error if it attempts to add an
attribute that already exists on an object to that object (or, in the case of multivalued attributes, it
attempts to add a value that is already present in the attribute). An LDAP modify operation will also
normally fail if it attempts to delete an attribute that does not exist on the specified object or that
does not contain the value specified in the deletion request. With this control, adding a value to an
attribute that already exists and already contains the value to be added will cause the server to return
success even though no modification was actually performed by the server. Similarly, deletion of an
attribute that does not exist or does not contain the specified value will return success.

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID

206 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LDAP_SERVER_NOTIFICATION_OID control is used with an LDAP search operation to register the
client that is to be notified when changes are made to an object in the directory.

Notifications are asynchronous operations. When the DC receives a search request with this control
attached, it does not immediately send a response to the request. Instead, when an object is
modified, if that object falls within the scope of the search request to which the
LDAP_SERVER_NOTIFICATION_OID control was attached, the DC sends a SearchEntry response that
contains the modified object to the client, using the messagelD from the original search request
(SearchEntry and messagelD are defined in [RFC2251] section 4.1.1). The SearchEntry response will
contain those attributes of the object that were requested in the original request. These attributes are
not necessarily the attributes that were modified. A client indicates that it no longer requires
notifications by sending an LDAP abandon operation, specifying the messagelD of the original search
request.

LDAP search requests that include this control are subject to the following restrictions:

= The only filter permitted in the search request is "(objectclass = *)". The server will return the
error unwillingToPerform / <unrestricted> if this is not the case.

= Base, one-level, and subtree search scopes are permitted. For Windows 2000 DCs, if the base DN
specified in a subtree search is not the root of an NC, the server returns the error
unwillingToPerform / <unrestricted>. Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 DCs
do not have this restriction.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its eventual
responses.

3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID

LDAP_SERVER_RANGE_OPTION_OID, unlike the other controls discussed in this section, does not
actually designate an LDAP extended control. Nonetheless, it is included in this discussion because its
OID is found in the supportedControl attribute of the DC's rootDSE. The presence of this OID indicates
that the DC supports range retrieval of multivalued attributes. Range retrieval is a mechanism that
permits attributes that have too many values to be retrieved in a single LDAP search request to be
retrieved via multiple LDAP search requests. Range retrieval is documented in section 3.1.1.3.1.3.3.

Note Although this OID is not present in the supportedControl attribute of Windows 2000 DCs, such
DCs nonetheless support range retrieval.

3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID

The LDAP_SERVER_SD_FLAGS_OID control is used with an LDAP Search request to control the portion
of a Windows security descriptor to retrieve. The DC returns only the specified portion of the security
descriptors. It is also used with LDAP Add and Modify requests to control the portion of a Windows
security descriptor to modify. The DC modifies only the specified portion of the security descriptor.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure.

SDFlagsRequestValue ::= SEQUENCE ({
Flags INTEGER
}

The Flags value has the following format presented in big-endian byte order. X denotes unused bits
that SHOULD be set to 0 by the client and that MUST be ignored by the server.

207 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1
XXX [X[X[X|X|X]|X[|X]|X[|X[X[X[X|X]|X]|X[|X|X[X[|X[|X[|X|X|X|X|X|S|D|G|O

S|S|S|S
IfI|I|1
The Flags value is a combination of zero or more bit flags from the following table.
Bit flag name and value Portion of security descriptor to retrieve/update
OWNER_SECURITY_INFORMATION (OSI) Owner identifier of the object.
0x1
GROUP_SECURITY_INFORMATION (GSI) | Primary group identifier.
0x2
DACL_SECURITY_INFORMATION (DSI) Discretionary access control list (DACL) of the object.
0x4
SACL_SECURITY_INFORMATION (SSI) System access control list (SACL) of the object.
0x8

Specifying Flags with no bits set, or not using the LDAP_SERVER_SD_FLAGS_OID control, is
equivalent to setting Flags to (OWNER_SECURITY_INFORMATION | GROUP_SECURITY_INFORMATION
| DACL_SECURITY_INFORMATION | SACL_SECURITY_INFORMATION). Sending this control to the DC
does not cause the server to include any controls in its response.

3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID

The LDAP_SERVER_SEARCH_OPTIONS_OID control is used with an LDAP Search request to control
various behaviors.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure.

SearchOptionsRequestValue ::= SEQUENCE ({
Flags INTEGER
}

The Flags value has the following format presented in big-endian byte order. X denotes unused bits
that SHOULD be set to 0 by the client and that MUST be ignored by the server.

o
=
N
w
N
w
(o)}
N
(04}
(o]
o
[
N
w
N
(6]
a
N
o2}
(o]
oN
—
N
w
N
w
(o)}
N
(o0]
O
o
—

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
A UTnunn
nwWomnmunn

The Flags value is a combination of zero or more bit flags from the following table.

208 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Bit flag name and value

Description

SERVER_SEARCH_FLAG_DOMAIN_SCOPE
(SSFDS)

1

Prevents continuation references from being generated when the
search results are returned. This performs the same function as
the LDAP_SERVER_DOMAIN_SCOPE_OID control.

SERVER_SEARCH_FLAG_PHANTOM_ROOT
(SSFPR)

2

For AD DS, instructs the server to search all NC replicas except
application NC replicas that are subordinate to the search base,
even if the search base is not instantiated on the server. For AD
LDS, the behavior is the same except that it also includes
application NC replicas in the search. For AD DS and AD LDS, this
will cause the search to be executed over all NC replicas (except
for application NCs on AD DS DCs) held on the DC that are
subordinate to the search base. This enables search bases such as
the empty string, which would cause the server to search all of the
NC replicas (except for application NCs on AD DS DCs) that it
holds.

Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.13

LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID

This request control and its corresponding response control, LDAP_SERVER_RESP_SORT_OID, are

documented in [RFC2891].

DCs only support sorting on a single attribute at a time. Therefore, the client constructs a SortKeylList
that contains only one sequence. DCs running Windows 2000 do not support ordering rules when
sorting, so the client omits the orderingRule field of the SortKeyList when sending this control to a DC
running Windows 2000; sorting uses the English: United States sort order. Starting with Windows
Server 2003, DCs support ordering rules for the sort orders specified in the following table; if no
ordering rule is specified, the DC uses the English: United States sort order. Section 6.5 specifies, by
reference to [MS-UCODEREF], the effect of each sort order. Section 2.2.1 specifies the mapping
between the sort orders that follow and the LCIDs used in section 6.5.

Ordering rule OID Sort order
1.2.840.113556.1.4.1461 Afrikaans
1.2.840.113556.1.4.1462 Albanian

1.2.840.113556.1.4.1463

Arabic: Saudi Arabia

1.2.840.113556.1.4.1464

Arabic: Iraq

1.2.840.113556.1.4.1465

Arabic: Egypt

1.2.840.113556.1.4.1466

Arabic: Libya

1.2.840.113556.1.4.1467 Arabic: Algeria
1.2.840.113556.1.4.1468 Arabic: Morocco
1.2.840.113556.1.4.1469 Arabic: Tunisia
1.2.840.113556.1.4.1470 Arabic: Oman
1.2.840.113556.1.4.1471 Arabic: Yemen
1.2.840.113556.1.4.1472 Arabic: Syria
1.2.840.113556.1.4.1473 Arabic: Jordan

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

209 / 626

Ordering rule OID

Sort order

1.2.840.113556.1.4.1474

Arabic: Lebanon

1.2.840.113556.1.4.1475

Arabic: Kuwait

1.2.840.113556.1.4.1476

Arabic: UAE

1.2.840.113556.1.4.1477

Arabic: Bahrain

1.2.840.113556.1.4.1478

Arabic: Qatar

1.2.840.113556.1.4.1479

Armenian

1.2.840.113556.1.4.1480

Assamese

1.2.840.113556.1.4.1481

Azeri: Latin

1.2.840.113556.1.4.1482

Azeri: Cyrillic

1.2.840.113556.1.4.1483 Basque
1.2.840.113556.1.4.1484 Belarussian
1.2.840.113556.1.4.1485 Bengali
1.2.840.113556.1.4.1486 Bulgarian
1.2.840.113556.1.4.1487 Burmese
1.2.840.113556.1.4.1488 Catalan

1.2.840.113556.1.4.1489

Chinese: Taiwan

1.2.840.113556.1.4.1490

Chinese: PRC

1.2.840.113556.1.4.1491

Chinese: Hong Kong SAR

1.2.840.113556.1.4.1492

Chinese: Singapore

1.2.840.113556.1.4.1493

Chinese: Macau SAR

1.2.840.113556.1.4.1494 Croatian
1.2.840.113556.1.4.1495 Czech
1.2.840.113556.1.4.1496 Danish
1.2.840.113556.1.4.1497 Dutch

1.2.840.113556.1.4.1498

Dutch:Belgium

1.2.840.113556.1.4.1499

English: United States

1.2.840.113556.1.4.1500

English: United Kingdom

1.2.840.113556.1.4.1665

English: Australia

1.2.840.113556.1.4.1666

English: Canada

1.2.840.113556.1.4.1667

English: New Zealand

1.2.840.113556.1.4.1668

English: Ireland

1.2.840.113556.1.4.1505

English: South Africa

[MS-ADTS-Diff] - v20170601
Active Directory Technical Specification

Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

210/ 626

Ordering rule OID

Sort order

1.2.840.113556.1.4.1506

English: Jamaica

1.2.840.113556.1.4.1507

English: Caribbean

1.2.840.113556.1.4.1508

English: Belize

1.2.840.113556.1.4.1509

English:Trinidad

1.2.840.113556.1.4.1510

English: Zimbabwe

1.2.840.113556.1.4.1511

English: Philippines

1.2.840.113556.1.4.1512 Estonian
1.2.840.113556.1.4.1513 Faeroese
1.2.840.113556.1.4.1514 Persian
1.2.840.113556.1.4.1515 Finnish

1.2.840.113556.1.4.1516

French: France

1.2.840.113556.1.4.1517

French: Belgium

1.2.840.113556.1.4.1518

French: Canada

1.2.840.113556.1.4.1519

French: Switzerland

1.2.840.113556.1.4.1520

French: Luxembourg

1.2.840.113556.1.4.1521

French: Monaco

1.2.840.113556.1.4.1522

Georgian

1.2.840.113556.1.4.1523

German: Germany

1.2.840.113556.1.4.1524

German: Switzerland

1.2.840.113556.1.4.1525

German: Austria

1.2.840.113556.1.4.1526

German: Luxembourg

1.2.840.113556.1.4.1527

German: Liechtenstein

1.2.840.113556.1.4.1528 Greek
1.2.840.113556.1.4.1529 Gujarati
1.2.840.113556.1.4.1530 Hebrew
1.2.840.113556.1.4.1531 Hindi
1.2.840.113556.1.4.1532 Hungarian
1.2.840.113556.1.4.1533 Icelandic
1.2.840.113556.1.4.1534 Indonesian
1.2.840.113556.1.4.1535 Inukitut

1.2.840.113556.1.4.1536

Italian:Italy

1.2.840.113556.1.4.1537

Italian:Switzerland

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

211/ 626

Ordering rule OID Sort order
1.2.840.113556.1.4.1538 Japanese
1.2.840.113556.1.4.1539 Kannada

1.2.840.113556.1.4.1540

Kashmiri Arabic

1.2.840.113556.1.4.1541 Kashmiri
1.2.840.113556.1.4.1542 Kazakh
1.2.840.113556.1.4.1543 Khmer
1.2.840.113556.1.4.1544 Kirghiz
1.2.840.113556.1.4.1545 Konkani
1.2.840.113556.1.4.1546 Korean

1.2.840.113556.1.4.1547

Korean:Johab

1.2.840.113556.1.4.1548

Latvian

1.2.840.113556.1.4.1549

Lithuanian

1.2.840.113556.1.4.1550

Macedonian FYROM

1.2.840.113556.1.4.1551

Malaysian

1.2.840.113556.1.4.1552

Malay Brunei Darussalam

1.2.840.113556.1.4.1553 Malayalam
1.2.840.113556.1.4.1554 Maltese
1.2.840.113556.1.4.1555 Manipuri
1.2.840.113556.1.4.1556 Marathi

1.2.840.113556.1.4.1557

Nepali:Nepal

1.2.840.113556.1.4.1558

Norwegian:Bokmal

1.2.840.113556.1.4.1559

Norwegian:Nynorsk

1.2.840.113556.1.4.1560

Odia

1.2.840.113556.1.4.1561

Polish

1.2.840.113556.1.4.1562

Portuguese:Brazil

1.2.840.113556.1.4.1563

Portuguese:Portugal

1.2.840.113556.1.4.1564 Punjabi
1.2.840.113556.1.4.1565 Romanian
1.2.840.113556.1.4.1566 Russian
1.2.840.113556.1.4.1567 Sanskrit

1.2.840.113556.1.4.1568

Serbian:Cyrillic

1.2.840.113556.1.4.1569

Serbian:Latin

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

212 / 626

Ordering rule OID

Sort order

1.2.840.113556.1.4.1570 Sindhi:India
1.2.840.113556.1.4.1571 Slovak
1.2.840.113556.1.4.1572 Slovenian
1.2.840.113556.1.4.1573 Spanish: SpainTraditional Sort
1.2.840.113556.1.4.1574 Spanish: Mexico
1.2.840.113556.1.4.1575 Spanish: SpainModern Sort
1.2.840.113556.1.4.1576 Spanish: Guatemala
1.2.840.113556.1.4.1577 Spanish: Costa Rica
1.2.840.113556.1.4.1578 Spanish: Panama
1.2.840.113556.1.4.1579 Spanish: Dominican Republic
1.2.840.113556.1.4.1580 Spanish: Venezuela
1.2.840.113556.1.4.1581 Spanish: Colombia
1.2.840.113556.1.4.1582 Spanish: Peru
1.2.840.113556.1.4.1583 Spanish: Argentina
1.2.840.113556.1.4.1584 Spanish: Ecuador
1.2.840.113556.1.4.1585 Spanish: Chile
1.2.840.113556.1.4.1586 Spanish: Uruguay
1.2.840.113556.1.4.1587 Spanish: Paraguay
1.2.840.113556.1.4.1588 Spanish: Bolivia
1.2.840.113556.1.4.1589 Spanish: El Salvador
1.2.840.113556.1.4.1590 Spanish: Honduras
1.2.840.113556.1.4.1591 Spanish: Nicaragua
1.2.840.113556.1.4.1592 Spanish: Puerto Rico
1.2.840.113556.1.4.1593 Swahili: Kenya
1.2.840.113556.1.4.1594 Swedish
1.2.840.113556.1.4.1595 Swedish: Finland
1.2.840.113556.1.4.1596 Tamil
1.2.840.113556.1.4.1597 Tatar: Tatarstan
1.2.840.113556.1.4.1598 Telugu
1.2.840.113556.1.4.1599 Thai
1.2.840.113556.1.4.1600 Turkish
1.2.840.113556.1.4.1601 Ukrainian

[MS-ADTS-Diff] - v20170601
Active Directory Technical Specification

Copyright © 2017 Microsoft Corporation
Release: June

1, 2017

213/ 626

Ordering rule OID Sort order
1.2.840.113556.1.4.1602 Urdu: Pakistan
1.2.840.113556.1.4.1603 Urdu: India
1.2.840.113556.1.4.1604 Uzbek: Latin
1.2.840.113556.1.4.1605 Uzbek: Cyrillic
1.2.840.113556.1.4.1606 Vietnamese
1.2.840.113556.1.4.1607 Japanese: XJIS
1.2.840.113556.1.4.1608 Japanese: Unicode
1.2.840.113556.1.4.1609 Chinese: Big5
1.2.840.113556.1.4.1610 Chinese: PRCP
1.2.840.113556.1.4.1611 Chinese: Unicode
1.2.840.113556.1.4.1612 Chinese: PRC
1.2.840.113556.1.4.1613 Chinese: BOPOMOFO
1.2.840.113556.1.4.1614 Korean: KSC
1.2.840.113556.1.4.1615 Korean: Unicode
1.2.840.113556.1.4.1616 German Phone Book
1.2.840.113556.1.4.1617 Hungarian: Default
1.2.840.113556.1.4.1618 Hungarian: Technical
1.2.840.113556.1.4.1619 Georgian: Traditional
1.2.840.113556.1.4.1620 Georgian: Modern

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2016 support an additional sort behavior called "phonetic display name sort".
This behavior is triggered by specifying "msDS-PhoneticDisplayName;extended" as the attributeType
in the SortKeyList ([RFC2891] section 1.1). When this option is present, the DC checks that the LDAP
request satisfies the following requirements:

= The operation is an LDAP search request.

= The orderingRule field specifies the Japanese sort order (namely, "1.2.840.113556.1.4.1538").
= The LDAP_CONTROL_VLVREQUEST control is attached to the search.

= The search request has been sent to a global catalog port (port 3268 or 3269).

= The scope of the search request is wholeSubtree.

= The base object of the search request specifies the DN "".

»= The filter is set to (&(showInAddressBook=X)(displayName=*)), where X is a distinguished name
and there exists an object O such that OlobjectClass = addressBookContainer and
OldistinguishedName = X.

214 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If one or more of these criteria are not satisfied, the server returns the error unwillingToPerform /
<unrestricted>.

If all of these criteria are satisfied, the DC performs a phonetic display name sort. In this sort, the
search results are sorted on the msDS-PhoneticDisplayName attribute, using the Japanese sort order,
in the normal fashion, except that if an object O does not have a value for the msDS-
PhoneticDisplayName attribute but does have a value V for the displayName attribute, the server
treats V as the value of O!msDS-PhoneticDisplayName for the purposes of the sort.

For example, consider an unsorted search result set consisting of four objects, as shown in the
following table. Note that object #2 does not have a value for msDS-PhoneticDisplayName.

Object # msDS-PhoneticDisplayName value displayName value
1 A C
2 D
3 B E
4 F C

Assuming for the purpose of this example that the letters A...Z sort in the order {A, ..., Z}, the results
of performing a phonetic display nhame sort on the preceding data is the following.

Object # msDS-PhoneticDisplayName value displayName value
1 A C
3 B E
2 D
4 F C

In particular, object #2 was placed before object #4 because the sort treated it as if it had the value
"D" for its msDS-PhoneticDisplayName attribute.

3.1.1.3.4.1.14 LDAP_SERVER_SHOW_DELETED_OID

The LDAP_SERVER_SHOW_DELETED_OID control is used with an LDAP operation to specify that
tombstones and deleted-objects must be visible to the operation. For example, when the control is
used with an LDAP search operation, the search results include any tombstones or deleted-objects
that match the search filter.

The following table compares the behavior of the two similar controls
LDAP_SERVER_SHOW_DELETED_OID and
LDAP_SERVER_SHOW_RECYCLED_OID (section 3.1.1.3.4.1.26).

Extended control name Deleted-objects Tombstones Recycled-objects
LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible
LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID

215/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LDAP_SERVER_TREE_DELETE_OID control is used with an LDAP delete operation to cause the
server to recursively delete the entire subtree of objects located underneath the object specified in the
delete operation. The object specified in the delete operation is also deleted.

The server deletes between 1 and 16,384 objects. If the server does not delete the entire tree in a
single LDAP delete request, it MUST NOT delete the root of the tree (the object specified in the delete
operation), and MUST return the error code adminLimitExceeded /
ERROR_DS_TREE DELETE NOT_FINISHED.

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID

The LDAP_SERVER_VERIFY_NAME_OID control is used with LDAP Add and Modify requests to identify
the global catalog server (GC server) that is used to verify the existence of any objects pointed to by
DN attribute values (as specified in section 3.1.1.1.6). If the DC needs to call a GC server while
processing the Add or Modify request, it calls the GC server specified in this control. If this control is
not used, the DC is free to call any GC server in the forest.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure:

VerifyNameRequestValue ::= SEQUENCE ({
Flags INTEGER
ServerName OCTET STRING

where Flags is ignored and ServerName is a UTF-16 encoded Unicode string containing the FQDN (1)
of the GC server to contact for verification. Sending this control to the DC does not cause the server to
include any controls in its response.

If the LDAP Add or Modify request needs to call a GC server and the server designated by this control
in the request is not available or is not a GC server, the Add or Modify request fails with the error
unavailable / <unrestricted>.

3.1.1.3.4.1.17 LDAP_CONTROL_VLVREQUEST and
LDAP_CONTROL_VLVRESPONSE

The LDAP_CONTROL_VLVREQUEST control is used with an LDAP search operation to retrieve a subset
of the objects that satisfy the search request. This control permits the client to specify a particular
object (the "target object") in a sorted set of search results, and to request that the server return a
specified number of objects before and after the target object, in addition to the target object itself.
"Before" and "after" the target object are relative to the sort order of the search result set. The server
will not return objects whose attribute value, used as the sort key, is absent. This control can only be
used if the LDAP_SERVER_SORT_OID (section 3.1.1.3.4.1.13) control is also specified.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure (maxInt is defined in [RFC2251] section 4.1.1):

VLVRequestValue ::= SEQUENCE ({
beforeCount INTEGER (0..maxInt),
afterCount INTEGER (0..maxInt),
CHOICE {
byoffset [0] SEQUENCE {
offset INTEGER (0 .. maxInt),
contentCount INTEGER (0 .. maxInt)

}I

greaterThanOrEqual [l1] AssertionValue

216 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

}l
contextID OCTET STRING OPTIONAL

}

where beforeCount indicates how many objects before the target object are to be included in the
search results, and afterCount indicates how many objects after the target object are to be included
in the search results.

byoffset and greaterThanOrEqual provide two mutually exclusive ways of specifying the target
object. These will now be discussed in turn.

First, the target object can be specified by its position relative to the first object in the sorted set of
objects that satisfy the search request, in which case the byoffset choice is used. In this case,
contentCount contains the client's estimation of the total number of objects that satisfy the search
criteria. If the client specifies 0 for contentCount, it is as if the client had specified a number identical
to the server's estimate of the total number of objects that satisfy the search criteria—the quantity
serverContentCount below. offset is used with contentCount to specify the position (relative to
the first object in the sorted set of search results) of the object to use as the target object according
to the following formula:

p = serverContentCount * (offset / contentCount)

where serverContentCount is the DC's estimate of the total number of objects that satisfy the
search criteria. The object located at position p in the sorted list of search results is used as the target
object.

A value of offset equal to 1 means that the target object is the first object in the search result set,
while a value of offset equal to contentCount means the target object is the last object in the search
result set. The offset value cannot equal 0 unless contentCount also equals 0. If the client specified
0 for contentCount, then p = offset in the preceding formula, so the target object is offset-1
objects beyond the first object in the search result set, unless both offset and contentCount are
equal to 0, in which case the previous rule applies.

The second means of specifying the target object is by the greaterThanOrEqual choice, instead of
the byoffset choice. In this case, greaterThanOrEqual is an AssertionValue as defined in [RFC2251]
section 4.1.7. The target object is the first object in the sorted result set for which the value of the
attribute on which it is sorted (that is, the attribute specified by attributeType in the
LDAP_SERVER_SORT_OID control) is greater than or equal to the value specified by
greaterThanOrEqual. However, if the sort order is reversed (by specifying that the reverseOrder
field of the LDAP_SERVER_SORT_OID control is true), then the target object is the first object for
which the sort attribute value is less than or equal to the greaterThanOrEqual value.

If the contextID field is present, it is the opaque value returned by the DC as the contextIDServer
field of the LDAP_CONTROL_VLVRESPONSE control that was returned with the search response to the
previous search over the same "list" as this search. A "list" is a sorted set of search results, defined by
a search request value sent to a particular DC over a particular LDAP connection. The client omits this
field if this is the first search request that included the LDAP_CONTROL_VLVREQUEST control for the
"list", or if the client did not retain the contextIDServer field of the previous
LDAP_CONTROL_VLVRESPONSE for the "list". The presence or absence of the contextID field in the
request only affects performance. The contextID is valid only on the DC that returned it. If an invalid
contextID is present, then the LDAP_CONTROL_VLVREQUEST control is ignored.

When the server receives a search request with the LDAP_CONTROL_VLVREQUEST control attached to
it, it includes a response control in the search response. The controlType field of the returned Control
structure is set to the OID of the LDAP_CONTROL_VLVRESPONSE control, and the controlValue is the
BER encoding of the following ASN.1 structure.

VLVResponseValue ::= SEQUENCE ({
targetPosition INTEGER (0 .. maxInt),

217/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

contentCount INTEGER (0 .. maxInt),
virtualListViewResult ENUMERATED {

success (0),

operationsError (1),

unwillingToPerform (53),
insufficientAccessRights (50),
busy (51),
timeLimitExceeded (3),

adminLimitExceeded (11),
sortControlMissing (60),
offsetRangeError (61),
other (80)

}l

contextIDServer OCTET STRING OPTIONAL

where targetPosition is the position of the target object relative to the beginning of the sorted set of
search results, contentCount is the server's estimate of the total number of objects that satisfy the
search request, contextIDServer is the opaque value described in the specification of the contextID
field earlier in this section, and virtualListViewResult is an LDAP error code that indicates the
success or failure of the DC in processing the LDAP_CONTROL_VLVREQUEST control. These codes
have the same meanings as defined for LDAP in [RFC2251], but they pertain specifically to the
processing of the control. Error codes sortControlMissing and offsetRangeError are not defined in
[RFC2251]. In the Active Directory implementation of virtual list view (VLV), virtualListViewResult
is set to error code sortControlMissing if the LDAP_SERVER_SORT_OID control is not specified in
conjunction with the LDAP_CONTROL_VLVREQUEST control. It is set to error code offsetRangeError if
contentCount is not equal to 0 but offset is equal to 0.

Notes:

= The Active Directory implementation of VLV is based on that described in [VLVDRAFT]. Although
implementers can consult that document as an informative reference, the preceding description
documents the protocol as implemented by Active Directory. No claim is made with regard to
Active Directory's conformance or nonconformance with the protocol as specified in [VLVDRAFT].

= Active Directory support for VLV is specified in section 3.1.1.3.4.1 (see
LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE). The following information
applies to the Active Directory implementation of VLV through Windows Server 2012 R2 without
[MSKB-3106637] installed, or through Windows Server 2012 with [MSKB-3106637] installed:

If an LDAP search has the LDAP_CONTROL_VLVREQUEST attached, a desired target object is
specified using the greaterThanOrEqual choice, and the attribute specified in the sort control is
of the 2.5.5.11 time syntax (section 3.1.1.2.2.2), a random object is returned, not an object that
satisfies the greaterThanOrEqual value.

3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID

The LDAP_SERVER_ASQ_OID control is used with an LDAP search operation. When this control is
used, the search is not performed against the object specified in the search, or the objects located
underneath that object, but rather against the set of objects named by an attribute of Object(DS-DN)
syntax that is located on the object specified by the base DN of the search request. The specific
attribute to use to scope the search is named in the control. Only searches of base object scope can
be used with the LDAP_SERVER_ASQ_OID control.

For example, suppose there is an object o and a multivalued attribute A of Object(DS-DN) syntax such
that 0.A contains the DNs of objects 01, 02, and 03. An LDAP base-scope search operation that targets
object o, with the LDAP_SERVER_ASQ_OID control attached and specifying the A attribute, will cause
the server to perform the search not against object o but against objects o1, 02, and 03.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure:

218/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ASQRequestValue ::= SEQUENCE ({
sourceAttribute OCTET STRING
}

where sourceAttribute is a UTF-8 string that specifies the LDAP display name of the attribute to use
to scope the search (for example, attribute A in the previous example).

When the server receives a search request with the LDAP_SERVER_ASQ_OID control attached to it, it
includes a response control in the search response. The controlType field of the returned Control
structure is set to the OID of the LDAP_SERVER_ASQ_OID control, and the controlValue is the BER
encoding of the following ASN.1 structure:

ASQResponseValue ::= SEQUENCE ({
searchResults ENUMERATED {
success (0),
invalidAttributeSyntax (21),
unwillingToPerform (53),
affectsMultipleDSAs (71)

b

where the meaning of searchResults is as indicated in the following table.

searchResult name | searchResult value | Description

success 0 Search results are returned for all objects referenced by
sourceAttribute.

invalidAttributeSyntax | 21 sourceAttribute is not of Object(DS-DN) syntax.
unwillingToPerform 53 The search scope was not set to base object scope.
affectsMultipleDSAs 71 Partial results were returned, but not all the objects were

available on the DC.

The search results consist of each object that is specified by the sourceAttribute attribute, and that
matches the search filter returned as a SearchResultEntry (defined in [RFC2251] section 4.5.2)
containing the attributes specified in the attribute list of the search request. If any of the objects
specified by sourceAttribute are not available on the DC, the search results include all of the objects
that are available on the DC, and the searchResults return value is set to the affectsMultipleDSAs
error code to indicate that some data that might be otherwise available is not present in the results.

3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID

This control is used with an LDAP search operation to retrieve the quota of a user. When used with an
LDAP search operation that queries the constructed attributes msDS-QuotaEffective and msDS-
QuotaUsed on the msDS-QuotaContainer object, the server will return the quota of the user who is
specified by the control, rather than the quota of the user whom the connection is authenticated as.

If the caller attempts to retrieve the quota of a user other than the user whom the caller is
authenticated as, and the caller does not have the RIGHT_DS_READ_PROPERTY right on the Quotas
container (described in section 6.1.1.4.3), the server returns an empty result set.

If the caller attempts to retrieve the quota of the user whom the caller is authenticated as, and the
caller has neither the RIGHT_DS_READ_PROPERTY right on the Quotas container (described in section
6.1.1.4.3) nor the DS-Query-Self-Quota control access right on the Quotas container, the server
returns an empty result set.

219/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

These access checks are also specified in section 3.1.1.4.4.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure.

QuotaRequestValue ::= SEQUENCE ({
querySID OCTET STRING
}

Where querySID is the SID, in binary form, of the user whose quota is to be retrieved (the binary
form of SIDs is documented in [MS-DTYP] section 2.4.2). Sending this control to the DC does not
cause the server to include any controls in its response.

3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID

This control is used with an LDAP Search request. The Search request has base object scope. The base
DN of the search is the DN of the DC's nTDSDSA object, and the search filter is "(objectClass=*)". If
the application sending the search request is not running on the same computer as the DC, the result
is the error unwillingToPerform | <unrestricted>.

When sending this control to the DC, the controlValue field of the Control structure is omitted. Sending
this control to the DC does not cause the server to include any controls in its response.

This control is only supported on the Small Business Server version of the Windows operating system.

Because this control only has an effect for applications running on the same machine as the DC, the
effects of this control are not observable on the network. This control causes the DC to notify the
client when the DC is shutting down. When the DC receives a search request with this control
attached, it does not immediately send a response to the request. Instead, it sends the
SearchResultDone response (see [RFC2251] section 4.5.2) to the request when the DC is shutting
down.

3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID

A DC does not perform originating updates that do not affect the state of the DC. For example, given
an LDAP Modify operation that sets the value of an attribute A to a value V, if the value of A is already
V prior to the Modify operation, the DC skips the update and returns success. The stamp associated
with A is not changed, and the Modify operation does not cause replication traffic.

When the LDAP_SERVER_FORCE_UPDATE_OID control is attached to an update operation, the DC
does not perform the optimization described in the previous paragraph. The update always generates
a new stamp for the attribute or link value and always replicates.

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending
this control to a DC does not cause the DC to include any controls in its response.

3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID

This control is used to modify the behavior of a range retrieval operation (see section 3.1.1.3.1.3.3).
When this control is not specified, if range retrieval is being performed on an attribute whose values
are forward link values or back link values, and the value of low is greater than or equal to the
number of values in the attribute, the DC will return the error operationsError / <unrestricted>. If this
control is specified, no error is returned in this case (and no values are returned). For example, if an
object has a member attribute with 500 values, performing the range retrieval "member;range=500-
*" will return operationsError / <unrestricted> without this control, and success with this control.

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending
this control to a DC does not cause the DC to include any controls in its response.

220/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID

If this control is specified and the caller does not have the DS-Install-Replica control access right on
the root of the default NC, the result is the error insufficientAccessRights /| ERROR_ACCESS_DENIED.

If the request is an Add of an object of class user or a subclass of user, the presence of this control
has the following effects:

= The DC generates a value in the range [1 .. 65535] that is not used as a value of the msDS-
SecondaryKrbTgtNumber attribute on an object in this domain, and assigns the generated value to
the msDS-SecondaryKrbTgtNumber attribute of the created object. If no such value exists, the
result is the error other / ERROR_NO_SYSTEM_RESOURCES.

= The generated value for msDS-SecondaryKrbTgtNumber is appended (in decimal form) to the
string "krbtgt", and the resulting string is assigned to the sAMAccountName attribute on the
created object.

= The userAccountControl bits ADS_UF_ACCOUNT_DISABLE and ADS_UF_DONT_EXPIRE_PASSWD
(section 2.2.16) are set on the object's userAccountControl attribute.

= The object's account password is set to a randomly generated value that satisfies all criteria in
[MS-SAMR] section 3.1.1.7.2 and is processed as described in [MS-SAMR] section 3.1.1.8.5.

Note In Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016, the DC servicing the request need not be the PDC FSMO role
owner.

If the request is an Add of an object of class nTDSDSA, the presence of this control has the following
effects:

= The DC creates the nTDSDSA object using the information provided in the Add request. The only
special effect of the control is to perform the checking of the DS-Install-Replica control access
right (specified previously in this section) to authorize the nTDSDSA object creation. Without this
control, an Add that attempts to create an nTDSDSA object will fail because the class is system-
only (section 3.1.1.2.4.8).

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending
this control to a DC does not cause the DC to include any controls in its response.

3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID
This control is used to specify the DN of an object during certain LDAP operations.

When used with an LDAP search operation that queries the constructed attribute msDS-
IsUserCachableAtRodc on a computer object that represents an RODC, the server will return the
administrative policy regarding whether the secret attributes of the security principal represented by
the DN specified in the control can be cached on the RODC. If the caller does not have the Read-Only-
Replication-Secret-Synchronization control access right on the root of the default NC, the error
operationsError / ERROR_DS_CANT_RETRIEVE_ATTRS is returned. This access check is also specified
in section 3.1.1.4.4.

When sending this control to the DC, the controlValue field is set to the BER encoding of the following
ASN.1 structure.

DNInputRequestValue ::= SEQUENCE ({
InputDN OCTET STRING
}

221/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Where InputDN is a UTF-8 encoding of the DN of a security principal. The DN is either an RFC 2253-
style DN or one of the alternative DN formats described in section 3.1.1.3.1.2.4.

3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

The LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control is used with an LDAP search operation to
specify that link attributes that refer to deleted-objects are visible to the search operation. If used in
conjunction with LDAP_SERVER_SHOW_DELETED_OID or LDAP_SERVER_SHOW_RECYCLED_OID, link
attributes that are stored on deleted-objects are also visible to the search operation. This applies to
both the search filter and the set of attributes returned by the search operation. When this control is
not used, linked attribute values referring to deleted-objects and link valued attributes stored on
deleted-objects are not visible to search operation filters, and are not returned as requested attributes

for the search operation.

Link values Link
Link values | Link stored on values
neither values not | deleted- stored on
stored on stored on objects but and
nor but not referring
referring to | referring referring to | to
deleted- to deleted- | deleted- deleted-
Extended control names objects objects objects objects
LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID Visible Visible Not Visible Not Visible
LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID in Visible Visible Visible Visible
conjunction with
LDAP_SERVER_SHOW_DELETED_OID or
LDAP_SERVER_SHOW_RECYCLED_OID

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.26 LDAP_SERVER_SHOW_RECYCLED_OID

The LDAP_SERVER_SHOW_RECYCLED_OID control is used with an LDAP operation to specify that
tombstones, deleted-objects, and recycled-objects must be visible to the operation. For example,
when the control is used with an LDAP search operation, the search results include any tombstones,
deleted-objects, or recycled-objects that match the search filter.

The following table compares the behavior of the two similar controls
LDAP_SERVER_SHOW_DELETED_OID (section 3.1.1.3.4.1.14) and
LDAP_SERVER_SHOW_RECYCLED_OID.

Extended control name Deleted-objects | Tombstones | Recycled-objects
LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible
LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID

The LDAP_SERVER_POLICY_HINTS_OID control is used with an LDAP operation to enforce the
password history length constraint ([MS-SAMR] section 3.1.1.7.1) during password set. The password
history policy sets how frequently old passwords can be reused.

222 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

PolicyHintsRequestValue ::= SEQUENCE {
Flags INTEGER
}

where Flags tells the server whether to apply the password history length constraint on password-set
operations. If it is 0x1, then that constraint will be enforced. Otherwise, the constraint is not enforced.

3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID

The LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID control has the exact semantics and behaviors
as LDAP_SERVER_POLICY_HINTS_OID (section 3.1.1.3.4.1.27); this control MAY be used by clients
when the server does not support LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD use
LDAP_SERVER_POLICY_HINTS_OID when it is supported by the server.

3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID

The LDAP_SERVER_DIRSYNC_EX_OID control is used with an LDAP search operation in exactly the
same way as the LDAP_SERVER_DIRSYNC_OID control, except for differences specified in this section.
All ASN.1 structures and the meaning of the fields of those structures are the same.

As with the LDAP_SERVER_DIRSYNC_OID control, any attributes can be requested in the search. Only
those objects for which these attributes have been created or modified since the time represented by
Cookie will be considered for inclusion in the search. However, where the
LDAP_SERVER_DIRSYNC_OID control returns only those attributes that have changed, the
LDAP_SERVER_DIRSYNC_EX_OID control also returns unchanged attributes when the attribute name
in the request is appended with the string ";dirSyncAlwaysReturn".

3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID

The LDAP_SERVER_UPDATE_STATS_OID control can be used with any LDAP operation. When sending
this control to the DC, the controlValue field of the Control structure is omitted.

When the server receives a request with the LDAP_SERVER_UPDATE_STATS_OID control attached to
it, the server includes a response control in the response that contains statistics. The controlType
field of the returned Control structure is set to the OID of the LDAP_SERVER_UPDATE_STATS_OID
control. The controlValue field is included in the returned Control structure.

The returned controlValue field is the BER encoding of the following ASN.1 structure:

UpdateStatsResponseValue ::= SEQUENCE OF SEQUENCE ({
statID LDAPOID
statValue OCTET STRING

where statID is an OID that corresponds to a specific statistic name, and statValue is a value related
to that statistic. Each statistic specifies an encoding for its value.

The following table specifies the statistics that a DC MUST return. A DC MAY return other
implementation-defined statistics. No other statistics are returned by DCs in any Windows Server.

Statistic name OID (specified by statID)

Highest USN Allocated 1.2.840.113556.1.4.2208

223/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Statistic name OID (specified by statID)

Invocation ID Of Server 1.2.840.113556.1.4.2209

3.1.1.3.4.1.30.1 Highest USN Allocated

The statValue for this statID contains the highest USN that the DC allocated during the LDAP
operation. USNs allocated by an LDAP operation make up a set of USNs such that no LDAP operation
other than the current operation can write the USN into the DC's state. Note that while no other LDAP
operation can write these USNs, it is not required that the current operation actually write any or all of
these USNs. If the USNs allocated by this LDAP operation make up the empty set, a value of 0 is
returned in the statValue.

The value in the statValue field is a 64-bit integer, in little-endian byte order.

3.1.1.3.4.1.30.2 Invocation ID Of Server

The statValue for this statID contains dc.invocationId (section 3.1.1.1.9). This value is returned in
little-endian byte order.

3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID

The LDAP_SERVER_TREE_DELETE_EX_OID control is used with an LDAP delete operation to cause the
server to recursively delete the entire subtree of objects located underneath the object specified in the
delete operation. The object specified in the delete operation is also deleted.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

TreeDeleteExRequestValue ::= SEQUENCE ({
countOfObjectsToDelete INTEGER
}

where countOfObjectsToDelete is a limit on the nhumber of objects that will be deleted while
processing this control. If the value of countOfObjectsToDelete is less than 2, then the value 2 is
used rather than the value specified. If the value of countOfObjectsToDelete is greater than
16,384, then the value 16,384 is used.

The server deletes between 1 and countOfObjectsToDelete objects, inclusive. If the server does not
delete the entire tree in a single LDAP delete request, it MUST NOT delete the root of the tree (the
object specified in the delete operation), and MUST return the error code adminLimitExceeded /
ERROR_DS_TREE DELETE NOT_FINISHED.

3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID

The LDAP_SERVER_SEARCH_HINTS_OID control is used with an LDAP search operation. This control
supplies hints to the search operation on how to satisfy the search. When sending this control to the
DC, the controlValue field is set to the BER encoding of the following ASN.1 structure.

SearchHintsRequestValue ::= SEQUENCE OF SEQUENCE {
hintId LDAPOID
hintValue OCTET STRING

224 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

where hintld is an OID that corresponds to a specific hint name, and hintValue is a value related to
that hint. Each hint specifies an encoding for its value.

The following table specifies the hints that a DC MUST honor. A DC MAY honor other implementation-
defined search hints. No other search hints are honored by DCs in any Windows Server.

Statistic name OID (as specified by hintId)
Require Sort Index 1.2.840.113556.1.4.2207
Soft Size Limit 1.2.840.113556.1.4.2210

Multiple instances of the LDAP_SERVER_SEARCH_HINTS_OID control can be included with a single
LDAP search operation. The hints are applied in the order in which the controls are encoded in the
LDAP request; that is, a later hint can override an earlier hint, overriding both hintValue and control
criticality. This behavior allows the application of different criticality to individual hints.

If the control is critical and an unrecognized search hint is specified, the DC returns the error
unwillingToPerform | <unrestricted>. If the control is not critical, unrecognized hints are ignored.

3.1.1.3.4.1.32.1 Require Sort Index

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure:

RequireSortIndexHintValue ::= SEQUENCE ({
IndexOnly BOOLEAN
}

If the value of IndexOnly is false, or if no LDAP_SERVER_SORT_OID control accompanies the
LDAP_SERVER_SEARCH_HINTS_OID control, then the hint is ignored.

This hint suggests to the DC that it use an index (as specified by the search flags IX and PI in section
2.2.9) over the attribute specified in the LDAP_SERVER_SORT_OID control to satisfy the search.

If the sort control is critical and no index is available, the search will fail with the error
DB _ERR_CANT_SORT / <unrestricted>.

If the sort control is not critical and no index is available, the hint is ignored.

Exactly what an index is in relationship to a DC is implementation-specific. Therefore, the
determination that an index is not available is not constrained by the protocol, but rather is
implementation-specific. This hint is provided only as a facility to make suggestions to a DC that it
favor search-operation execution that is based on information specified in the sort control rather than
information that is specifically derived from the scope of the search, the filter, or any other
parameters of the search.

3.1.1.3.4.1.32.2 Soft Size Limit

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure:

SoftSizeLimitHintValue ::= SEQUENCE {
limitValue INTEGER

}
If an LDAP_SERVER_SORT_OID control does not accompany this hint, this hint is ignored.
Given that the value of LimitValue is X, given an imposed LDAP size limit of Y (whether specified in

the LDAP search operation or imposed by an implementation-specific default value), and given that a
sort order is specified in an LDAP_SERVER_SORT_OID control, when these values are all applied to an

225/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

LDAP search operation, the LDAP search operation conceptually results in a list of objects to return as
a response to the request. Due to the size limit, the cardinality of the list is less than or equal to Y.
The elements in the list are ordered by the attribute specified in the LDAP_SERVER_SORT_OID
control. If the list of objects contains fewer than X objects, or exactly X objects, then the Soft Size
Limit hint has no affect. If the LDAP search operation identifies more than X objects, then any objects
in the list subsequent to the Xt object that do not have a value of the sort attribute that is equal to
the sort value of the X* object (as defined by the equality comparison rules for that attribute) are
removed from the list before the response is returned to the client.

If the search operation would otherwise have returned success and if one or more objects are
removed from the list according to the earlier algorithm, the search operation will return
sizeLimitExceeded / <unrestricted>.

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID

The LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID is used with an LDAP search operation to
potentially modify the return code of the operation.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

ExpectedEntryCountRequestValue ::= SEQUENCE ({
searchEntriesMin INTEGER
searchEntriesMax INTEGER

When the search operation would normally return success / <unrestricted> and the number of
searchEntries returned by the search is less than searchEntriesMin or greater than
searchEntriesMax, the return code of the search operation is modified to be constraintViolation /
<unrestricted>. Note that this control affects only the return value of the search operation. It does not
affect any other part of the returned data from the search operation.

3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID

The LDAP_SERVER_SET_OWNER_OID is used with an LDAP add operation to specify the owner of the
object to be created. The owner is to be set into the owner portion of the security descriptor stored in
the ntSecurityDescriptor attribute of the object to be created.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

SID octetString

The supplied SID value is a valid SDDL UTF-8 string representation of a SID ([MS-DTYP] section
2.4.2.1).

If an owner is specified both via this control and via a value for the ntSecurityDescriptor attribute, the
value specified by this control takes precedence.

3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID

The LDAP_SERVER_BYPASS_QUOTA_OID is used with an LDAP add operation to specify that
exceeding quota limitations MUST NOT cause the add to fail. When sending this control to the DC, the
controlValue field of the Control structure is omitted. Sending this control to the DC does not cause
the server to include any controls in its response.

226 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.1.3.4.1.36 LDAP_SERVER_LINK_TTL_OID

The LDAP_SERVER_LINK_TTL_OID control is used with an LDAP search request to cause the DC to
return TTL-DNs for link values with associated expiry times (see section 3.1.1.9.2).

When sending this control to a DC, the controlValue field is omitted.

Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.2 LDAP Extended Operations

LDAP extended operations are an extensibility mechanism in version 3 of LDAP, as discussed in
[RFC2251] section 4.12. The following sections describe the LDAP extended operations that are
implemented by DCs in Windows Server 2003, ADAM, Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016.

The LDAP extended operations supported by a DC are exposed as OIDs in the supportedExtension
attribute of the rootDSE. Each OID is mapped to a human-readable name as shown in the following
table.

Extended operation name OID
LDAP_SERVER_FAST_BIND_OID 1.2.840.113556.1.4.1781
LDAP_SERVER_START_TLS_OID 1.3.6.1.4.1.1466.20037
LDAP_TTL_REFRESH_OID 1.3.6.1.4.1.1466.101.119.1
LDAP_SERVER_WHO_AM_I_OID 1.3.6.1.4.1.4203.1.11.3
LDAP_SERVER_BATCH_REQUEST_OID 1.2.840.113556.1.4.2212

Only Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 DCs support extended operations. The following
table specifies the set of LDAP extended operations supported in each Windows Server or ADAM
version that supports extended operations.

The table contains information for the following product versions. See section 3 for more information.
D --> Windows Server 2003

G --> ADAM

J --> Windows Server 2008

M --> Windows Server 2008 R2

R --> Windows Server 2012

U --> Windows Server 2012 R2

X --> Windows Server 2016

Extended operation name D G J M R, U, X
LDAP_SERVER_FAST_BIND_ | X X X

OID

LDAP_SERVER_START_TLS_ | X X X

OID

227/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Extended operation name | D G J M R, U, X
LDAP_TTL_REFRESH_OID X X X
LDAP_SERVER_WHO_AM_I_ X X

OID

LDAP_SERVER_BATCH_REQU X
EST_OID

Each of these operations is executed by performing an LDAP ExtendedRequest operation, specifying
the OID of the extended operation as the requestName field in the ExtendedRequest (see [RFC2251]
section 4.12). The server responds to an ExtendedRequest by returning an ExtendedResponse, the
fields of which are also documented in section 4.12 of the RFC.

3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for fast bind mode. In fast bind mode, the server validates (authenticates) the credentials of LDAP
bind requests that are sent on the connection. However, unlike a regular (non-fast bind mode) bind,
the DC performs authentication only. The DC does not perform authorization steps, such as computing
the group memberships of the authenticated security principal.

The LDAP_SERVER_FAST_BIND_OID operation puts the LDAP connection on which it was sent into fast
bind mode on the DC. The server will reject this operation with the error unwillingToPerform /
ERROR_DS_UNWILLING_TO_PERFORM if a successful bind has already been performed on the
connection.

Note that a client can retrieve the supportedExtension attribute from the root DSE without having first
performed a bind (since the supportedExtension attribute is anonymously accessible, and LDAPv3 does
not require a bind to be performed for anonymous access). A client MUST NOT specify any control
other than LDAP_SERVER_EXTENDED_DN_OID when querying the root DSE anonymously. Thus, a
client can determine if the server supports fast bind mode without first having to bind to the server.

Only simple binds are accepted on a connection in this mode. All other types of bind operations are
rejected with the error unwillingToPerform /| ERROR_DS_INAPPROPRIATE _AUTH. The connection is
always treated as if no bind had occurred for the purposes of all other LDAP operations; that is, the
connection is treated as the anonymous user (in other words, an anonymous bind).

To send this extended operation to the DC, the client sends an LDAP ExtendedRequest with the
requestName field containing the operation's OID. The requestValue field is omitted. The server will
return an ExtendedResponse with the responseName field containing the operation's OID and the
response field omitted.

The following shows a typical sequence of operations in fast bind:
1. The client establishes an LDAP connection with the DC.

2. (Optional) The client checks the supportedExtension attribute on the root DSE to confirm that the
DC supports fast bind mode.

3. The client sends the LDAP_SERVER_FAST_BIND_OID extended operation to the DC to put the
LDAP connection into fast bind mode.

4. The client performs one or more simple binds on the connection.

3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID

This presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the LDAP StartStopTLS protocol as described in [RFC2830].

228 / 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A connection cannot be put into TLS mode if it is using an integrity validation or encryption
mechanism that was negotiated as part of a bind request (for example, a SASL-layer encryption
mechanism). Such an attempt will be rejected with the error operationsError / ERROR_SUCCESS.

3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for dynamic objects as defined in [RFC2589]. This extended operation is sent to the DC to refresh a
specific dynamic object that has already been created. The extended operation is documented in
[RFC2589]. The refresh operation is treated as a modify operation (section 3.1.1.5.3) of the entryTTL
attribute (section 3.1.1.4.5.12).

If the modify is successful, the responseTtl field ([RFC2589] section 4.2) is populated from the
dynamic object's entryTTL constructed attribute according to section 3.1.1.4.5.12, using the msDS-
Entry-Time-To-Die (section 3.1.1.5.3.3) and DynamicObjectMinTTL (section 3.1.1.3.4.7) attributes,
and honoring the dynamic object's requirements, as specified in section 6.1.7.

3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the "Who Am I?" LDAP extended operation described in [RFC4532]. Active Directory implements
this operation in conformance with that RFC.

If the client is authenticated as a Windows security principal, the authzld returned in the response will
contain the string "u:" followed by either (1) the NetBIOS domain name, followed by a backslash ("\"),
followed by the sAMAccountName of the security principal, or (2) the SID of the security principal, in
SDDL SID string format ([MS-DTYP] section 2.4.2.1). If the client is authenticated as an AD LDS
security principal, the returned authzId will contain the string "dn:" followed by the DN of the security
principal. If the client has not authenticated, the returned authzId will be the empty string.

Active Directory does not implement Proxied Authentication Control of [RFC4370], so section 4.1 of
[RFC4532] is not applicable to Active Directory.

3.1.1.3.4.2.5 LDAP_SERVER_BATCH_REQUEST_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the batched LDAP extended operation. In a batched LDAP extended operation, the DC accepts an
extended operation that contains a sequence of LDAP messages (that is, LDAP operations) encoded

and packed into the operation data and then operates on the individual messages sequentially.

When sending this extended operation to the DC, the data field is set to the BER encoding of the
following ASN.1 structure.

BatchRequestRequestValue ::= SEQUENCE of OCTET STRING

Each OCTET STRING contains a BER encoded ([ITUX690]) LDAPMessage as defined in [RFC2251].
The DC MUST support the following values of the protocolOp field of an LDAP message.
= searchRequest

* modifyRequest

addRequest

» deleteRequest

229/ 626

[MS-ADTS-Diff] - v20170601

Active Directory Technical Specification
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The DC MAY support any of the other legal values of the protocolOp field of an LDAP message. No
version of Windows Server supports any of these other values.

The DC MUST accept the following controls (defined in section 3.1.1.3.4.1) as part of the encoded
LDAPMessage:

= LDAP_SERVER_DOMAIN_SCOPE_OID

= LDAP_SERVER_EXTENDED_DN_OID

= LDAP_SERVER_GET_STATS_OID

= LDAP_SERVER_PERMISSIVE_MODIFY_OID

= LDAP_SERVER_SD_FLAGS_OID

= LDAP_SERVER_SEARCH_OPTIONS_OID

= LDAP_SERVER_SHOW_DELETED_OID

= LDAP_SERVER_DN_INPUT_OID

= LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID
= LDAP_SERVER_SHOW_RECYCLED_OID

The DC MAY support other controls. No version of Windows Server supports any other controls.

If the DC returns any return code for the batched LDAP extended operation other than success /
<unrestricted>, then the DC returns no data for the batched LDAP extended operation.

If the DC returns any data for the batched LDAP extended operation, the data is set to the BER
encoding of the following ASN.1 structure.

BatchRequestResponseValue ::= SEQUENCE of LDAPMessage

If the DC receives an LDAPMessage containing unsupported protocolOp values or controls, or if the
data for the batched LDAP extended operation is not a legal BER encoding as required, the DC must
return the error protocolError / <unrestricted>.

If the number of individual messages in the return data exceeds the DC's limit, the overall batched
LDAP extended operation returns the error sizeLimitExceeded / <unrestricted>. This limit is controlled
by the MaxBatchReturnMessages LDAP policy (see section 3.1.1.3.4.6).

If the amount of time spent processing the batched LDAP extended operation exceeds the DC's limit,
the overall batched LDAP extended operation returns the error timelLimitExceeded /
ERROR_INVALID PARAMETER. This limit is implementation-defined. In Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 this limit is controlled by the MaxQueryDuration
LDAP policy (see section 3.1.1.3.4.6).

If any operation in a batched LDAP extended operation results in an LDAP return code other than
success / <unrestricted>, then all subsequent operations in that batched LDAP operation are not
performed and all prior operations are "rolled back"; that is, no changes that would have been caused
by the operations are committed to the DC's state. Note that, other than where explicitly stated, the
return codes of these individual operations do not affect the return code of the batched LDAP extended
operation.

If an individual operation in the batched LDAP extended operation returns busy / <unrestricted>, then
the batched LDAP extended operation returns the return co