

[MS-ADTS]: Active Directory Technical Specification

This topic lists the Errata found in the MS-ADTS document since it was last
published. Since this topic is updated frequently, we recommend that you
subscribe to these RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications documentation
referenced.

RSS

Atom

Errata below are for Protocol Document Version V41.0 – 2015/06/30.

Errata
Published* Description

2015/10/12 In Section 6.2.2.3.4.5, nTDSConnection Creation, clarified the pseudocode to show when failed
DCs are filtered out.

Changed from:

 ...

 CALL CreateConnection(cr, rbh, t, lbh, e.ReplInfo, sched,

 partialReplicaOkay)

 ENDFOR

 RETURN connected

 }

 ...
 CreateConnection(IN crossRef cr, IN nTDSDSA rbh,

 IN interSiteTransport t, IN nTDSDSA lbh, IN REPLINFO ri,

 IN SCHEDULE sch, INOUT SEQUENCE<GUID> keepConnections)

 {

 LET rsiteGuid be the objectGUID of the site object ancestor of rbh

 LET lsiteGuid be the objectGUID of the site object ancestor of lbh

 LET rbhsAll be the result of GetAllBridgeheadDCs(rsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

 LET rbhsAvail be the result of GetAllBridgeheadDCs(rsiteGuid, cr,

 t, partialReplicaOkay, detectFailedDCs)

 LET lbhsAll be the result of GetAllBridgeheadDCs(lsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

 LET lbhsAvail be the result of GetAllBridgeheadDCs(lsiteGuid, cr,

 t, partialReplicaOkay, detectFailedDCs)

 ...

Changed to:

 ...

 CALL CreateConnection(cr, rbh, t, lbh, e.ReplInfo, sched,

 detectFailedDCs, partialReplicaOkay, keepConnections)

 ENDFOR

 RETURN connected

 }

 ...

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
http://go.microsoft.com/fwlink/?LinkId=511295

Errata
Published* Description

 CreateConnection(IN crossRef cr, IN nTDSDSA rbh,

 IN interSiteTransport t, IN nTDSDSA lbh, IN REPLINFO ri,

 IN SCHEDULE sch, IN bool detectFailedDCs, IN bool partialReplicaOkay,

 INOUT SEQUENCE<GUID> keepConnections)

 {

 LET rsiteGuid be the objectGUID of the site object ancestor of rbh

 LET lsiteGuid be the objectGUID of the site object ancestor of lbh

 LET rbhsAll be the result of GetAllBridgeheadDCs(rsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

 LET lbhsAll be the result of GetAllBridgeheadDCs(lsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

2015/09/28 In Section 6.2.2.4, Removing Unnecessary Connections, clarified when and how a KCC deletes
a connection.

Changed from:

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent
object of cn and the DC with the nTDSDA object referenced by cn!fromServer are in the same
site, the KCC on dc deletes cn if all of the following are true:

▪ Bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options.

▪ No site settings object s exists for the local DC's site, or bit
NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED is clear in s!options.

▪ Another nTDSConnection object cn2 exists such that cn and cn2 have the same parent
object, cn!fromServer = cn2!fromServer, and either

▪ cn!whenCreated < cn2!whenCreated

▪ cn!whenCreated = cn2!whenCreated and cn!objectGUID < cn2!objectGUID

▪ Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent
object of cn and the DC with the nTDSDSA object referenced by cn!fromServer are in different
sites, a KCC acting as an ISTG in dc's site deletes cn if all of the following are true:

▪ Bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options.

▪ cn!fromServer references an nTDSDSA object for a DC in a site other than the local DC's
site.

Changed to:

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent
object of cn and the DC with the nTDSDA object referenced by cn!fromServer are in the same
site, the KCC on dc deletes cn if all of the following are true:

▪ Bit NTDSCONN_OPT_IS_GENERATED is set in cn!options.

▪ No site settings object s exists for the local DC's site, or bit
NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED is clear in s!options.

▪ Another nTDSConnection object cn2 exists such that cn and cn2 have the same parent

object, cn!fromServer = cn2!fromServer, and either

▪ cn!whenCreated < cn2!whenCreated

▪ cn!whenCreated = cn2!whenCreated and cn!objectGUID < cn2!objectGUID

▪ Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent
object of cn and the DC with the nTDSDSA object referenced by cn!fromServer are in different
sites, a KCC acting as an ISTG in dc's site deletes cn if all of the following are true:

▪ Bit NTDSCONN_OPT_IS_GENERATED is set in cn!options.

▪ cn!fromServer references an nTDSDSA object for a DC in a site other than the local DC's
site.

Errata
Published* Description

2015/08/17 In Section 6.2.2.3.4.4, Spanning Tree Computation, modified the pseudo code for
BridgeheadDCFailed so that the detectFailedDCs field is not a default value but a switch for
detection.

Changed from:

/***** BridgeheadDCFailed *****/

/* Determine whether a given DC is known to be in a failed state.

 * IN: objectGUID - objectGUID of the DC's nTDSDSA object.

 * IN: detectFailedDCs - TRUE if and only failed DC detection is

 * enabled.

 * RETURNS: TRUE if and only if the DC should be considered to be in a

 * failed state.

 */

BridgeheadDCFailed(IN GUID objectGUID, IN bool detectFailedDCs) : bool

{

 IF bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in

 the options attribute of the site settings object for the local

 DC's site

 RETURN FALSE

 ELSEIF a tuple z exists in the kCCFailedLinks or

 kCCFailedConnections variables such that z.UUIDDsa =

 objectGUID, z.FailureCount > 1, and the current time -

 z.TimeFirstFailure > 2 hours

 RETURN TRUE

 ELSE

 RETURN detectFailedDCs

 ENDIF

}

Changed to:

/***** BridgeheadDCFailed *****/

/* Determine whether a given DC is known to be in a failed state.

 * IN: objectGUID - objectGUID of the DC's nTDSDSA object.

 * IN: detectFailedDCs - TRUE if and only if failed DC detection is

 * enabled.

 * RETURNS: TRUE if and only if the DC should be considered to be in a

 * failed state.

 */

BridgeheadDCFailed(IN GUID objectGUID, IN bool detectFailedDCs) : bool

{

 IF detectFailedDCs is FALSE

 RETURN FALSE

 ENDIF

 IF bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in

Errata
Published* Description

 the options attribute of the site settings object for the local

 DC's site

 RETURN FALSE

 ENDIF

 IF a tuple z exists in the kCCFailedLinks or

 kCCFailedConnections variables such that

 z.UUIDDsa = objectGUID, z.FailureCount > 1, and

 the current time - z.TimeFirstFailure > 2 hours

 RETURN TRUE

 ENDIF

 RETURN FALSE

}

 In Section 6.2.2.5, Connection Translation, revised the value assignment for uuidDsa during
KCC connection translation from a 'GUID based DNS name' to a 'GUID'.

Changed from:

If s and the local DC's nTDSDSA object are in the same site, cn!transportType has no value, or
the RDN of cn!transportType is CN=IP:

▪ Bit DRS_MAIL_REP in t.replicaFlags is clear.

▪ t.uuidTransport = NULL GUID.

▪ t.uuidDsa = The GUID-based DNS name of s.

Otherwise:

▪ Bit DRS_MAIL_REP in t.replicaFlags is set.

▪ If x is the object with dsname cn!transportType, t.uuidTransport = x!objectGUID.

▪ Let a be the attribute identified by x!transportAddressAttribute. If a is the dNSHostName
attribute, t.uuidDsa = the GUID-based DNS name of s. Otherwise, t.uuidDsa =
(s!parent)!a.

Finally, the KCC calls IDL_DRSReplicaAdd to add a tuple u to n!repsFrom for each
IDL_DRSGetNCChanges server "implied" by the nTDSConnection object children of the local
DC's nTDSDSA object if such a u does not already exist. For each such nTDSConnection cn, a
tuple u is implied if all of the following are true:

Errata
Published* Description

…

Changed to:

If s and the local DC's nTDSDSA object are in the same site, cn!transportType has no value, or
the RDN of cn!transportType is CN=IP:

▪ Bit DRS_MAIL_REP in t.replicaFlags is clear.

▪ t.uuidTransport = NULL GUID.

▪ t.uuidDsa = s!objectGUID.

Otherwise:

▪ Bit DRS_MAIL_REP in t.replicaFlags is set.

▪ If x is the object with dsname cn!transportType, t.uuidTransport = x!objectGUID.

▪ Let a be the attribute identified by x!transportAddressAttribute. If a is the dNSHostName
attribute, t.uuidDsa = s!objectGUID. Otherwise, t.uuidDsa = (s!parent)!objectGUID.

Finally, the KCC calls IDL_DRSReplicaAdd to add a tuple u to n!repsFrom for each
IDL_DRSGetNCChanges server "implied" by the nTDSConnection object children of the local
DC's nTDSDSA object if such a u does not already exist. For each such nTDSConnection cn, a
tuple u is implied if all of the following are true:

…

2015/08/03 In Section 7.6.2.4, Performing an LDAP Unbind Against a Directory Server, corrected the label
of the input parameter from 'TaskInputLdapMessage' to 'TaskInputRequestMessage'.

Changed from:

4. Invoke the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) task
with the following parameters: TaskInputConnectionInfo is set to the TaskInputConnectionInfo
that was passed to this task and TaskInputLdapMessage is set to ldapRequest.

Changed to:

4. Invoke the Performing an LDAP Operation Against a Directory Server (section 7.6.2.5) task
with the following parameters: TaskInputConnectionInfo is set to the TaskInputConnectionInfo
that was passed to this task and TaskInputRequestMessage is set to ldapRequest.

2015/08/03 In two sections related to the SPN uniqueness checking logic, updated the text to account for
the availability of Windows Server 2012 R2 with [MSKB-3070083].

Errata
Published* Description

In Section 3.1.5.1.3, Uniqueness Constraints, changed from:

▪ In AD DS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new
attribute value must be unique within the entire forest. If the DC is not a GC, then the DC
should issue an LDAP search against a GC to determine uniqueness. The following
additional considerations for uniqueness checking are relevant for Windows Server 2016
Technical Preview:

▪ …

▪ Neither userPrincipalName nor servicePrincipalName uniqueness is checked if the
DoNotVerifyUPNAndOrSPNUniqueness character of the dsHeuristics attribute is set to
"3".

Changed to:

▪ In AD DS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new
attribute value must be unique within the entire forest. If the DC is not a GC, then the DC
should issue an LDAP search against a GC to determine uniqueness. The following
additional considerations for uniqueness checking are relevant for Windows Server 2012
R2 with [MSKB-3070083] and Windows Server 2016 Technical Preview:

▪ …

▪ Neither userPrincipalName nor servicePrincipalName uniqueness is checked if the
DoNotVerifyUPNAndOrSPNUniqueness character of the dsHeuristics attribute is set to
"3".

▪ userPrincipalName and servicePrincipalName uniqueness is checked if the
DoNotVerifyUPNAndOrSPNUniqueness character of the dsHeuristics attribute is set to
any value other than "1", "2", or "3".

In Section 6.1.1.2.4.1.2, dSHeuristics, changed from:

Character number Character name Description

21 DoNotVerifyUPNAndOrSPNUniqueness In AD LDS, if this
character is anything
other than "0", AD LDS
will not check values of
userPrincipalName for
uniqueness. See section
3.1.1.5.2.2.In AD LDS,
this heuristic applies to
Windows Server 2003,
Windows Server 2008,
Windows Server 2008
R2, Windows Server
2012, Windows Server
2012 R2, and Windows
Server 2016 Technical
Preview.In AD DS, if
this character is "1",
"2" or "3", AD DS will
not check values of
userPrincipalName or
servicePrincipalName
for uniqueness. See
section 3.1.1.5.1.3.In
AD DS, this heuristic
applies to Windows
Server 2016 Technical
Preview.

Changed to:

Errata
Published* Description

Character number Character name Description

21 DoNotVerifyUPNAndOrSPNUniqueness In AD LDS, if this
character is anything
other than "0", AD
LDS will not check
values of
userPrincipalName for
uniqueness. See
section 3.1.1.5.2.2.In
AD LDS, this heuristic
applies to Windows
Server 2003, Windows
Server 2008, Windows
Server 2008 R2,

Windows Server 2012,
Windows Server 2012
R2, and Windows
Server 2016 Technical
Preview.In AD DS, if
this character is "1",
"2" or "3", AD DS will
not check values of
userPrincipalName or
servicePrincipalName
for uniqueness. See
section 3.1.1.5.1.3.In
AD DS, this heuristic
applies to Windows
Server 2012 R2 with
[MSKB-3070083] and
Windows Server 2016
Technical Preview.

*Date format: YYYY/MM/DD

