

1 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-ADTS]:
Active Directory Technical Specification

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

02/22/2007 0.01 MCPP Milestone 3 Initial Availability

06/01/2007 1.0 Major Included non-native content.

07/03/2007 1.0.1 Editorial Revised and edited the technical content.

07/20/2007 1.0.2 Editorial Revised and edited the technical content.

08/10/2007 1.0.3 Editorial Revised and edited the technical content.

09/28/2007 2.0 Major Adjusted bitfield diagrams for byte ordering; added

bitflags.

10/23/2007 2.1 Minor Updated the technical content.

11/30/2007 2.2 Minor Updated the technical content.

01/25/2008 3.0 Major Updated and revised the technical content.

03/14/2008 3.1 Minor Deleted hexadecimal representations of little-endian

bit flags.

05/16/2008 4.0 Major Updated and revised the technical content.

06/20/2008 5.0 Major Updated and revised the technical content.

07/25/2008 6.0 Major Updated and revised the technical content.

08/29/2008 7.0 Major Updated and revised the technical content.

10/24/2008 8.0 Major Updated and revised the technical content.

12/05/2008 9.0 Major Updated and revised the technical content.

01/16/2009 10.0 Major Updated and revised the technical content.

02/27/2009 11.0 Major Updated and revised the technical content.

04/10/2009 12.0 Major Updated and revised the technical content.

05/22/2009 13.0 Major Updated and revised the technical content.

07/02/2009 14.0 Major Updated and revised the technical content.

08/14/2009 15.0 Major Updated and revised the technical content.

09/25/2009 16.0 Major Updated and revised the technical content.

11/06/2009 17.0 Major Updated and revised the technical content.

12/18/2009 18.0 Major Updated and revised the technical content.

3 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Date

Revision

History

Revision

Class Comments

01/29/2010 19.0 Major Updated and revised the technical content.

03/12/2010 20.0 Major Updated and revised the technical content.

04/23/2010 21.0 Major Updated and revised the technical content.

06/04/2010 22.0 Major Updated and revised the technical content.

07/16/2010 23.0 Major Significantly changed the technical content.

08/27/2010 24.0 Major Significantly changed the technical content.

10/08/2010 25.0 Major Significantly changed the technical content.

11/19/2010 26.0 Major Significantly changed the technical content.

01/07/2011 27.0 Major Significantly changed the technical content.

02/11/2011 28.0 Major Significantly changed the technical content.

03/25/2011 29.0 Major Significantly changed the technical content.

05/06/2011 30.0 Major Significantly changed the technical content.

06/17/2011 30.1 Minor Clarified the meaning of the technical content.

09/23/2011 31.0 Major Significantly changed the technical content.

12/16/2011 32.0 Major Significantly changed the technical content.

03/30/2012 33.0 Major Significantly changed the technical content.

07/12/2012 34.0 Major Significantly changed the technical content.

10/25/2012 35.0 Major Significantly changed the technical content.

01/31/2013 36.0 Major Significantly changed the technical content.

08/08/2013 37.0 Major Significantly changed the technical content.

11/14/2013 38.0 Major Significantly changed the technical content.

02/13/2014 39.0 Major Significantly changed the technical content.

4 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction ... 22
1.1 Glossary ... 24
1.2 References .. 37

1.2.1 Normative References ... 37
1.2.2 Informative References ... 41

1.3 Overview .. 42
1.4 Relationship to Other Protocols .. 43
1.5 Prerequisites/Preconditions ... 43
1.6 Applicability Statement ... 44
1.7 Versioning and Capability Negotiation ... 44
1.8 Vendor-Extensible Fields ... 44
1.9 Standards Assignments .. 44

2 Messages.. 45
2.1 Transport .. 45
2.2 Message Syntax .. 45

2.2.1 LCID-Locale Mapping Table .. 45
2.2.2 DS_REPL_NEIGHBORW_BLOB .. 51
2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB .. 55
2.2.4 DS_REPL_OPW_BLOB ... 56
2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB... 58
2.2.6 DS_REPL_CURSOR_BLOB .. 59
2.2.7 DS_REPL_ATTR_META_DATA_BLOB .. 60
2.2.8 DS_REPL_VALUE_META_DATA_BLOB .. 62
2.2.9 Search Flags .. 64
2.2.10 System Flags ... 65
2.2.11 schemaFlagsEx Flags .. 66
2.2.12 Group Type Flags ... 66
2.2.13 Group Security Flags ... 67
2.2.14 Security Privilege Flags ... 67
2.2.15 Domain RID Values ... 68
2.2.16 userAccountControl Bits .. 69
2.2.17 Optional Feature Values .. 70
2.2.18 Claims Wire Structures .. 71

2.2.18.1 CLAIM_ID .. 72
2.2.18.2 CLAIM_TYPE ... 72
2.2.18.3 CLAIMS_SOURCE_TYPE ... 73
2.2.18.4 CLAIMS_COMPRESSION_FORMAT ... 73
2.2.18.5 CLAIM_ENTRY .. 73
2.2.18.6 CLAIMS_ARRAY .. 75
2.2.18.7 CLAIMS_SET .. 75
2.2.18.8 CLAIMS_SET_METADATA ... 75
2.2.18.9 CLAIMS_BLOB .. 76

2.2.19 MSDS-MANAGEDPASSWORD_BLOB .. 76

3 Details .. 79
3.1 Common Details .. 79

3.1.1 Abstract Data Model ... 79
3.1.1.1 State Model ... 79

3.1.1.1.1 Scope .. 79

5 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.2 State Modeling Primitives and Notational Conventions 80
3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior 81
3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes 83
3.1.1.1.5 NC, NC Replica.. 86

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime 88
3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-

Known Objects ... 88
3.1.1.1.7 Forest, Canonical Name ... 92
3.1.1.1.8 GC .. 94
3.1.1.1.9 DCs, usn Counters, and the Originating Update Stamp 95
3.1.1.1.10 GC Server ... 102
3.1.1.1.11 FSMO Roles ... 102
3.1.1.1.12 Cross-NC Object References .. 103
3.1.1.1.13 NC Replica Graph ... 103
3.1.1.1.14 Scheduled and Event-Driven Replication .. 105
3.1.1.1.15 Replication Latency and Tombstone Lifetime .. 106
3.1.1.1.16 Delayed Link Processing .. 106

3.1.1.2 Active Directory Schema ... 107
3.1.1.2.1 Schema NC ... 107
3.1.1.2.2 Syntaxes ... 109

3.1.1.2.2.1 Introduction ... 109
3.1.1.2.2.2 LDAP Representations ... 109

3.1.1.2.2.2.1 Object(DN-String) ... 111
3.1.1.2.2.2.2 Object(Access-Point) ... 112
3.1.1.2.2.2.3 Object(DN-Binary) .. 112
3.1.1.2.2.2.4 Object(OR-Name) ... 112
3.1.1.2.2.2.5 String(Case) ... 112
3.1.1.2.2.2.6 String(NT-Sec-Desc) ... 112
3.1.1.2.2.2.7 String(Sid) ... 112
3.1.1.2.2.2.8 String(Teletex) ... 112

3.1.1.2.2.3 Referential Integrity .. 113
3.1.1.2.2.4 Supported Comparison Operations .. 113

3.1.1.2.2.4.1 Bool Comparison Rule .. 116
3.1.1.2.2.4.2 Integer Comparison Rule ... 116
3.1.1.2.2.4.3 DN-String Comparison Rule .. 116
3.1.1.2.2.4.4 DN-Binary Comparison Rule ... 116
3.1.1.2.2.4.5 DN Comparison Rule.. 116
3.1.1.2.2.4.6 PresentationAddress Comparison Rule 117
3.1.1.2.2.4.7 Octet Comparison Rule .. 117
3.1.1.2.2.4.8 CaseString Comparison Rule ... 117
3.1.1.2.2.4.9 SecDesc Comparison Rule .. 117
3.1.1.2.2.4.10 OID Comparison Rule .. 117
3.1.1.2.2.4.11 Sid Comparison Rule .. 117
3.1.1.2.2.4.12 NoCaseString Comparison Rule ... 117
3.1.1.2.2.4.13 UnicodeString Comparison Rule .. 118
3.1.1.2.2.4.14 Time Comparison Rule ... 118

3.1.1.2.3 Attributes .. 118
3.1.1.2.3.1 Auto-Generated linkID .. 122
3.1.1.2.3.2 Auto-Generated mAPIID .. 122
3.1.1.2.3.3 Property Set .. 122
3.1.1.2.3.4 ldapDisplayName Generation ... 124
3.1.1.2.3.5 Flag fRODCFilteredAttribute in Attribute searchFlags 124

3.1.1.2.4 Classes ... 125

6 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.4.1 Class Categories ... 125
3.1.1.2.4.2 Inheritance .. 125
3.1.1.2.4.3 objectClass .. 125
3.1.1.2.4.4 Structure Rules .. 126
3.1.1.2.4.5 Content Rules .. 126
3.1.1.2.4.6 Auxiliary Class.. 126
3.1.1.2.4.7 RDN Attribute of a Class .. 127
3.1.1.2.4.8 Class classSchema .. 127

3.1.1.2.5 Schema Modifications ... 129
3.1.1.2.5.1 Consistency and Safety Checks .. 129

3.1.1.2.5.1.1 Consistency Checks ... 129
3.1.1.2.5.1.2 Safety Checks ... 130

3.1.1.2.5.2 Auto-Generated Attributes ... 131
3.1.1.2.5.3 Defunct ... 131

3.1.1.2.5.3.1 Forest Functional Level Less Than WIN2003 132
3.1.1.2.5.3.2 Forest Functional Level WIN2003 or Greater 133

3.1.1.2.6 ATTRTYP ... 133
3.1.1.3 LDAP .. 134

3.1.1.3.1 LDAP Conformance ... 134
3.1.1.3.1.1 Schema ... 135

3.1.1.3.1.1.1 subSchema .. 135
3.1.1.3.1.1.2 Syntaxes .. 138
3.1.1.3.1.1.3 Attributes ... 138
3.1.1.3.1.1.4 Classes .. 146
3.1.1.3.1.1.5 Auxiliary Classes ... 149

3.1.1.3.1.2 Object Naming ... 150
3.1.1.3.1.2.1 Naming Attributes ... 150
3.1.1.3.1.2.2 NC Naming ... 150
3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs 151
3.1.1.3.1.2.4 Alternative Forms of DNs ... 151
3.1.1.3.1.2.5 Alternative Form of SIDs .. 152

3.1.1.3.1.3 Search Operations .. 152
3.1.1.3.1.3.1 Search Filters ... 152
3.1.1.3.1.3.2 Selection Filters .. 153
3.1.1.3.1.3.3 Range Retrieval of Attribute Values ... 153
3.1.1.3.1.3.4 Ambiguous Name Resolution .. 154
3.1.1.3.1.3.5 Searches Using the objectCategory Attribute 156
3.1.1.3.1.3.6 Restrictions on rootDSE Searches .. 156

3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3 .. 156
3.1.1.3.1.5 Password Modify Operations .. 157

3.1.1.3.1.5.1 unicodePwd .. 157
3.1.1.3.1.5.2 userPassword ... 158

3.1.1.3.1.6 Dynamic Objects .. 159
3.1.1.3.1.7 Modify DN Operations ... 159
3.1.1.3.1.8 Aliases .. 160
3.1.1.3.1.9 Error Message Strings ... 160
3.1.1.3.1.10 Ports ... 160
3.1.1.3.1.11 LDAP Search Over UDP .. 160
3.1.1.3.1.12 Unbind Operation .. 160

3.1.1.3.2 rootDSE Attributes ... 160
3.1.1.3.2.1 configurationNamingContext .. 166
3.1.1.3.2.2 currentTime ... 166
3.1.1.3.2.3 defaultNamingContext ... 166

7 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.4 dNSHostName .. 166
3.1.1.3.2.5 dsSchemaAttrCount .. 166
3.1.1.3.2.6 dsSchemaClassCount .. 166
3.1.1.3.2.7 dsSchemaPrefixCount ... 166
3.1.1.3.2.8 dsServiceName .. 166
3.1.1.3.2.9 highestCommittedUSN .. 166
3.1.1.3.2.10 isGlobalCatalogReady .. 166
3.1.1.3.2.11 isSynchronized ... 166
3.1.1.3.2.12 ldapServiceName .. 167
3.1.1.3.2.13 namingContexts ... 167
3.1.1.3.2.14 netlogon .. 167
3.1.1.3.2.15 pendingPropagations ... 167
3.1.1.3.2.16 rootDomainNamingContext .. 167
3.1.1.3.2.17 schemaNamingContext .. 167
3.1.1.3.2.18 serverName ... 167
3.1.1.3.2.19 subschemaSubentry .. 167
3.1.1.3.2.20 supportedCapabilities .. 167
3.1.1.3.2.21 supportedControl .. 167
3.1.1.3.2.22 supportedLDAPPolicies ... 168
3.1.1.3.2.23 supportedLDAPVersion .. 168
3.1.1.3.2.24 supportedSASLMechanisms .. 168
3.1.1.3.2.25 domainControllerFunctionality .. 168
3.1.1.3.2.26 domainFunctionality .. 168
3.1.1.3.2.27 forestFunctionality .. 169
3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures,

msDS-ReplLinkFailures, and msDS-ReplPendingOps 169
3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors ... 170
3.1.1.3.2.30 msDS-ReplQueueStatistics ... 170
3.1.1.3.2.31 msDS-TopQuotaUsage ... 171
3.1.1.3.2.32 supportedConfigurableSettings ... 172
3.1.1.3.2.33 supportedExtension .. 172
3.1.1.3.2.34 validFSMOs .. 172
3.1.1.3.2.35 dsaVersionString .. 173
3.1.1.3.2.36 msDS-PortLDAP .. 173
3.1.1.3.2.37 msDS-PortSSL .. 173
3.1.1.3.2.38 msDS-PrincipalName ... 174
3.1.1.3.2.39 serviceAccountInfo .. 174
3.1.1.3.2.40 spnRegistrationResult .. 174
3.1.1.3.2.41 tokenGroups .. 175
3.1.1.3.2.42 usnAtRifm .. 175

3.1.1.3.3 rootDSE Modify Operations .. 175
3.1.1.3.3.1 becomeDomainMaster ... 178
3.1.1.3.3.2 becomeInfrastructureMaster .. 179
3.1.1.3.3.3 becomePdc .. 179
3.1.1.3.3.4 becomePdcWithCheckPoint .. 180
3.1.1.3.3.5 becomeRidMaster ... 180
3.1.1.3.3.6 becomeSchemaMaster .. 180
3.1.1.3.3.7 checkPhantoms .. 180
3.1.1.3.3.8 doGarbageCollection ... 181
3.1.1.3.3.9 dumpDatabase ... 181
3.1.1.3.3.10 fixupInheritance ... 182
3.1.1.3.3.11 invalidateRidPool .. 182
3.1.1.3.3.12 recalcHierarchy... 183

8 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.13 schemaUpdateNow ... 183
3.1.1.3.3.14 schemaUpgradeInProgress ... 184
3.1.1.3.3.15 removeLingeringObject .. 184
3.1.1.3.3.16 doLinkCleanup .. 185
3.1.1.3.3.17 doOnlineDefrag .. 185
3.1.1.3.3.18 replicateSingleObject .. 186
3.1.1.3.3.19 updateCachedMemberships .. 187
3.1.1.3.3.20 doGarbageCollectionPhantomsNow ... 187
3.1.1.3.3.21 invalidateGCConnection ... 187
3.1.1.3.3.22 renewServerCertificate .. 188
3.1.1.3.3.23 rODCPurgeAccount.. 188
3.1.1.3.3.24 runSamUpgradeTasks ... 189
3.1.1.3.3.25 sqmRunOnce .. 189
3.1.1.3.3.26 runProtectAdminGroupsTask .. 190
3.1.1.3.3.27 disableOptionalFeature .. 190
3.1.1.3.3.28 enableOptionalFeature ... 191
3.1.1.3.3.29 dumpReferences ... 191
3.1.1.3.3.30 dumpLinks ... 192
3.1.1.3.3.31 schemaUpdateIndicesNow ... 192
3.1.1.3.3.32 null ... 192

3.1.1.3.4 LDAP Extensions .. 192
3.1.1.3.4.1 LDAP Extended Controls .. 193

3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING ... 200
3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID 201
3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID .. 201
3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID .. 203
3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID .. 203
3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID ... 204
3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID ... 208
3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID 208
3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID .. 208
3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID 209
3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID .. 209
3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID 210
3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID . 211
3.1.1.3.4.1.14 LDAP_SERVER_SHOW_DELETED_OID 218
3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID .. 218
3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID ... 218
3.1.1.3.4.1.17 LDAP_CONTROL_VLVREQUEST and

LDAP_CONTROL_VLVRESPONSE ... 219
3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID ... 221
3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID 222
3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID 223
3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID 223
3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID 223
3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID 223
3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID ... 224
3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID 225
3.1.1.3.4.1.26 LDAP_SERVER_SHOW_RECYCLED_OID 225
3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID .. 226
3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID 226
3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID ... 226
3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID 226

9 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.30.1 Highest USN Allocated .. 227
3.1.1.3.4.1.30.2 Invocation ID Of Server .. 227

3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID 227
3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID 228

3.1.1.3.4.1.32.1 Require Sort Index .. 228
3.1.1.3.4.1.32.2 Soft Size Limit ... 229

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID 229
3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID .. 230
3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID 230

3.1.1.3.4.2 LDAP Extended Operations .. 230
3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID ... 231
3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID ... 232
3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID .. 232
3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID ... 232
3.1.1.3.4.2.5 LDAP_SERVER_BATCH_REQUEST_OID 232

3.1.1.3.4.3 LDAP Capabilities .. 234
3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID .. 236
3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID 236
3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID 236
3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST 237
3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID 237
3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID 237
3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID 237
3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID............................ 237
3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID 237

3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch) ... 237
3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND... 238
3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR... 238
3.1.1.3.4.4.3 LDAP_MATCHING_RULE_TRANSITIVE_EVAL 238
3.1.1.3.4.4.4 LDAP_MATCHING_RULE_DN_WITH_DATA 239

3.1.1.3.4.5 LDAP SASL Mechanisms .. 239
3.1.1.3.4.5.1 GSSAPI .. 240
3.1.1.3.4.5.2 GSS-SPNEGO ... 240
3.1.1.3.4.5.3 EXTERNAL .. 240
3.1.1.3.4.5.4 DIGEST-MD5 .. 240

3.1.1.3.4.6 LDAP Policies ... 240
3.1.1.3.4.7 LDAP Configurable Settings .. 243
3.1.1.3.4.8 LDAP IP-Deny List .. 247

3.1.1.4 Reads... 247
3.1.1.4.1 Introduction .. 247
3.1.1.4.2 Definitions ... 248
3.1.1.4.3 Access Checks ... 249
3.1.1.4.4 Extended Access Checks ... 249
3.1.1.4.5 Constructed Attributes .. 251

3.1.1.4.5.1 subSchemaSubEntry ... 251
3.1.1.4.5.2 canonicalName ... 251
3.1.1.4.5.3 allowedChildClasses .. 252
3.1.1.4.5.4 sDRightsEffective .. 252
3.1.1.4.5.5 allowedChildClassesEffective .. 252
3.1.1.4.5.6 allowedAttributes .. 253
3.1.1.4.5.7 allowedAttributesEffective .. 253
3.1.1.4.5.8 fromEntry .. 253
3.1.1.4.5.9 createTimeStamp ... 253

10 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.4.5.10 modifyTimeStamp ... 254
3.1.1.4.5.11 primaryGroupToken .. 254
3.1.1.4.5.12 entryTTL .. 254
3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-

ReplAttributeMetaData, msDS-ReplValueMetaData 254
3.1.1.4.5.14 msDS-NCReplOutboundNeighbors ... 255
3.1.1.4.5.15 msDS-Approx-Immed-Subordinates .. 255
3.1.1.4.5.16 msDS-KeyVersionNumber .. 255
3.1.1.4.5.17 msDS-User-Account-Control-Computed ... 255
3.1.1.4.5.18 msDS-Auxiliary-Classes ... 257
3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable.................................... 257
3.1.1.4.5.20 tokenGroupsGlobalAndUniversal ... 257
3.1.1.4.5.21 possibleInferiors ... 258
3.1.1.4.5.22 msDS-QuotaEffective .. 258
3.1.1.4.5.23 msDS-QuotaUsed ... 259
3.1.1.4.5.24 msDS-TopQuotaUsage ... 259
3.1.1.4.5.25 ms-DS-UserAccountAutoLocked .. 260
3.1.1.4.5.26 msDS-UserPasswordExpired ... 260
3.1.1.4.5.27 msDS-PrincipalName ... 261
3.1.1.4.5.28 parentGUID ... 261
3.1.1.4.5.29 msDS-SiteName ... 261
3.1.1.4.5.30 msDS-isRODC .. 261
3.1.1.4.5.31 msDS-isGC .. 262
3.1.1.4.5.32 msDS-isUserCachableAtRodc .. 262
3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed 263
3.1.1.4.5.34 msDS-RevealedList ... 263
3.1.1.4.5.35 msDS-RevealedListBL .. 264
3.1.1.4.5.36 msDS-ResultantPSO .. 264
3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime ... 265
3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime .. 265
3.1.1.4.5.39 msDS-ManagedPassword ... 266

3.1.1.4.6 Referrals ... 272
3.1.1.4.7 Continuations .. 274
3.1.1.4.8 Effects of Defunct Attributes and Classes... 275

3.1.1.5 Updates .. 275
3.1.1.5.1 General ... 275

3.1.1.5.1.1 Enforce Schema Constraints .. 275
3.1.1.5.1.2 Naming Constraints .. 276
3.1.1.5.1.3 Uniqueness Constraints ... 276
3.1.1.5.1.4 Transactional Semantics .. 277
3.1.1.5.1.5 Stamp Construction .. 277
3.1.1.5.1.6 Replication Notification .. 277
3.1.1.5.1.7 Urgent Replication .. 278
3.1.1.5.1.8 Updates Performed Only on FSMOs ... 279
3.1.1.5.1.9 Allow Updates Only When They Are Enabled 281
3.1.1.5.1.10 Originating Updates Attempted on an RODC 281
3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere 281

3.1.1.5.2 Add Operation ... 281
3.1.1.5.2.1 Security Considerations ... 282
3.1.1.5.2.2 Constraints .. 283
3.1.1.5.2.3 Special Classes and Attributes .. 288
3.1.1.5.2.4 Processing Specifics .. 288
3.1.1.5.2.5 Quota Calculation ... 292

11 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.2.6 NC Requirements ... 292
3.1.1.5.2.7 crossRef Requirements .. 293
3.1.1.5.2.8 NC-Add Operation .. 294

3.1.1.5.2.8.1 Constraints ... 294
3.1.1.5.2.8.2 Security Considerations ... 294
3.1.1.5.2.8.3 Processing Specifics... 294

3.1.1.5.3 Modify Operation .. 295
3.1.1.5.3.1 Security Considerations ... 296

3.1.1.5.3.1.1 Validated Writes .. 296
3.1.1.5.3.1.1.1 Member ... 296
3.1.1.5.3.1.1.2 dNSHostName ... 296
3.1.1.5.3.1.1.3 msDS-AdditionalDnsHostName .. 297
3.1.1.5.3.1.1.4 servicePrincipalName ... 297
3.1.1.5.3.1.1.5 msDS-Behavior-Version ... 298

3.1.1.5.3.1.2 FSMO Changes ... 298
3.1.1.5.3.2 Constraints .. 298
3.1.1.5.3.3 Processing Specifics .. 303
3.1.1.5.3.4 BehaviorVersion Updates ... 305
3.1.1.5.3.5 ObjectClass Updates ... 306
3.1.1.5.3.6 wellKnownObjects Updates .. 307
3.1.1.5.3.7 Undelete Operation ... 308

3.1.1.5.3.7.1 Undelete Security Considerations .. 308
3.1.1.5.3.7.2 Undelete Constraints ... 309
3.1.1.5.3.7.3 Undelete Processing Specifics ... 309

3.1.1.5.4 Modify DN ... 310
3.1.1.5.4.1 Intra Domain Modify DN .. 311

3.1.1.5.4.1.1 Security Considerations ... 311
3.1.1.5.4.1.2 Constraints ... 312
3.1.1.5.4.1.3 Processing Specifics... 313

3.1.1.5.4.2 Cross Domain Move .. 313
3.1.1.5.4.2.1 Security Considerations ... 313
3.1.1.5.4.2.2 Constraints ... 314
3.1.1.5.4.2.3 Processing Specifics... 317

3.1.1.5.5 Delete Operation .. 319
3.1.1.5.5.1 Resultant Object Requirements .. 321

3.1.1.5.5.1.1 Tombstone Requirements ... 321
3.1.1.5.5.1.2 Deleted-Object Requirements ... 322
3.1.1.5.5.1.3 Recycled-Object Requirements ... 323

3.1.1.5.5.2 dynamicObject Requirements ... 324
3.1.1.5.5.3 Protected Objects ... 324
3.1.1.5.5.4 Security Considerations ... 324
3.1.1.5.5.5 Constraints .. 324
3.1.1.5.5.6 Processing Specifics .. 325

3.1.1.5.5.6.1 Transformation into a Tombstone .. 325
3.1.1.5.5.6.2 Transformation into a Deleted-Object .. 326
3.1.1.5.5.6.3 Transformation into a Recycled-Object 327

3.1.1.5.5.7 Tree-delete Operation ... 328
3.1.1.5.5.7.1 Tree-delete Security Considerations .. 328
3.1.1.5.5.7.2 Tree-delete Constraints .. 328
3.1.1.5.5.7.3 Tree-delete Processing Specifics ... 328

3.1.1.6 Background Tasks.. 328
3.1.1.6.1 AdminSDHolder ... 329

3.1.1.6.1.1 Authoritative Security Descriptor .. 329

12 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.6.1.2 Protected Objects ... 329
3.1.1.6.1.3 Protection Operation ... 330
3.1.1.6.1.4 Configurable State .. 330

3.1.1.6.2 Reference Update ... 331
3.1.1.6.3 Security Descriptor Propagator Update .. 332

3.1.1.7 NT4 Replication Support ... 333
3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog 333

3.1.1.7.1.1 nt4ReplicationState... 333
3.1.1.7.1.2 pdcChangeLog ... 334

3.1.1.7.2 State Changes ... 334
3.1.1.7.2.1 Initialization ... 334
3.1.1.7.2.2 Directory Updates ... 334
3.1.1.7.2.3 Acquiring the PDC Role .. 338
3.1.1.7.2.4 Resetting the pdcChangeLog .. 339

3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog .. 339
3.1.1.8 AD LDS Special Objects .. 340

3.1.1.8.1 AD LDS Users .. 340
3.1.1.8.2 Bind Proxies .. 341

3.1.1.9 Optional Features .. 341
3.1.1.9.1 Recycle Bin Optional Feature ... 343

3.1.1.10 Revisions .. 343
3.1.1.10.1 Forest Revision .. 344
3.1.1.10.2 RODC Revision ... 344
3.1.1.10.3 Domain Revision .. 345

3.1.1.11 Claims .. 346
3.1.1.11.1 Informative Overview ... 346

3.1.1.11.1.1 Claim .. 346
3.1.1.11.1.2 Claims Dictionary .. 346
3.1.1.11.1.3 Claim Source .. 346
3.1.1.11.1.4 Claims Issuance ... 346
3.1.1.11.1.5 Claims Transformation Rules .. 347
3.1.1.11.1.6 Claims Transformation... 347

3.1.1.11.2 Claims Procedures .. 347
3.1.1.11.2.1 GetClaimsForPrincipal .. 347
3.1.1.11.2.2 GetADSourcedClaims .. 349
3.1.1.11.2.3 GetCertificateSourcedClaims .. 350
3.1.1.11.2.4 GetConstructedClaims ... 351
3.1.1.11.2.5 EncodeClaimsSet .. 352
3.1.1.11.2.6 FillClaimsSetMetadata ... 353
3.1.1.11.2.7 RunCompressionAlgorithm ... 353
3.1.1.11.2.8 NdrEncode ... 355
3.1.1.11.2.9 NdrDecode ... 355
3.1.1.11.2.10 DecodeClaimsSet .. 355
3.1.1.11.2.11 TransformClaimsOnTrustTraversal ... 356
3.1.1.11.2.12 GetClaimsTransformationRulesXml .. 358
3.1.1.11.2.13 GetTransformationRulesText .. 359
3.1.1.11.2.14 GetCTAClaims ... 360
3.1.1.11.2.15 CollapseMultiValuedClaims ... 360
3.1.1.11.2.16 FilterAndPackOutputClaims... 361
3.1.1.11.2.17 ValidateClaimDefinition .. 363
3.1.1.11.2.18 GetAuthSiloClaim .. 364

3.1.1.12 NC Rename ... 366
3.1.1.12.1 Abstract Data Types ... 366

13 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.12.1.1 FlatName ... 366
3.1.1.12.1.2 SPNValue ... 366
3.1.1.12.1.3 ServerDescription ... 366
3.1.1.12.1.4 InterdomainTrustAccountDescription ... 367
3.1.1.12.1.5 TrustedDomainObjectDescription .. 367
3.1.1.12.1.6 NCDescription .. 368
3.1.1.12.1.7 DomainDescriptionElements ... 369
3.1.1.12.1.8 DomainDescription .. 370
3.1.1.12.1.9 NewTrustParentElements ... 370
3.1.1.12.1.10 DomainWithNewTrustParentDescription 370
3.1.1.12.1.11 NCRenameDescription ... 371

3.1.1.12.2 Encoding/Decoding Rules .. 372
3.1.1.12.2.1 EBNF-M ... 372

3.1.1.12.2.1.1 Tuples as Parameters to Production Rules 372
3.1.1.12.2.1.2 Parameter Fields as Terminal Values .. 372
3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values 373
3.1.1.12.2.1.4 Parameter Fields as Iterators .. 373
3.1.1.12.2.1.5 Reversed Production Rules ... 374

3.1.1.12.2.2 CodedNCRenameDescription .. 376
3.1.1.12.2.2.1 Expression .. 376
3.1.1.12.2.2.2 Common .. 376
3.1.1.12.2.2.3 Tests ... 377

3.1.1.12.2.2.3.1 TestConfigurationNC .. 378
3.1.1.12.2.2.3.2 TestReplicationEpoch ... 378
3.1.1.12.2.2.3.3 TestAppNCs .. 379
3.1.1.12.2.2.3.4 TestDomains ... 379

3.1.1.12.2.2.3.4.1 TestCrossRef ... 380
3.1.1.12.2.2.3.4.2 TestServersInstantiated .. 381
3.1.1.12.2.2.3.4.3 TestTrustCount .. 382
3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions 382
3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions 383
3.1.1.12.2.2.3.4.6 TestServerDescriptions ... 384

3.1.1.12.2.2.3.5 TestPartitionCounts .. 386
3.1.1.12.2.2.4 Flatten ... 386
3.1.1.12.2.2.5 Rebuild .. 387
3.1.1.12.2.2.6 Trusts .. 388

3.1.1.12.2.2.6.1 DomainTrustSpecifications .. 389
3.1.1.12.2.2.6.2 DomainTrustAccounts .. 390

3.1.1.12.2.2.7 CrossRefs ... 392
3.1.1.12.2.2.7.1 ConfigurationCrossRef .. 392
3.1.1.12.2.2.7.2 SchemaCrossRef .. 393
3.1.1.12.2.2.7.3 AppNCsCrossRefs .. 393
3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef 394
3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs 395
3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs ... 397

3.1.1.12.2.2.8 ReplicationEpoch ... 399
3.1.1.12.3 Decode Operation ... 400
3.1.1.12.4 Verify Conditions .. 400
3.1.1.12.5 Process Changes .. 402

4 Protocol Examples .. 405

5 Security .. 406

14 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5.1 LDAP Security .. 406
5.1.1 Authentication .. 406

5.1.1.1 Supported Authentication Methods ... 406
5.1.1.1.1 Simple Authentication ... 407
5.1.1.1.2 SASL Authentication ... 408
5.1.1.1.3 Sicily Authentication ... 409

5.1.1.2 Using SSL/TLS .. 411
5.1.1.3 Using Fast Bind ... 411
5.1.1.4 Mutual Authentication .. 412
5.1.1.5 Supported Types of Security Principals ... 412

5.1.2 Message Security .. 414
5.1.2.1 Using SASL ... 414
5.1.2.2 Using SSL/TLS .. 415

5.1.3 Authorization .. 415
5.1.3.1 Background .. 415
5.1.3.2 Access Rights .. 416

5.1.3.2.1 Control Access Rights ... 418
5.1.3.2.2 Validated Writes ... 431

5.1.3.3 Checking Access .. 433
5.1.3.3.1 Null vs. Empty DACLs ... 434
5.1.3.3.2 Checking Simple Access .. 434
5.1.3.3.3 Checking Object-Specific Access .. 435
5.1.3.3.4 Checking Control Access Right-Based Access ... 437
5.1.3.3.5 Checking Validated Write-Based Access .. 438
5.1.3.3.6 Checking Object Visibility .. 439

5.1.3.4 AD LDS Security Context Construction ... 439

6 Additional Information ... 441
6.1 Special Objects and Forest Requirements ... 441

6.1.1 Special Objects ... 441
6.1.1.1 Naming Contexts ... 441

6.1.1.1.1 Any NC Root .. 441
6.1.1.1.2 Config NC Root .. 442
6.1.1.1.3 Schema NC Root .. 443
6.1.1.1.4 Domain NC Root .. 444
6.1.1.1.5 Application NC Root .. 445

6.1.1.2 Configuration Objects ... 445
6.1.1.2.1 Cross-Ref-Container Container ... 446

6.1.1.2.1.1 Cross-Ref Objects ... 446
6.1.1.2.1.1.1 Foreign crossRef Objects .. 447
6.1.1.2.1.1.2 Configuration crossRef Object ... 447
6.1.1.2.1.1.3 Schema crossRef Object .. 448
6.1.1.2.1.1.4 Domain crossRef Object ... 448
6.1.1.2.1.1.5 Application NC crossRef Object ... 448

6.1.1.2.2 Sites Container .. 449
6.1.1.2.2.1 Site Object .. 449

6.1.1.2.2.1.1 NTDS Site Settings Object .. 449
6.1.1.2.2.1.2 Servers Container ... 451

6.1.1.2.2.1.2.1 Server Object ... 451
6.1.1.2.2.1.2.1.1 nTDSDSA Object .. 451
6.1.1.2.2.1.2.1.2 Connection Object .. 453
6.1.1.2.2.1.2.1.3 RODC NTFRS Connection Object 455

6.1.1.2.2.2 Subnets Container .. 456

15 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.2.2.1 Subnet Object .. 456
6.1.1.2.2.3 Inter-Site Transports Container .. 457

6.1.1.2.2.3.1 IP Transport Container ... 457
6.1.1.2.2.3.2 SMTP Transport Container .. 458
6.1.1.2.2.3.3 Site Link Object .. 458
6.1.1.2.2.3.4 Site Link Bridge Object .. 459

6.1.1.2.3 Display Specifiers Container .. 460
6.1.1.2.3.1 Display Specifier Object ... 460

6.1.1.2.4 Services .. 462
6.1.1.2.4.1 Windows NT ... 462

6.1.1.2.4.1.1 Directory Service .. 462
6.1.1.2.4.1.2 dSHeuristics ... 462
6.1.1.2.4.1.3 Optional Features Container ... 468

6.1.1.2.4.1.3.1 Recycle Bin Feature Object ... 468
6.1.1.2.4.1.4 Query-Policies... 468

6.1.1.2.4.1.4.1 Default Query Policy .. 469
6.1.1.2.4.1.5 SCP Publication Service Object.. 469

6.1.1.2.5 Physical Locations .. 469
6.1.1.2.6 WellKnown Security Principals .. 469

6.1.1.2.6.1 Anonymous Logon .. 470
6.1.1.2.6.2 Authenticated Users .. 470
6.1.1.2.6.3 Batch .. 470
6.1.1.2.6.4 Console Logon.. 470
6.1.1.2.6.5 Creator Group .. 470
6.1.1.2.6.6 Creator Owner ... 470
6.1.1.2.6.7 Dialup ... 471
6.1.1.2.6.8 Digest Authentication .. 471
6.1.1.2.6.9 Enterprise Domain Controllers .. 471
6.1.1.2.6.10 Everyone ... 471
6.1.1.2.6.11 Interactive ... 471
6.1.1.2.6.12 IUSR ... 471
6.1.1.2.6.13 Local Service .. 471
6.1.1.2.6.14 Network .. 472
6.1.1.2.6.15 Network Service ... 472
6.1.1.2.6.16 NTLM Authentication ... 472
6.1.1.2.6.17 Other Organization ... 472
6.1.1.2.6.18 Owner Rights ... 472
6.1.1.2.6.19 Proxy .. 472
6.1.1.2.6.20 Remote Interactive Logon .. 472
6.1.1.2.6.21 Restricted .. 473
6.1.1.2.6.22 SChannel Authentication .. 473
6.1.1.2.6.23 Self ... 473
6.1.1.2.6.24 Service .. 473
6.1.1.2.6.25 System .. 473
6.1.1.2.6.26 Terminal Server User .. 473
6.1.1.2.6.27 This Organization .. 473

6.1.1.2.7 Extended Rights ... 474
6.1.1.2.7.1 controlAccessRight objects ... 474
6.1.1.2.7.2 Change-Rid-Master ... 474
6.1.1.2.7.3 Do-Garbage-Collection .. 474
6.1.1.2.7.4 Recalculate-Hierarchy ... 474
6.1.1.2.7.5 Allocate-Rids .. 475
6.1.1.2.7.6 Change-PDC .. 475

16 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.7 Add-GUID .. 475
6.1.1.2.7.8 Change-Domain-Master ... 475
6.1.1.2.7.9 Public-Information .. 475
6.1.1.2.7.10 msmq-Receive-Dead-Letter.. 476
6.1.1.2.7.11 msmq-Peek-Dead-Letter .. 476
6.1.1.2.7.12 msmq-Receive-computer-Journal .. 476
6.1.1.2.7.13 msmq-Peek-computer-Journal .. 476
6.1.1.2.7.14 msmq-Receive ... 476
6.1.1.2.7.15 msmq-Peek .. 476
6.1.1.2.7.16 msmq-Send ... 477
6.1.1.2.7.17 msmq-Receive-journal .. 477
6.1.1.2.7.18 msmq-Open-Connector ... 477
6.1.1.2.7.19 Apply-Group-Policy ... 477
6.1.1.2.7.20 RAS-Information ... 477
6.1.1.2.7.21 DS-Install-Replica ... 478
6.1.1.2.7.22 Change-Infrastructure-Master .. 478
6.1.1.2.7.23 Update-Schema-Cache .. 478
6.1.1.2.7.24 Recalculate-Security-Inheritance .. 478
6.1.1.2.7.25 DS-Check-Stale-Phantoms ... 478
6.1.1.2.7.26 Certificate-Enrollment ... 478
6.1.1.2.7.27 Self-Membership... 479
6.1.1.2.7.28 Validated-DNS-Host-Name ... 479
6.1.1.2.7.29 Validated-SPN .. 479
6.1.1.2.7.30 Generate-RSoP-Planning .. 479
6.1.1.2.7.31 Refresh-Group-Cache .. 480
6.1.1.2.7.32 Reload-SSL-Certificate... 480
6.1.1.2.7.33 SAM-Enumerate-Entire-Domain .. 480
6.1.1.2.7.34 Generate-RSoP-Logging ... 480
6.1.1.2.7.35 Domain-Other-Parameters ... 480
6.1.1.2.7.36 DNS-Host-Name-Attributes .. 480
6.1.1.2.7.37 Create-Inbound-Forest-Trust .. 481
6.1.1.2.7.38 DS-Replication-Get-Changes-All ... 481
6.1.1.2.7.39 Migrate-SID-History .. 481
6.1.1.2.7.40 Reanimate-Tombstones ... 481
6.1.1.2.7.41 Allowed-To-Authenticate .. 482
6.1.1.2.7.42 DS-Execute-Intentions-Script ... 482
6.1.1.2.7.43 DS-Replication-Monitor-Topology .. 482
6.1.1.2.7.44 Update-Password-Not-Required-Bit ... 482
6.1.1.2.7.45 Unexpire-Password ... 483
6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password 483
6.1.1.2.7.47 DS-Query-Self-Quota .. 483
6.1.1.2.7.48 Private-Information ... 483
6.1.1.2.7.49 MS-TS-GatewayAccess .. 483
6.1.1.2.7.50 Terminal-Server-License-Server ... 484
6.1.1.2.7.51 Domain-Administer-Server ... 484
6.1.1.2.7.52 User-Change-Password .. 484
6.1.1.2.7.53 User-Force-Change-Password ... 484
6.1.1.2.7.54 Send-As .. 485
6.1.1.2.7.55 Receive-As ... 485
6.1.1.2.7.56 Send-To .. 485
6.1.1.2.7.57 Domain-Password ... 485
6.1.1.2.7.58 General-Information.. 486
6.1.1.2.7.59 User-Account-Restrictions .. 486

17 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.60 User-Logon .. 486
6.1.1.2.7.61 Membership ... 486
6.1.1.2.7.62 Open-Address-Book .. 487
6.1.1.2.7.63 Personal-Information... 487
6.1.1.2.7.64 Email-Information ... 487
6.1.1.2.7.65 Web-Information .. 488
6.1.1.2.7.66 DS-Replication-Get-Changes .. 488
6.1.1.2.7.67 DS-Replication-Synchronize ... 488
6.1.1.2.7.68 DS-Replication-Manage-Topology.. 488
6.1.1.2.7.69 Change-Schema-Master... 489
6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set 489
6.1.1.2.7.71 Run-Protect-Admin-Groups-Task .. 489
6.1.1.2.7.72 Manage-Optional-Features ... 489
6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization 489
6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name 490
6.1.1.2.7.75 Validated-MS-DS-Behavior-Version ... 490
6.1.1.2.7.76 DS-Clone-Domain-Controller .. 490
6.1.1.2.7.77 Certificate-AutoEnrollment ... 490
6.1.1.2.7.78 DS-Read-Partition-Secrets ... 491
6.1.1.2.7.79 DS-Write-Partition-Secrets ... 491
6.1.1.2.7.80 DS-Set-Owner .. 491
6.1.1.2.7.81 DS-Bypass-Quota ... 491

6.1.1.2.8 Forest Updates Container .. 491
6.1.1.2.8.1 Operations Container .. 492
6.1.1.2.8.2 Windows2003Update Container .. 492
6.1.1.2.8.3 ActiveDirectoryUpdate Container .. 492
6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container ... 493

6.1.1.3 Critical Domain Objects .. 493
6.1.1.3.1 Domain Controller Object .. 493
6.1.1.3.2 Read-Only Domain Controller Object .. 494

6.1.1.4 Well-Known Objects ... 495
6.1.1.4.1 Lost and Found Container .. 498
6.1.1.4.2 Deleted Objects Container ... 498
6.1.1.4.3 NTDS Quotas Container .. 499
6.1.1.4.4 Infrastructure Object .. 499
6.1.1.4.5 Domain Controllers OU ... 499
6.1.1.4.6 Users Container ... 499
6.1.1.4.7 Computers Container .. 499
6.1.1.4.8 Program Data Container .. 500
6.1.1.4.9 Managed Service Accounts Container .. 500
6.1.1.4.10 Foreign Security Principals Container .. 500
6.1.1.4.11 System Container ... 501

6.1.1.4.11.1 Password Settings Container .. 501
6.1.1.4.12 Builtin Container .. 501

6.1.1.4.12.1 Account Operators Group Object ... 502
6.1.1.4.12.2 Administrators Group Object .. 502
6.1.1.4.12.3 Backup Operators Group Object .. 502
6.1.1.4.12.4 Certificate Service DCOM Access Group Object 502
6.1.1.4.12.5 Cryptographic Operators Group Object .. 502
6.1.1.4.12.6 Distributed COM Users Group Object ... 502
6.1.1.4.12.7 Event Log Readers Group Object .. 502
6.1.1.4.12.8 Guests Group Object ... 503
6.1.1.4.12.9 IIS_IUSRS Group Object .. 503

18 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.4.12.10 Incoming Forest Trust Builders Group Object 503
6.1.1.4.12.11 Network Configuration Operators Group Object 503
6.1.1.4.12.12 Performance Log Users Group Object .. 503
6.1.1.4.12.13 Performance Monitor Users Group Object 503
6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object...................... 503
6.1.1.4.12.15 Print Operators Group Object ... 504
6.1.1.4.12.16 Remote Desktop Users Group Object ... 504
6.1.1.4.12.17 Replicator Group Object ... 504
6.1.1.4.12.18 Server Operators Group Object ... 504
6.1.1.4.12.19 Terminal Server License Servers Group Object 504
6.1.1.4.12.20 Users Group Object ... 504
6.1.1.4.12.21 Windows Authorization Access Group Group Object 504

6.1.1.4.13 Roles Container .. 504
6.1.1.4.13.1 Administrators Group Object .. 505
6.1.1.4.13.2 Readers Group Object ... 505
6.1.1.4.13.3 Users Group Object ... 505
6.1.1.4.13.4 Instances Group Object ... 505

6.1.1.5 Other System Objects .. 506
6.1.1.5.1 AdminSDHolder Object ... 506
6.1.1.5.2 Default Domain Policy Container .. 507
6.1.1.5.3 Sam Server Object ... 507
6.1.1.5.4 Domain Updates Container .. 507

6.1.1.5.4.1 Operations Container .. 508
6.1.1.5.4.2 Windows2003Update Container .. 508
6.1.1.5.4.3 ActiveDirectoryUpdate Container .. 508

6.1.1.6 Well-Known Domain-Relative Security Principals .. 509
6.1.1.6.1 Administrator... 509
6.1.1.6.2 Guest ... 509
6.1.1.6.3 Key Distribution Center Service Account .. 509
6.1.1.6.4 Cert Publishers .. 509
6.1.1.6.5 Domain Administrators ... 510
6.1.1.6.6 Domain Computers ... 510
6.1.1.6.7 Domain Controllers ... 510
6.1.1.6.8 Domain Guests .. 510
6.1.1.6.9 Domain Users .. 510
6.1.1.6.10 Enterprise Administrators .. 510
6.1.1.6.11 Group Policy Creator Owners ... 511
6.1.1.6.12 RAS and IAS Servers .. 511
6.1.1.6.13 Read-Only Domain Controllers ... 511
6.1.1.6.14 Enterprise Read-Only Domain Controllers .. 511
6.1.1.6.15 Schema Admins ... 512
6.1.1.6.16 Allowed RODC Password Replication Group .. 512
6.1.1.6.17 Denied RODC Password Replication Group ... 512

6.1.2 Forest Requirements .. 512
6.1.2.1 DC Existence ... 513
6.1.2.2 NC Existence ... 513
6.1.2.3 Hosting Requirements .. 513

6.1.2.3.1 DC and Application NC Replica ... 513
6.1.2.3.2 DC and Regular Domain NC Replica .. 514
6.1.2.3.3 DC and Schema/Config NC Replicas .. 514
6.1.2.3.4 DC and Partial Replica NCs Replicas .. 514

6.1.3 Security Descriptor Requirements .. 515
6.1.3.1 ACE Ordering Rules .. 516

19 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.3.2 SD Flags Control .. 517
6.1.3.3 Processing Specifics ... 517
6.1.3.4 Security Considerations .. 518
6.1.3.5 SD Defaulting Rules ... 519
6.1.3.6 Owner and Group Defaulting Rules .. 520
6.1.3.7 Default Administrators Group .. 520

6.1.4 Special Attributes .. 521
6.1.4.1 ntMixedDomain ... 521
6.1.4.2 msDS-Behavior-Version: DC Functional Level .. 521
6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level 522
6.1.4.4 msDS-Behavior-Version: Forest Functional Level ... 523
6.1.4.5 Replication Schedule Structures ... 524

6.1.4.5.1 SCHEDULE_HEADER Structure ... 524
6.1.4.5.2 SCHEDULE Structure .. 525
6.1.4.5.3 REPS_FROM .. 525
6.1.4.5.4 REPS_TO ... 525
6.1.4.5.5 MTX_ADDR Structure .. 525
6.1.4.5.6 REPLTIMES Structure .. 526
6.1.4.5.7 PAS_DATA Structure ... 526

6.1.4.6 msDS-AuthenticatedAtDC ... 526
6.1.5 FSMO Roles .. 526

6.1.5.1 Schema Master FSMO Role ... 526
6.1.5.2 Domain Naming Master FSMO Role .. 526
6.1.5.3 RID Master FSMO Role ... 527
6.1.5.4 PDC Emulator FSMO Role .. 527
6.1.5.5 Infrastructure FSMO Role.. 528

6.1.6 Trust Objects .. 528
6.1.6.1 Overview (Synopsis) .. 528
6.1.6.2 Relationship to Other Protocols .. 529

6.1.6.2.1 TDO Replication over DRS ... 529
6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries 529
6.1.6.2.3 TDO Roles in Authorization over Domain Boundaries 529

6.1.6.3 Prerequisites/Preconditions ... 529
6.1.6.4 Versioning and Capability Negotiation .. 529
6.1.6.5 Vendor-Extensible Fields ... 530
6.1.6.6 Transport ... 530
6.1.6.7 Essential Attributes of a Trusted Domain Object .. 530

6.1.6.7.1 flatName ... 531
6.1.6.7.2 isCriticalSystemObject .. 531
6.1.6.7.3 msDs-supportedEncryptionTypes ... 531
6.1.6.7.4 msDS-TrustForestTrustInfo ... 532
6.1.6.7.5 nTSecurityDescriptor .. 532
6.1.6.7.6 objectCategory .. 532
6.1.6.7.7 objectClass .. 532
6.1.6.7.8 securityIdentifier .. 532
6.1.6.7.9 trustAttributes ... 532
6.1.6.7.10 trustAuthIncoming .. 535
6.1.6.7.11 trustAuthOutgoing .. 535
6.1.6.7.12 trustDirection ... 535
6.1.6.7.13 trustPartner ... 536
6.1.6.7.14 trustPosixOffset .. 536
6.1.6.7.15 trustType .. 536

6.1.6.8 Essential Attributes of Interdomain Trust Accounts 537

20 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.8.1 cn (RDN) ... 537
6.1.6.8.2 objectClass .. 537
6.1.6.8.3 sAMAccountName ... 537
6.1.6.8.4 sAMAccountType .. 537
6.1.6.8.5 userAccountControl .. 537

6.1.6.9 Details ... 538
6.1.6.9.1 trustAuthInfo Attributes .. 538

6.1.6.9.1.1 LSAPR_AUTH_INFORMATION ... 539
6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes 540

6.1.6.9.2 Netlogon Usages of Trust Objects ... 541
6.1.6.9.3 msDS-TrustForestTrustInfo Attribute .. 541

6.1.6.9.3.1 Record .. 541
6.1.6.9.3.2 Building Well-Formed msDS-TrustForestTrustInfo Messages 544

6.1.6.9.4 Computation of trustPosixOffset ... 547
6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers .. 547
6.1.6.9.6 Timers .. 548

6.1.6.9.6.1 Trust Secret Cycling .. 548
6.1.6.9.7 Initialization .. 548

6.1.6.10 Security Considerations for Implementers ... 549
6.1.7 DynamicObject Requirements ... 549

6.2 Knowledge Consistency Checker ... 549
6.2.1 References ... 550
6.2.2 Overview .. 550

6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections 552
6.2.2.2 Intrasite Connection Creation .. 553
6.2.2.3 Intersite Connection Creation .. 555

6.2.2.3.1 ISTG Selection ... 556
6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads 557
6.2.2.3.3 Site Graph Concepts ... 557
6.2.2.3.4 Connection Creation ... 559

6.2.2.3.4.1 Types .. 559
6.2.2.3.4.2 Main Entry Point ... 560
6.2.2.3.4.3 Site Graph Construction .. 561
6.2.2.3.4.4 Spanning Tree Computation ... 565
6.2.2.3.4.5 nTDSConnection Creation .. 577

6.2.2.4 Removing Unnecessary Connections .. 581
6.2.2.5 Connection Translation ... 582
6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples 584
6.2.2.7 Updating the RODC NTFRS Connection Object ... 584

6.3 Publishing and Locating a Domain Controller .. 584
6.3.1 Structures and Constants ... 585

6.3.1.1 NETLOGON_NT_VERSION Options Bits ... 585
6.3.1.2 DS_FLAG Options Bits .. 586
6.3.1.3 Operation Code ... 587
6.3.1.4 NETLOGON_LOGON_QUERY .. 588
6.3.1.5 NETLOGON_PRIMARY_RESPONSE .. 589
6.3.1.6 NETLOGON_SAM_LOGON_REQUEST .. 590
6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40 ... 591
6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE .. 592
6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX ... 594
6.3.1.10 DNSRegistrationSettings ... 597

6.3.2 DNS Record Registrations ... 599
6.3.2.1 Timers ... 599

21 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.3.2.1.1 Register DNS Records Timer .. 599
6.3.2.2 Non-Timer Events .. 600

6.3.2.2.1 Force Register DNS Records Non-Timer Event .. 600
6.3.2.3 SRV Records ... 600
6.3.2.4 Non-SRV Records .. 603

6.3.3 LDAP Ping .. 605
6.3.3.1 Syntactic Validation of the Filter .. 606
6.3.3.2 Domain Controller Response to an LDAP Ping .. 606
6.3.3.3 Response to Invalid Filter ... 611

6.3.4 NetBIOS Broadcast and NBNS Background ... 611
6.3.5 Mailslot Ping ... 611
6.3.6 Locating a Domain Controller .. 615

6.3.6.1 DNS-Based Discovery ... 615
6.3.6.2 NetBIOS-Based Discovery ... 616

6.3.7 Name Compression and Decompression ... 616
6.3.8 AD LDS DC Publication ... 618

6.4 Domain Join ... 619
6.4.1 State of a Machine Joined to a Domain ... 620
6.4.2 State in an Active Directory Domain .. 620
6.4.3 Relationship to Protocols .. 621

6.5 Unicode String Comparison .. 621
6.5.1 String Comparison by Using Sort Keys ... 621

6.6 Claims IDL ... 622

7 Change Tracking... 625

8 Index ... 628

22 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

This is the primary specification for Active Directory, both Active Directory Domain Services
(AD DS) and Active Directory Lightweight Directory Services (AD LDS). The state model for
this specification is prerequisite to the other specifications for Active Directory: [MS-DRSR] and [MS-
SRPL].

When no operating system version information is specified, information in this document applies to
all relevant versions of Windows. Similarly, when no DC functional level is specified, information in
this document applies to all DC functional levels.

Unless otherwise specified, information in this specification is also applicable to Active Directory
Application Mode (ADAM). ADAM is a standalone application that provides AD LDS capabilities on
Windows XP operating system and Windows Server 2003 operating system. There are two versions
of ADAM, ADAM RTW and ADAM SP1; unless otherwise specified, where ADAM is discussed in this
document it refers to both versions.

Information that is applicable to AD LDS on Windows Server 2008 operating system is also
applicable to Active Directory Lightweight Directory Services (AD LDS) for Windows Vista, except

where it is explicitly specified that such information is not applicable to that product. AD LDS for
Windows Vista is a standalone application that provides AD LDS capabilities for Windows Vista
operating system. Similarly, unless it is explicitly specified otherwise, information that is applicable
to AD LDS on Windows Server 2008 R2 operating system is also applicable to the standalone
application Active Directory Lightweight Directory Services (AD LDS) for Windows 7, which provides
AD LDS capabilities for Windows 7 operating system. Similarly, unless it is explicitly specified

otherwise, information that is applicable to AD LDS on Windows Server 2012 operating system is
also applicable to the stand-alone application Active Directory Lightweight Directory Services (AD
LDS) for Windows 8 operating system, which provides AD LDS capabilities for Windows 8 operating
system. Finally, unless it is explicitly specified otherwise, information that is applicable to AD LDS on
Windows Server 2012 R2 operating system is also applicable to the stand-alone application Active
Directory Lightweight Directory Services (AD LDS) for Windows 8.1 operating system, which
provides AD LDS capabilities for Windows 8.1 operating system.

State is included in the state model for this specification only as necessitated by the requirement
that a licensee implementation of Windows Server protocols be able to receive messages and
respond in the same manner as a Windows Server. Behavior is specified in terms of request
message received, processing based on current state, resulting state transformation, and response
message sent. Unless otherwise specified in the sections that follow, all of the behaviors are
required for interoperability.

The following typographical convention is used to indicate the special meaning of certain names:

Underline, as in instanceType: the name of an attribute or object class whose interpretation is

specified in the following documents:

[MS-ADA1] Attribute names whose initial letter is A through L.

[MS-ADA2] Attribute names whose initial letter is M.

[MS-ADA3] Attribute names whose initial letter is N through Z.

[MS-ADSC] Object class names.

[MS-ADLS] Object class names and attribute names for AD LDS.

%5bMS-DRSR%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf

23 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For clarity, bit flags are sometimes shown as bit field diagrams. In the case of bit flags for
Lightweight Directory Access Protocol (LDAP) attributes, these diagrams take on big-endian

characteristics but do not reflect the actual byte ordering of integers over the wire, because LDAP
transfers an integer as the UTF-8 string of the decimal representation of that integer, as specified in

[RFC2252].

Pervasive Concepts

The following concepts are pervasive throughout this specification.

This specification uses [KNUTH1] section 2.3.4.2 as a reference for the graph-related terms oriented
tree, root, vertex, arc, initial vertex, and final vertex.

replica: A variable containing a set of objects.

attribute: An identifier for a value or set of values. See also attribute in the Glossary section.

object: A set of attributes, each with its associated values. Two attributes of an object have

special significance:

Identifying attribute. A designated single-valued attribute appears on every object; the

value of this attribute identifies the object. For the set of objects in a replica, the values of
the identifying attribute are distinct.

Parent-identifying attribute. A designated single-valued attribute appears on every object;

the value of this attribute identifies the object's parent. That is, this attribute contains the
value of the parent's identifying attribute, or a reserved value identifying no object (for
more information, see section 3.1.1.1.3). For the set of objects in a replica, the values of
this parent-identifying attribute define an oriented tree with objects as vertices and child-
parent references as directed arcs, with the child as an arc's initial vertex and the parent as
an arc's final vertex.

Note that an object is a value, not a variable; a replica is a variable. The process of adding,
modifying, or deleting an object in a replica replaces the entire value of the replica with a new

value.

As the word replica suggests, it is often the case that two replicas contain "the same objects."
In this usage, objects in two replicas are considered "the same" if they have the same value
of the identifying attribute and if there is a process in place (replication) to converge the
values of the remaining attributes. When the members of a set of replicas are considered to

be the same, it is common to say "an object" as a shorthand way of referring to the set of
corresponding objects in the replicas.

object class: A set of restrictions on the construction and update of objects. An object class
must be specified when creating an object. An object class specifies a set of must-have
attributes (every object of the class must have at least one value of each) and may-have
attributes (every object of the class may have a value of each). An object class also specifies

a set of possible superiors (the parent object of an object of the class must have one of
these classes). An object class is defined by a classSchema object.

parent object: See "object", above.

child object, children: An object that is not the root of its oriented tree. The children of an
object o is the set of all objects whose parent is o.

See section 3.1.1.1.3 for the particular use made of these definitions in this specification.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90326
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf

24 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also

normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

88 object class
abstract class
abstract object class

access check
access control entry (ACE)
access control list (ACL)
access mask

account domain
ACID

ambiguous name resolution (ANR)
ancestor object
attribute syntax
AttributeStamp
authentication
authorization
auxiliary object class

back link attribute
back link value
backup domain controller (BDC)
big-endian
binary large object (BLOB)
bridgehead domain controller (bridgehead DC)

broadcast

canonical name
checksum
claim
code page
Component Object Model (COM)
constructed attribute

container
control access right
Coordinated Universal Time (UTC)
critical object
cyclic redundancy check (CRC)
digest
directory service (DS)

discretionary access control list (DACL)

distinguished name (DN)(4)
domain
domain name (3)
Domain Name System (DNS)
downlevel trust
endpoint

expunge

%5bMS-GLOS%5d.pdf

25 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

forward link value
FSMO role owner

full NC replica
fully qualified domain name (FQDN) (1) (2)

garbage collection
global catalog (GC)
global catalog server (GC server)
globally unique identifier (GUID)
group
Group Policy
GUIDString

inheritance
Lightweight Directory Access Protocol (LDAP)
LDAP connection
link attribute
link value
LinkValueStamp

local domain controller (local DC)
Lost and Found container
marshal
Messaging Application Programming Interface (MAPI)
mixed mode
multi-valued claim
name service provider interface (NSPI)

native mode
nonreplicated attribute
NULL GUID
object of class x (or x object)
operational attribute
originating update
partial attribute set (PAS)

privilege (1)
property set

RDN attribute
remote procedure call (RPC)
replicated update
replication

replication latency
replication traffic
RPC transport
schema
schema container
schema object
security identifier (SID)

security principal
security provider
service principal name (SPN)
single-valued claim

Simple Mail Transfer Protocol (SMTP)
SSL/TLS handshake
structural object class

system access control list (SACL)
ticket-granting ticket (TGT)
trust object
trust secret

26 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

trusted domain object (TDO)
Unicode

universally unique identifier (UUID)
uplevel trust

Windows error code

The following terms are defined in [MS-DTYP]:

organization

The following terms are specific to this document:

active: A state of an attributeSchema or classSchema object that represents part of the
schema. It is possible to instantiate an active attribute or an active class. The opposite
term is defunct.

Active Directory: Either Active Directory Domain Services (AD DS) or Active Directory
Lightweight Directory Services (AD LDS). Active Directory is either deployed as AD DS

or as AD LDS. This document describes both forms. When the specification does not refer
specifically to AD DS or AD LDS, it applies to both.

Active Directory Domain Services (AD DS): AD DS is an operating system directory
service (DS) implemented by a domain controller (DC). The DS provides a data store for

objects that is distributed across multiple DCs. The DCs interoperate as peers to ensure that
a local change to an object replicates correctly across DCs. AD DS first became available as
part of Microsoft Windows 2000 and is available as part of Windows 2000 Server products and
Windows Server 2003 products; in these products it is called "Active Directory". It is also
available as part of Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
and Windows Server 2012 R2. AD DS is not present in Windows NT 4.0 or in Windows XP. For
more information, see [MS-AUTHSOD] section 1.1.1.5.2.

Active Directory Lightweight Directory Services (AD LDS): AD LDS is a directory service
(DS) implemented by a domain controller (DC). The most significant difference between
AD LDS and Active Directory Domain Services (AD DS) is that AD LDS does not host

domain naming contexts (domain NCs). A server can host multiple AD LDS DCs. Each DC
is an independent AD LDS instance, with its own independent state. AD LDS can be run as an
operating system DS or as a directory service provided by a standalone application (ADAM).

application NC: A specific type of naming context (NC). An application NC cannot contain

security principal objects in Active Directory domain services (AD DS) but can contain
security principals in Active Directory Lightweight Directory Service (AD LDS). In AD
DS or AD LDS, a forest can have zero or more application NCs.

attribute: (Note: This definition is a specialization of the "attribute" concept that is described in
section 1, Introduction, under Pervasive Concepts.) An identifier for a single-valued or multi-
valued data element that is associated with an object. An object consists of its attributes

and their values. For example, cn (common name), street (street address), and mail (email
addresses) can all be attributes of a user object. An attribute's schema, including the
syntax of its values, is defined in an attributeSchema object.

ATTRTYP: A 32-bit quantity representing an object identifier (OID). See [MS-DRSR] section
5.14.

auxiliary class: See auxiliary object class.

Basic Encoding Rules (BER): A specific set of rules for encoding data structures for transfer

over a network. These encoding rules are defined in [ITUX690].

%5bMS-DTYP%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-AUTHSOD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89924

27 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

built-in domain: The security identifier (SID) namespace defined by the fixed SID S-1-5-32.
Contains groups that define roles on a local machine such as "Backup Operators".

built-in domain SID: The fixed SID S-1-5-32.

child naming context (child NC): Given naming contexts (NCs) with their corresponding

distinguished names (DNs) forming a child and parent relationship, the NC in the child
relationship is referred as the child NC. The parent of a child NC must be an NC and is
referred to as the parent naming context (parent NC).

child object, children: See section 1, Introduction, under Pervasive Concepts.

computer object: An object of class computer. A computer object is a security principal
object; the principal is the operating system running on the computer. The shared secret
allows the operating system running on the computer to authenticate itself independently of

any user running on the system. See security principal.

configuration naming context (config NC): A specific type of NC or an instance of that type.

A forest has a single config NC, which contains configuration information that is shared
among all DC in the forest. A config NC cannot contain security principal objects.

crossRef object: An object of class crossRef. Each crossRef object is a child of the
Partitions container in the configuration naming context (Config NC). The class

crossRef specifies the properties of a naming context (NC), such as its DNS name,
operational settings, and so on.

cross-forest trust: A relationship between two forests that enables security principals from
any domain in one forest to authenticate to computers joined to any domain in the other
forest.

cycle: See replication cycle.

DC functional level: A specification of functionality available in a domain controller (DC). For

AD DS, possible values are DS_BEHAVIOR_WIN2000 (for Windows 2000 Server DCs),

DS_BEHAVIOR_WIN2003 (for Windows Server 2003 DCs), DS_BEHAVIOR_WIN2008 (for
Windows Server 2008 DCs), DS_BEHAVIOR_WIN2008R2 (for Windows Server 2008 R2 DCs),
DS_BEHAVIOR_WIN2012 (for Windows Server 2012 DCs), and DS_BEHAVIOR_WIN2012R2
(for Windows Server 2012 R2 DCs). For AD LDS, possible values are
DS_BEHAVIOR_WIN2003 (for Windows Server 2003 DCs), DS_BEHAVIOR_WIN2008 (for
Windows Server 2008 DCs), DS_BEHAVIOR_WIN2008R2 (for Windows Server 2008 R2 DCs),

DS_BEHAVIOR_WIN2012 (for Windows Server 2012 DCs), and DS_BEHAVIOR_WIN2012R2
(for Windows Server 2012 R2 DCs).

default domain naming context (default domain NC): When Active Directory is operating
as Active Directory Domain Services (AD DS), this is the default naming context
(default NC) of the domain controller (DC). When operating as Active Directory
Lightweight Directory Services (AD LDS), this NC is not defined.

default naming context (default NC): When Active Directory is operating as Active
Directory Domain Services (AD DS), the default naming context (default NC) is the

domain naming context (domain NC) whose full replica is hosted by a domain
controller (DC), except when the DC is a read-only domain controller (RODC), in which
case the default NC is a filtered partial NC replica. When operating as AD DS, the
default NC contains the DC's computer object. When Active Directory is operating as AD
LDS, the default NC is the naming context (NC) specified by the msDS-

DefaultNamingContext attribute on the nTDSDSA object for the DC. See nTDSDSA object.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf

28 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

default schema: The schema of a given version of Active Directory, as defined by [MS-
ADSC], [MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, and as defined by [MS-ADLS] for

Active Directory Lightweight Directory Services (AD LDS).

defunct: A state of an attributeSchema or classSchema object that represents part of the

schema. It is not possible to instantiate a defunct attribute or a defunct class. The
opposite term is active.

deleted-object: An object that has been deleted, but remains in storage until a configured
amount of time (the deleted-object lifetime) has passed, after which the object is
transformed to a recycled-object. Unlike a recycled-object or a tombstone, a deleted-
object maintains virtually all the state of the object before deletion, and may be undeleted
without loss of information. Deleted-objects exist only when the Recycle Bin optional

feature is enabled.

deleted-object lifetime: The time period that a deleted-object is kept in storage before it is
transformed into a recycled-object.

directory: A forest.

directory object (or object): A Lightweight Directory Access Protocol (LDAP) object
[RFC2251], which is a specialization of the "object" concept that is described in section 1,

Introduction, under Pervasive Concepts. An Active Directory object can be identified by a
dsname according to the matching rules defined in [MS-DRSR] section 5.50, DSNAME.

directory service agent (DSA): A term from the X.500 directory specification [X501] that
represents a component that maintains and communicates directory information.

DNS name: A fully qualified domain name (FQDN) (1).

domain controller (DC): The service, running on a server, that implements Active Directory,
or the server hosting this service. The service hosts the data store for objects and

interoperates with other DCs to ensure that a local change to an object replicates correctly
across all DCs. When Active Directory is operating as Active Directory Domain Services

(AD DS), the DC contains full NC replicas of the configuration naming context (config
NC), schema naming context (schema NC), and one of the domain NCs in its forest. If
the AD DS DC is a global catalog server (GC server), it contains partial NC replicas of
the remaining domain NCs in its forest. For more information, see [MS-AUTHSOD] section
1.1.1.5.2. When Active Directory is operating as Active Directory Lightweight Directory

Services (AD LDS), several AD LDS DCs can run on one server. When Active Directory is
operating as AD DS, only one AD DS DC can run on one server. However, several AD LDS
DCs can coexist with one AD DS DC on one server. The AD LDS DC contains full NC
replicas of the config NC and the schema NC in its forest.

domain functional level: A specification of functionality available in a domain. Must be less
than or equal to the DC functional level of every domain controller (DC) that hosts a

replica of the domain's naming context (NC). Possible values in Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 are
DS_BEHAVIOR_WIN2000, DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS,

DS_BEHAVIOR_WIN2003, DS_BEHAVIOR_WIN2008, DS_BEHAVIOR_WIN2008R2,
DS_BEHAVIOR_WIN2012, and DS_BEHAVIOR_WIN2012R2. See section 6.1.4.3 for
information on how the domain functional level is determined. When Active Directory is
operating as Active Directory Lightweight Directory Services (AD LDS), domain

functional level does not exist.

%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98847
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-AUTHSOD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

29 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

domain joined: A relationship between a machine and some domain naming context
(domain NC) in which they share a secret. The shared secret allows the machine to

authenticate to a domain controller (DC) for the domain.

domain local group: An Active Directory group that allows user objects, global groups,

and universal groups from any domain as members. It also allows other domain local
groups from within its domain as members. A group object g is a domain local group if
and only if GROUP_TYPE_RESOURCE_GROUP is present in g!groupType. A security-enabled
domain local group is valid for inclusion within access control lists (ACLs) from its own
domain. If a domain is in mixed mode, then a security-enabled domain local group in
that domain allows only user objects as members.

domain naming context (domain NC): A specific type of naming context (NC), or an

instance of that type. A domain NC can contain security principal objects. Domain NCs
appear in the global catalog (GC). A domain NC is hosted by one or more domain
controllers (DCs) operating as AD DS. In AD DS, a forest has one or more domain NCs.
The root of a domain NC is an object of class domainDNS. A domain NC cannot exist in AD
LDS.

domain prefix: A domain security identifier (SID), minus the relative identifier (RID)

portion.

DSE: An acronym for a directory service agent (DSA)-specific entry.

DSA object: See nTDSDSA object.

DSA GUID: The objectGUID of a DSA object.

dsname: A tuple that contains between one and three identifiers for an object. The possible
identifiers are the object's globally unique identifier (GUID) (attribute objectGUID),
security identifier (SID) (attribute objectSid), and distinguished name (DN) (attribute

distinguishedName). A dsname can appear in a protocol message and as an attribute value
(for example, a value of an attribute with syntax Object(DS-DN)).

dynamic object: An object with a time-to-die, attribute msDS-Entry-Time-To-Die. The
directory service (DS) garbage-collects a dynamic object immediately after its time-to-die
has passed. The constructed attribute entryTTL gives a dynamic object's current time-to-
live, that is, msDS-Entry-Time-To-Die minus the current system time. For more information,
see [RFC2589].

entry: A synonym for object. See also the "object" concept that is described in section 1,
Introduction, under Pervasive Concepts.

existing-object: An object that is not a tombstone, deleted-object, or recycled-object.

Extended-Rights container: A container holding objects that correspond to control access
rights. The container is a child of configuration naming context (config NC) and has
relative distinguished name (RDN) CN=Extended-Rights.

File Replication Service (FRS): One of the services offered by a domain controller (DC). The

running/paused state of the FRS on a DC is available through protocols documented in section
6.3.

filter: One of the parameters in an Lightweight Directory Access Protocol (LDAP) search
request. The filter specifies matching constraints for the candidate objects.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90370
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

30 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

filtered attribute set: The subset of attributes that are not replicated to the filtered partial
NC replica and the filtered GC partial NC replica. The filtered attribute set is part of the

state of the forest and is used to control the attributes that replicate to a read-only
domain controller (RODC). The searchFlags schema attribute is used to define this set.

filtered GC partial NC replica: An NC replica that contains a schema-specified subset of
attributes for the objects. The attributes consist of the attributes in the GC partial
attribute set (PAS), excluding those present in the filtered attribute set. A filtered GC
partial NC replica is not writable.

filtered partial NC replica: An NC replica that contains all the attributes of the objects,
excluding those attributes in the filtered attribute set. A filtered partial NC replica is not
writable.

flexible single master operation (FSMO): A read or update operation on an naming
context (NC), such that the operation must be performed on the single designated "master"
replica of that NC. The master replica designation is "flexible" because it can be changed
without losing the consistency gained from having a single master. This term, pronounced

"fizmo", is never used alone; see also FSMO role, FSMO role owner.

foreign principal object (FPO): A foreignSecurityPrincipal object.

forest: For Active Directory Domain Services (AD DS), a set of naming contexts (NCs)
consisting of one schema naming context (schema NC), one configuration naming
context (config NC), one or more domain naming contexts (domain NCs), and zero or
more application naming contexts (application NCs). Because a set of NCs can be
arranged into a tree structure, a forest is also a set containing one or several trees of NCs.
For AD LDS, a set of NCs consisting of one schema NC, one config NC, and zero or more
application NCs. (In Microsoft documentation, an AD LDS forest is called a "configuration

set".)

forest functional level: A specification of functionality available in a forest. It must be less
than or equal to the DC functional level of every DC in the forest. For Active Directory
Domain Services (AD DS), possible values in Windows Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 are
DS_BEHAVIOR_WIN2000, DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS,
DS_BEHAVIOR_WIN2003, DS_BEHAVIOR_WIN2008, DS_BEHAVIOR_WIN2008R2,

DS_BEHAVIOR_WIN2012, and DS_BEHAVIOR_WIN2012R2. For AD LDS, the possible values
in Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2 are DS_BEHAVIOR_WIN2003, DS_BEHAVIOR_WIN2008,
DS_BEHAVIOR_WIN2008R2, DS_BEHAVIOR_WIN2012, and DS_BEHAVIOR_WIN2012R2. See
section 6.1.4.4 for information on how the forest functional level is determined.

forest root domain NC: For Active Directory Domain Services (AD DS), the domain

naming context (domain NC) within a forest whose child is the forest's configuration
naming context (config NC). The DNS name of this domain serves as the forest name.

forward link attribute: A type of attribute whose values include object references (for
example, an attribute of syntax Object(DS-DN)). The forward link values can be used to

compute the values of a related attribute, a back link attribute, on other objects. A
forward link attribute can exist with no corresponding back link attribute, but not vice
versa.

FSMO role: A set of objects that can be updated in only one NC replica (the FSMO role
owner's replica) at any given time.

%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

31 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

FSMO role object: The object in the directory that represents a specific FSMO role. This
object is an element of the FSMO role and contains the fSMORoleOwner attribute.

GC partial attribute set (PAS): The subset of attributes that replicate to a GC partial NC
replica. The partial attribute set is part of the state of the forest and is used to control the

attributes that replicate to global catalog servers (GC servers). The
isMemberOfPartialAttributeSet schema attribute is used to define this set.

GC partial NC replica: An NC replica that contains a schema-specified subset of attributes
for the objects it contains. The subset of attributes consists of the attributes in the GC
partial attribute set (PAS).

global group: An Active Directory group that allows user objects from its own domain and
global groups from its own domain as members. Universal groups can contain global

groups. A group object g is a global group if and only if GROUP_TYPE_ACCOUNT_GROUP is
present in g!groupType. A global group that is also a security-enabled group is valid for
inclusion within ACLs anywhere in the forest. If a domain is in mixed mode, then a global
group in that domain that is also a security-enabled group allows only user object as

members. See also domain local group, security-enabled group.

group object: An object of class group representing a group. A class group has a forward

link attribute member; the values of this attribute represent either elements of the group
(for example, objects of class user or computer) or subsets of the group (objects of class
group). The back link attribute memberOf enables navigation from group members to the
groups containing them. Some groups represent groups of security principals and some
do not (and are, for instance, used to represent email distribution lists).

GUID-based DNS name: A DNS name published for a domain controller (DC). If a DC's
DSA GUID is "52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8", and the forest root domain NC's

DNS name is "fabrikam.com", then the GUID-based DNS name of the DC is "52f6c43b-
99ec-4040-a2b0-e9ebf2ec02b8._msdcs.fabrikam.com".

inbound trust: A trust relationship between two domains, from the perspective of the domain
that is trusted to perform authentication.

interdomain trust account: An account that stores information associated with a domain
trust in the domain controllers (DCs) of the domain that is trusted to perform
authentication.

intersite topology generator (ISTG): A domain controller (DC) within a given site that
computes an NC replica graph for each NC replica on any DC in its site. This DC creates,
updates, and deletes corresponding nTDSConnection objects for edges directed from NC
replicas in other sites to NC replicas in its site.

invocationId: The invocationId attribute. An attribute of an nTDSDSA object. Its value is a
unique identifier for a function that maps from update sequence numbers (USNs) to

updates to the NC replicas of a domain controller (DC). See also nTDSDSA object.

Knowledge Consistency Checker (KCC): An internal Windows component of the Active
Directory replication used to create spanning trees for domain controller (DC)-to-DC

replication and to translate those trees into settings of variables that implement the
replication topology.

LDAP ping: A specific Lightweight Directory Access Protocol (LDAP) search that returns
information about whether services are live on a domain controller (DC).

%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

32 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

lingering object: An object that still exists in an NC replica even though it has been deleted
and garbage-collected from other replicas. This occurs, for instance, when a domain

controller (DC) goes offline for longer than the tombstone lifetime.

mailslot: A form of datagram communication using the Server Message Block (SMB) protocol, as

specified in [MS-MAIL].

mailslot ping: A specific mailslot request that returns information about whether services are
live on a domain controller (DC).

most specific object class: In a sequence of object classes related by inheritance, the class
that none of the other classes inherits from. The special object class top is less specific than
any other class.

naming context (NC): An NC is a set of objects organized as a tree. It is referenced by a

DSName. The DN of the DSName is the distinguishedName attribute of the tree root. The
GUID of the DSName is the objectGUID attribute of the tree root. The security identifier
(SID) of the DSName, if present, is the objectSid attribute of the tree root; for Active

Directory Domain Services (AD DS), the SID is present if and only if the NC is a domain
naming context (domain NC). Active Directory supports organizing several NCs into a
tree structure.

NC replica: A variable containing a tree of objects whose root object is identified by some
naming context (NC).

NC replica graph: A directed graph containing NC replicas as nodes and repsFrom tuples as
inbound edges by which originating updates replicate from each full replica of a given
naming context (NC) to all other NC replicas of the NC, directly or transitively.

NetBIOS: A protocol family including name resolution, datagram, and connection services. For
more information, see [RFC1001] and [RFC1002].

NetBIOS domain name: The name registered by domain controllerS (DCs) on [1C] records
of the NBNS (WINS) server (see section 6.3.4). For details of NetBIOS name registration, see

[MS-WPO] sections 7.1.4 and 10.4.

NetBIOS Name Service (NBNS): The name service for NetBIOS. For more information, see
[RFC1001] and [RFC1002].

Netlogon: A component of Windows that authenticates a computer and provides other services.
The running/paused state of Netlogon on a domain controller (DC) is available through

protocols documented in section 6.3.

nTDSDSA object: An object of class nTDSDSA, representing a domain controller (DC) in the
configuration naming context (config NC).

object: See section 1, Introduction, under Pervasive Concepts.

object class: See section 1, Introduction, under Pervasive Concepts.

object class name: The lDAPDisplayName of the classSchema object of an object class. This

document consistently uses object class names to denote object classes; for example,
user and group are both object classes. The correspondence between Lightweight
Directory Access Protocol (LDAP) display names and numeric object identifiers (OIDs)
in the Active Directory schema is defined in the appendices of these documents: [MS-
ADSC], [MS-ADA1], [MS-ADA2], and [MS-ADA3].

%5bMS-MAIL%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-WPO%5d.pdf
%5bMS-WPO%5d.pdf
%5bMS-WPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

33 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

object identifier (OID): A sequence of numbers in a format defined by [RFC1778].

object reference: An attribute value that references an object; reading a reference gives the
distinguished name (DN) or full dsname of the object.

optional feature: A non-default behavior that modifies the Active Directory state model. An

optional feature is enabled or disabled in a specific scope, such as a forest or a domain.

oriented tree: A directed acyclic graph such that for every vertex v except one (the root), there
is a unique arc whose initial vertex is v. There is no arc whose initial vertex is the root. For
more information, see [KNUTH1] section 2.3.4.2.

outbound trust: A trust relationship between two domains, from the perspective of the
domain that trusts another domain to perform authentication.

parent naming context (parent NC): Given naming contexts (NCs) with their corresponding

distinguished names (DNs) forming a child and parent relationship, the NC in the parent
relationship is referred as the parent NC.

parent object: See section 1, Introduction, under Pervasive Concepts.

partial NC replica: An NC replica that contains a schema-specified subset of attributes for
the objects it contains. A partial replica is not writable—it does not accept originating
updates. See also writable NC replica.

Partitions container: A child object of the configuration naming context (config NC) root.
The relative distinguished name (RDN) of the Partitions container is "cn=Partitions" and
its class is crossRefContainer. See also crossRef object.

prefix table: A data structure that is used to translate between an object identifier (OID) and
an ATTRTYP.

primary domain controller (PDC): A domain controller (DC) designated to track changes
made to the accounts of all computers on a domain. It is the only computer to receive these

changes directly, and is specialized so as to ensure consistency and to eliminate the potential
for conflicting entries in the Active Directory database. A domain has only one PDC.

primary group: The group object identified by the primaryGroupID attribute of a user object.
The primary group's objectSid equals the user's objectSid, with its relative identifier
(RID) portion replaced by the primaryGroupID value. The user is considered a member of its
primary group.

principal: A unique entity identifiable by a security identifier (SID) that is typically the

requester of access to securable objects or resources. It often corresponds to a human user
but can also be a computer or service. It is sometimes referred to as a security principal.

read permission: Authorization to read an attribute of an object.

read-only domain controller (RODC): A domain controller (DC) that does not accept
originating updates. Additionally, an RODC does not perform outbound replication.

read-only full NC replica: An NC replica that contains all attributes of the objects it

contains, and does not accept originating updates.

Recycle Bin: An optional feature that modifies the state model of object deletions and
undeletions, making undeletion of deleted-objects possible without loss of the object's
attribute values.

http://go.microsoft.com/fwlink/?LinkId=90291
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

34 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

recycled-object: An object that has been deleted, but remains in storage until a configured
amount of time (the tombstone lifetime) has passed, after which the object is permanently

removed from storage. Unlike a deleted-object, most of the state of the object has been
removed, and the object may no longer be undeleted without loss of information. By keeping

the recycled-object in existence for the tombstone lifetime, the deleted state of the
object is able to replicate. Recycled-objects exist only when the Recycle Bin optional
feature is enabled.

relative distinguished name (RDN): The name of an object relative to its parent. This is the
leftmost attribute-value pair in the distinguished name (DN) of an object. For example, in
the DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter
Houston". For more information, see [RFC2251].

relative identifier (RID): The last item in the series of SubAuthority values in a security
identifier (SID) (see [MS-DTYP] section 2.3). Differences in the RID are what distinguish
the different SIDs generated within a domain.

replica: See section 1, Introduction, under Pervasive Concepts.

replicated attribute: An attribute whose values are replicated to other NC replicas. An
attribute is replicated if its attributeSchema object o does not have a value for the

systemFlags attribute, or if the FLAG_ATTR_NOT_REPLICATED bit (bit 0) of o!systemFlags is
zero.

replication cycle: A series of one or more replication responses associated with the same
invocationId, concluding with the return of a new up-to-date vector.

root domain: The unique domain naming context (domain NC) of an Active Directory
forest that is the parent of the forest's configuration naming context (config NC). The
config NC's relative distinguished name (RDN) is "cn=Configuration" relative to the root

object of the root domain.

root DSE (rootDSE): A nameless entry containing the configuration status of the Lightweight
Directory Access Protocol (LDAP) server. Typically, access to at least a portion of the root

DSE is available to unauthenticated clients, allowing them to determine the authentication
methods supported by the server.

schema NC: A specific type of NC or an instance of that type. A forest has a single schema
NC, which is replicated to each domain controller (DC) in the forest. Each attribute and

class in the forest's schema is represented as a corresponding object in the forest's
schema NC. A schema NC cannot contain security principal objects.

Secure Sockets Layer (SSL): A means of providing privacy and data protection between a
client and a server. It may also be used to provide authentication between the two systems.
For more information, see [SSL3].

secret attribute: Any of the following attributes: currentValue, dBCSPwd, initialAuthIncoming,

initialAuthOutgoing, lmPwdHistory, ntPwdHistory, priorValue, supplementalCredentials,
trustAuthIncoming, trustAuthOutgoing, and unicodePwd.

security context: A data structure containing authorization information for a particular
security principal in the form of a collection of security identifiers (SIDs). One SID
identifies the principal specifically, whereas others may represent other capabilities. A server
uses the authorization information in a security context to check access to requested
resources.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90534
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

35 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

security descriptor (SD): A data structure containing the security information associated with a
securable object. A security descriptor (SD) identifies an object's owner by security

identifier (SID). If access control is configured for the object, its SD contains a
discretionary access control list (DACL) with SIDs for the security principals that are

allowed or denied access. The SD format is specified in [MS-DTYP] section 2.4.6; a string
representation of SDs, called Security Descriptor Definition Language (SDDL), is specified in
[MS-DTYP] section 2.5.1.

security-enabled group: A group object with GROUP_TYPE_SECURITY_ENABLED present in
its groupType attribute. Only security-enabled groups are added to a security context.
See also group object.

security principal object: An object that corresponds to a security principal. A security

principal object contains an identifier, used by the system and applications to name the
principal, and a secret that is shared only by the principal. In Active Directory, a security
principal object is identified by the objectSid attribute. In Active Directory, the
domainDNS, user, computer, and group object classes are examples of security principal
object classes (though not every group object is a security principal object). In AD LDS,

any object containing the msDS-BindableObject auxiliary class is a security principal. See

also computer object, group object, and user object.

server object: A class of object in the configuration naming context (config NC). A server
object can have an nTDSDSA object as a child. See also nTDSDSA object.

Simple Authentication and Security Layer (SASL): An authentication mechanism that is
used by Lightweight Directory Access Protocol (LDAP) and is defined in [RFC2222].

simple bind: A bind with the simple authentication option enabled according to [RFC2251].

site: A collection of one or more well-connected (reliable and fast) TCP/IP subnets. By defining

sites (represented by site objects) an administrator can optimize both Active Directory
access and Active Directory replication with respect to the physical network. When users
log in, Active Directory clients find domain controllers (DCs) that are in the same site as
the user, or near the same site if there is no DC in the site. See also Knowledge

Consistency Checker (KCC).

site object: An object of class site, representing a site.

site settings object: For a given site with site object s, its site settings object o is the child

of s such that o is of class nTDSSiteSettings and the relative distinguished name (RDN) of
o is CN=NTDS Site Settings. See also site object.

SRV record: A type of information record in DNS that maps the name of a service to the DNS
name of a server that offers that service. domain controllers (DCs) advertise their
capabilities by publishing SRV records in DNS.

stamp: Information describing an originating update by a domain controller (DC). The

stamp is not the new data value; the stamp is information about the update that created
the new data value. A stamp is often called metadata, because it is additional information
that "talks about" the conventional data values.

SubAuthority: A security identifier (SID) can have a variable-length array of unsigned, 32-bit
integer values. Each of these values is called a SubAuthority. All SubAuthority values
excluding the last one collectively identify a domain. The last value, termed as the relative
identifier (RID), identifies a particular group or account relative to the domain. For more

information, see [SIDD].

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90322
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90516

36 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

syntax: See attribute syntax.

subordinate reference object (sub-ref object): The naming context (NC) root of a parent
NC has a list of all the NC roots of its child NCs in the subRefs attribute. Each entry in this
list is a subordinate reference and the object named by the entry is denominated a

subordinate reference object. An object is a subordinate reference object if and only if
it is in such a list. If a server has replicas of both an NC and its child NC, then the child NC
root is the subordinate reference object, in the context of the parent NC. If the server
does not have a replica of the child NC, then another object, with distinguishedName and
objectGUID attributes equal to the child NC root, is present in the server and is the
subordinate reference object.

tombstone: An object that has been deleted, but remains in storage until a configured amount

of time (the tombstone lifetime) has passed, after which the object is permanently
removed from storage. By keeping the tombstone in existence for the tombstone lifetime,
the deleted state of the object is able to replicate. Tombstones exist only when the Recycle
Bin optional feature is not enabled.

tombstone lifetime: The amount of time that a tombstone or recycled-object is kept in
storage before it is permanently deleted.

top level name (TLN): The DNS name of the forest root domain NC.

transitive membership: An indirect group membership that occurs when an object is a member
of a group that is a member of a second group. The object is a member of the second group
through a transitive membership.

Transport Layer Security (TLS): The successor to Secure Sockets Layer (SSL). As with
SSL, it provides privacy, data protection, and optionally authentication between a client and
server. See [RFC2246].

trust: A relationship between two domains. If domain A trusts domain B, domain A accepts
domain B's authentication and authorization statements for principals represented by
security principal objects in domain B.

universal group: An Active Directory group that allows user objects, global groups, and
universal groups from anywhere in the forest as members. A group object g is a
universal group if and only if GROUP_TYPE_UNIVERSAL_GROUP is present in g!groupType. A
security-enabled universal group is valid for inclusion within ACLs anywhere in the forest.

If a domain is in mixed mode, then a universal group cannot be created in that domain.
See also domain local group, security-enabled group.

update: An add, modify, or delete of one or more objects or attribute values. See also
originating update, replicated update.

update sequence number (USN): A monotonically increasing sequence number used in
assigning a stamp to an originating update. See also invocationId.

user object: An object of class user. A user object is a security principal object; the
principal is a person operating or service entity running on the computer. The shared secret

allows the person or service entity to authenticate itself.

UTF-8: An 8-bit, variable-width encoding of Unicode characters.

UTF-16: A 16-bit, variable-width encoding form of Unicode characters.

%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

37 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Virtual List View (VLV) search: Refers to a Lightweight Directory Access Protocol (LDAP)
search operation that enables the server to return a contiguous subset of a large search result

set. LDAP controls LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE
(section 3.1.1.3.4.1.17) that are used to perform a VLV search.

well-known object (WKO): An object within an naming context (NC) that can be located
using a fixed globally unique identifier (GUID).

Windows security descriptor: See security descriptor (SD).

writable NC replica: An NC replica that accepts originating updates. A writable NC replica
is always full, but a full NC replica is not always writable. See also read-only full NC
replica.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as

described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[GRAY] Gray, J. and Reuter, A., "Transaction Processing: Concepts and Techniques", San Mateo, CA:
Morgan Kaufmann Publishers, 1993, ISBN: 1558601902.

[IEEE1003.1] The Open Group, "IEEE Std 1003.1, 2004 Edition", 2004,

http://www.unix.org/version3/ieee_std.html

Note Registration is required to view or download this specification.

[ISO-8601] International Organization for Standardization, "Data Elements and Interchange Formats
- Information Interchange - Representation of Dates and Times", ISO/IEC 8601:2004, December
2004,
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&ICS1=1&ICS2

=140&ICS3=30

Note There is a charge to download the specification.

[ISO/IEC-9899] International Organization for Standardization, "Programming Languages - C",
ISO/IEC 9899:TC2, May 2005, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89897
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89921

38 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[ISO/IEC-14977] International Organization for Standardization, "Information technology --
Syntactic metalanguage -- Extended BNF", ISO/IEC 14977:1996,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26153

[ITUX680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",

Recommendation X.680, July 2002, http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-
0207.pdf

[ITUX690] ITU-T, "ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation X.690, July 2002,
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf

[KNUTH1] Knuth, D., "The Art of Computer Programming: Volume 1/Fundamental Algorithms
(Second Edition)", Reading, MA: Addison-Wesley, 1973, ASIN: B000NV8YOA.

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADLS] Microsoft Corporation, "Active Directory Lightweight Directory Services Schema".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support".

[MS-CTA] Microsoft Corporation, "Claims Transformation Algorithm".

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FRS1] Microsoft Corporation, "File Replication Service Protocol".

[MS-GKDI] Microsoft Corporation, "Group Key Distribution Protocol".

[MS-GPSB] Microsoft Corporation, "Group Policy: Security Protocol Extension".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)".

http://go.microsoft.com/fwlink/?LinkId=112362
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89924
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-APDS%5d.pdf
%5bMS-CTA%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-FRS1%5d.pdf
%5bMS-GKDI%5d.pdf
%5bMS-GPSB%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf

39 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

[MS-SRPL] Microsoft Corporation, "Directory Replication Service (DRS) Protocol Extensions for
SMTP".

[MS-UCODEREF] Microsoft Corporation, "Windows Protocols Unicode Reference".

[MS-W32T] Microsoft Corporation, "W32Time Remote Protocol".

[MSASRT] Microsoft Corporation, "Active Directory Sorting Weight Table", June 2006.
http://www.microsoft.com/downloads/details.aspx?FamilyId=60B16E13-D1E5-4865-AE6D-
0C13A9D7036F&displaylang=en

[RFC791] Postel, J., "Internet Protocol", STD 5, RFC 791, September 1981,

http://www.ietf.org/rfc/rfc791.txt

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", STD 19, RFC 1001, March 1987,
http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP

Transport: Detailed Specifications", STD 19, RFC 1002, March 1987,
http://www.ietf.org/rfc/rfc1002.txt

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034,
November 1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC
1035, November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1088] McLaughlin III, L., "A Standard for the Transmission of IP Datagrams over NetBIOS

Networks", STD 48, RFC 1088, February 1989, http://www.ietf.org/rfc/rfc1088.txt

[RFC1166] Kirkpatrick, S., Stahl, M., and Recker, M., "Internet Numbers", RFC 1166, July 1990,
http://www.ietf.org/rfc/rfc1166.txt

[RFC1274] Barker, P., and Kille, S., "The COSINE and Internet X.500 Schema", RFC 1274,
November 1991, http://www.ietf.org/rfc/rfc1274.txt

[RFC1278] Hardcastle-Kille, S. E., "A string encoding of Presentation Address", RFC 1278, November
1991, http://www.ietf.org/rfc/rfc1278.txt

[RFC1777] Yeong, W., Howes, T., and Kille, S., "Lightweight Directory Access Protocol", RFC 1777,
March 1995, http://www.ietf.org/rfc/rfc1777.txt

[RFC1778] Howes, T., Kille, S., Yeong, W., and Robbins, C., "The String Representation of Standard
Attribute Syntaxes", RFC 1778, March 1995, http://www.ietf.org/rfc/rfc1778.txt

[RFC1798] Young, A., "Connection-less Lightweight X.500 Directory Access Protocol", RFC 1798,
June 1995, http://www.ietf.org/rfc/rfc1798.txt

[RFC1964] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC 1964, June 1996,
http://www.ietf.org/rfc/rfc1964.txt

%5bMS-SFU%5d.pdf
%5bMS-SFU%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-W32T%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=123584
http://go.microsoft.com/fwlink/?LinkId=123584
http://go.microsoft.com/fwlink/?LinkId=90491
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90266
http://go.microsoft.com/fwlink/?LinkId=103593
http://go.microsoft.com/fwlink/?LinkId=90271
http://go.microsoft.com/fwlink/?LinkId=94440
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90291
http://go.microsoft.com/fwlink/?LinkId=90292
http://go.microsoft.com/fwlink/?LinkId=90304

40 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[RFC2078] Linn, J., "Generic Security Service Application Program Interface, Version 2", RFC 2078,
January 1997, http://www.ietf.org/rfc/rfc2078.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2136] Thomson, S., Rekhter Y. and Bound, J., "Dynamic Updates in the Domain Name System
(DNS UPDATE)", RFC 2136, April 1997, http://www.ietf.org/rfc/rfc2136.txt

[RFC2222] Myers, J., "Simple Authentication and Security Layer (SASL)", RFC 2222, October 1997,
http://www.ietf.org/rfc/rfc2222.txt

[RFC2246] Dierks, T., and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

[RFC2247] Kille, S., Wahl, M., Grimstad, A., et al., "Using Domains in LDAP/X.500 Distinguished

Names", RFC 2247, January 1998, http://www.ietf.org/rfc/rfc2247.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC
2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC2252] Wahl, M., Coulbeck, A., Howes, T., and Kille, S., "Lightweight Directory Access Protocol
(v3): Attribute Syntax Definitions", RFC 2252, December 1997, http://www.ietf.org/rfc/rfc2252.txt

[RFC2253] Wahl, M., Kille, S., and Howe, T., "Lightweight Directory Access Protocol (v3): UTF-8

String Representation of Distinguished Names", RFC 2253, December 1997,
http://www.ietf.org/rfc/rfc2253.txt

[RFC2255] Howes, T., and Smith, M., "The LDAP URL Format", RFC 2255, December 1997,
http://www.ietf.org/rfc/rfc2255.txt

[RFC2256] Wahl, M., "A Summary of the X.500(96) User Schema for use with LDAPv3", RFC 2256,
December 1997, http://www.ietf.org/rfc/rfc2256.txt

[RFC2307] Howard, L., "An Approach for Using LDAP as a Network Information Service", RFC 2307,

March 1998, http://www.ietf.org/rfc/rfc2307.txt

[RFC2373] Hinden, R., and Deering, S., "IP Version 6 Addressing Architecture", RFC 2373, July
1998, http://www.ietf.org/rfc/rfc2373.txt

[RFC2589] Yaacovi, Y., Wahl, M., and Genovese, T., "Lightweight Directory Access Protocol (v3):
Extensions for Dynamic Directory Services", RFC 2589, May 1999,
http://www.ietf.org/rfc/rfc2589.txt

[RFC2696] Weider, C., Herron, A., Anantha, A., and Howes, T., "LDAP Control Extension for Simple

Paged Results Manipulation", RFC 2696, September 1999, http://www.ietf.org/rfc/rfc2696.txt

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of
services (DNS SRV)", RFC 2782, February 2000, http://www.ietf.org/rfc/rfc2782.txt

[RFC2798] Smith, M., "Definition of the inetOrgPerson LDAP Object Class", RFC 2798, April 2000,

http://www.ietf.org/rfc/rfc2798.txt

[RFC2829] Wahl, M., Alvestrand, H., Hodges, J., and Morgan, R., "Authentication Methods for

LDAP", RFC 2829, May 2000, http://www.ietf.org/rfc/rfc2829.txt

[RFC2830] Hodges, J., Morgan, R., and Wahl, M., "Lightweight Directory Access Protocol (v3):
Extension for Transport Layer Security", RFC 2830, May 2000, http://www.ietf.org/rfc/rfc2830.txt

http://go.microsoft.com/fwlink/?LinkId=90312
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=107017
http://go.microsoft.com/fwlink/?LinkId=90322
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=91344
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90327
http://go.microsoft.com/fwlink/?LinkId=90329
http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=90333
http://go.microsoft.com/fwlink/?LinkId=94517
http://go.microsoft.com/fwlink/?LinkId=90370
http://go.microsoft.com/fwlink/?LinkId=91352
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=91342
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=91359

41 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[RFC2831] Leach, P., and Newman, C., "Using Digest Authentication as a SASL Mechanism", RFC
2831, May 2000, http://www.ietf.org/rfc/rfc2831.txt

[RFC2849] Good, G., "The LDAP Data Interchange Format (LDIF) - Technical Specification", RFC
2849, June 2000, http://www.ietf.org/rfc/rfc2849.txt

[RFC2891] Howes, T., Wahl, M., and Anantha, A., "LDAP Control Extension for Server Side Sorting
of Search Results", RFC 2891, August 2000, http://www.ietf.org/rfc/rfc2891.txt

[RFC3377] Hodges, J., and Morgan, R., "Lightweight Directory Access Protocol (v3): Technical
Specification", RFC 3377, September 2002, http://www.ietf.org/rfc/rfc3377.txt

[RFC3961] Raeburn, K., "Encryption and Checksum Specifications for Kerberos 5", RFC 3961,
February 2005, http://www.ietf.org/rfc/rfc3961.txt

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network

Authentication Service (V5)", RFC 4120, July 2005, http://www.ietf.org/rfc/rfc4120.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178,
October 2005, http://www.ietf.org/rfc/rfc4178.txt

[RFC4370] Weltman, R., "Lightweight Directory Access Protocol (LDAP) Proxied Authorization
Control", RFC 4370, February 2006, http://www.ietf.org/rfc/rfc4370.txt

[RFC4532] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP) "Who Am I?" Operation",
RFC 4532, June 2006, http://www.ietf.org/rfc/rfc4532.txt

[RFC4757] Jaganathan, K., Zhu, L., and Brezak, J., "The RC4-HMAC Kerberos Encryption Types
Used by Microsoft Windows", RFC 4757, December 2006, http://www.ietf.org/rfc/rfc4757.txt

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00

[X501] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: The
Models", Recommendation X.501, August 2005, http://www.itu.int/rec/T-REC-X.501-200508-S/en

[XMLSCHEMA1] Thompson, H.S., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema
Part 1: Structures", W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

[XMLSCHEMA2/2] Biron, P.V., and Malhotra, A., Eds., "XML Schema Part 2: Datatypes Second
Edition", W3C Recommendation, October 2004, http://www.w3.org/TR/2004/REC-xmlschema-2-

20041028/

[XPATH] Clark, J. and DeRose, S., "XML Path Language (XPath), Version 1.0", W3C
Recommendation, November 1999, http://www.w3.org/TR/xpath

1.2.2 Informative References

[ADDLG] Microsoft Corporation, "Security Briefs: Credentials and Delegation", September 2005,

http://msdn.microsoft.com/en-us/magazine/cc163740.aspx

[LISP15] McCarthy, J., Abrahams, P., Edwards, D., Hart, T., and Levin, M., "LISP 1.5 Programmers
Manual", Cambridge, MA: The M.I.T. Press, 1965, ISBN-10: 0262130114.

http://go.microsoft.com/fwlink/?LinkId=90387
http://go.microsoft.com/fwlink/?LinkId=90389
http://go.microsoft.com/fwlink/?LinkId=91357
http://go.microsoft.com/fwlink/?LinkID=91337
http://go.microsoft.com/fwlink/?LinkId=90450
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90475
http://go.microsoft.com/fwlink/?LinkId=90480
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=98847
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90608
http://go.microsoft.com/fwlink/?LinkId=90609
http://go.microsoft.com/fwlink/?LinkId=90609
http://go.microsoft.com/fwlink/?LinkId=90611
http://go.microsoft.com/fwlink/?LinkId=89792

42 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-ADDM] Microsoft Corporation, "Active Directory Web Services: Data Model and Common
Elements".

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-GPOD] Microsoft Corporation, "Group Policy Protocols Overview".

[MS-SYS] Microsoft Corporation, "Windows System Overview".

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[MS-XCA] Microsoft Corporation, "Xpress Compression Algorithm".

[MSKB-298713] Microsoft Corporation, "How to prevent overloading on the first domain controller
during domain upgrade", Version 6.8, December 2007, http://support.microsoft.com/kb/298713

[SIDD] Microsoft Corporation, "How Security Identifiers Work", March 2003,

http://technet.microsoft.com/en-us/library/cc778824.aspx

[VLVDRAFT] Boreham, D., Sermersheim, J., and Kashi, A., "LDAP Extensions for Scrolling View
Browsing of Search Results", draft-ietf-ldapext-ldapv3-vlv-09, November 2002,
http://tools.ietf.org/html/draft-ietf-ldapext-ldapv3-vlv-09

1.3 Overview

This is the primary specification for Active Directory. The state model for this specification is
prerequisite to the other specifications for Active Directory: [MS-DRSR] and [MS-SRPL].

Active Directory is either deployed as AD DS or as AD LDS. This document describes both forms.
When the specification does not refer specifically to AD DS or AD LDS, it applies to both.

The remainder of this section describes the structure of this document.

The basic state model is specified in section 3.1.1.1. The basic state model is prerequisite to the
remainder of the document. Section 3.1.1.1 also includes descriptive content to introduce key

concepts and refer to places in the document where the full specification is given.

The schema completes the state model and is specified in section 3.1.1.2. The schema is
prerequisite to the remainder of the document.

Active Directory is a server for LDAP. Section 3.1.1.3 specifies the extensions and variations of LDAP
that are supported by Active Directory.

LDAP is an access protocol that determines very little about the behavior of the data being accessed.
Section 3.1.1.4 specifies read (LDAP Search) behaviors, and section 3.1.1.5 specifies update (LDAP

Add, Modify, Modify DN, Delete) behaviors. Section 3.1.1.6 specifies background tasks required due
to write operations, to the extent that those tasks are exposed by protocols.

One of the update behaviors is the maintenance of the change log for use by Windows NT 4.0

operating system backup domain controller (BDC) replication [MS-NRPC] section 3.6. The
maintenance of this change log is specified in section 3.1.1.7.

The security services that Active Directory offers clients of LDAP are specified in section 5.1.

Active Directory contains a number of objects, visible through LDAP, that have special significance to
the system. Section 6.1 specifies these objects.

%5bMS-ADDM%5d.pdf
%5bMS-ADDM%5d.pdf
%5bMS-AUTHSOD%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GPOD%5d.pdf
%5bMS-SYS%5d.pdf
%5bMS-WPO%5d.pdf
%5bMS-WSPE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=122947
http://go.microsoft.com/fwlink/?LinkId=90516
http://go.microsoft.com/fwlink/?LinkId=94450
%5bMS-DRSR%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-NRPC%5d.pdf

43 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A server running Active Directory is part of a distributed system that performs replication. The
Knowledge Consistency Checker (KCC) is a component that is used to create spanning trees for

DC-to-DC replication, and is specified in section 6.2.

A server running Active Directory is responsible for publishing the services that it offers, in order to

eliminate the administrative burden of configuring clients to use particular servers running Active
Directory. A server running Active Directory also implements the server side of the LDAP ping and
mailslot ping protocols to aid clients in selecting among all the servers offering the same service.
Section 6.3 specifies how a server running Active Directory publishes its services, and how a client
needing some service can use this publication plus the LDAP ping or mailslot ping to locate a
suitable server.

Computers in a network with Active Directory can be put into a state called "domain joined"; when

in this state, the computer can authenticate itself. Section 6.4 specifies both the state in Active
Directory and the state on a computer required for the domain joined state.

Each type of data stored in Active Directory has an associated function that compares two values to
determine if they are equal and, if not, which is greater. Section 3.1.1.2 specifies all but one of

these functions; the methodology for comparing two Unicode strings is specified in section 6.5.

1.4 Relationship to Other Protocols

This is the primary specification for Active Directory. The state model for this specification is
prerequisite to the specification for Active Directory described in [MS-DRSR]. This Active Directory
technical specification depends on the following protocols:

Lightweight Directory Access Protocol (LDAP)

Remote Procedure Call (RPC)

Domain Name System (DNS)

Figure 1: Protocol and technical specification relationships

Other protocols make use of implementations of the Active Directory Technical Specification as a

data store.

1.5 Prerequisites/Preconditions

Active Directory requires an IP network and a DNS infrastructure.

%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf

44 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.6 Applicability Statement

Active Directory is not suitable for storing very large attribute values because, for instance, there is
no provision for check-pointing a large data transfer to allow restart after a failure. The bandwidth

and latency of typical networks makes Active Directory unsuitable for storing volatile data in
replicated attributes. Active Directory is especially suitable for storing security account data,
including passwords, and email address book data.

1.7 Versioning and Capability Negotiation

Capability negotiation is performed using the root DSE as described in section 3.1.1.3.2.

1.8 Vendor-Extensible Fields

LDAP is not extensible by Active Directory applications. Applications extend the directory by adding
objects, including schema objects to control the application objects.

1.9 Standards Assignments

Active Directory's extensions and variations of LDAP have no standards assignments. AD DS uses
private allocations for its LDAP global catalog (GC) port (3268) and LDAP GC port with Secure

Sockets Layer/Transport Layer Security (SSL/TLS) (3269).

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

45 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

The following sections specify how LDAP is transported and denote common information such as bit
flag values.

2.1 Transport

LDAP transport is specified in section 3.1.1.3, and in [RFC2251] section 5 (for LDAPv3), in
[RFC1777] section 3 (for LDAPv2), and in [RFC1798] section 3.1 (for both LDAPv2 and LDAPv3).

2.2 Message Syntax

This section specifies types and data structures used in the remainder of this document. These type
specifications reference the following:

DWORD and FILETIME types: [MS-DTYP] sections 2.2.9 and 2.3.3.

repsFrom, repsTo, replUpToDateVector abstract attributes of an NC replica: [MS-DRSR] sections

5.169, 5.170, and 5.165.

ReplUpToDateVector abstract type of a NC replica: [MS-DRSR] section 5.165.

kCCFailedConnections, kCCFailedLinks, RPCClientContexts, RPCOutgoingContexts,

ldapConnections, and replicationQueue variables of a DC: [MS-DRSR] sections 5.110, 5.111,
5.174, 5.175, 5.115, and 5.163.

Stamp variable of an attribute: [MS-DRSR] section 5.11.

Stamp variable of a link value: [MS-DRSR] section 5.117.

DS_REPL_ATTR_META_DATA_2, DS_REPL_CURSOR_3W, DS_REPL_KCC_DSA_FAILUREW,

DS_REPL_NEIGHBORW, DS_REPL_OPW, DS_REPL_VALUE_META_DATA_2 types: [MS-DRSR]
section 4.1.13.1.

IDL_DRSGetReplInfo method: [MS-DRSR] section 4.1.13.

2.2.1 LCID-Locale Mapping Table

The following table maps Windows locales (for example, French - France, Irish - Ireland) to numeric
identifiers called locale identifiers (LCIDs). These numeric identifiers are used as input to the
Unicode string comparison function specified in section 6.5. They are also used to name Display
Specifier containers, specified in section 6.1.1.2.3, "Display Specifiers Container".

LCID Language Location

0436 Afrikaans South Africa

041c Albanian Albania

0401 Arabic Saudi Arabia

0801 Arabic Iraq

0c01 Arabic Egypt

1001 Arabic Libya

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90292
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf

46 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

1401 Arabic Algeria

1801 Arabic Morocco

1c01 Arabic Tunisia

2001 Arabic Oman

2401 Arabic Yemen

2801 Arabic Syria

2c01 Arabic Jordan

3001 Arabic Lebanon

3401 Arabic Kuwait

3801 Arabic U.A.E.

3c01 Arabic Bahrain

4001 Arabic Qatar

042b Armenian Armenia

082c Azeri (Cyrillic) Azerbaijan

042c Azeri (Latin) Azerbaijan

042d Basque Basque

0423 Belarusian Belarus

201a Bosnian (Cyrillic) Bosnia and Herzegovina

141a Bosnian (Latin) Bosnia and Herzegovina

0402 Bulgarian Bulgaria

0403 Catalan Catalan

0004 Chinese Simplified

0404 Chinese Taiwan

0804 Chinese PRC

0c04 Chinese Hong Kong SAR

1004 Chinese Singapore

1404 Chinese Macao SAR

7c04 Chinese Traditional

041a Croatian Croatia

101a Croatian (Latin) Bosnia and Herzegovina

47 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

0405 Czech Czech Republic

0406 Danish Denmark

0465 Divehi Maldives

0813 Dutch Belgium

0413 Dutch Netherlands

1009 English Canada

2009 English Jamaica

2409 English Caribbean

2809 English Belize

2c09 English Trinidad

0809 English United Kingdom

1809 English Ireland

1c09 English South Africa

3009 English Zimbabwe

0c09 English Australia

1409 English New Zealand

3409 English Philippines

0409 English United States

0425 Estonian Estonia

0438 Faroese Faroe Islands

0464 Filipino Philippines

040b Finnish Finland

0c0c French Canada

040c French France

180c French Monaco

100c French Switzerland

080c French Belgium

140c French Luxembourg

0462 Frisian Netherlands

0456 Galician Galician

48 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

0437 Georgian Georgia

0407 German Germany

0807 German Switzerland

0c07 German Austria

1407 German Liechtenstein

1007 German Luxembourg

0408 Greek Greece

0447 Gujarati India

040d Hebrew Israel

0439 Hindi India

040e Hungarian Hungary

040f Icelandic Iceland

0421 Indonesian Indonesia

085d Inuktitut (Latin) Canada

083c Irish Ireland

0434 isiXhosa South Africa

0435 isiZulu South Africa

0410 Italian Italy

0810 Italian Switzerland

0411 Japanese Japan

044b Kannada India

043f Kazakh Kazakhstan

0441 Kiswahili Kenya

0457 Konkani India

0412 Korean Korea

0440 Kyrgyz Kirghizstan

0426 Latvian Latvia

0427 Lithuanian Lithuania

046e Luxembourgish Luxembourg

042f Macedonian (FYROM) Macedonia, Former Yugoslav Republic of

49 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

043e Malay Malaysia

083e Malay Brunei Darussalam

043a Maltese Malta

0481 Maori New Zealand

047a Mapudungun Chile

044e Marathi India

047c Mohawk Mohawk

0450 Mongolian (Cyrillic) Mongolia

0461 Nepali Nepal

0414 Norwegian (Bokmål) Norway

0814 Norwegian (Nynorsk) Norway

0463 Pashto Afghanistan

0429 Persian Iran

0415 Polish Poland

0416 Portuguese Brazil

0816 Portuguese Portugal

0446 Punjabi (Gurmukhi) India

046b Quechua Bolivia

086b Quechua Ecuador

0c6b Quechua Peru

0418 Romanian Romania

0417 Romansh Switzerland

0419 Russian Russia

243b Sami, Inari Finland

143b Sami, Lule Sweden

103b Sami, Lule Norway

043b Sami, Northern Norway

083b Sami, Northern Sweden

0c3b Sami, Northern Finland

203b Sami, Skolt Finland

50 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

183b Sami, Southern Norway

1c3b Sami, Southern Sweden

044f Sanskrit India

0c1a Serbian (Cyrillic) Serbia

0c1a Serbian (Cyrillic) Montenegro

1c1a Serbian (Cyrillic) Bosnia and Herzegovina

081a Serbian (Latin) Serbia

081a Serbian (Latin) Montenegro

181a Serbian (Latin) Bosnia and Herzegovina

046c Sesotho sa Leboa South Africa

0432 Setswana South Africa

041b Slovak Slovakia

0424 Slovenian Slovenia

080a Spanish Mexico

100a Spanish Guatemala

140a Spanish Costa Rica

180a Spanish Panama

1c0a Spanish Dominican Republic

200a Spanish Venezuela

240a Spanish Colombia

280a Spanish Peru

2c0a Spanish Argentina

300a Spanish Ecuador

340a Spanish Chile

3c0a Spanish Paraguay

400a Spanish Bolivia

440a Spanish El Salvador

480a Spanish Honduras

4c0a Spanish Nicaragua

500a Spanish Commonwealth of Puerto Rico

51 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LCID Language Location

380a Spanish Uruguay

0c0a Spanish (International Sort) Spain

040a Spanish (Traditional Sort) Spain

041d Swedish Sweden

081d Swedish Finland

045a Syriac Syria

0449 Tamil India

0444 Tatar Russia

044a Telugu India

041e Thai Thailand

041f Turkish Turkey

0422 Ukrainian Ukraine

0420 Urdu Pakistan

0843 Uzbek (Cyrillic) Uzbekistan

0443 Uzbek (Latin) Uzbekistan

042a Vietnamese Vietnam

0452 Welsh United Kingdom

2.2.2 DS_REPL_NEIGHBORW_BLOB

The DS_REPL_NEIGHBORW_BLOB structure is a representation of a tuple from the repsFrom or

repsTo abstract attribute of an NC replica. This structure, retrieved using an LDAP search method, is
an alternative representation of DS_REPL_NEIGHBORW, retrieved using the IDL_DRSGetReplInfo
RPC method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

oszNamingContext

oszSourceDsaDN

oszSourceDsaAddress

oszAsyncIntersiteTransportDN

dwReplicaFlags

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf

52 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwReserved

uuidNamingContextObjGuid

...

...

...

uuidSourceDsaObjGuid

...

...

...

uuidSourceDsaInvocationID

...

...

...

uuidAsyncIntersiteTransportObjGuid

...

...

...

usnLastObjChangeSynced

...

usnAttributeFilter

...

ftimeLastSyncSuccess

...

53 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ftimeLastSyncAttempt

...

dwLastSyncResult

cNumConsecutiveSyncFailures

data (variable)

...

oszNamingContext (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a
null-terminated Unicode string that contains the naming context (NC) to which this

replication state data pertains.

oszSourceDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a
null-terminated Unicode string that contains the distinguished name (DN) of the nTDSDSA
object of the source server to which this replication state data pertains. Each source server
has different associated neighbor data.

oszSourceDsaAddress (4 bytes): A 32-bit offset, in bytes, from the address of this structure
to a null-terminated Unicode string that contains the transport-specific network address of the

source server—that is, a directory name service name for RPC/IP replication, or a Simple
Mail Transfer Protocol (SMTP) address for an SMTP replication.

oszAsyncIntersiteTransportDN (4 bytes): A 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the DN of the interSiteTransport
object (as specified in [MS-ADSC] section 2.63) that corresponds to the transport over which
replication is performed. This member contains NULL for RPC/IP replication.

dwReplicaFlags (4 bytes): A 32-bit bit field containing a set of flags that specify attributes

and options for the replication data. This can be zero or a combination of one or more of the
following flags presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X X N

C

N

C

C

X X X X X X N

S

X X X F

S

N

F

S

P

X X X X X X T

W

S

X A

I

T

D

S

S

S

O

S

W X X X X

X: Unused. Must be zero and ignored.

W (DS_REPL_NBR_WRITEABLE, 0x00000010): The NC replica is writable.

SOS (DS_REPL_NBR_SYNC_ON_STARTUP, 0x00000020): Replication of this NC from
this source is attempted when the destination server is booted.

DSS (DS_REPL_NBR_DO_SCHEDULED_SYNCS, 0x00000040): Perform replication on
a schedule.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

54 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

AIT (DS_REPL_NBR_USE_ASYNC_INTERSITE_TRANSPORT, 0x00000080): Perform
replication indirectly through the Inter-Site Messaging Service. This flag is set only when

replicating over SMTP. This flag is not set when replicating over inter-site RPC/IP.

TWS (DS_REPL_NBR_TWO_WAY_SYNC, 0x00000200): When inbound replication is

complete, the destination server requests the source server to synchronize in the
reverse direction.

FSP (DS_REPL_NBR_FULL_SYNC_IN_PROGRESS, 0x00010000): The destination
server is performing a full synchronization from the source server.

FSN (DS_REPL_NBR_FULL_SYNC_NEXT_PACKET, 0x00020000): The last packet
from the source indicated a modification of an object that the destination server has not
yet created. The next packet to be requested instructs the source server to put all

attributes of the modified object into the packet.

NS (DS_REPL_NBR_NEVER_SYNCED, 0x00200000): A synchronization has never been
successfully completed from this source.

CC (DS_REPL_NBR_COMPRESS_CHANGES, 0x10000000): Changes received from this
source are to be compressed.

NCN (DS_REPL_NBR_NO_CHANGE_NOTIFICATIONS, 0x20000000): Applies to

repsFrom only. The domain controller (DC) storing this repsFrom is not configured to
receive change notifications from this source.

dwReserved (4 bytes): Reserved for future use.

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section
2.3.4, specifying the objectGUID of the NC that corresponds to oszNamingContext.

uuidSourceDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,
specifying the objectGUID of the nTDSDSA object that corresponds to oszSourceDsaDN.

uuidSourceDsaInvocationID (16 bytes): A GUID structure, as defined in [MS-DTYP] section
2.3.4, specifying the invocationId used by the source server as of the last replication
attempt.

uuidAsyncIntersiteTransportObjGuid (16 bytes): A GUID structure, as defined in [MS-
DTYP] section 2.3.4, specifying the objectGUID of the intersite transport object that
corresponds to oszAsyncIntersiteTransportDN.

usnLastObjChangeSynced (8 bytes): An update sequence number (USN) value, as

defined in section 3.1.1.1.9, containing the USN of the last object update received.

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the
usnLastObjChangeSynced value at the end of the last complete, successful replication cycle,
or 0 if none.

ftimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time that

the last successful replication cycle was completed from this source. All members of this

structure are zero if the replication cycle has never been completed.

ftimeLastSyncAttempt (8 bytes): A FILETIME structure that contains the date and time of
the last replication attempt from this source. All members of this structure are zero if the
replication has never been attempted.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf

55 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dwLastSyncResult (4 bytes): A 32-bit unsigned integer specifying a Windows error code
associated with the last replication attempt from this source. Contains ERROR_SUCCESS if the

last attempt was successful or replication was not attempted.

cNumConsecutiveSyncFailures (4 bytes): A 32-bit integer specifying the number of failed

replication attempts that have been made from this source since the last successful replication
attempt or since the source was added as a neighbor, if no previous attempt succeeded.

data (variable): This field contains all the null-terminated strings that are pointed to by the
offset fields in the structure (oszNamingContext, oszSourceDsaDN, oszSourceDsaAddress,
oszAsyncIntersiteTransportDN). The strings are packed into this field, and the offsets can be
used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB

The DS_REPL_KCC_DSA_FAILUREW_BLOB structure is a representation of a tuple from the

kCCFailedConnections or kCCFailedLinks variables of a DC. This structure, retrieved using an LDAP
search method, is an alternative representation of DS_REPL_KCC_DSA_FAILUREW, retrieved using
the IDL_DRSGetReplInfo RPC method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

oszDsaDN

uuidDsaObjGuid

...

...

...

ftimeFirstFailure

...

cNumFailures

dwLastResult

data (variable)

...

oszDsaDN (4 bytes): A 32-bit offset, in bytes, from the address of this structure to a null-
terminated string that contains the DN of the nTDSDSA object of the source server.

%5bMS-GLOS%5d.pdf

56 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

uuidDsaObjGuid (16 bytes): A GUID structure, defined in [MS-DTYP] section 2.3.4, specifying
the objectGUID of the object represented by the oszDsaDN member.

ftimeFirstFailure (8 bytes): A FILETIME structure, the content of which depends on the
requested binary replication data.

Attribute requested Meaning

msDS-

ReplConnectionFailures

Contains the date and time that the first failure occurred when

attempting to establish a replica link to the source server.

msDS-ReplLinkFailures Contains the date and time that the first failure occurred when

replicating from the source server.

cNumFailures (4 bytes): A 32-bit unsigned integer specifying the number of consecutive

failures since the last successful replication.

dwLastResult (4 bytes): A 32-bit unsigned integer specifying the error code associated with

the most recent failure, or ERROR_SUCCESS if no failures occurred.

data (variable): The data field contains the null-terminated string that contains the DN of the
nTDSDSA object of the source server.

All multibyte fields have little-endian byte ordering.

2.2.4 DS_REPL_OPW_BLOB

The DS_REPL_OPW_BLOB structure is a representation of a tuple from the replicationQueue
variable of a DC. This structure, retrieved using an LDAP search method, is an alternative
representation of DS_REPL_OPW, retrieved using the IDL_DRSGetReplInfo RPC method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ftimeEnqueued

...

ulSerialNumber

ulPriority

opType

ulOptions

oszNamingContext

oszDsaDN

oszDsaAddress

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf

57 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

uuidNamingContextObjGuid

...

...

...

uuidDsaObjGuid

...

...

...

data (variable)

...

ftimeEnqueued (8 bytes): A FILETIME structure that contains the date and time that this
operation was added to the queue.

ulSerialNumber (4 bytes): An unsigned integer specifying the identifier of the operation. The

counter used to assign this identifier is volatile; it is reset during startup of a DC. Therefore,
these identifiers are only unique between restarts of a DC.

ulPriority (4 bytes): An unsigned integer specifying the priority value of this operation. Tasks
with a higher priority value are executed first. The priority is calculated by the server based on

the type of operation and its parameters.

opType (4 bytes): Contains one of the following values that indicate the type of operation that

this structure represents.

Operation Value

DS_REPL_OP_TYPE_SYNC 0

DS_REPL_OP_TYPE_ADD 1

DS_REPL_OP_TYPE_DELETE 2

DS_REPL_OP_TYPE_MODIFY 3

DS_REPL_OP_TYPE_UPDATE_REFS 4

ulOptions (4 bytes): Zero or more bits from the Directory Replication Service (DRS) options
defined in [MS-DRSR] section 5.41, the interpretation of which depends on the OpType.

%5bMS-DTYP%5d.pdf
%5bMS-DRSR%5d.pdf

58 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

oszNamingContext (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated string that contains the DN of the NC associated with this

operation (for example, the NC to be synchronized for DS_REPL_OP_TYPE_SYNC).

oszDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a

null-terminated string that contains the DN of the nTDSDSA object of the remote server
corresponding to this operation. For example, the server from which to ask for changes for
DS_REPL_OP_TYPE_SYNC. This can be NULL.

oszDsaAddress (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure
to a null-terminated string that contains the transport-specific network address of the remote
server associated with this operation. For example, the DNS or SMTP address of the server
from which to ask for changes for DS_REPL_OP_TYPE_SYNC. This can be NULL.

uuidNamingContextObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section
2.3.4, specifying the objectGUID of the NC identified by oszNamingContext.

uuidDsaObjGuid (16 bytes): A GUID structure, as defined in [MS-DTYP] section 2.3.4,

specifying the objectGUID of the directory system agent object identified by oszDsaDN.

data (variable): This field contains all the null-terminated strings that are pointed to by the
offset fields in the structure (oszNamingContext, oszDsaDN, oszDsaAddress). The strings

are packed into this field and the offsets can be used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB

The DS_REPL_QUEUE_STATISTICSW_BLOB structure contains the statistics related to the
replicationQueue variable of a DC, returned by reading the msDS-ReplQueueStatistics (section
3.1.1.3.2.30) rootDSE attribute.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

ftimeCurrentOpStarted

...

cNumPendingOps

ftimeOldestSync

...

ftimeOldestAdd

...

ftimeOldestMod

...

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf

59 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ftimeOldestDel

...

ftimeOldestUpdRefs

...

ftimeCurrentOpStarted (8 bytes): A FILETIME structure that contains the date and time
that the currently running operation started.

cNumPendingOps (4 bytes): An unsigned integer specifying the number of currently pending

operations.

ftimeOldestSync (8 bytes): A FILETIME structure that contains the date and time of the

oldest synchronization operation.

ftimeOldestAdd (8 bytes): A FILETIME structure that contains the date and time of the
oldest add operation.

ftimeOldestMod (8 bytes): A FILETIME structure that contains the date and time of the

oldest modification operation.

ftimeOldestDel (8 bytes): A FILETIME structure that contains the date and time of the oldest
delete operation.

ftimeOldestUpdRefs (8 bytes): A FILETIME structure that contains the date and time of the
oldest reference update operation.

All multibyte fields have little-endian byte ordering.

2.2.6 DS_REPL_CURSOR_BLOB

The DS_REPL_CURSOR_BLOB is the packet representation of the ReplUpToDateVector type ([MS-
DRSR] section 5.165) of an NC replica. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_CURSOR_3W, retrieved using the IDL_DRSGetReplInfo RPC
method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

uuidSourceDsaInvocationID

...

...

...

usnAttributeFilter

%5bMS-DTYP%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

60 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

fTimeLastSyncSuccess

...

oszSourceDsaDN

data (variable)

...

uuidSourceDsaInvocationID (16 bytes): A GUID structure, defined in [MS-DTYP] section
2.3.4, specifying the invocationId of the originating server to which the usnAttributeFilter

corresponds.

usnAttributeFilter (8 bytes): A USN value, as defined in section 3.1.1.1.9, containing the
maximum USN to which the destination server can indicate that it has recorded all changes
originated by the given server at USNs less than or equal to this USN. This is used to filter
changes at replication source servers that the destination server has already applied.

fTimeLastSyncSuccess (8 bytes): A FILETIME structure that contains the date and time of
the last successful synchronization operation.

oszSourceDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string. The string contains the distinguished name of
the directory service agent (DSA) that corresponds to the source server to which this
replication state data applies.

data (variable): This field contains the null-terminated string pointed to by the offset field in

the structure (oszSourceDsaDN). The offset can be used to determine the start of the string.

All multibyte fields have little-endian byte ordering.

2.2.7 DS_REPL_ATTR_META_DATA_BLOB

The DS_REPL_ATTR_META_DATA_BLOB packet is a representation of a stamp variable (of type
AttributeStamp) of an attribute. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_ATTR_META_DATA_2, retrieved using the
IDL_DRSGetReplInfo RPC method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

oszAttributeName

dwVersion

ftimeLastOriginatingChange

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf

61 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

uuidLastOriginatingDsaInvocationID

...

...

...

usnOriginatingChange

...

usnLocalChange

...

oszLastOriginatingDsaDN

data (variable)

...

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the LDAP display name of the
attribute corresponding to this metadata.

dwVersion (4 bytes): Contains the dwVersion of this attribute's AttributeStamp, as specified in
section 3.1.1.1.9.

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this attribute's
AttributeStamp, as specified in section 3.1.1.1.9.

uuidLastOriginatingDsaInvocationID (16 bytes): Contains the uuidOriginating of this
attribute's AttributeStamp, as specified in section 3.1.1.1.9.

usnOriginatingChange (8 bytes): Contains the usnOriginating of this attribute's
AttributeStamp, as specified in section 3.1.1.1.9.

usnLocalChange (8 bytes): A USN value, defined in section 3.1.1.1.9, specifying the USN on
the destination server (the server from which the metadata information is retrieved) at which
the last change to this attribute was applied. This value typically is different on all servers.

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of
this structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object

of the server that originated the last replication.

data (variable): This field contains all the null-terminated strings that are pointed to by the
offset fields in the structure (oszAttributeName, oszLastOriginatingDsaDN). The strings are
packed into this field, and the offsets can be used to determine the start of each string.

62 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

All multibyte fields have little-endian byte ordering.

2.2.8 DS_REPL_VALUE_META_DATA_BLOB

The DS_REPL_VALUE_META_DATA_BLOB packet is a representation of a stamp variable (of type

LinkValueStamp) of a link value. This structure, retrieved using an LDAP search method, is an
alternative representation of DS_REPL_VALUE_META_DATA_2, retrieved using the
IDL_DRSGetReplInfo RPC method.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

oszAttributeName

oszObjectDn

cbData

pbData

ftimeDeleted

...

ftimeCreated

...

dwVersion

ftimeLastOriginatingChange

...

uuidLastOriginatingDsaInvocationID

...

...

...

usnOriginatingChange

...

usnLocalChange

%5bMS-GLOS%5d.pdf

63 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

oszLastOriginatingDsaDN

data (variable)

...

oszAttributeName (4 bytes): Contains a 32-bit offset, in bytes, from the address of this
structure to a null-terminated Unicode string that contains the LDAP display name of the
attribute corresponding to this metadata.

oszObjectDn (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to
a null-terminated Unicode string that contains the DN of the object that this attribute belongs
to.

cbData (4 bytes): Contains the number of bytes in the pbData array.

pbData (4 bytes): Contains a 32-bit offset, in bytes, from the address of this structure to a
buffer that contains the attribute replication metadata. The cbData member contains the

length, in bytes, of this buffer.

ftimeDeleted (8 bytes): Contains the timeDeleted of this link value's LinkValueStamp, as
specified in section 3.1.1.1.9.

ftimeCreated (8 bytes): Contains the timeCreated of this link value's LinkValueStamp, as
specified in section 3.1.1.1.9.

dwVersion (4 bytes): Contains the dwVersion of this link value's LinkValueStamp, as specified
in section 3.1.1.1.9.

ftimeLastOriginatingChange (8 bytes): Contains the timeChanged of this link value's

LinkValueStamp, as specified in section 3.1.1.1.9.

uuidLastOriginatingDsaInvocationID (16 bytes): Contains the uuidOriginating of this link
value's LinkValueStamp, as specified in section 3.1.1.1.9.

usnOriginatingChange (8 bytes): Contains the usnOriginating of this link value's
LinkValueStamp, as specified in section 3.1.1.1.9.

usnLocalChange (8 bytes): Specifies the USN, as found on the server from which the

metadata information is being retrieved, at which the last change to this attribute was applied.
This value is typically different on all servers.

oszLastOriginatingDsaDN (4 bytes): Contains a 32-bit offset, in bytes, from the address of
this structure to a null-terminated Unicode string that contains the DN of the nTDSDSA object
of the server that originated the last replication.

data (variable): This field contains all the null-terminated strings that are pointed to by the

offset fields in the structure (oszAttributeName, oszObjectDn, oszLastOriginatingDsaDN) and
the buffer pointed to by pbData. The strings and buffers are packed into this field (aligned at
32-bit boundaries), and the offsets can be used to determine the start of each string.

All multibyte fields have little-endian byte ordering.

64 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.9 Search Flags

The following table defines the valid search flags used on attributes, as specified in section
3.1.1.2.3. The flags are presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X X X X X X X X X X X X X X X X X X X S

E

B

O

X

L

R

O

N

V

C

F

S

T

T

P

C

P

P

R

A

R

P

I

I

X

X: Unused. Must be zero and ignored.

IX (fATTINDEX, 0x00000001): Specifies a hint to the DC to create an index for the attribute.

PI (fPDNTATTINDEX, 0x00000002): Specifies a hint to the DC to create an index for the
container and the attribute.

AR(fANR, 0x00000004): Specifies that the attribute is a member of the ambiguous name
resolution (ANR) set.

PR (fPRESERVEONDELETE, 0x00000008): Specifies that the attribute MUST be preserved on
objects after deletion of the object (that is, when the object is transformed to a tombstone,
deleted-object, or recycled-object). This flag is ignored on link attributes,
objectCategory, and sAMAccountType.

CP (fCOPY, 0x00000010): Specifies a hint to LDAP clients that the attribute is intended to be
copied when copying the object. This flag is not interpreted by the server.

TP (fTUPLEINDEX, 0x00000020): Specifies a hint for the DC to create a tuple index for the
attribute. This will affect the performance of searches where the wildcard appears at the front

of the search string.

ST (fSUBTREEATTINDEX, 0x00000040): Specifies a hint for the DC to create subtree index
for a Virtual List View (VLV) search.

CF (fCONFIDENTIAL, 0x00000080): Specifies that the attribute is confidential. An extended
access check (section 3.1.1.4.4) is required.

NV (fNEVERVALUEAUDIT, 0x00000100): Specifies that auditing of changes to individual
values contained in this attribute MUST NOT be performed. Auditing is outside of the state
model.

RO (fRODCFilteredAttribute, 0x00000200): Specifies that the attribute is a member of the
filtered attribute set.

XL (fEXTENDEDLINKTRACKING, 0x00000400): Specifies a hint to the DC to perform

additional implementation-specific, nonvisible tracking of link values. The behavior of this hint

is outside the state model.

BO (fBASEONLY, 0x00000800): Specifies that the attribute is not to be returned by search
operations that are not scoped to a single object. Read operations that would otherwise return
an attribute that has this search flag set instead fail with operationsError /
ERROR_DS_NON_BASE_SEARCH.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

65 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SE (fPARTITIONSECRET, 0x00001000): Specifies that the attribute is a partition secret. An
extended access check is required.

Flags that specify "hints" only direct the server to create certain indices that affect the system
performance. The effects of these flags are outside the state model. Implementations are permitted

to ignore these flags.

2.2.10 System Flags

The following table defines the valid system flags used on directory objects. The flags are
presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

D

D

A

R

A

M

A

L

D

R

D

M

D

E

X X X X X X X X X X X X X X X X X X X R

D

B

S

O

P

C

S

P

S

N

R

X: Unused. Must be zero and ignored.

NR (FLAG_ATTR_NOT_REPLICATED or FLAG_CR_NTDS_NC, 0x00000001): When used on
an attributeSchema object, it specifies that this attribute is not replicated. If it is used on a

crossRef object, it specifies that the NC that the crossRef is for is an Active Directory NC.

PS (FLAG_ATTR_REQ_PARTIAL_SET_MEMBER or FLAG_CR_NTDS_DOMAIN,
0x00000002): When used on an attributeSchema object, it specifies that the attribute is a
member of a partial attribute set (PAS). If used on a crossRef object, it specifies that the
NC is a domain NC.

CS (FLAG_ATTR_IS_CONSTRUCTED or FLAG_CR_NTDS_NOT_GC_REPLICATED,

0x00000004): When used on an attributeSchema object, this flag specifies that the attribute

is a constructed attribute. If used on a crossRef object, it specifies that the NC is not to be
replicated to GCs.

OP (FLAG_ATTR_IS_OPERATIONAL, 0x00000008): Only used on an attributeSchema
object. It specifies that the attribute is an operational attribute.

BS (FLAG_SCHEMA_BASE_OBJECT, 0x00000010): Only used on attributeSchema and
classSchema objects. It specifies that this attribute or class is part of the base schema.

Modifications to base schema objects are specially restricted.

RD (FLAG_ATTR_IS_RDN, 0x00000020): Only used on an attributeSchema object. It
specifies that this attribute can be used as an RDN attribute.

DE (FLAG_DISALLOW_MOVE_ON_DELETE, 0x02000000): Specifies that the object does not
move to the Deleted Objects container when the object is deleted.

DM (FLAG_DOMAIN_DISALLOW_MOVE, 0x04000000): Specifies that if the object is in a

domain NC, the object cannot be moved.

DR (FLAG_DOMAIN_DISALLOW_RENAME, 0x08000000): Specifies that if the object is in a
domain NC, the object cannot be renamed.

AL (FLAG_CONFIG_ALLOW_LIMITED_MOVE, 0x10000000): Specifies that if the object is in
the config NC, the object can be moved, with restrictions.

%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf

66 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

AM (FLAG_CONFIG_ALLOW_MOVE, 0x20000000): Specifies that if the object is in the config
NC, the object can be moved.

AR (FLAG_CONFIG_ALLOW_RENAME, 0x40000000): Specifies that if the object is in the
config NC, the object can be renamed.

DD (FLAG_DISALLOW_DELETE, 0x80000000): Specifies that the object cannot be deleted.

2.2.11 schemaFlagsEx Flags

The following table defines the valid schemaFlagsEx flags that are used on attributes, as specified in
section 3.1.1.2.3. The flags are presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X C

R

X: Unused. MUST be zero and ignored.

CR (FLAG_ATTR_IS_CRITICAL, 0x00000001): Specifies that the attribute is not a member
of the filtered attribute set even if the fRODCFilteredAttribute flag is set. For more information,

see sections 3.1.1.2.3 and 3.1.1.2.3.5.

2.2.12 Group Type Flags

Constants for defining group type. These constants define the values that are used in the
groupType attribute.

Symbolic name Value

GROUP_TYPE_BUILTIN_LOCAL_GROUP 0x00000001

GROUP_TYPE_ACCOUNT_GROUP 0x00000002

GROUP_TYPE_RESOURCE_GROUP 0x00000004

GROUP_TYPE_UNIVERSAL_GROUP 0x00000008

GROUP_TYPE_APP_BASIC_GROUP 0x00000010

GROUP_TYPE_APP_QUERY_GROUP 0x00000020

GROUP_TYPE_SECURITY_ENABLED 0x80000000

GROUP_TYPE_BUILTIN_LOCAL_GROUP: Specifies a group that is created by the system.

GROUP_TYPE_ACCOUNT_GROUP: Specifies a global group.

GROUP_TYPE_RESOURCE_GROUP: Specifies a domain local group.

GROUP_TYPE_UNIVERSAL_GROUP: Specifies a universal group.

%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf

67 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

GROUP_TYPE_APP_BASIC_GROUP: Groups of this type are not used by Active Directory. This
constant is included in this document because the value of this constant is used by Active

Directory in processing the groupType attribute (see section 3.1.1.5.4.2.2).

GROUP_TYPE_APP_QUERY_GROUP: Groups of this type are not used by Active Directory.

This constant is included in this document because the value of this constant is used by Active
Directory in processing the groupType attribute.

GROUP_TYPE_SECURITY_ENABLED: Specifies a security-enabled group.

The flag GROUP_TYPE_BUILTIN_LOCAL_GROUP is reserved for use by the system, and can be set in
combination with other flags on system-created Builtin objects (see section 6.1.1.4.12). The flag
GROUP_TYPE_BUILTIN_LOCAL_GROUP cannot be set by clients.

Otherwise, the flags GROUP_TYPE_ACCOUNT_GROUP, GROUP_TYPE_RESOURCE_GROUP,

GROUP_TYPE_UNIVERSAL_GROUP, GROUP_TYPE_APP_BASIC_GROUP, and
GROUP_TYPE_APP_QUERY_GROUP are mutually exclusive, and only one value must be set. The flag
GROUP_TYPE_SECURITY_ENABLED can be combined using a bitwise OR with flags

GROUP_TYPE_BUILTIN_LOCAL_GROUP, GROUP_TYPE_ACCOUNT_GROUP,
GROUP_TYPE_RESOURCE_GROUP, and GROUP_TYPE_UNIVERSAL_GROUP.

2.2.13 Group Security Flags

Constants for defining group security attributes.

Symbolic name Value

SE_GROUP_OWNER 0x00000008

SE_GROUP_USE_FOR_DENY_ONLY 0x00000010

SE_GROUP_OWNER: Specifies that a particular user is the owner of the group.

SE_GROUP_USE_FOR_DENY_ONLY: Specifies that the group is used only for denial of access.

2.2.14 Security Privilege Flags

Constants for defining security privilege.

Symbolic name Value

SE_SECURITY_PRIVILEGE 0x00000008

SE_TAKE_OWNERSHIP_PRIVILEGE 0x00000009

SE_RESTORE_PRIVILEGE 0x00000012

SE_DEBUG_PRIVILEGE 0x00000014

SE_ENABLE_DELEGATION_PRIVILEGE 0x0000001B

SE_SECURITY_PRIVILEGE: Specifies the privilege to manage auditing and the security log.

SE_TAKE_OWNERSHIP_PRIVILEGE: Specifies the privilege to take ownership of objects.
Possession of this privilege overrides the DACL on an object and gives the possessor implicit
RIGHT_WRITE_OWNER access.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

68 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SE_RESTORE_PRIVILEGE: Specifies the privilege to restore objects.

SE_DEBUG_PRIVILEGE: Specifies the privilege to debug the system.

SE_ENABLE_DELEGATION_PRIVILEGE: Specifies the privilege to enable accounts to be trusted
for delegation.

2.2.15 Domain RID Values

Constants for defining domain relative identifiers (RIDs).

Symbolic name Value

DOMAIN_USER_RID_ADMIN 0x000001F4

DOMAIN_USER_RID_KRBTGT 0x000001F6

DOMAIN_GROUP_RID_ADMINS 0x00000200

DOMAIN_GROUP_RID_CONTROLLERS 0x00000204

DOMAIN_GROUP_RID_SCHEMA_ADMINS 0x00000206

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS 0x00000207

DOMAIN_GROUP_RID_READONLY_CONTROLLERS 0x00000209

DOMAIN_ALIAS_RID_ADMINS 0x00000220

DOMAIN_ALIAS_RID_ACCOUNT_OPS 0x00000224

DOMAIN_ALIAS_RID_SYSTEM_OPS 0x00000225

DOMAIN_ALIAS_RID_PRINT_OPS 0x00000226

DOMAIN_ALIAS_RID_BACKUP_OPS 0x00000227

DOMAIN_ALIAS_RID_REPLICATOR 0x00000228

DOMAIN_USER_RID_ADMIN: The administrative user account in a domain.

DOMAIN_USER_RID_KRBTGT: The Kerberos ticket-granting ticket (TGT) account in a
domain.

DOMAIN_GROUP_RID_ADMINS: The domain administrators' group.

DOMAIN_GROUP_RID_CONTROLLERS: The DCs' group. All DCs in the domain are members
of the group.

DOMAIN_GROUP_RID_SCHEMA_ADMINS: The schema administrators' group. Members of

this group can modify the Active Directory schema.

DOMAIN_GROUP_RID_ENTERPRISE_ADMINS: The enterprise administrators' group.
Members of this group have full access to all domains in the Active Directory forest.
Enterprise administrators are responsible for forest-level operations, such as adding or
removing new domains.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

69 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

DOMAIN_GROUP_RID_READONLY_CONTROLLERS: The read-only domain controllers'
group. All read-only DCs in the domain are members of this group.

DOMAIN_ALIAS_RID_ADMINS: The administrators' group in the built-in domain.

DOMAIN_ALIAS_RID_ACCOUNT_OPS: A group that permits control over nonadministrator

accounts.

DOMAIN_ALIAS_RID_SYSTEM_OPS: A group that performs system administrative functions,
not including security functions. It establishes network shares, controls printers, unlocks
workstations, and performs other operations.

DOMAIN_ALIAS_RID_PRINT_OPS: A group that controls printers and print queues.

DOMAIN_ALIAS_RID_BACKUP_OPS: A group that is used for controlling assignment of file
backup and restoring user rights.

DOMAIN_ALIAS_RID_REPLICATOR: A group responsible for copying security databases to

the Windows NT operating system backup controllers.

2.2.16 userAccountControl Bits

Bit flags describing various qualities of a security account. The flags are presented in big-endian
byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X X X X X P

S

N

A

T

A

P

E

D

R

D

K

N

D

T

D

S

R

X D

P

X X S

T

W

T

I

D

X N X E

T

C

C

N

R

L H

R

X D X

X: Unused. Must be zero and ignored.

D (ADS_UF_ACCOUNT_DISABLE, 0x00000002): Specifies that the account is not enabled for
authentication.

HR (ADS_UF_HOMEDIR_REQUIRED, 0x00000008): Specifies that the homeDirectory
attribute is required.

L (ADS_UF_LOCKOUT, 0x00000010): Specifies that the account is temporarily locked out.

NR (ADS_UF_PASSWD_NOTREQD, 0x00000020): Specifies that the password-length policy,
as specified in [MS-SAMR] section 3.1.1.8.1, does not apply to this user.

CC (ADS_UF_PASSWD_CANT_CHANGE, 0x00000040): Specifies that the user cannot
change his or her password.

ET (ADS_UF_ENCRYPTED_TEXT_PASSWORD_ALLOWED, 0x00000080): Specifies that the

cleartext password is to be persisted.

N (ADS_UF_NORMAL_ACCOUNT, 0x00000200): Specifies that the account is the default
account type that represents a typical user.

ID (ADS_UF_INTERDOMAIN_TRUST_ACCOUNT, 0x00000800): Specifies that the account

is for a domain-to-domain trust.

%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-SAMR%5d.pdf

70 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

WT (ADS_UF_WORKSTATION_TRUST_ACCOUNT, 0x00001000): Specifies that the account
is a computer account for a computer that is a member of this domain.

ST (ADS_UF_SERVER_TRUST_ACCOUNT, 0x00002000): Specifies that the account is a
computer account for a DC.

DP (ADS_UF_DONT_EXPIRE_PASSWD, 0x00010000): Specifies that the password does not
expire for the account.

SR (ADS_UF_SMARTCARD_REQUIRED, 0x00040000): Specifies that a smart card is
required to log in to the account.

TD (ADS_UF_TRUSTED_FOR_DELEGATION, 0x00080000): Used by the Kerberos protocol.
This bit indicates that the "OK as Delegate" ticket flag, as described in [RFC4120] section 2.8,
MUST be set.

ND (ADS_UF_NOT_DELEGATED, 0x00100000): Used by the Kerberos protocol. This bit
indicates that the ticket-granting tickets (TGTs) of this account and the service tickets

obtained by this account are not marked as forwardable or proxiable when the forwardable or
proxiable ticket flags are requested. For more information, see [RFC4120].

DK (ADS_UF_USE_DES_KEY_ONLY, 0x00200000): Used by the Kerberos protocol. This bit
indicates that only des-cbc-md5 or des-cbc-crc keys, as defined in [RFC3961], are used in the

Kerberos protocols for this account.

DR (ADS_UF_DONT_REQUIRE_PREAUTH, 0x00400000): Used by the Kerberos protocol.
This bit indicates that the account is not required to present valid preauthentication data, as
described in [RFC4120] section 7.5.2.

PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000): Specifies that the password age on the
user has exceeded the maximum password age policy.

TA (ADS_UF_TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION, 0x01000000): Used by

the Kerberos protocol. When set, this bit indicates that the account (when running as a

service) obtains an S4U2self service ticket (as specified in [MS-SFU]) with the forwardable flag
set. If this bit is cleared, the forwardable flag is not set in the S4U2self service ticket.

NA (ADS_UF_NO_AUTH_DATA_REQUIRED, 0x02000000): Used by the Kerberos protocol.
This bit indicates that when the Key Distribution Center (KDC) is issuing a service ticket for
this account, the Privilege Attribute Certificate (PAC) MUST NOT be included. For more
information, see [RFC4120].

PS (ADS_UF_PARTIAL_SECRETS_ACCOUNT, 0x04000000): Specifies that the account is a
computer account for a read-only domain controller (RODC). If this bit is set, the
ADS_UF_WORKSTATION_TRUST_ACCOUNT must also be set. This flag is only interpreted by a
DC whose DC functional level is DS_BEHAVIOR_WIN2008 or greater.

2.2.17 Optional Feature Values

Constants for defining behaviors of optional features.

Symbolic name Value

FOREST_OPTIONAL_FEATURE 0x00000001

DOMAIN_OPTIONAL_FEATURE 0x00000002

http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90450
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-SFU%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458

71 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Symbolic name Value

DISABLABLE_OPTIONAL_FEATURE 0x00000004

SERVER_OPTIONAL_FEATURE 0x00000008

FOREST_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is forest-wide.

DOMAIN_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is domain-
wide.

DISABLABLE_OPTIONAL_FEATURE: Specifies that the optional feature can be disabled.

SERVER_OPTIONAL_FEATURE: Specifies that the scope of the optional feature is server-wide.

For more information, see section 3.1.1.9.

2.2.18 Claims Wire Structures

This section defines the structures related to claims using Interface Definition Language (IDL)
format. Refer to the term marshal in [MS-GLOS] for information on converting these structures into

the appropriate wire format.

The following figure illustrates the nesting of various larger claims structures for descriptive
reference purposes.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

72 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 2: Nesting of claims structures

2.2.18.1 CLAIM_ID

The CLAIM_ID type is a null-terminated UTF-16 string used for typing claim IDs.

typedef [string] wchar_t* CLAIM_ID;

typedef [string] wchar_t** PCLAIM_ID;

2.2.18.2 CLAIM_TYPE

The CLAIM_TYPE enumeration enumerates various value types of a claim.

typedef enum _CLAIM_TYPE

{

 CLAIM_TYPE_INT64 = 1,

 CLAIM_TYPE_UINT64 = 2,

73 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 CLAIM_TYPE_STRING = 3,

 CLAIM_TYPE_BOOLEAN = 6

} CLAIM_TYPE,

 *PCLAIM_TYPE;

CLAIM_TYPE_INT64: The value type of the claim is LONG64.

CLAIM_TYPE_UINT64: The value type of the claim is ULONG64.

CLAIM_TYPE_STRING: The value type of the claim is a null-terminated string of Unicode

characters.

CLAIM_TYPE_BOOLEAN: The value type of the claim is ULONG64; a value is set to 1 to
specify TRUE, or 0 to specify FALSE.

2.2.18.3 CLAIMS_SOURCE_TYPE

The CLAIMS_SOURCE_TYPE enumeration specifies the source of the claims.

typedef enum _CLAIMS_SOURCE_TYPE

{

 CLAIMS_SOURCE_TYPE_AD = 1,

 CLAIMS_SOURCE_TYPE_CERTIFICATE

} CLAIMS_SOURCE_TYPE;

Note No semantics should be attached to these values other than those specified in section 3.

2.2.18.4 CLAIMS_COMPRESSION_FORMAT

The CLAIMS_COMPRESSION_FORMAT enumeration specifies the source of the compression
algorithm that is used for encoding claims in a CLAIMS_SET_METADATA structure.

typedef enum _CLAIMS_COMPRESSION_FORMAT

{

 COMPRESSION_FORMAT_NONE = 0,

 COMPRESSION_FORMAT_LZNT1 = 2,

 COMPRESSION_FORMAT_XPRESS = 3,

 COMPRESSION_FORMAT_XPRESS_HUFF = 4

} CLAIMS_COMPRESSION_FORMAT;

COMPRESSION_FORMAT_NONE: No compression.

COMPRESSION_FORMAT_LZNT1: The LZNT1 compression algorithm is used. For more
information, see [MS-XCA] section 2.5.

COMPRESSION_FORMAT_XPRESS: The Xpress LZ77 compression algorithm is used. For more
information, see [MS-XCA] sections 2.3 and 2.4.

COMPRESSION_FORMAT_XPRESS_HUFF: The Xpress LZ77+Huffman compression algorithm

is used. For more information, see [MS-XCA] sections 2.1 and 2.2.

2.2.18.5 CLAIM_ENTRY

The CLAIM_ENTRY structure specifies a single claim.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-XCA%5d.pdf
%5bMS-XCA%5d.pdf
%5bMS-XCA%5d.pdf
%5bMS-XCA%5d.pdf
%5bMS-XCA%5d.pdf

74 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

typedef struct _CLAIM_ENTRY {

 CLAIM_ID Id;

 CLAIM_TYPE Type;

 [switch_is(Type), switch_type(CLAIM_TYPE)]

 union {

 [case(CLAIM_TYPE_INT64)]

 struct {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] LONG64* Int64Values;

 };

 [case(CLAIM_TYPE_UINT64)]

 struct {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] ULONG64* Uint64Values;

 };

 [case(CLAIM_TYPE_STRING)]

 struct {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount), string] LPWSTR* StringValues;

 };

 [case(CLAIM_TYPE_BOOLEAN)]

 struct {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] ULONG64* BooleanValues;

 };

 [default] ;

 } Values;

} CLAIM_ENTRY,

 *PCLAIM_ENTRY;

Id: Specifies the claim identifier.

Type: Specifies the type of the data in the Values union. Refer to section 2.2.18.2 for allowed

values and their interpretation.

Values: A union of arrays of the various types of claim values that a CLAIM_ENTRY can contain.
The actual type of the elements is specified by the Type member.

ValueCount: Specifies the number of array elements in the Int64Values member.

Int64Values: An array of LONG64 values of the claim. The array has ValueCount
elements.

ValueCount: Specifies the number of array elements in the Uint64Values member.

Uint64Values: An array of ULONG64 values of the claim. The array has ValueCount
elements.

ValueCount: Specifies the number of array elements in the StringValues member.

StringValues: An array of null-terminated, Unicode string values of the claim. The array
has ValueCount elements.

ValueCount: Specifies the number of array elements in the BooleanValues member.

BooleanValues: An array of ULONG64 values of the claim. The array has ValueCount
elements.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

75 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.18.6 CLAIMS_ARRAY

The CLAIMS_ARRAY structure specifies an array of CLAIM_ENTRY structures and the associated
claims source type.

typedef struct _CLAIMS_ARRAY {

 CLAIMS_SOURCE_TYPE usClaimsSourceType;

 ULONG ulClaimsCount;

 [size_is(ulClaimsCount)] PCLAIM_ENTRY ClaimEntries;

} CLAIMS_ARRAY,

 *PCLAIMS_ARRAY;

usClaimsSourceType: Specifies the source of the claims.

ulClaimsCount: Specifies the number of CLAIM_ENTRY elements in the ClaimEntries

member of this structure.

ClaimEntries: An array that contains ulClaimsCount number of CLAIM_ENTRY elements.

2.2.18.7 CLAIMS_SET

The CLAIMS_SET structure specifies CLAIMS_ARRAY structures, each from a different claims
source.

typedef struct _CLAIMS_SET {

 ULONG ulClaimsArrayCount;

 [size_is(ulClaimsArrayCount)] PCLAIMS_ARRAY ClaimsArrays;

 USHORT usReservedType;

 ULONG ulReservedFieldSize;

 [size_is(ulReservedFieldSize)] BYTE* ReservedField;

} CLAIMS_SET,

 *PCLAIMS_SET;

ulClaimsArrayCount: Specifies the number of CLAIMS_ARRAY elements that are in the

ClaimsArrays member. This field MUST be greater than or equal to 1.

ClaimsArrays: An array containing ulClaimsArrayCount number of CLAIMS_ARRAY
structures.

usReservedType: This field is not used.

ulReservedFieldSize: Specifies the length, in bytes, of the ReservedField member.

ReservedField: A byte array containing ulReservedFieldSize bytes.

2.2.18.8 CLAIMS_SET_METADATA

The CLAIMS_SET_METADATA structure specifies an encoded CLAIMS_SET structure with
information about the encoding.

typedef struct _CLAIMS_SET_METADATA {

 ULONG ulClaimsSetSize;

 [size_is(ulClaimsSetSize)] BYTE* ClaimsSet;

76 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 CLAIMS_COMPRESSION_FORMAT usCompressionFormat;

 ULONG ulUncompressedClaimsSetSize;

 USHORT usReservedType;

 ULONG ulReservedFieldSize;

 [size_is(ulReservedFieldSize)] BYTE* ReservedField;

} CLAIMS_SET_METADATA,

 *PCLAIMS_SET_METADATA;

ulClaimsSetSize: Contains the size, in bytes, of the ClaimsSet member.

ClaimsSet: A byte array of length ulClaimsSetSize bytes. This field contains a CLAIMS_SET
structure that is encoded as described in section 3.1.1.11.2.5.

usCompressionFormat: Specifies the compression algorithm used for encoding a
CLAIMS_SET structure, as specified in section 3.1.1.11.2.5.

ulUncompressedClaimsSetSize: Specifies the size of the partially encoded CLAIMS_SET
structure before compression, the fully encoded version of which is stored in the ClaimsSet

member.

usReservedType: The server MUST set this member to 0. The client MUST ignore this member.

ulReservedFieldSize: Specifies the size, in bytes, of the ReservedField member.

ReservedField: A byte array containing ulReservedFieldSize elements.

2.2.18.9 CLAIMS_BLOB

The CLAIMS_BLOB structure is generated from a CLAIMS_SET structure, as specified in section

3.1.1.11.2.5.

typedef struct CLAIMS_BLOB {

 ULONG ulBlobSizeinBytes;

 [size_is(dwBlobSizeinBytes)] PVOID EncodedBlob;

} CLAIMS_BLOB,

 *PCLAIMS_BLOB;

ulBlobSizeinBytes: The size of the EncodedBlob member, in bytes.

EncodedBlob: A byte array of length ulBlobSizeinBytes bytes that contains an encoded
CLAIMS_SET_METADATA structure.

2.2.19 MSDS-MANAGEDPASSWORD_BLOB

The MSDS-MANAGEDPASSWORD_BLOB structure is a representation of a group-managed
service account's password information. This structure is returned as the msDS-ManagedPassword

(section 3.1.1.4.5.39) constructed attribute.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Version Reserved

77 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Length

CurrentPasswordOffset PreviousPasswordOffset

QueryPasswordIntervalOffset UnchangedPasswordIntervalOffset

CurrentPassword (variable)

...

PreviousPassword (optional) (variable)

...

AlignmentPadding (variable)

...

QueryPasswordInterval

...

UnchangedPasswordInterval

...

Version (2 bytes): A 16-bit unsigned integer that defines the version of the msDS-

ManagedPassword binary large object (BLOB). The Version field MUST be set to 0x0001.

Reserved (2 bytes): A 16-bit unsigned integer that MUST be set to 0x0000.

Length (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the msDS-
ManagedPassword BLOB.

CurrentPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this

structure to the CurrentPassword field. The CurrentPasswordOffset field MUST NOT be
set to 0x0000.

PreviousPasswordOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this
structure to the PreviousPassword field. If this field is set to 0x0000, then the account has
no previous password.

QueryPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning of this
structure to the QueryPasswordInterval field.

UnchangedPasswordIntervalOffset (2 bytes): A 16-bit offset, in bytes, from the beginning
of this structure to the UnchangedPasswordInterval field.

CurrentPassword (variable): A null-terminated WCHAR string containing the cleartext
current password for the account.

%5bMS-GLOS%5d.pdf

78 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

PreviousPassword (optional) (variable): A null-terminated WCHAR string containing the
cleartext previous password for the account. If PreviousPasswordOffset is 0x0000, then

this field MUST be absent.

AlignmentPadding (variable): A padding field used to align the QueryPasswordInterval

field to a 64-bit boundary. This field is ignored by the receiver. This field SHOULD set to zero
and MUST be ignored on receipt.

QueryPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of time, in
units of 10^(-7) seconds, after which the receiver should requery the password. The
QueryPasswordInterval field MUST be placed on a 64-bit boundary.

UnchangedPasswordInterval (8 bytes): A 64-bit unsigned integer containing the length of
time, in units of 10^(-7) seconds, before which password queries will always return this

password value. The UnchangedPasswordInterval field MUST be placed on a 64-bit
boundary.

79 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Details

The following sections specify details of the abstract data model and directory operations for Active
Directory.

When an LDAP operation results in an error, the error is expressed in this document in the form:

LDAP error / Extended error code

Where the Extended error code is either a Windows error code or the literal string "<unrestricted>".

The LDAP error is specified in the resultCode field of an LDAP response. See [RFC2251] section

4.1.10 for the specification of resultCode in an LDAP response. See section 3.1.1.3.1.9 for the
specification of Extended error codes in an LDAP response.

3.1 Common Details

3.1.1 Abstract Data Model

Sections 3.1.1.1 and 3.1.1.2 describe a conceptual model of possible data organization that an

implementation maintains to participate in this protocol. The described organization is provided to
facilitate the explanation of how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that
described in this document.

3.1.1.1 State Model

3.1.1.1.1 Scope

The specification of all Active Directory protocols is based on a definition, shared by all Active
Directory protocols, of the state of a server running Active Directory that is implied by the protocols.
Call this the "state model" of Active Directory.

The Active Directory state model is divided into two categories:

1. Certain state that is represented as objects and attributes within Active Directory is promoted
directly into the state model. State within Active Directory becomes part of the state model if it

satisfies one of the following conditions:

1. It is replicated.

2. It is nonreplicated, but a protocol exists in the Windows Server operating system protocol
documentation set whose behavior is dependent upon the state.

The representation of nonreplicated state that is only accessed by a process running on the same
server, that is itself implementing Active Directory, is private to the implementation. Therefore,
such attributes are not promoted directly into the state model. It might still be required for this

state to be modeled as described in category 2 later in this section.

Excluded from the second condition above is all generic access by browsing tools such as ldp.exe
that can access any attribute of any object in the directory. If ldp.exe or a similar tool covered by
a Windows license can display or even modify a nonreplicated attribute of an object using only
the attribute's syntax as defined by the schema, that does not make the attribute part of the
state model. If ldp.exe or a similar tool covered by a Windows license accesses a nonreplicated

attribute and decodes or encodes its value using information outside the attribute's syntax as

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf

80 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

defined by the schema, that nonreplicated attribute is included in the state model under condition
1 (2) above. For example, by using LDP, it is possible to look at a nonreplicated attribute using

an attribute's syntax of type String(Unicode). However, if the string stored in that attribute would
be an XML content defined by an external XSD, then if LDP had special knowledge of how to

interpret that XML, that nonreplicated attribute would be included in the state model under
condition 1 (2) above.

2. Other state, however represented within Active Directory, is "abstracted" in the state model.
Such state is included only as necessitated by the requirement that a licensee implementation of
Windows Server protocols be able to receive messages and respond in the same manner as a
Windows Server.

For example, certain values sent by the Active Directory replication protocol [MS-DRSR] are

accompanied by metadata. If the replicated values are stored by the receiving system, it must
also store the metadata associated with the values. Otherwise, the receiving system will make
incorrect responses to subsequent replication requests. These incorrect responses will, in general,
prevent replication from converging. So this metadata must be included within the state model.
The specific way that this metadata is stored by Active Directory, and the algorithms that

optimize access to this metadata, are excluded from the state model.

The various indexes used by the Active Directory implementation to improve the performance of
directory search are another example of state within Active Directory. These indexes have no
effect, other than performance, on the protocol responses that Active Directory makes.
Therefore, these indexes are not included in the state model.

In this specification, the first category of state is modeled in a variant of LDAP information
structures: naming contexts, objects, attributes, and values. These structures are defined precisely
in the following sections. The set of replicated attributes is defined in [MS-ADA1], [MS-ADA2], and

[MS-ADA3]. The set of nonreplicated attributes covered under condition 1 (2) (described earlier in
this section) consists of the repsFrom and repsTo attributes documented in [MS-DRSR] sections
5.169 and 5.170.

Note Only the schema elements and instances of objects that are fundamental to Active Directory

are described in this specification. If a protocol defines its own schema objects or otherwise creates
its own objects in the directory, those objects are described in that protocol's specification. A
summary of schema elements defined by such other protocols is included in [MS-ADA1], [MS-

ADA2], [MS-ADA3], [MS-ADSC], and [MS-ADLS] as a convenience for the reader, but the
documentation for the protocols using those schema elements should be consulted for a complete
description.

In this specification, the second category of state is modeled using standard mathematical concepts.
The concepts used and their associated notational conventions are described in the next section.

LDAP mandates very little about the behavior of a directory. Active Directory has many specific

behaviors that are observable through LDAP. The remainder of this section describes the most
pervasive of these behaviors. The remainder of the specification completes the discussion.

3.1.1.1.2 State Modeling Primitives and Notational Conventions

Attribute names are underlined in this document, as specified in section 1. If a variable o refers to
an object, and a is an attribute name, then o!a denotes the value or values of attribute a on object
o. If attribute a is not present on o, the value of o!a is null.

The specification uses the LDAP display names of attributes and object classes when referring to
specific attributes and object classes. So if o refers to an object,

%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf

81 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

o!name

denotes the name attribute of object o.

Some attributes in this specification are abstract in the sense of [MS-DRSR] section 3.3.3. Abstract
attribute names are also underlined, for example, repsFrom. RootDSE attribute names are also

underlined, for example, dumpDatabase, even though rootDSE attributes are not declared as
attributes in the schema.

This specification models state in category 2 from the previous section using the standard
mathematical concepts of set, sequence, directed graph, and tuple.

The notation [first .. last] stands for the subrange first, first+1, ... , last. The type byte is the
subrange [0.. 255].

A sequence is an indexed collection of variables, which are called the elements of the sequence. The

elements all have the same type. The index type of a sequence is a zero-based subrange. S[i]
denotes the element of the sequence S corresponding to the value i of the index type. The number

of elements in a sequence S is denoted S.length. Therefore the index type of a sequence S is [0 ..
S.length-1].

A fixed-length sequence can be constructed using the notation:

[first element, second element, ... , last element]

A tuple is a set of name-value pairs: [name1: value1, name2: value2, ... , namen: valuen] where
namek is an identifier and valuek is the value bound to that identifier. Tuple types are defined as in
this example:

type DSName = [dn: DN, guid: GUID, sid: SID]

This defines DSName as a type of tuple with a DN–valued field dn, a GUID–valued field guid, and a
SID–valued field sid.

3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior

The LDAP data model is defined by [RFC3377]. Because the LDAP RFCs and their underlying ITU
specifications have been interpreted in a variety of ways, this section defines a more specific model
that correctly represents the behavior of Active Directory objects and attributes and describes the
correspondence between this model and the LDAP model.

The model is based on the general definitions of Replica, Object, and Attribute given in section 1,

and repeated here for convenience:

A replica is a variable containing a set of objects.

An attribute is an identifier for a set of values.

An object is set of attributes, each with its associated values. Two attributes of an object have
special significance:

Identifying attribute. A designated single-valued attribute appears on every object; the value of

this attribute identifies the object. For the set of objects in a replica, the values of the identifying
attribute are distinct.

Parent-identifying attribute. A designated single-valued attribute appears on every object; the

value of this attribute identifies the object's parent. That is, this attribute either contains the

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=91337

82 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

value of the parent's identifying attribute, or contains a reserved value (NULL GUID, as
described later in this section) identifying no object. For the set of objects in a replica, the values

of this parent-identifying attribute define an oriented tree with objects as vertices and child-
parent references as directed edges, with the child as an edge's tail and the parent as an edge's

head.

Note that an object is a value, not a variable; a replica is a variable. The process of adding,
modifying, or deleting an object in a replica replaces the entire value of the replica with a new value.

As the word replica suggests, it is often the case that two replicas contain "the same objects". In
this usage, objects in two replicas are considered "the same" if they have the same value of the
identifying attribute and if there is a process in place (replication) to converge both the set of
objects in existence and the values of the non-identifying attributes as originating updates take

place in replicas. When the members of a set of replicas are considered to be the same, it is
common to say "an object" as a shorthand referring to the set of corresponding objects in the
replicas.

A child object is an object that is not the root of its oriented tree. The children of an object o is the

set of all objects whose parent is o.

The directory model used in this specification instantiates the preceding definitions as follows. The

identifying attribute is objectGUID and the parent-identifying attribute is parent, an abstract
attribute. Both attributes have GUID values. No actual object has objectGUID equal to the NULL
GUID. The root object has parent equal to the NULL GUID.

This specification uses the following s-expression representation ([LISP15]) of directory values,
attributes, objects, and replicas to provide a notation for examples:

Represent an attribute and its values as a list (Attr Val1 Val2 ... Valn) where Attr is an atom whose

name is the attribute's name (its lDAPDisplayName, defined in section 3.1.1.2) and each Valk is a
value. The attribute comes first, but the ordering of values in the list is not significant, with the
exception of the values of the objectClass attribute explained later in this section. If a value is a
GUID, represent it as a 128-bit unsigned integer instead of using a representation that reflects
the internal structure of a GUID. To aid the readability of examples, the GUIDs used in examples

are unrealistically small integers.

Represent an object as a list (Attrval1 Attrval2 ...Attrvaln) where each Attrvalk is the

representation of an attribute and its values; the ordering of this list is not significant.

Represent a replica as a list (Obj1 Obj2 ... Objn) where each Objk is the representation of an

object; the ordering of this list is not significant.

The following list

(

 ((objectGUID 5) (parent 0) (dc "microsoft"))

 ((objectGUID 2) (parent 5) (ou "NTDEV"))

 ((objectGUID 9) (parent 2) (cn "Peter Houston"))

)

is one representation of the value of some replica containing three objects. The object with
objectGUID = 5 is the root, the object with objectGUID = 2 is the only child of the root, and the

object with objectGUID = 9 is the only grandchild of the root. Each object in this example has one
additional attribute whose meaning has not yet been described.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

83 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Representing an attribute as its lDAPDisplayName makes examples readable. In the actual state
model, an attribute is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can

be mapped to and from an object representing an attribute. This mapping is specified in section
3.1.1.2.6.

Active Directory's objectGUID attribute has special behavior. A GUID that is generated by the DC is
assigned to the objectGUID attribute of an object during its creation (LDAP Add), and this attribute
is read-only thereafter. This is the first of many examples of an attribute with special behavior.
Section 3.1.1.5 specifies the behavior of every attribute that has special behavior.

Active Directory includes the objectSid attribute on certain objects, called security principal
objects. The objectSid attribute has special behavior. A fresh SID is assigned to the objectSid
attribute of an object during its creation (LDAP Add), and this attribute is read-only thereafter,

unless the object moves to another NC (LDAP Modify DN; see section 3.1.1.5 for the specification of
such moves). More on objectSid generation can be found in section 3.1.1.1.5.

3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes

A directory object is constrained by the directory's schema, which is a set of predicates. A few
schema concepts are mentioned here. A full understanding of these concepts is not required to

understand this section; additional information is available in the Glossary or in section 3.1.1.2.

When an object is created, it is assigned a most specific structural object class or an 88 object
class, plus the sequence of object classes that this class inherits from. The set of inherited classes
always includes the class top. The value of an object's objectClass attribute is the full set of object
classes (each identified by lDAPDisplayName) assigned to the object. The example in the previous
section is elaborated in the following list.

(

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user))

)

This list represents three objects, including their first and last objectClass values. The intermediate

objectClass values are elided. Unlike all other multivalued attributes, the ordering of objectClass
values is significant—top is always listed first; the most specific structural object class (or the 88
object class used in place of the structural class) is always listed last. So, for instance, the most

specific structural object class of the root is domainDNS.

Representing a class as its lDAPDisplayName makes examples readable. In the actual state model, a
class is identified by an ATTRTYP. An ATTRTYP is a 32-bit unsigned integer that can be mapped to
and from the schema object representing a class. This mapping is specified in section 3.1.1.2.6.

In Active Directory, each object has an RDN attribute, which is determined by the most specific

structural object class of the object when the object is created. The RDN attribute is the attribute
that defines an object's name relative to its parent. In Active Directory, the RDN attribute of an

object class has String(Unicode) syntax; that is, its value is a Unicode string, and the RDN attribute
of an object always has exactly one value. (See section 3.1.1.2 for more on the topic of attribute
syntax.)

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

84 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Confusingly, the Active Directory schema includes an attribute whose attributeSchema object's cn is
"RDN"; this is the name attribute, described later in this section. The term "RDN attribute" never

refers to the name attribute in this document.

The RDN of an object is a string of the form "att=val" where att is the lDAPDisplayName of the RDN

attribute of the object and val is the value of the RDN attribute on this object. In the preceding
example, the object class user has RDN attribute cn, as can be confirmed by consulting [MS-ADSC].
Therefore the RDN of the object with objectGUID = 9 is "cn=Peter Houston". An RDN can also be
written using the attributeID of the RDN attribute in place of its lDAPDisplayName; the example just
given becomes "2.5.4.3=Peter Houston". The RDN form based on lDAPDisplayName is used
throughout this document.

Active Directory requires that the value parts of the RDNs of all children of an object be distinct. This

guarantees that the RDNs of all children of an object are distinct.

The DN of an object is defined recursively as follows. The DN of the root has an assigned value; the
way Active Directory assigns this value is described later in section 3.1.1.1.5. The DN of a child
object is the RDN of the child, followed by "," and the DN of the parent. In the preceding example,

suppose the assigned DN of the root object is "dc=microsoft,dc=com". Then the DN of the object
with objectGUID = 9 is "cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com".

The correspondence between this model and the LDAP data model is as follows. An object with its
attributes and values corresponds to an LDAP entry with its attributes and values. This model and
LDAP agree on the definition of the objectClass attribute. The definition of RDN in this model is a
subset of LDAP's definition; all RDNs in this model are valid LDAP RDNs, but not vice versa. For
example, the following multivalued RDN is a valid LDAP RDN, but it is not valid in this model:
"cn=Peter Houston+employeeID=ABC123". Given the RDN definition, the definition of DN in this
model is the same as LDAP's definition. In the LDAP data model, the child-parent relationship is

represented in the DNs of the child and parent, whereas in the Active Directory data model, the
child-parent relationship is represented in the parent attribute and the DN is derived. Active
Directory does not expose the model's parent attribute through LDAP.

Active Directory includes the distinguishedName attribute on every object; the value is the object's

DN. The following example elaborates the previous example to include a value of distinguishedName
on each object.

(

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (distinguishedName "dc=microsoft,dc=com"))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (distinguishedName "ou=NTDEV,dc=microsoft,dc=com"))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (distinguishedName

 "cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"))

)

But including distinguishedName on each object this way is misleading, because the
distinguishedName attribute is not stored as a string on each object. If it were stored as a string on

each object, renaming an object would require updating every object in the subtree rooted at the
renamed object. For a large subtree, this would take a long time and would either interfere with
other directory activity (if performed as a single transaction) or would expose observable

%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

85 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

inconsistency to clients (if performed as multiple transactions). Active Directory does neither of
these, so its state model can't imply that it does.

The distinguishedName attribute is not declared in the schema as a constructed attribute, but it
behaves like one. Normal attributes, including attributes with special behavior such as objectGUID,

have their values stored as part of an object's representation. Constructed attributes have the
property that they have values computed from normal attributes (for read) and/or have effects on
the values of normal attributes (for write). Constructed attributes are not included in the state
model. Because the distinguishedName attribute behaves like a constructed attribute in that it also
contributes no state to an instance of an object, it is not considered to be part of the state model.

Active Directory includes the name attribute on every object. An object's value of name equals the
value of the object's RDN attribute. The following example removes the incorrect modeling of

distinguishedName from the previous example, then elaborates that example to include name.

(

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (name "microsoft"))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (name "NTDEV"))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (name "Peter Houston"))

)

The name attribute has special behavior. Even if an object is renamed (LDAP Modify DN), the

object's name attribute remains equal to the object's RDN attribute. As with the distinguishedName
attribute, the name attribute is not declared in the schema as a constructed attribute, but it behaves
like one.

Because Active Directory requires that the value parts of the RDNs of all children of an object be
distinct, it follows that the name attribute of all children of an object are distinct.

Active Directory includes the rdnType attribute on every object. An object's value of rdnType is the
object's RDN attribute at object creation time—the identifier, not its associated value. The following
example elaborates the previous example to include rdnType.

(

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (name "microsoft") (rdnType dc))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (name "NTDEV") (rdnType ou))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (name "Peter Houston") (rdnType cn))

)

The rdnType attribute, like the parent attribute, is not declared in the Active Directory schema. [MS-

DRSR] section 5.158 specifies the special behavior of the rdnType attribute.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

86 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A secret attribute is any attribute from the following set: currentValue, dBCSPwd,
initialAuthIncoming, initialAuthOutgoing, lmPwdHistory, ntPwdHistory, priorValue,

supplementalCredentials, trustAuthIncoming, trustAuthOutgoing, and unicodePwd.

3.1.1.1.5 NC, NC Replica

The type DSNAME is defined as a C structure in [MS-DRSR] section 5.50; this state model uses the
simpler DSName, which contains the same information in a tuple of the form:

DSName: [dn: DN; guid: GUID; sid: SID]

An NC is a set of objects organized as a tree. It is referenced by a DSName containing a non-NULL
dn and a non-NULL GUID. This DSName also references the NC root, which is the root object of the
tree of objects in the NC. The NC root has the IT_NC_HEAD bit set in the instanceType attribute.

Any instance of the NC on any DC is called an NC replica. It is convenient to say "the NC x" where x
is the DSName referencing the NC.

A replica of NC x is a replica as already defined, with its root object r constrained as follows:

r!objectGUID = x.guid

r!distinguishedName = x.dn

If x.sid ≠ NULL then r!objectSid = x.sid, otherwise r!objectSid = NULL

Mutation of a replica in the general sense is unconstrained. In the case of a replica of a specific NC,
the root object cannot be replaced, because doing so would change the objectGUID (and objectSid if
any), and this must equal the NC's guid. In a replica of a given NC the root object's DN cannot be
changed, because the root object's DN must equal the NC's dn.

All replicas in Active Directory are NC replicas.

NC replicas are mutable. The term originating update means any mutation to an NC replica

performed via any protocol except replication.

Active Directory performs replication between replicas of the same NC to converge their states, so
an update originated on one replica is reflected in all the others. The replication algorithm has the
property that if originating updates to all replicas ceases and communication between replicas is
maintained, the application-visible states of the replicas will eventually converge to a common
value. Applications of Active Directory can read from several replicas of a given NC and observe the

differences, but applications typically bind to a single replica.

Active Directory supports four NC types:

Domain NC: A domain naming context. The sid field of a domain NC is not NULL.

Config NC: An NC that stores Active Directory configuration information. The sid field of a config
NC is NULL.

Schema NC: An NC that stores Active Directory schema information. The sid field of a schema

NC is NULL.

Application NC: An application NC. The sid field of an application NC is NULL.

The dn of a domain NC or an AD DS application NC takes the form:

dc=n1,dc=n2, ... dc=nk

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

87 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

where each ni satisfies the syntactic requirements of a DNS name component [RFC1034]. Such a
DN corresponds to the DNS name:

n1. n2.nk

This is the DNS name of the NC. The mapping just specified follows [RFC2247].

In AD LDS, an application NC can have any valid DN; therefore an AD LDS application NC does not
necessarily have a DNS name.

Replicas of a domain NC have one of these two subtypes:

Full. A replica whose objects contain their full state as defined by all originating updates.

Partial. A replica whose objects contain a filtered view of the full state as defined by all

originating updates. There are three types of the partial replica:

GC partial NC replica: The filter removes all attributes (and their values) that are not in the

partial replica's GC partial attribute set.

Filtered partial NC replica: The filter removes all the attributes (and their values) that are

in the filtered attribute set. The default NC, config NC, and application NC on a RODC are
filtered partial NC replicas.

Filtered GC partial NC replica: The filter removes all the attributes (and their values) that

are not in the partial replica's GC partial attribute set, as well as all the attributes (and their
values) in the filtered attribute set. Domain NCs, excluding the default domain NC, that are
hosted on an RODC are filtered GC partial NC replicas. Such domain NCs will exist on the
RODC when the RODC is a GC.

Replicas of other NC types are always full. A full replica is either writable, that is, it accepts

originating updates, or is read-only. A partial replica is read-only.

This section has introduced many concepts without describing how they are reflected in the state

model. To a great extent this obligation will be discharged in other sections of this document. The
schema NC is described in section 3.1.1.2, while the other NC types are described in section 6.1.
Here are three elaborations of the state model that can be explained without making a forward
reference:

1. NC replicas are modeled by making a DSName, converted into a string formatted as specified in

[MS-DRSR] section 5.16.2.1, the first element of a replica.

2. The root object of a domain NC or an AD DS application NC has class domainDNS. The RDN
attribute of domainDNS is dc. Therefore both the dc and name attributes of the root object of a
domain NC or an AD DS application NC equal the first component (for example, n1 for DNS name
n1. n2. nk) of the NC's DNS name. The root object of an AD LDS application NC can have any
object class except dMD or configuration.

3. In AD DS, the generation of objectSid values is constrained by the sid of a domain NC as follows.

The sid of a domain NC, the domain SID, is a SID with four SubAuthority values. The root

object of a domain NC has objectSid equal to the domain SID, as required by the definition of NC
replica. Every security principal object o in a domain NC has o!objectSid equal to the domain SID
plus the RID portion (that is, it has five SubAuthority values). The RID portion of o!objectSid is a
number not assigned as the RID portion of the objectSid to any other object of the domain,
including objects that existed earlier but have been deleted.

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=91344
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

88 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Section 3.1.1.5.2.4 specifies how AD DS assigns RIDs. The same section specifies how AD LDS
generates objectSid values for new AD LDS security principals.

Continuing the example, let the example NC be a domain NC, and let the object with name "Peter
Houston" be assigned the RID value 2055 (decimal). Then the state of the example NC is as follows.

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;

 dc=microsoft,dc=com"

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (name "microsoft") (rdnType dc)

 (objectSid 0x0105...94E1F2E6))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (name "NTDEV") (rdnType ou))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (name "Peter Houston") (rdnType cn)

 (objectSid 0x0105...94E1F2E607080000))

)

The DNS name of this domain NC is microsoft.com. Note that the domain SID is a prefix of the

"Peter Houston" object's objectSid. Portions of the (long) SID values have been elided for clarity;
consider the elided portions to be the following hex digits

0000000000051500000089598D33D3C56B68

and the example SID will be a valid SID.

3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime

The tombstone lifetime is controlled by the tombstoneLifetime attribute of the Directory Services
object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no value is specified for

the tombstoneLifetime attribute of the Directory Services object, the tombstone lifetime defaults to
60 days. The minimum value that can be specified is 2 days. If a value of less than 2 days is
specified, tombstone lifetime defaults to 60 days, except for Windows Server 2008 R2 operating
system, Windows Server 2012 operating system, and Windows Server 2012 R2 operating system,
where the tombstone lifetime defaults to 2 days.

The deleted-object lifetime is controlled by the msDS-DeletedObjectLifetime attribute of the

Directory Services object specified in section 6.1.1.2.4.1.1, interpreted as a number of days. If no
value is specified for the msDS-DeletedObjectLifetime attribute of the Directory Services object,
deleted-object lifetime defaults to the tombstone lifetime as calculated above. The minimum value
that can be specified is 2 days. If a value less than 2 days is specified, deleted-object lifetime
defaults to 2 days.

3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-

Known Objects

The complete set of attribute syntaxes supported by Active Directory are specified in section
3.1.1.2. The representation used by the abstract data model for values of each attribute syntax is
specified in [MS-DRSR] section 5.16.2. These representations of each syntax can be returned in an

%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf

89 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LDAP response without conversion, that is, the values are represented in the abstract data model in
the same format as used by the LDAP protocol.

The following five attribute syntaxes are called object reference syntaxes:

Object(DS-DN)

Object(DN-String)

Object(DN-Binary)

Object(Access-Point)

Object(OR-Name)

The values of an attribute with Object(DS-DN) syntax are DNs, which represent references to
objects. The values of attributes with the other object reference syntaxes have two portions; one
portion is a DN, which represents a reference to an object, and the other has information specific to

each syntax. The five object reference syntaxes have a special behavior called "referential
integrity"; no other attribute syntax have special behavior intrinsic to the syntax. The referential
integrity behavior applies only to the DN portion of the syntax (the portion that represents a
reference to an object), leaving the remaining portion unchanged. For this reason, and because the

referential integrity is the same for the DN portion of all five object reference syntaxes, it suffices to
specify the referential integrity behavior of syntax (the portion that represents a reference to an
object), leaving the remaining portion unchanged. For this reason, and because the referential
integrity is the same for the DN portion of all five object reference syntaxes, it suffices to specify the
referential integrity behavior only for the Object(DS-DN) syntax (the simplest of the object
reference syntaxes).

To specify referential integrity, some background on object deletion is required; object deletion is
specified fully in section 3.1.1.5.

When the Recycle Bin optional feature is not enabled, object deletion is performed in two stages.

1. In the first stage, the object to be deleted is transformed into a tombstone. A tombstone is a
special object, part of a replica's state. The state of a deleted object's tombstone resembles the
state of the object before deletion; it has the same objectGUID but a different DN. Specifically,
its RDN is changed to a "delete-mangled RDN" and, in most cases, it is moved into the Deleted

Objects container of its NC, as described in section 3.1.1.5.5. A tombstone is generally not an
object from the LDAP perspective: a tombstone is not returned by a normal LDAP Search request,
only by a Search request with extended control LDAP_SERVER_SHOW_DELETED_OID or
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3.

2. In the second stage, after a significant delay (the tombstone lifetime), a tombstone is garbage
collected, which removes it from the replica's state.

When the Recycle Bin optional feature is enabled, object deletion is performed in three stages.

1. In the first stage, the object being deleted is transformed into a deleted-object. A deleted-object
is a special object, part of a replica's state. The deleted-object also resembles the state of the

object before deletion; it has the same objectGUID but a different DN. Specifically, its RDN is
changed to a "delete-mangled RDN" and, in most cases, it is moved into the Deleted Objects
container of its NC, as described in section 3.1.1.5.5. A deleted-object is generally not an object
from the LDAP perspective: a deleted-object is not returned by a normal LDAP Search request,

only by a Search request with extended control LDAP_SERVER_SHOW_DELETED_OID OID or
LDAP_SERVER_SHOW_RECYCLED_OID, as described in section 3.1.1.3.

%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

90 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. In the second stage, after a significant delay (the deleted-object lifetime), a deleted-object is
transformed into a recycled-object. A recycled-object is a special object, part of a replica's state.

The recycled-object also resembles the state of the object before deletion; it has the same
objectGUID but a different DN. Specifically, its RDN has been changed and, in most cases, the

object moved, as described in the first stage. A recycled-object is also generally not an object
from the LDAP perspective: a recycled-object is not returned by a normal LDAP Search request,
only by a Search request with extended control LDAP_SERVER_SHOW_RECYCLED_OID, as
described in section 3.1.1.3.

Note that this transformation from deleted-object to recycled-object is only initiated on DCs
where the deleted-object is in a writable NC replica. On DCs where the deleted-object is not in
a writable NC replica, the transformation from deleted-object to recycled-object occurs as the

result of replication in this state change from a DC that holds a writable copy of the object.

3. In the third and final stage, after a significant delay (the tombstone lifetime), a recycled-object is
garbage collected, which removes it from the replica's state.

In situations where a deletion does not need to be replicated, an object is expunged (that is,

removed in a single step from the replica's state) instead. A deletion does not need to be replicated
in the following cases: removal of a lingering object (section 3.1.1.3.3.15), removal of an object

being moved during a cross-domain move (section 3.1.1.5.4.2), and removal of a dynamic object
(section 6.1.7).

An application is not limited to specifying a DN when creating an object reference; using the syntax
specified in section 3.1.1.2, it can specify any combination of DN, SID, or GUID as the reference as
long as it specifies at least one. A DSName is created using the specified references and is resolved
to an object using DSName equality as defined in [MS-DRSR] section 5.50, DSNAME.

The state kept with an attribute to represent an object reference is a DSName.

When reading an object reference, an application can request the full DSName in the representation
specified in [MS-DRSR] section 5.16.2.1 instead of a DN by passing the
LDAP_SERVER_EXTENDED_DN_OID extended control as described in section 3.1.1.3.

A single-valued Object(DS-DN) attribute a on object src behaves as follows:

When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses

the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. If no such

object exists, including the case where the object has been deleted and exists as a tombstone,
deleted-object, or recycled-object, the request fails with error noSuchObject /
ERROR_DS_OBJ_NOT_FOUND. The values dst!distinguishedName, dst!objectGUID and
dst!objectSid are used to populate the DSName representing the object reference within
attribute src.a. If the object dst has no objectSid attribute, the "SID=" portion of the DSName
representation is omitted.

If object dst has not been deleted, reading attribute a gives the DN (or extended format as

described in section 3.1.1.3) of object dst, even if dst has been renamed since a was written.

If the object dst has been deleted or expunged, reading src.a gives a DN field that corresponds

to no object. Either this DN is impossible to create via LDAP Add and LDAP Modify DN, or this DN

changes (that is, the value of src.a changes) when an LDAP Add or Modify DN would give some
other object this DN.

The multivalued case is similar; a multivalued attribute is capable of containing multiple object
references that behave as described.

%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

91 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Each object reference syntax exists in two versions. The description just given is for the "nonlink"
version. The other version is the "forward link". The Object(DS-DN) syntax also exists in a "back

link" version.

A forward link Object(DS-DN) attribute supports the definition of a corresponding back link

Object(DS-DN) attribute. The back link attribute is a read-only constructed attribute; clients MUST
NOT write to the back link attribute, and servers MUST reject any such writes. If an object o
contains a reference to object r in forward link attribute f, and there exists a back link attribute b
corresponding to f, then a back link value referencing o exists in attribute b on object r. The
correspondence between the forward and back link attributes is expressed in the schema; see
section 3.1.1.2 for details. A forward link attribute can exist with no corresponding back link
attribute, but not vice versa.

If the syntax of a forward link attribute is not Object(DS-DN), a corresponding back link attribute
has syntax Object(DS-DN), not the syntax of the forward link. The non-reference portion of the
forward link, if any, is ignored in computing the back link. If ignoring the non-reference portion of
the forward link results in duplicate back references, the duplicates are present in the values of the
back link attribute.

The referential integrity behavior of a forward link attribute differs from that of a nonlink attribute as

follows:

When an object o is expunged or transformed into a tombstone or recycled-object, any forward

link reference to o is removed from the attribute that contains it.

When an object o is transformed into a deleted-object, any forward link reference to o is

maintained, but is made invisible to LDAP operations that do not specify the
LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control.

When a deleted-object o is transformed into an object that is not a deleted-object, a tombstone,

or a recycled-object, any forward link reference to o from object p where p is not a deleted-
object is made visible to LDAP operations. Similarly, any forward link reference from o to p is
made visible to LDAP operations.

Since a back link attribute is constructed, its referential integrity behavior follows from that of the
corresponding forward link attribute.

The distinction between nonlink and forward link references is not visible in the part of the state
model described in this section; it is a schema difference only. There is no difference in the state
kept with an attribute to represent the object reference. There is a difference in the replication
metadata accompanying the object reference, as will be described in section 3.1.1.1.9.

The behavior described in this section is for object references within a single NC replica. Additional
behaviors, specified in section 3.1.1.1.12, are possible when an object reference crosses an NC
replica boundary.

Extend the running example by adding a group object named "DSYS" as a child of
"ou=NTDEV,dc=microsoft,dc=com". The object class group includes the attribute member with
Object(DS-DN) syntax. In this example, the "DSYS" group has the user object "Peter Houston" as
its only member.

(

 "<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com"

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (name "microsoft") (rdnType dc)

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

92 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 (objectSid 0x0105...94E1F2E6))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (name "NTDEV") (rdnType ou))

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (name "Peter Houston") (rdnType cn)

 (objectSid 0x0105...94E1F2E607080000))

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (member

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"))

)

Note that the group "DSYS" is a security principal object within the domain NC, with the distinct RID
value 2059 (decimal).

The root object of each NC contains the attribute wellKnownObjects. The purpose of this attribute is
to provide a location-independent way to access certain objects within the NC. For instance, the
Deleted Objects container where most tombstones live can be found using wellKnownObjects.

The wellKnownObjects attribute has syntax Object(DN-Binary). Each value consists of an object
reference ref and a byte string binary that is 16 bytes long. The byte string binary contains a GUID
identifying a well-known object (WKO) within an NC; the object reference ref is a reference to

the corresponding object. A table of the GUIDs that identify well-known objects is given in section
6.1.1.4.

The following procedure implements well-known object location using the wellKnownObjects
attribute. This procedure will be used throughout the rest of this specification:

procedure GetWellknownObject(nc: NC, guid: GUID): DSName

If there is no replica of NC nc on the server executing this procedure, return null.

Let v be the value of nc!wellKnownObjects on the server's replica satisfying v.binary = guid; if

no such v exists, return null.

Return v.ref.

Assignments to the wellKnownObjects attribute are specially checked as described in section
3.1.1.5.

LDAP supports access to well-known objects using an extended DSName syntax as described in

section 3.1.1.3.

3.1.1.1.7 Forest, Canonical Name

An Active Directory forest is a set of NCs. Every forest contains one schema NC and one config NC.
The other types of NCs present in a forest depends on whether it is an AD DS forest or an AD LDS
forest:

AD DS: Every forest also contains one or more domain NCs, and zero or more application NCs.

AD LDS: Every forest also contains zero or more application NCs.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

93 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The NCs within a forest are related by their assigned DNs as follows:

In AD DS there must exist a domain NC root such that the config NC's dn equals

Cat("cn=Configuration", root.dn) (where Cat is the string concatenation function). This unique

domain NC is called the root domain NC of the forest.

Describe this DN relationship as "The config NC is a child of the root domain NC". Technically
these NCs are not related in the same way that a child object and its parent object are related
within an NC; the parent relationship stops at the root of an NC. But their DNs are related in the
same way as the DNs of a child object and its parent object within an NC. Given NCs with their
corresponding DNs forming a child and parent relationship, it is convenient to refer to the NCs as
the child NC and the parent NC.

In AD LDS, the config NC does not have a parent NC. An AD LDS forest contains no domain NCs,
so there is no forest root domain NC, either. The DN of an AD LDS config NC takes the form
"CN=Configuration, CN={G}" where G is a GUID in dashed-string form ([RFC4122] section 3).
For example,

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81}

is a possible DN of the config NC in an AD LDS forest.

The schema NC is a child of the config NC, with RDN "cn=Schema".

If short and long are NCs with DNS names (domain NCs or application NCs), and short is a suffix

of long, then each DNS name obtained by removing DNS name components successively from
the front of long until the result is short must also name NCs with DNS names. For instance, if a
forest contains both NCs microsoft.com and nttest.ntdev.microsoft.com, it must also contain NC
ntdev.microsoft.com.

If app is an application NC and dom is a domain NC, then dom must not be a child of app.

If root is the root domain NC and dom is another domain NC in the forest, then root must not be

a child of dom.

Extend the running example by adding the config NC and schema NC as follows.

(

 "<GUID=4>;cn=Configuration,dc=microsoft,dc=com"

 ((objectGUID 4) (parent 0) (cn "Configuration")

 (objectClass top ... configuration)

 (name "Configuration") (rdnType cn))

)

(

 "<GUID=8>;cn=Schema,cn=Configuration,dc=microsoft,dc=com"

 ((objectGUID 8) (parent 0) (cn "Schema")

 (objectClass top ... dMD)

 (name "Schema") (rdnType cn))

)

(

 "<GUID=5>;<SID=0x0105...00000000>;dc=microsoft,dc=com"

 ((objectGUID 5) (parent 0) (dc "microsoft")

 (objectClass top ... domainDNS)

 (name "microsoft") (rdnType dc)

 (objectSid 0x0105...94E1F2E6))

 ((objectGUID 2) (parent 5) (ou "NTDEV")

 (objectClass top ... organizationalUnit)

 (name "NTDEV") (rdnType ou))

%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-GLOS%5d.pdf

94 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ((objectGUID 9) (parent 2) (cn "Peter Houston")

 (objectClass top ... user)

 (name "Peter Houston") (rdnType cn)

 (objectSid 0x0105...94E1F2E607080000))

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (members

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"))

)

This example illustrates the dn relationships between the root domain NC, config NC, and schema

NC. It shows that in a forest, the parent relationship does not cross NC boundaries. It also illustrates
the object classes of the config NC and schema NC root objects and the lack of a sid in these NCs. It
does not show the contents of these NCs, which are specified in sections 6.1 and 3.1.1.2.

Every object in a forest has a canonical name. The canonical name of an object is a syntactic
transformation of its DN into something resembling a pathname that still identifies the object. A
canonical name is a DNS name, followed by a "/", followed by a sequence of zero or more names
separated by "/". The DNS name is the translation of the final sequence of "dc=" DN components
into an equivalent DNS name (following [RFC2247]). The sequence of names is the sequence of
names in the non-"dc=" DN components, appearing in the reverse order to the order they appeared
in the DN. Here are several examples of this translation drawn from the preceding example.

DN: cn=Peter Houston, ou=NTDEV, dc=microsoft,

 dc=com

canonical name: microsoft.com/NTDEV/Peter Houston

DN: cn=Configuration, dc=microsoft, dc=com

canonical name: microsoft.com/Configuration

DN: dc=microsoft, dc=com

canonical name: microsoft.com/

Active Directory supports a constructed attribute canonicalName on every object. Its value is the

object's canonical name.

3.1.1.1.8 GC

In AD DS, the global catalog (GC) is a partial view of a forest's NCs, with these properties:

The GC view includes all domain NCs, the config NC, and the schema NC.

The GC view is partial. It includes all objects in the included NCs, but only those attributes

defined as members of the partial attribute set in the schema NC (as specified in section

3.1.1.2). If the GC is an RODC, the attribute list is further restricted to those attributes not
present in the filtered attribute set in the schema NC (as specified in section 3.1.1.2).

The GC view is read-only.

%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=91344
%5bMS-ADA1%5d.pdf

95 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The GC has no state model impact outside the schema NC, which defines the forest's partial
attribute set. The implementation of the GC (that is, actually providing the specified view to LDAP

clients) does have impact, explained in section 3.1.1.1.9.

In AD LDS there is no support for the GC.

3.1.1.1.9 DCs, usn Counters, and the Originating Update Stamp

The model defines the state of a DC as a tuple of type DC.

type DC = [

 serverGuid: GUID,

 invocationId: GUID,

 usn: 64-bit integer,

 prefixTable: PrefixTable,

 defaultNC: domain NC replica,

 configNC: config NC replica,

 schemaNC: schema NC replica,

 partialDomainNCs: set of partial domain NC replica,

 appNCs: set of application NC replica,

 pdcChangeLog: PDCChangeLog

 nt4ReplicationState: NT4ReplicationState

 ldapConnections: LDAPConnections,

 replicationQueue: ReplicationQueue,

 kccFailedConnections: KCCFailedConnections,

 kccFailedLinks: KCCFailedLinks,

 rpcClientContexts: RPCClientContexts,

 rpcOutgoingContexts: RPCOutgoingContexts,

 fLinkValueStampEnabled: boolean,

 nt4EmulatorEnabled: boolean,

 fEnableUpdates: boolean

 dnsRegistrationSettings: DNSRegistrationSettings

 minimumGetChangesRequestVersion: integer

 minimumGetChangesReplyVersion: integer

]

The variable dc is the only global variable in this specification. It contains the state of the DC.

dc: DC

serverGuid is initialized to a GUID when the dc is created and does not change thereafter. Section

6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; serverGuid equals the objectGUID of the DC's
nTDSDSA object. serverGuid is independent of the objectGUID of the computer object for the
computer playing the role of this DC.

invocationId is initialized to a GUID that is generated by the DC when the dc is created. This GUID
MUST NOT be the NULL GUID. The circumstances under which a DC changes its invocationId are

outside the effects of the state model. A DC changes its invocationId when Active Directory is

restored from a backup. Section 6.1.1.2.2.1.2.1.1 describes the nTDSDSA object; invocationId
equals the invocationId of the DC's nTDSDSA object.

usn is a counter used in assigning replication metadata to every originating update to an NC replica
in the DC, as detailed later in this section. The invocationId of dc's nTDSDSA object is an "epoch
number" for usn; if an observer reads a dc at times t1 and t2 with t1 < t2, and invocationId is the

same, then usn at time t1 is less than or equal to usn at time t2. If the invocationId has been

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

96 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

changed between t1 and t2, the DC at t2 is treated as a different DC then at t1 for the purposes of
replication, and the usn of the DC is not compared.

prefixTable is the PrefixTable used to translate all ATTRTYP values stored in this DC's NC replicas;
section 3.1.1.2.6 specifies the translation process.

The default NC replica of an AD DS DC, modeled as dc.defaultNC, is a domain NC replica of some
domain NC in the forest. In an AD LDS DC, dc.defaultNC is null.

The fields dc.configNC and dc.schemaNC contain replicas of the forest's config NC and schema NC.

If dc is not an AD DS GC server (as determined by the state of the GC bit of the options attribute
of the nTDSDSA object as specified in section 6.1.1.2.2.1.2.1.1), then dc.partialDomainNCs is null.
Otherwise it contains a partial domain NC replica for each domain NC in the forest, excluding the
default domain NC of dc.

The field dc.appNCs contains replicas of the application NCs hosted by the DC. An AD DS DC can be
an RODC; [MS-DRSR] section 5.7, AmIRODC, specifies how this is determined by state in the config

NC.

All NC replicas of an RODC are read-only; that is, they do not accept originating updates. In other
DCs, all NC replicas are writable except for dc.partialDomainNCs, but writes to these NC replicas are
controlled by the constraints and processing specifics described in section 3.1.1.5. Also, on an RODC

the dc.defaultNC is a filtered partial domain NC replica. On other DCs, the dc.defaultNC is a full
domain NC replica, and is the only full domain NC replica in the state of a DC.

The nt4ReplicationState and pdcChangeLog variables contain state used by the
IDL_DRSGetNT4ChangeLog method ([MS-DRSR] section 4.1.11.3). Section 3.1.1.7 specifies the
format of these variables and how they are maintained during state changes in AD DS.

The ldapConnections, replicationQueue, kccFailedConnections, kccFailedLinks, rpcClientContexts,
and rpcOutgoingContexts fields of a DC are volatile state. Each volatile field is set to the empty

sequence on server startup. The other fields are persistent state, updated using transactions.

The construction of the kccFailedConnections and kccFailedLinks fields of a DC are discussed in
section 6.2. The construction of the replicationQueue, kccFailedConnections, and
rpcOutgoingContexts fields are discussed in [MS-DRSR]. The construction of the
fLinkValueStampEnabled field is described later in this section.

The nt4EmulatorEnabled field determines how the DC responds to a Mailslot Ping request, as
described in section 6.3.5. The nt4EmulatorEnabled field is not configurable through the Active

Directory. The nt4EmulatorEnabled field can be configured by an implementation-dependent
mechanism. On Windows Server operating system, the field nt4EmulatorEnabled can be configured
at the following registry key path:

HKEY_LOCAL_MACHINE\system\currentcontrolset\services\netlogon\parameters\NT4Emulator

This registry value is of type REG_DWORD. If the value is 0 or not present, the field

nt4EmulatorEnabled is set to FALSE; otherwise, the field is set to TRUE. By default, this registry

value is not set.

The fEnableUpdates field determines whether or not a DC allows updates, as described in section
3.1.1.5.1.9. The field is initialized to TRUE.

%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf

97 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The dnsRegistrationSettings field contains the settings that determine whether the DC registers DNS
records (for the purpose of DC location), and which DNS records it registers. The field is of type

DNSRegistrationSettings (section 6.3.1.10) and is initialized as described in section 6.3.1.10.

The minimumGetChangesRequestVersion field contains a value limiting the acceptable versions of

the input message for a replication request. See [MS-DRSR] section 4.1.10.5.1. The value is set by
DSA Heuristics (section 6.1.1.2.4.1.2).

The minimumGetChangesReplyVersion field contains a value limiting the acceptable versions of the
output message for a replication request. See [MS-DRSR] section 4.1.10.5.18. The value is set by
DSA Heuristics (section 6.1.1.2.4.1.2).

Each originating update on a DC creates replication metadata values (AttributeStamp and
LinkValueStamp values), as will now be described.

AttributeStamp and LinkValueStamp values contain times read from the system clock of the server
creating the value. If clocks on different DCs disagree by a significant fraction of the tombstone
lifetime, then it is probable that different DCs will eventually disagree about whether some objects

have been deleted or not; see section 3.1.1.1.15. DCs use Kerberos for mutual authentication, and
Kerberos does not mutually authenticate two DCs whose clocks are more than 5 minutes out of
sync. The tombstone lifetime is generally several months, so synchronization within 5 minutes is

much better than required to avoid object lifetime issues.

The type AttributeStamp is defined authoritatively in [MS-DRSR] section 5.11. In summary, it is the
following tuple.

AttributeStamp: [

 dwVersion: 32-bit Integer;

 timeChanged: 64-bit number of seconds

 since January 1, 1601, 12:00:00am;

 uuidOriginating: GUID;

 usnOriginating: 64-bit Integer]

Similarly, the type LinkValueStamp is defined authoritatively in [MS-DRSR] section 5.117. In

summary, it is an AttributeStamp tuple extended on the bottom with the following fields:

timeCreated: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M.

timeDeleted: 64-bit number of seconds since January 1, 1601, 12:00:00 A.M.

An AttributeStamp stamp is associated with all replicated attributes, except forward link attributes

updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or
dc.fLinkValueStampEnabled is TRUE, that have ever had values on an object. For forward link
attributes updated when the forest functional level is greater than DS_BEHAVIOR_WIN2000 or
dc.fLinkValueStampEnabled is TRUE, a LinkValueStamp stamp is associated with each value of the
attribute, both current link values and tombstoned link values. More details on tombstoned link
values are given later in this section.

Together with forest functional level, dc.fLinkValueStampEnabled regulates whether a DC creates

replication metadata for forward link attributes. dc.fLinkValueStampEnabled is initialized to TRUE
when the forest functional level is greater than DS_BEHAVIOR_WIN2000. When the forest functional
level is DS_BEHAVIOR_WIN2000, dc.fLinkValueStampEnabled is initialized to FALSE. When a DC
receives an update containing LinkValueStamp values, it sets dc.fLinkValueStampEnabled to TRUE.
(For more information, see [MS-DRSR] sections 4.1.10.5.5 and 4.1.10.6.1.)

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

98 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When an originating write occurs, either the AttributeStamp or the LinkValueStamp of the attribute's
value is updated, but not both. This chart specifies the conditions under which each is updated.

Attribute type Forest functional level

AttributeStamp

associated with the

attribute

LinkValueStamp

associated with the

attribute's values

Any type of

attribute other

than a forward link

attribute

Any Updated Not updated

Forward link

attribute

DS_BEHAVIOR_WIN2000 Updated Not updated

 Forward link

attribute

Greater than

DS_BEHAVIOR_WIN2000

Not updated Updated

Whether an attribute value has an AttributeStamp or LinkValueStamp depends on the state at the

time of the originating update. The data model does not require an attribute to have an
AttributeStamp or LinkValueStamp. If an attribute has never had a value, it will not have an
AttributeStamp.

A forward link attribute will have an AttributeStamp if it is updated when the forest functional level
is DS_BEHAVIOR_WIN2000. However, if the forest functional level is changed to be greater than
DS_BEHAVIOR_WIN2000, then any further updates will cause the attribute's value to have a

LinkValueStamp. The previously associated AttributeStamp of the attribute will be left unchanged.

On the other hand, if the attribute is a forward link attribute that was never updated when the forest
functional level was DS_BEHAVIOR_WIN2000, it will not have an associated AttributeStamp. If a
value of the attribute is updated when the forest functional level is greater than
DS_BEHAVIOR_WIN2000, the attribute value will have a LinkValueStamp and the attribute will still
not have an AttributeStamp.

Let o!a.stamp denote the AttributeStamp associated with replicated attribute a on object o. When an

originating update creates or modifies replicated attribute a on object o, the value of o!a.stamp is
determined as follows:

dwVersion: If the attribute did not exist on this object before the originating update (that is, an

LDAP Add operation of this object, or an LDAP Modify operation creating the initial value of this
attribute on this object), dwVersion equals one. Otherwise dwVersion equals
o!a.stamp.dwVersion before the update, plus one.

timeChanged: The time of the originating update, according to the system clock on this DC.

uuidOriginating: the invocationId of the dc's nTDSDSA object.

usnOriginating: dc.usn.

Once a replicated attribute exists on an object, it will continue to exist for the lifetime of the object,

in order to carry the stamp. If all values have been removed from the attribute, the attribute will be

absent from the LDAP perspective, but it remains present in the state model in order to preserve the
stamp. If a value is added to o!a and o!a.stamp exists, even if o!a had no values before the
addition, the value of o!a.stamp.dwVersion is used as described previously in creating the new
stamp's dwVersion.

%5bMS-ADA1%5d.pdf

99 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Let o!a.r denote a single link value r that is part of a replicated forward link attribute a, and let
o!a.r.stamp denote the LinkValueStamp associated with this value. An originating update cannot

modify a single link value r that is part of a forward link attribute, except to delete it or to re-create
it. A link value r is deleted, but exists as a tombstone, if r.stamp.timeDeleted ≠ 0. When the current

time minus r.stamp.timeDeleted exceeds the tombstone lifetime, the link value r is garbage-
collected; that is, removed from its containing forward link attribute.

When an originating update creates a link value r of a forward link attribute a of object o, the
LinkValueStamp o!a.r.stamp is computed as follows:

dwVersion: 1.

timeChanged: The time of the originating update, according to the system clock on this DC.

uuidOriginating: the invocationId of dc's nTDSDSA object.

usnOriginating: dc.usn.

timeCreated: The time of the originating update, according to the system clock on this DC.

timeDeleted: Zeros.

When an originating update re-creates a link value r of a forward link attribute a of object o, that is,
a create occurs when the same link value exists as a tombstone, the LinkValueStamp o!a.r.stamp is
computed as follows:

dwVersion: o!a.r.stamp.dwVersion before the originating update, plus one.

timeChanged: The time of the originating update, according to the system clock on this DC.

uuidOriginating: the invocationId of dc's nTDSDSA object.

usnOriginating: dc.usn.

timeCreated: o!a.r.stamp.timeCreated before the originating update.

timeDeleted: Zeros.

When an originating update deletes a link value r of a forward link attribute a of object o, the
LinkValueStamp o!a.r.stamp is computed as follows:

dwVersion: o!a.r.stamp.dwVersion before the originating update, plus one.

timeChanged: The time of the originating update, according to the system clock on this DC.

uuidOriginating: the invocationId of dc's nTDSDSA object.

usnOriginating: dc.usn.

timeCreated: o!a.r.stamp.timeCreated before the originating update.

timeDeleted: The time of the originating update, according to the system clock on this DC.

The stamp values created by originating updates are used by protocols described in [MS-DRSR].
Some stamp values maintained in this state model are not used by those protocols; see [MS-DRSR]
section 4.1.10.5.6 (FilterAttribute) for specifics on the stamps that are filtered out.

When all updates associated with an originating update request are complete, the variable dc.usn is

increased by at least one. Between originating updates, the variable dc.usn does not decrease.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf

100 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The effects of an originating update are captured in the state model by committing a transaction.
When the originating update is initiated by a protocol request, such as an LDAP Modify, the

transaction is committed before sending the appropriate protocol response. The transaction has the
ACID properties [GRAY] and provides at least degree 2 isolation of concurrent read and update

requests [GRAY].

Each read request is performed as a transaction. When multiple read requests are used to retrieve a
large set of results, each request is its own transaction. Section 3.1.1.5 specifies the transaction
boundaries that are used for all originating updates. To preview: An originating update is almost
always performed as a single transaction; a few are processed as multiple transactions. In some
cases, an originating update request will cause transactions to occur after the response has been
sent; section 3.1.1.5 specifies all cases where processing of an update continues after the response.

The following example illustrates the effects of originating updates on stamp values. In this
example, the forest functional level is assumed to be greater than DS_BEHAVIOR_WIN2000, so
LinkValueStamps are used for updates to forward link attributes. In the example, stamp values are
represented as lists whose elements are the elements of the stamp, in the order listed in the type
definition. Thus dwVersion is always first, and timeDeleted is last in a LinkValueStamp. An

AttributeStamp is placed between the attribute's lDAPDisplayName and the first value, if any. A

LinkValueStamp is placed immediately following the link value.

This example shows the stamp values on two attributes of a single group object: the description
attribute and the member attribute (a forward link attribute). In the initial state neither attribute is
present.

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

)

)

An LDAP Modify adds a value for description. This DC's invocationId is 103, and its usn is 501 at the

time of the originating update.

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (description (1 0x2FA9A74EA 103 501) "QWERTY")

)

)

An LDAP Modify adds a value for member. This originating update occurred one second after the

previous one, with no updates in between. This pattern continues for the rest of this example.

%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf

101 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (description (1 0x2FA9A74EA 103 501) "QWERTY")

 (member

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"

 (1 0x2FA9A74EB 103 502 0x2FA9A74EB 0))

)

)

An LDAP Modify removes the values of both description and member.

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (description (2 0x2FA9A74EC 103 503))

 (member

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"

 (2 0x2FA9A74EC 103 503 0x2FA9A74EB 0x2FA9A74EC))

)

)

An LDAP Modify sets member back to the value it had before the previous update. The stamp it
receives is not what it had before.

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (description (2 0x2FA9A74EC 103 503))

 (member

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"

 (3 0x2FA9A74ED 103 504 0x2FA9A74EB 0))

)

)

Finally, an LDAP Modify sets description to a new value.

%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf

102 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

(

 "<GUID=5>;<SID=0x0105...94E1F2E6>;dc=microsoft,dc=com"

 . . .

 ((objectGUID 6) (parent 2) (cn "DSYS")

 (objectClass top ... group)

 (name "DSYS") (rdnType cn)

 (objectSid 0x0105...94E1F2E60B080000)

 (description (3 0x2fa9a74ee 103 505) "SHRDLU")

 (member

 "<GUID=9>;<SID=0x0105...07080000>;

 cn=Peter Houston,ou=NTDEV,dc=microsoft,dc=com"

 (3 0x2FA9A74ED 103 504 0x2FA9A74EB 0))

)

)

3.1.1.1.10 GC Server

An AD DS DC can be a GC server as determined by state in the config NC, as specified in section
6.1.1.2.2.1.2.1.1. A GC server provides LDAP access to the GC view of the forest via a special LDAP
port, as specified in section 3.1.1.3.

3.1.1.1.11 FSMO Roles

Each DC accepts originating updates for most attributes of most objects within its writable NC
replicas. But certain updates are only accepted if the DC is the single designated "master" DC for
the update, as specified in this section. The mechanism is called FSMO roles, which stands for
flexible single master operation (FSMO) roles.

If some or all of the updates to an object are single-mastered, that object belongs to a defined set
of objects. [MS-DRSR] section 4.1.10.5.3 (GetReplScope) specifies these sets, which are called

FSMO roles. Each FSMO role is contained within a single NC. Each domain NC contains three FSMO
roles called InfrastructureMasterRole, RidAllocationMasterRole, and PdcEmulationMasterRole. A

config NC contains one FSMO role called DomainNamingMasterRole. A schema NC contains one
FSMO role called SchemaMasterRole. An application NC has no FSMO roles.

Since a DC operating as AD LDS does not host domain NCs, it cannot own any of the three roles
contained by domain NCs. It can own the Schema Master and Domain Naming FSMO roles.

In a given NC, each FSMO role is represented by an object. [MS-DRSR] section 4.1.10.5.3

(GetReplScope) specifies these objects, which are called FSMO role objects.

The fSMORoleOwner attribute of each FSMO role object is an object reference to the nTDSDSA
object of the DC that owns the role; that is, the DC that performs updates to objects in the role.
nTDSDSA objects and how they represent DCs are specified in section 6.1.

An originating update to an object within a FSMO role generates an LDAP referral if the DC that
receives the request cannot perform the update; the referral is to the DC represented by the
nTDSDSA object referenced by the FSMO role object's fSMORoleOwner attribute on the DC that

received the request.

The processing of updates affected by FSMO roles is fully specified in section 3.1.1.5.

The IDL_DRSGetNCChanges method ([MS-DRSR] section 4.1.10) makes an originating update to
the fSMORoleOwner attribute of a FSMO role object while preserving single-mastering of updates to
the FSMO role. The ability to update the fSMORoleOwner attribute in this way is exposed through
LDAP as the root DSE updates becomeDomainMaster, becomeInfrastructureMaster, becomePdc,

%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

103 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

becomePdcWithCheckPoint, becomeRidMaster, and becomeSchemaMaster specified in section
3.1.1.3.

Reading the rootDSE attribute validFSMOs on a DC returns the set of all FSMO roles (represented as
FSMO role objects) that the DC will update; this is specified in section 3.1.1.3.

3.1.1.1.12 Cross-NC Object References

Section 3.1.1.1.6 specifies the referential integrity behavior of attributes with object reference
syntaxes. That section only specifies the case of references within a single NC. This section specifies
the differences for the case of object references that cross an NC boundary.

Suppose src and dst are objects in different NCs, src has an attribute a with an object reference
syntax, and dc is a DC hosting a writable replica of src's NC.

When an LDAP Add or Modify creates an object reference within attribute src.a, the server uses

the DN (or SID or GUID) specified in the Add or Modify to locate an existing object dst. The
behavior is identical to the single NC case, with two exceptions:

1. Locating the object dst can fail if dc does not host a replica of dst and if dc fails to
communicate with a server that hosts a dst replica; the response is error unavailable /
<unrestricted>.

2. Certain cross-NC references are not allowed; the specific references that are not allowed are
specified in section 3.1.1.2.2.3. If the reference is not allowed, the response is error
constraintViolation / ERROR_DS_NAME_REFERENCE_INVALID.

After the assignment, the referential integrity behavior is the same as if the reference did not

cross an NC boundary, except that reference src.a reflects the state of object dst at some time t
in the past, not at the current time. If the distributed system of DCs in the forest is functioning

normally, the difference between the current time and the time t of the previous sentence is
bounded by an administrator-configurable amount of time. (During this period of time, between t
and the current time, the cross-NC reference can refer to the object by its previous name or at
its previous location, or it can refer to the object after the object has been deleted.) The phrase

"functioning normally" shown previously means that the DCs are running and communicating as
needed, with only transient failures.

The mechanism the system uses for restoring the integrity of object references is specified in

section 3.1.1.6.

3.1.1.1.13 NC Replica Graph

This section uses directed graphs to model replication topology. Use [KNUTH1] section 2.3.4.2 as a
reference for the terms directed graph, vertex, arc, initial vertex, final vertex, path, and strongly-
connected.

This section introduces concepts that are used in specifying the KCC in section 6.2. The concepts are

simplified here because this section ignores the SMTP replication transport [MS-SRPL] and RODCs.
Section 6.2 specifies the concepts in full generality.

Associated with each NC replica is a repsFrom abstract attribute as specified in [MS-DRSR] section
5.169. The value of this attribute is a set of tuples. Each tuple contains a field uuidDsa that contains
the objectGUID of an nTDSDSA object. The nTDSDSA object represents a DC as specified in section
6.1.

Given a forest and an NC within the forest, define the NC replica graph as follows:

%5bMS-SRPL%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

104 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Each DC of the given forest is a vertex of the directed graph.

For each DC d containing a replica of the given NC:

Set r to the given NC's repsFrom on the DC d, as a sequence in any order.

For i in [0 .. r.length-1]:

r[i].uuidDsa is a directed arc to d (the final vertex of the arc) from the DC represented by

the nTDSDSA object with objectGUID = r[i].uuidDsa (the initial vertex of the arc).

Each arc in the directed graph represents a replication relationship. The DC at the final vertex of an
arc performs cycles of IDL_DRSGetNCChanges requests ([MS-DRSR] section 4.1.10.1) to the DC at

the initial vertex of that arc, applying the results of these requests to update the replica of the given
NC at the final vertex. The events that trigger a cycle of IDL_DRSGetNCChanges request over a
given arc of the NC replica graph are specified in the next section.

The KCC is an automated management component of Active Directory that controls the repsFrom

values on each DC and thereby controls the NC replica graph for each NC. One of the KCC's goals is
to keep each NC replica graph of the forest in a good state, defined as follows:

1. Each DC in the NC replica graph contains a replica of the given NC.

2. If the DC at the initial vertex of an arc contains a partial replica of the given NC, so does the DC
at the final vertex of that arc.

3. If d is any DC that contains a partial replica of the given NC, there is a path to d from some DC
that contains a full replica of the given NC.

4. Define F as the set of all DCs that contain full replicas of the given NC. The subgraph of the NC
replica graph whose vertex set is F is strongly-connected.

For example, the following NC replica graph contains five DCs. DC 1, DC 2, and DC 3 contain full
replicas of the given NC and DC 4 and DC 5 contain partial replicas of the given NC.

Figure 3: A sample NC replica graph

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

105 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Per item 1 in the numbered list above, every DC present in the graph contains a replica of the given
NC.

There is an arc from DC 4 to DC 5. DC 4 is the initial vertex of this arc and DC 5 is the final vertex.
Per item 2 in the list above, because DC 4 contains a partial replica of the NC, DC 5 also contains a

partial replica of the NC.

Per item 3 in the list above, there is a path from DC 1, which contains a full replica of the NC, to
both DC 4 and DC 5 that contains a partial replica of the NC.

Per item 4 in the list above, the subgraph of the NC replica graph made by DC 1, DC 2, and DC 3
that contains a full replica of the NC is strongly connected because there is a path from each vertex
in the subgraph to every other vertex in the subgraph.

The KCC performs this management by first creating connection objects (specified in section

6.1.1.2.2.1.2.1.2), then creating repsFrom values from those connection objects (specified in
section 6.2). An administrator can create specially marked connection objects, with the
NTDSCONN_OPT_IS_GENERATED bit not set in the options attribute, that the KCC will not modify

but will use in creating repsFrom values.

3.1.1.1.14 Scheduled and Event-Driven Replication

If client and server are two DCs in the NC replica graph of a given NC and forest, where server is
the initial vertex of an arc and client is the final vertex of the same arc, client will perform a
replication cycle from server by calling IDL_DRSGetNCChanges ([MS-DRSR] section 4.1.10) until the
cycle is complete in either of these two cases:

1. The DC client's repsFrom tuple for server contains a schedule field that calls for replication at the
current time. The schedule contains a REPLTIMES structure as specified in [MS-DRSR] section
5.164. This is scheduled replication.

2. The DC server calls the IDL_DRSReplicaSync method ([MS-DRSR] section 4.1.23.2) on the client.
This is event-driven replication. The events that cause this form of replication are specified later
in this section.

A precondition for event-driven replication involves server's repsTo abstract attribute, specified in
[MS-DRSR] section 5.170. The repsTo abstract attribute is a sequence tuples, like repsFrom. Like
repsFrom, each repsTo tuple contains a field uuidDsa that contains the objectGUID of an nTDSDSA
object. The nTDSDSA object represents a DC as specified in section 6.1. If server's repsTo abstract

attribute contains a tuple whose uuidDsa field contains the objectGUID of client's nTDSDSA object,
server performs event-driven replication to client.

It remains to specify how a DC's repsTo abstract attribute is populated, and to specify the events
that trigger event-driven replication.

A DC's repsTo abstract attribute is populated as follows:

1. A DC server's repsTo abstract attribute is populated for event-driven replication to client if client's

repsFrom tuple for server has the DRS_ADD_REF bit set in its replicaFlags field, and client calls
the IDL_DRSGetNCChanges method on server during scheduled replication. The DC client sets

the DRS_ADD_REF bit in Request.ulFlags on the scheduled call to IDL_DRSGetNCChanges on
server ([MS-DRSR] section 4.1.10.4.1) and server updates repsTo for event-driven replication to
client as a result ([MS-DRSR] section 4.1.10.5.2).

Since the KCC running on client writes client's repsFrom, this behavior is controlled by the state
of KCC objects as specified in section 6.2.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

106 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. A DC server's repsTo abstract attribute is populated for event-driven replication to DC client if the
IDL_DRSReplicaAdd method ([MS-DRSR] section 4.1.19.2) is called on client, specifying server

as the replication source (either pmsgIn.V1.pszSourceDsaAddress or pmsgIn.V2.pszDsaSrc,
depending upon the request version used). If the IDL_DRSReplicaAdd adds a new tuple to client's

repsFrom, it proceeds to call IDL_DRSUpdateRefs ([MS-DRSR] section 4.1.26.2) on server to
update server's repsTo abstract attribute.

Since IDL_DRSReplicaAdd is an RPC method, this behavior is controlled by any authorized
requester of this method. Within Active Directory itself, IDL_DRSReplicaAdd is called by the KCC
to maintain repsFrom.

The events that trigger event-driven replication from a DC server are as follows:

1. The DC server receives an update, either originating or replicated, as specified in section

3.1.1.5.1.7 (Urgent replication).

2. A configurable time expires after DC server receives any update, as specified in section
3.1.1.5.1.6 (Replication notification).

3.1.1.1.15 Replication Latency and Tombstone Lifetime

Replication latency is the delay between the time of an originating update to an NC and the time

when this update is reflected in all replicas of that NC. Some updates are superseded before
reaching all replicas, but for the purposes of this simplified definition, consider an attribute update
that is not followed by other updates to that attribute for a long time.

Administrators of Active Directory control replication latency by setting several variables, specified in
section 6.1 and section 6.2. These variables ultimately control the schedules used for scheduled
replication, and they control the use of event-driven replication. Replication latency is not fully
predictable in a real system, because it depends upon the volume of read requests to DCs, the

volume of originating update requests to DCs, and the availability of DCs and communications links.

If the typical replication latency is larger than the tombstone lifetime (the value of the
tombstoneLifetime attribute of the Directory Services object specified in section 6.1.1.2.4.1.1,

interpreted as a number of days), some tombstones or recycled-objects will be garbage collected
before they have replicated to every NC replica. As a result, some objects will never be deleted in
some replicas. To restore consistency of object existence, an administrator cleans up such lingering
objects with utility programs.

3.1.1.1.16 Delayed Link Processing

When an update to an object would result in removal of more than 10,000 forward link values, or
the update would result in more than 10,000 forward link values to be made either visible or
invisible to LDAP operations that do not specify the LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID
control, then at least 10,000 of the value changes so directed are completed within the transaction

encompassing the modification (that is, the "originating transaction").

Note In Windows Server 2003 operating system, Windows Server 2003 R2 operating system, and
Windows Server 2008 operating system, the number is 1,000 instead of 10,000.

Any values not so changed within the originating transaction are changed by continuing processing
after and outside of that originating transaction. These changes that occur outside the originating
transactions are called "delayed link processing". Delayed link processing occurs within one or more
transactions subsequent to the originating transaction.

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf

107 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Although delayed link processing always uses at least one subsequent transaction, there is no
constraint on the upper bound of the number of transactions that Active Directory uses during

delayed link processing. Therefore, there is no requirement that at any given time all such values
have been removed, made visible, or made invisible. It is possible that there is a period of time

during which an object that should not have a specific value for a link valued attribute will continue
to have that value. Likewise, it is possible that there is a period of time during which an object that
should have a specific value for a link valued attribute be either visible or invisible might not have
that value in the correct state. Although the protocol places no boundary or requirements on the
length of this period of time, it is recommended that implementations minimize the length of this
period of time to improve usability of the directory for clients.

The server MUST guarantee that all such changes to values of link valued attributes are eventually

made to all affected link valued attributes.

Note In Windows 2000 Server operating system, delayed link processing is not supported.

3.1.1.2 Active Directory Schema

In Active Directory, the schema contains definitions for the objects that can be stored in the
directory, and it enforces the rules that govern both the structure and the content of the directory.

The schema consists of a set of classes, attributes, and syntaxes. A class is a category of objects
that share a set of common characteristics. It is a formal description of a discrete, identifiable type
of object that can be stored in the directory. Each object in the directory is an instance of one or
more classes in the schema. Attributes define the types of information that an object can hold. For
each class, the schema specifies the mandatory attributes and optional attributes that constitute the
set of shared characteristics of the class. A syntax is the data type of a particular attribute. Syntaxes
determine what data type an attribute can have. Active Directory uses a set of predefined syntaxes.

The predefined syntaxes do not actually appear in the directory, and new syntaxes cannot be added.

The schema itself is represented in Active Directory by a set of objects known as schema objects.
For each class in the schema, there is a schema object that defines the class. This object is a
classSchema object. For each attribute in the schema, there is a schema object that defines the
attribute. This object is an attributeSchema object. Therefore, every class is actually an instance of

the classSchema class, and every attribute is an instance of the attributeSchema class.
Administrators and applications can extend the schema by adding new attributes and classes and by

modifying existing ones.

A schema object cannot be deleted, but it can be made defunct by setting the isDefunct attribute to
true. A schema object that is not defunct is active. The primary effect of the defunct state is to
prevent the schema object from being used in the creation or modification of new objects. For
instance, attempts to perform an LDAP Add of an object with a defunct class fails, just as an attempt
to perform an LDAP Add of a nonexistent class fails. The full effects of the defunct state are specified

later in this section.

3.1.1.2.1 Schema NC

The schema NC contains all of the objects that define object classes and attributes used in a forest.

The root object of the schema NC, called the schema container, is an instance of class dMD.

The contents of the schema NC is established when a forest is created. To enable a DC of a forest to
be upgraded to a newer version of Windows Server operating system, a schema upgrade process is

first performed. This process updates the portion of the schema that Windows Server depends upon.

The attribute objectVersion on the schema container object stores the schema version of the forest.
This attribute is set during the creation of the first domain in a forest and is changed during schema

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

108 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

upgrade after the schema is successfully upgraded to a newer version. In AD DS, to add a DC
running a particular Windows Server version to an existing forest, the objectVersion of the forest's

schema container must be greater than or equal to the value for that Windows Server version. In AD
LDS, this is not a requirement. In AD LDS, to add a DC running a particular Windows Server version

to an existing forest, the objectVersion of the forest's schema container may be less than the value
for that Windows Server version. The correspondence between Windows Server versions and values
of the schema container objectVersion is:

Windows 2000 Server operating system: 13

Windows Server 2003 operating system: 30

Windows Server 2003 R2 operating system: 31

Windows Server 2008 operating system (AD DS): 44

Windows Server 2008 R2 operating system (AD DS): 47

Windows Server 2012 operating system (AD DS): 56

Windows Server 2012 R2 operating system (AD DS): 69

Active Directory Application Mode (ADAM): 30

Windows Server 2008 (AD LDS): 30

Windows Server 2008 R2 (AD LDS): 31

Windows Server 2012 (AD LDS): 31

Windows Server 2012 R2 (AD LDS): 31

Attribute schemaInfo on the schema container stores a String(Octet) value of length 21 bytes. This
attribute is updated on every original schema Add or Modify in the same transaction, and it is
replicated to all the domain controllers in the forest upon completion of schema NC replication. The

first byte of schemaInfo is 0xFF. The next 4 bytes are a 32-bit integer in big-endian byte order, used
as the version of the update. The last 16 bytes are the invocationId of the DC where the schema
change is made. The version starts from 1 for a new forest. Once a schema change is done, the

version is incremented by one, and the invocationId of the DC where the schema change is done is
written into the GUID part of the string. The invocationId attribute is specified in section 3.1.1.1.9.

For example, here is a value of schemaInfo:

0xFF 0x00 0x00 0x07 0xC7 0x20 0x79 0x92 0xE6 0x84 0xB6 0xF6 0x40 0x99 0x47 0x21 0x8B
0xC9 0xE0 0xF1 0xF3

After a schema change is done on the schema master, the following is the new value:

0xFF 0x00 0x00 0x07 0xC8 0x20 0x79 0x92 0xE6 0x84 0xB6 0xF6 0x40 0x99 0x47 0x21 0x8B
0xC9 0xE0 0xF1 0xF3

There is a child of the schema container with RDN cn=Aggregate and class subSchema. This object
has several constructed attributes that are compliant with [RFC2251] section 4.5.2, through which
the client can retrieve the forest's current schema. See constructed attributes in section 3.1.1.4.5.
This object cannot be modified.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325

109 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.2 Syntaxes

3.1.1.2.2.1 Introduction

This section describes the LDAP syntaxes used in attributes in Active Directory DCs.

3.1.1.2.2.2 LDAP Representations

The LDAP syntaxes supported by DCs are as shown in the following table. The set of syntaxes
supported is not extensible by schema modifications. Each syntax is identified by the combination of
the attributeSyntax, oMSyntax and, in select cases, oMObjectClass attributes of an attributeSchema
object. The cases for which oMObjectClass is not used are indicated by the presence of a hyphen in

the oMObjectClass column in the table. The combinations shown in the following table are
exhaustive; this table is consistent and identical for Windows 2000 Server operating system,
Windows Server 2003 operating system, Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server
2012 R2 operating system.

While oMObjectClass conceptually contains an object identifier (OID), it is declared in the schema
as String(Octet) syntax, requiring that values read from and written to it be expressed as the Basic

Encoding Rules (BER) encoding of the OID (BER encoding is defined in [ITUX690]). In the table,
both the BER-encoded form and the dotted string form of the OID are given.

LDAP syntax name attributeSyntax oMSyntax oMObjectClass

Boolean 2.5.5.8 1 -

Enumeration 2.5.5.9 10 -

Integer 2.5.5.9 2 -

LargeInteger 2.5.5.16 65 -

Object(Access-Point) 2.5.5.14 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 0x85

0x3E (1.3.12.2.1011.28.0.702)

Object(DN-String) 2.5.5.14 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 0x01

0x01 0x0C (1.2.840.113556.1.1.1.12)

Object(OR-Name) 2.5.5.7 127 0x56 0x06 0x01 0x02 0x05 0x0B 0x1D

(2.6.6.1.2.5.11.29)

Object(DN-Binary) 2.5.5.7 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 0x01

0x01 0x0B (1.2.840.113556.1.1.1.11)

Object(DS-DN) 2.5.5.1 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 0x85

0x4A (1.3.12.2.1011.28.0.714)

Object(Presentation-

Address)

2.5.5.13 127 0x2B 0x0C 0x02 0x87 0x73 0x1C 0x00 0x85

0x5C (1.3.12.2.1011.28.0.732)

Object(Replica-Link) 2.5.5.10 127 0x2A 0x86 0x48 0x86 0xF7 0x14 0x01 0x01

0x01 0x06 (1.2.840.113556.1.1.1.6)

String(Case) 2.5.5.3 27 -

String(IA5) 2.5.5.5 22 -

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89924

110 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LDAP syntax name attributeSyntax oMSyntax oMObjectClass

String(NT-Sec-Desc) 2.5.5.15 66 -

String(Numeric) 2.5.5.6 18 -

String(Object-

Identifier)

2.5.5.2 6 -

String(Octet) 2.5.5.10 4 -

String(Printable) 2.5.5.5 19 -

String(Sid) 2.5.5.17 4 -

String(Teletex) 2.5.5.4 20 -

String(Unicode) 2.5.5.12 64 -

String(UTC-Time) 2.5.5.11 23 -

String(Generalized-

Time)

2.5.5.11 24 -

The representation for many of the preceding syntaxes is adopted from [RFC2252]. The following
table lists the syntaxes whose representation is adopted from that RFC, the [RFC2252] name of that
syntax, and the associated section of [RFC2252] that specifies the representation.

LDAP syntax name RFC 2252 name Section of RFC 2252

Boolean Boolean 6.4

Enumeration INTEGER 6.16

Integer INTEGER 6.16*

LargeInteger INTEGER 6.16*

Object(DS-DN) DN 6.9 (see also [RFC2253])**

Object(Presentation-Address) Presentation Address 6.28***

Object(Replica-Link) Binary 6.2

String(IA5) IA5 String 6.15†

String(Numeric) Numeric String 6.23††

String(Object-Identifier) OID 6.25†††

String(Octet) Binary 6.2

String(Printable) Printable String 6.29††††

String(Unicode) Directory String 6.10

String(UTC-Time) UTC Time 6.31†††††

String(Generalized-Time) Generalized Time 6.14†††††

http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90327

111 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

* The Integer syntax in Active Directory is restricted to 32-bit integers. The LargeInteger syntax is
restricted to 64-bit integers.

** While Active Directory uses the [RFC2252] and [RFC2253] representation of DNs, it can also use
alternative forms of the DN representation when it accepts requests and sends responses, if

requested by the client. This is documented in LDAP_SERVER_EXTENDED_DN_OID (section
3.1.1.3.4.1.5).

*** No validation is done by the DC to confirm that the value conforms to the representation
specified in [RFC1278].

† Values restricted to ASN.1 IA5 strings (as specified in [ITUX680]).

†† Values restricted to ASN.1 Numeric strings (as specified in [ITUX680]).

††† Values of attributes of syntax String(OID) are accepted in either the numericoid (numeric OID)

or descr (the LDAP display name of the attribute or class identified by that OID) format, as defined
in [RFC2252] section 4.1. The server determines the format of returning OID values using the first

matching rule in the following set of processing rules:

1. If a "Binary Option" is present on the AttributeDescription (as described in [RFC2251] section
4.1.5.1) of the request, the server MUST return the OID converted to binary format as described
in [RFC2252] section 4.3.1. The result is a binary encoded value using Basic Encoding Rules

defined in [ITUX690].

2. If a value of either attributeID of an AttributeSchema object or governsID of a ClassSchema
object is requested, the server MUST return the OID in numericoid (Numeric OID) format.

3. If the attribute requested is not attributeID or governsID, but the value of the attribute identifies
an attribute or class, the server MUST return the value in Descr format.

4. If none of the above applies, the server MUST return the OID in numericoid (Numeric OID)
format.

†††† Active Directory has two differences from the character set specified in [RFC2252]:

1. The quote character ("), or ASCII 0x22, is part of the character set in the RFC but not in Active
Directory.

2. The "@" symbol, or ASCII 0x40, is not part of the character set in the RFC, but it is part of the
character set in Active Directory.

††††† Times are measured in granularity of 1 second.

The remaining syntaxes are represented as shown in the following sections.

3.1.1.2.2.2.1 Object(DN-String)

A value with this syntax is a UTF-8 string in the following format:

S:byte_count:string_value:object_DN

where byte_count is the number (in decimal) of bytes in the string_value string, object_DN is a
DN in Object(DS-DN) form, and all remaining characters are string literals. Since string_value is a

UTF-8 string, one character can require more than one byte to represent it.

http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90327
http://go.microsoft.com/fwlink/?LinkId=94440
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=89924
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90326

112 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.2.2.2 Object(Access-Point)

A value with this syntax is a UTF-8 string in the following format:

presentation_address#X500:object_DN

where presentation_address is a value encoded in the Object(Presentation-Address) syntax,
object_DN is a DN in Object(DS-DN) form, and all remaining characters are string literals.

3.1.1.2.2.2.3 Object(DN-Binary)

A value with this syntax is a UTF-8 string in the following format:

B:char_count:binary_value:object_DN

where char_count is the number (in decimal) of hexadecimal digits in binary_value,

binary_value is the hexadecimal representation of a binary value, object_DN is a DN in
Object(DS-DN) form, and all remaining characters are string literals. Each byte is represented by a

pair of hexadecimal characters in binary_value, with the first character of each pair corresponding
to the most-significant nibble of the byte. The first pair in binary_value corresponds to the first
byte of the binary value, with subsequent pairs corresponding to the remaining bytes in sequential
order. Note that char_count is always even in a syntactically-valid Object(DN-Binary) value.

3.1.1.2.2.2.4 Object(OR-Name)

A value with this syntax is a UTF-8 string in the following format:

object_DN

where object_DN is a DN in Object(DS-DN) form.

3.1.1.2.2.2.5 String(Case)

A value with this syntax is a case-sensitive UTF-8 string, but the server does not enforce that a

value of this syntax must be a valid UTF-8 string.

3.1.1.2.2.2.6 String(NT-Sec-Desc)

A value with this syntax contains a Windows security descriptor in binary form. The binary form
is that of a SECURITY_DESCRIPTOR structure and is specified in [MS-DTYP] section 2.4.6. It is
otherwise encoded the same as the String(Octet) syntax.

3.1.1.2.2.2.7 String(Sid)

A value with this syntax contains a SID in binary form. The binary form is that of a SID structure
(the SID structure is specified in [MS-DTYP] section 2.4.2.2; all multibyte fields have little-endian
byte ordering). It is otherwise encoded the same as the String(Octet) syntax.

3.1.1.2.2.2.8 String(Teletex)

A value with this syntax is a UTF-8 string restricted to characters with values between 0x20 and
0x7E, inclusive.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

113 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.2.3 Referential Integrity

Attributes with object reference syntaxes have special behavior, called referential integrity, as
specified in section 3.1.1.1.6. The following are object reference syntaxes:

Object(Access-Point)

Object(DN-String)

Object(OR-Name)

Object(DN-Binary)

Object(DS-DN)

For the four syntaxes other than Object(DS-DN), referential integrity only applies to the object_DN
portion of the value.

Active Directory imposes restrictions on which objects can be referenced by an attribute that has

referential integrity. An attribute can reference any object in the same NC as the object on which
that attribute is located. Additionally, attributes on an object in the domain NC, schema NC, or
config NC can reference any object in any domain NC in the forest, any object in the schema NC or

the config NC, or the root object of any application NC. For objects in application NCs, such
attributes can reference any object in the config NC or the schema NC, or the root object of any
application NC, in addition to any object in the same application NC as the object doing the
referencing. All other references are disallowed by the server.

These restrictions are identical for AD DS and for AD LDS. Because AD LDS does not support domain
NCs, the only cross-NC references in an AD LDS forest are from any NC to any object in the config
and schema NCs or to the root of an application NC.

3.1.1.2.2.4 Supported Comparison Operations

In addition to determining what can be stored in an attribute, the syntaxes determine what

comparison operations the server permits on an attribute in an LDAP search filter, as well as how
the server performs those comparisons. The following table maps each of the LDAP syntaxes to a
comparison rule. All syntaxes of the same comparison rule support the same comparison operations

and are compared using the same comparison rules.

LDAP syntax Comparison rule

Boolean Bool

Enumeration Integer

Integer Integer

LargeInteger Integer

Object(Access-Point) DN-String

Object(DN-String) DN-String

Object(OR-Name) DN-Binary

Object(DN-Binary) DN-Binary

114 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LDAP syntax Comparison rule

Object(DS-DN) DN

Object(Presentation-Address) PresentationAddress

Object(Replica-Link) Octet

String(Case) CaseString

String(IA5) CaseString

String(NT-Sec-Desc) SecDesc

String(Numeric) CaseString

String(Object-Identifier) OID

String(Octet) Octet

String(Printable) CaseString

String(Sid) Sid

String(Teletex) NoCaseString

String(Unicode) UnicodeString

String(UTC-Time) Time

String(Generalized-Time) Time

The following table (split into three parts for readability) shows which of the choices in an LDAP filter
(that is, which comparison operations) are supported for each comparison rule. The LDAP filter
structure is defined in [RFC2251] section 4.5.1. Each comparison rule (for example, the rule for

comparing two Bool values) is discussed following the table. The "and", "or", and "not" choices in an
LDAP filter are not included in this table because they are not comparisons performed against an

attribute value. Active Directory treats approxMatch as equivalent to equalityMatch. For details on
the three extensible matching rules, see section 3.1.1.3.4.4.

Comparison rule present equalityMatch approxMatch

Bool X X X

Integer X X X

DN-String X X X

DN-Binary X X X

DN X X X

PresentationAddress X X X

Octet X X X

CaseString X X X

SecDesc X

http://go.microsoft.com/fwlink/?LinkId=90325

115 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Comparison rule present equalityMatch approxMatch

OID X X X

Sid X X X

NoCaseString X X X

UnicodeString X X X

Time X X X

Comparison rule lessOrEqual greaterOrEqual substrings

Bool X X

Integer X X

DN-String

DN-Binary

DN

PresentationAddress

Octet X X X

CaseString X X X

SecDesc

OID

Sid X X X

NoCaseString X X X

UnicodeString X X X

Time X X

Note In the following table, the constant names in the headers for the extensibleMatch columns are

prefixed with "LDAP_MATCHING_RULE_". For example, "...BIT_AND" is actually
"LDAP_MATCHING_RULE_BIT_AND".

Comparison rule

extensibleMatch:

...BIT_AND

extensibleMatch:

...BIT_OR

extensibleMatch:

...TRANSITIVE_EVAL

Bool

Integer X X

DN-String X*

DN-Binary X*

116 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Comparison rule

extensibleMatch:

...BIT_AND

extensibleMatch:

...BIT_OR

extensibleMatch:

...TRANSITIVE_EVAL

DN X*

PresentationAddress

Octet

CaseString

SecDesc

OID

Sid

NoCaseString

UnicodeString

Time

* Supported only if the attribute is a link attribute. Evaluates to Undefined otherwise.

3.1.1.2.2.4.1 Bool Comparison Rule

A value of true is considered to be greater than a value of false.

3.1.1.2.2.4.2 Integer Comparison Rule

A signed comparison of integer values is performed.

3.1.1.2.2.4.3 DN-String Comparison Rule

Values of String(DN-String) or String(Access-Point) are equal if the object_DN components name
the same object and the string_value or presentation_address components are equal according
to the UnicodeString comparison rule.

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as
documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating
a filter clause that uses this rule; string_value or presentation_address is ignored.

3.1.1.2.2.4.4 DN-Binary Comparison Rule

Values of String(DN-Binary) or String(OR-Name) are equal if the object_DN components name the
same object and the binary_value or OR_address components are identical in length and in

content.

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as

documented in section 3.1.1.3.4.4. Only the object_DN component is considered when evaluating
a filter clause that uses this rule; binary_value or OR_address is ignored.

3.1.1.2.2.4.5 DN Comparison Rule

DN values are equal when they name the same object.

117 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Evaluation of an LDAP_MATCHING_RULE_TRANSITIVE_EVAL matching rule is performed as
documented in section 3.1.1.3.4.4.

3.1.1.2.2.4.6 PresentationAddress Comparison Rule

Two Object(Presentation-Address) values are equal when they have the same length and content.

3.1.1.2.2.4.7 Octet Comparison Rule

Two values are equal when they are the same length and have identical contents. A value S1 is less
than a value S2, where L is the smaller of the length of S1 and the length of S2, if either the first L
bytes of S1 are less than the first L bytes of S2, or if the first L bytes of S1 and S2 are identical but
the length of S1 is less than the length of S2. Given L = 1, S1 is less than S2 if the value of the first

byte of S1 is less than the value of the first byte of S2. Given L > 1, for the first L bytes of S1 to be
less than the first L bytes of S2 means that there exists an N (where N<L) such that bytes 0...N-1 of
S1 and S2 are identical, and byte N of S1 is less than byte N of S2.

For substring purposes, each byte in the value is treated as if it was a character. Values are
compared using the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1. The
"characters" are treated as if they were case-sensitive; that is, two characters are considered

identical if and only if the bytes that represent them are identical.

3.1.1.2.2.4.8 CaseString Comparison Rule

When compared using this comparison rule, two values are equal if they have identical length and
contents. A value S1 is less than a value S2, where L is the smaller of the length of S1 and the
length of S2, if either the first L bytes of S1 are less than the first L bytes of S2, or if the first L
bytes of S1 and S2 are identical but the length of S1 is less than the length of S2. Given L = 1, S1 is

less than S2 if the value of the first byte of S1 is less than the value of the first byte of S2. Given L
> 1, for the first L bytes of S1 to be less than the first L bytes of S2 means that there exists an N
(where N<L) such that bytes 0...N-1 of S1 and S2 are identical, and byte N of S1 is less than byte N
of S2.

For substring purposes, this comparison rule treats values as if they were case-sensitive strings of
characters and obey the ordinary rules for a SubstringFilter, as defined in [RFC2251] section 4.5.1.
In this comparison, two characters are considered identical if and only if the bytes that represent

them are identical.

3.1.1.2.2.4.9 SecDesc Comparison Rule

SecDescs are compared as octet strings as in section 3.1.1.2.2.4.7.

3.1.1.2.2.4.10 OID Comparison Rule

Two String(Object-Identifier) values are equal when they are the same OID.

3.1.1.2.2.4.11 Sid Comparison Rule

String(SID) values are treated as the binary representation of the SID (see section 3.1.1.2.2.2.7).
The binary representations of the SID are compared using the Octet comparison rule.

3.1.1.2.2.4.12 NoCaseString Comparison Rule

This comparison rule is identical to the CaseString comparison rule, except that for each

comparison, characters are treated in a case-insensitive fashion. For equality, ordering (greater-

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325

118 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

than-or-equals and less-than-or-equals), and substrings, two characters are identical if the bytes
that represent them are identical or if the characters differ from each other only by their case. The

"C" locale, as defined in [ISO/IEC-9899], is used for determining whether two characters differ by
case.

3.1.1.2.2.4.13 UnicodeString Comparison Rule

Comparison of values using this comparison rule is performed via Unicode comparison, which is
specified in section 6.5. If an LDAP_SERVER_SORT_OID extended control (see section 3.1.1.3.4) is
attached to the search request and specifies a locale in its orderingRule field, the locale specified is
used for the Unicode comparison. Otherwise, the Unicode comparison is performed using United
States English (LCID 0409). The comparison function is independent of the server locale and

therefore gives the same result on all DCs. The comparison function operates on Unicode strings
containing characters from all alphabets and does not, for instance, involve reducing the string to
the alphabet used by United States English before performing the comparison. This comparison
function is used to determine both equality and ordering (greater-than-or-equals and less-than-or-
equals), as well as to determine equality of substrings when performing a substring comparison.

This comparison rule is used in processing search filters, not in sorting search results. See section

3.1.1.3.4.1.13 for per-locale sorting of search results.

3.1.1.2.2.4.14 Time Comparison Rule

Time T1 is greater than time T2 if T1 denotes a time subsequent to T2.

3.1.1.2.3 Attributes

The attributes of class attributeSchema are specified in the following table.

The term "Unique" (in quotation marks) in the following table, and in the similar table for
classSchema in section 3.1.1.2.4.8, means that the value satisfies the following constraint:

If the forest functional level is less than DS_BEHAVIOR_WIN2003, the value is unique among all

values of this attribute in the set containing every attributeSchema and classSchema object in
the schema NC.

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the value is unique among all

values of this attribute in the set containing every attributeSchema and classSchema object S in
the schema NC that satisfies at least one of the following three conditions:

S!isDefunct ≠ true, that is, S is active.

FLAG_ATTR_IS_RDN is present in S!systemFlags (defined in the following table).

S = C!rDNAttID (section 3.1.1.2.4.8) for some classSchema object C.

The term system-only in the following table means that the attribute is defined with systemOnly
true. The value of the system-only attributes in the table can be specified on Add (except where
noted) but cannot be modified on existing objects by LDAP Modify requests (except as specified in

section 3.1.1.5.3.2), only by the system. The table is ordered with the system-only attributes before
the other attributes.

Attribute Description

objectClass Equals the sequence [top, classSchema]. System-only.

http://go.microsoft.com/fwlink/?LinkId=89921
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

119 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

attributeID "Unique" OID that identifies this attribute. System-only.

schemaIDGUID "Unique" GUID that identifies this attribute, used in security

descriptors (SDs). If not specified on Add, the DC generates a GUID.

This GUID MUST NOT be the NULL GUID. System-only.

msDS-IntId Not specified on Add (if specified in the Add request, the DC returns

error unwillingToPerform / <unrestricted>); the value (a 32-bit unsigned

integer in the subrange [0x80000000..0xBFFFFFFF]) is generated by the

DC. Present on attributeSchema objects added when forest functional

level is DS_BEHAVIOR_WIN2003 or greater with

FLAG_SCHEMA_BASE_OBJECT not present in systemFlags (below). The

value of msDS-IntId is the ATTRTYP of this attributeSchema object.

Unique among all values of this attribute on objects in the schema NC,

regardless of forest functional level. System-only.

linkID Optional. If present, and not zero, this is a link attribute, and the linkID

value is unique among all values of this attribute on objects in the

schema NC, regardless of forest functional level. If linkID is even, the

attribute is a forward link attribute; otherwise it is a back link attribute.

The linkID for back link attribute equals to the linkID of the

corresponding forward link attribute plus one. Special auto-generation

behavior for the linkID attribute is specified in section 3.1.1.2.3.1.

System-only.

mAPIID Optional. "Unique" integer that identifies this attribute, used by

Messaging Application Programming Interface (MAPI) clients. Not

present on attributeSchema objects in AD LDS. Special auto-generation

behavior for the mAPIID attribute is specified in section 3.1.1.2.3.2.

System-only. If the DC functional level is DS_BEHAVIOR_WIN2008 or

greater, the mAPIID attribute can be modified on attributeSchema

objects that do not include FLAG_SCHEMA_BASE_OBJECT as the

systemFlags attribute. Otherwise, the mAPIID attribute cannot be

modified.

attributeSyntax One of the three attributes that identify the syntax of the attribute. See

section 3.1.1.2.2. System-only.

oMSyntax One of the three attributes that identify the syntax of the attribute. See

section 3.1.1.2.2. System-only.

oMObjectClass Optional. One of the three attributes that identify the syntax of the

attribute. See section 3.1.1.2.2. System-only.

isSingleValued True if this attribute is single-valued; false, if it is multivalued. If an

attribute is multivalued, all values have the syntax specified for the

attribute. System-only.

systemFlags Optional. Flags that determine specific system operations; see section

2.2.10 for values. The systemFlags values specific to an attributeSchema

object are:

FLAG_ATTR_NOT_REPLICATED: This attribute is nonreplicated.

FLAG_ATTR_REQ_PARTIAL_SET_MEMBER: This attribute is a member of

PAS regardless the value of attribute isMemberOfPartialAttributeSet.

FLAG_ATTR_IS_CONSTRUCTED: This attribute is a constructed attribute.

FLAG_ATTR_IS_OPERATIONAL: This attribute is an operational attribute,

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

120 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

as defined in [RFC2251] section 3.2.1.

FLAG_SCHEMA_BASE_OBJECT: This class is part of the base schema.

Modifications to a base schema object are restricted as described in

section 3.1.1.2.5.

FLAG_ATTR_IS_RDN: This attribute can be used as an RDN attribute of a

class.

System-only.

systemOnly Optional. The value of a system-only attribute cannot be modified on

existing objects by LDAP Modify requests (except as specified in section

3.1.1.5.3.2), only by the system. System-only.

cn RDN for the schema object.

lDAPDisplayName "Unique" name that identifies this attribute, used by LDAP clients. If not

specified on Add, the DC generates a value as specified in section

3.1.1.2.3.4. The syntax of lDAPDisplayName is described in [RFC2251]

section 4.1.4.

attributeSecurityGUID Optional. GUID by which the security system identifies the property set

of this attribute. If present, this value MUST NOT be the NULL GUID. See

the specification of property sets in section 3.1.1.2.3.3.

extendedCharsAllowed Optional. If true, character set constraint is not enforced on values of this

attribute. Applies to attributes of syntax String(IA5), String(Numeric),

String(Teletex), String(Printable).

rangeLower Optional. Lower range of values that are allowed for this attribute. For

syntax Integer, LargeInteger, Enumeration, String(UTC-time), and

String(Generalized-time), rangeLower equals the minimum allowed value.

For syntax Object(DN-binary), Object(DN-String), rangeLower equals the

minimum length of the binary_value or string_value portion of the given

value. For String(Unicode), rangeLower is the minimum length in

characters. rangeLower does not affect the allowed values for syntax

Boolean and Object(DS-DN). For all other syntaxes, rangeLower equals

the minimum length in bytes. Note that rangeLower is a 32-bit integer

and cannot express the full range of LargeInteger, String(UTC-time), and

String(Generalized-time).

rangeUpper Optional. Upper range of values that are allowed for this attribute. For

syntax Integer, LargeInteger, Enumeration, String(UTC-time), and

String(Generalized-time), rangeUpper equals the maximum allowed

value. For syntax Object(DN-binary), Object(DN-String), rangeUpper

equals the maximum length of the binary_value or string_value portion of

the given value. For String(Unicode), rangeUpper is the maximum length

in character. rangeUpper does not affect the allowed values for syntax

Boolean and Object(DS-DN). For all other syntaxes, rangeUpper equals

the maximum length in bytes. Note that rangeUpper is a 32-bit integer

and cannot express the full range of LargeInteger, String(UTC-time), and

String(Generalized-time).

searchFlags Optional. The searchFlags attribute specifies whether an attribute is

indexed, among other things; see section 2.2.9 for values. It contains

bitwise flags as follows:

fATTINDEX: *

fPDNTATTINDEX: *

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA1%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

121 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

fANR: Add this attribute to the ambiguous name resolution (ANR) set. If

this flag is set, then fATTINDEX must also be set. See 3.1.1.3.1.3.4 for

ANR search.

fPRESERVEONDELETE: Specifies that the attribute values MUST be

preserved on objects after deletion of the object (that is, when the object

is transformed to a tombstone or recycled-object). This flag is ignored for

the attributes objectCategory and sAMAccountType, plus all linked

attributes.

fCOPY: Specifies a hint to LDAP clients that the attribute is intended to be

copied when copying the object. This flag is not interpreted by the server.

fTUPLEINDEX: *

fSUBTREEATTINDEX: *

fCONFIDENTIAL: This attribute is confidential, special access check is

needed; see section Reads:Access Checks in section 3.1.1.4.

fNEVERVALUEAUDIT: Auditing of changes to values contained in this

attribute MUST NOT be performed. Auditing is outside the state model.

fRODCFilteredAttribute: This attribute is part of the filtered attribute set.

This flag is only effective on a DC whose DC functionality level is

DS_BEHAVIOR_WIN2008 or greater. See section 3.1.1.2.3.5 for

additional restrictions.

fEXTENDEDLINKTRACKING: The effects of this search flag are outside the

state model. Indicates that a DC should do additional internal tracking for

link changes. This flag may be ignored by other implementations but

must not be used in a conflicting way that would affect the performance

of Windows DCs.

fBASEONLY: This attribute is returned only on searches scoped to one

object.

fPARTITIONSECRET: This attribute requires extended access checks to

add, read, and update.

The effects of searchFlags marked * are outside the state model. They

direct the server to construct certain indexes that affect system

performance. These flags may be ignored by other implementations but

must not be used in a conflicting way that would affect the performance

of Windows DCs.

schemaFlagsEx Optional. The schemaFlagsEx attribute specifies whether an attribute can

be part of the filtered attribute set; see section 2.2.11 for values. It

contains bitwise flags as follows:

FLAG_ATTR_IS_CRITICAL: If this flag is set and the

fRODCFilteredAttribute flag in searchFlags is also set, the

fRODCFilteredAttribute flag is ignored. If fRODCFilteredAttribute is not

set, then setting this flag has no effect. This flag is effective only on a DC

whose DC functionality level is DS_BEHAVIOR_WIN2008 or greater; it is

ignored by a DC that is not at that level or greater.

isMemberOfPartialAttributeSet Optional. If true, the attribute is a member of the forest's partial attribute

set.

An attribute is a member of the forest's partial attribute set if and only if

either (1) this attribute is true or (2) the

FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit is set in the systemFlags

attribute.

If this attribute is true and the FLAG_ATTR_NOT_REPLICATED bit is set in

the systemFlags attribute, and if the attribute is modified on a DC that is

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

122 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

also a GC server, then the value of the attribute is accessible through

that GC server, but the value of the attribute does not replicate. If the

FLAG_ATTR_NOT_REPLICATED bit is set in the systemFlags attribute, the

attribute value does not replicate to other GC servers.

3.1.1.2.3.1 Auto-Generated linkID

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.50 as the value of
the linkID attribute, the DC sets the linkID attribute to an even integer that does not already appear
as the linkID on a schema object. The attribute created by the Add is a forward link attribute.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, and an attributeSchema object is

created with LDAP Add, and the Add request assigns either the attributeID or the lDAPDisplayName
of an existing forward link attribute as the value of the linkID attribute, the DC sets the linkID

attribute to the linkID of the given forward link attribute plus one. The attribute created by the Add
is a back link attribute corresponding to the given forward link attribute.

The aforementioned values that trigger auto-generation behavior for the linkID are of syntax
String(Object-Identifier) or String(Unicode), and therefore do not conform to the declared syntax of
the linkID attribute. The DC accepts these values without the error that would normally occur in

such a case.

3.1.1.2.3.2 Auto-Generated mAPIID

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, and an attributeSchema object is
created with LDAP Add, and the Add request assigns the OID 1.2.840.113556.1.2.49 as the value of
the mAPIID attribute, the DC sets the mAPIID attribute to an integer that does not already appear
as the mAPIID on a schema object. An implementation can use any algorithm to choose the next

integer as long as that algorithm satisfies this uniqueness constraint. This mAPIID uniqueness spans
all the mAPIID attributes on schema objects that are currently persisted in the directory.

The aforementioned value that triggers auto-generation behavior for mAPIID is of syntax String
(Object-Identifier), which does not conform to the declared syntax of the mAPIID attribute. The DC
accepts these values without the error that would normally occur in such a case.

3.1.1.2.3.3 Property Set

A property set consists of a set of related attributes. An attribute whose attributeSchema object has
a value for the attributeSecurityGUID attribute belongs to that property set; the property set is
identified by the property set GUID, which is the attributeSecurityGUID value.

A property set GUID can be used instead of the schemaIDGUID of an attribute when defining a
security descriptor, as specified in section 5.1.3.2, to grant or deny access to all attributes in one
ACE.

The following table lists the property sets present in the default AD DS schema.

Name Property set GUID

Domain Password &

Lockout Policies

C7407360-20BF-11D0-A768-00AA006E0529

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf

123 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Name Property set GUID

General Information 59BA2F42-79A2-11D0-9020-00C04FC2D3CF

Account Restrictions 4C164200-20C0-11D0-A768-00AA006E0529

Logon Information 5F202010-79A5-11D0-9020-00C04FC2D4CF

Group Membership BC0AC240-79A9-11D0-9020-00C04FC2D4CF

Phone and Mail Options E45795B2-9455-11D1-AEBD-0000F80367C1

Personal Information 77B5B886-944A-11D1-AEBD-0000F80367C1

Web Information E45795B3-9455-11D1-AEBD-0000F80367C1

Public Information E48D0154-BCF8-11D1-8702-00C04FB96050

Remote Access Information 037088F8-0AE1-11D2-B422-00A0C968F939

Other Domain Parameters

(for use by SAM)

B8119FD0-04F6-4762-AB7A-4986C76B3F9A

DNS Host Name Attributes 72E39547-7B18-11D1-ADEF-00C04FD8D5CD

MS-TS-GatewayAccess (*) FFA6F046-CA4B-4FEB-B40D-04DFEE722543

Private Information (*) 91E647DE-D96F-4B70-9557-D63FF4F3CCD8

Terminal Server License Server (*) 5805BC62-BDC9-4428-A5E2-856A0F4C185E

(*) The last three property sets are present only in Windows Server 2008 operating system,

Windows Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows
Server 2012 R2 operating system AD DS forests.

To determine the set of attributes that belong to a property set, search for the corresponding
property-set GUID in [MS-ADA1], [MS-ADA2], and [MS-ADA3] for AD DS, or in [MS-ADLS] for AD
LDS. All attributeSchema classes that have their attributeSecurityGUID set as the property-set GUID
belong to that property set.

New property sets can be created by adding controlAccessRight objects to the Extended-Rights
container as described in section 5.1.3.2.1. The rightsGuid attribute of the controlAccessRight
object is the property set GUID. This GUID MUST NOT be the NULL GUID.

AD LDS installs a reduced schema by default. The default AD LDS schema only includes the
following property sets:

General Information

Account Restrictions

Logon Information

Group Membership

Phone and Mail Options

Personal Information

%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

124 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Web Information

Public Information

3.1.1.2.3.4 ldapDisplayName Generation

When lDAPDisplayName is not given explicitly when creating an attribute or class, the system will
generate a default one from the value of cn with the following routine:

String generateLdapDisplayName(IN cn: String)

{

 Identify the substrings in cn that are delimited by

 one or more characters in the set {' ', '-', '_'},

 let S be a string array containing all the substrings;

 Let T be a string array with the same number of elements

 as S, such that

 1. First string in T (T[1]) is exactly the same string

 as S[1], except the first character of T[1] is the

 lower case form of the first character of S[1];

 2. For the remaining strings, T[i] is the same as S[i],

 except the first character of T[i] is the upper case

 of the first character of S[i];

 Let string st be the concatenation of the strings in T;

 Return st;

}

For example, if the cn of a new class is Sam-Domain, the default lDAPDisplayName is samDomain.

3.1.1.2.3.5 Flag fRODCFilteredAttribute in Attribute searchFlags

An attribute cannot be a member of a filtered attribute set if one of the following conditions is true:

The FLAG_ATTR_NOT_REPLICATED bit is set in attribute systemFlags of the attributeSchema

object;

The FLAG_ATTR_REQ_PARTIAL_SET_MEMBER bit is set in attribute systemFlags of the

attributeSchema object;

The FLAG_ATTR_IS_CONSTRUCTED bit is set in attribute systemFlags of the attributeSchema

object;

The FLAG_ATTR_IS_CRITICAL bit is set in attribute schemaFlagsEx of the attributeSchema

object;

Attribute systemOnly of the attributeSchema object is true;

The attribute is in the following list: currentValue, dBCSPwd, unicodePwd, ntPwdHistory,

priorValue, supplementalCredentials, trustAuthIncoming, trustAuthOutgoing, lmPwdHistory,
initialAuthIncoming, initialAuthOutgoing, msDS-ExecuteScriptPassword, displayName, codePage,

creationTime, lockoutDuration, lockOutObservationWindow, logonHours, lockoutThreshold,
maxPwdAge, minPwdAge, minPwdLength, nETBIOSName, pwdProperties, pwdHistoryLength,
pwdLastSet, securityIdentifier, trustDirection, trustPartner, trustPosixOffset, trustType, rid,

domainReplica, accountExpires, nTMixedDomain, operatingSystem, operatingSystemVersion,
operatingSystemServicePack, fSMORoleOwner, trustAttributes, trustParent, flatName, sIDHistory,
dNSHostName, lockoutTime, servicePrincipalName, isCriticalSystemObject, msDS-
TrustForestTrustInfo, msDS-SPNSuffixes, msDS-AdditionalDnsHostName, msDS-

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

125 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

AdditionalSamAccountName, msDS-AllowedToDelegateTo, msDS-KrbTgtLink, msDS-
AuthenticatedAtDC, msDS-SupportedEncryptionTypes.

If one of the conditions is true, the attribute will not be in the filtered attribute set even if the flag
fRODCFilteredAttribute is set in attribute searchFlags of the attributeSchema object.

3.1.1.2.4 Classes

3.1.1.2.4.1 Class Categories

There are four categories of classes:

Structural classes: Structural classes are the classes that can have instances in the directory.

Abstract classes: Abstract classes are templates that are used to derive new classes. Abstract

classes cannot be instantiated in the directory.

Auxiliary classes: Auxiliary classes contain a list of attributes. Adding the auxiliary class to the

definition of a structural or abstract class adds the auxiliary class's attributes to the definition. An
auxiliary class cannot be instantiated by itself in the directory.

88 classes: 88 classes do not fall into any of the preceding categories. An 88 class can be used as
an abstract class, a structural class, or an auxiliary class.

Structural class, abstract class, and auxiliary class are defined in [X501] section 8.3. 88 class
corresponds to the definition of object classes described in [X501] section 8.3.4. 88 class is included
for compatibility with this older standard and is not intended to be used in new schema extensions.

3.1.1.2.4.2 Inheritance

Inheritance is the ability to build new classes from existing classes. The new class is defined as a
subclass of another class, called its superclass. A subclass inherits from its superclass the

mandatory and optional attributes and its structural parent classes in the directory hierarchy. All

classes are subclasses, directly or indirectly, of a single abstract object class, called top. In Active
Directory, a class has exactly one superclass; top is its own superclass. An ordered set of
superclasses of a class, ending with class top, is its superclass chain ([X501]). The superclass chain
of a class does not include the class itself, except that the superclass chain of top is the single-
element sequence [top].

Abstract classes can inherit only from abstract classes, auxiliary classes can inherit from all classes

except structural classes, and structural classes can inherit from all classes except auxiliary classes.
Classes of the category 88 class (section 3.1.1.2.4.1) can inherit from all classes.

3.1.1.2.4.3 objectClass

Attribute objectClass is a multivalued attribute that appears on all the objects in the directory. When
instantiating a structural class or an 88 object class, the objectClass attribute of the new object
contains a sequence of class names. The first element is always class top. The last element is the

name of the structural class or the 88 object class that was instantiated (referred to as the most

specific class). The rest of the classes in the superclass chain are listed in between in the order of
inheritance from class top. For example, a user object has the following four-element sequence as
the value of objectClass:

[top, person, organizationalPerson, user]

For information on instantiating auxiliary classes see section 3.1.1.2.4.6.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98847
http://go.microsoft.com/fwlink/?LinkId=98847
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98847
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

126 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.4.4 Structure Rules

Structure rules define the possible tree structures. In Active Directory, the structure rules (for
directory hierarchy, see section 3.1.1.2.4.2) are completely expressed by the possSuperiors and

systemPossSuperiors attributes that are present on each classSchema object. The union of values in
these two attributes specifies the list of classes, instances of which are allowed to be parents of an
object instance of the class in question.

3.1.1.2.4.5 Content Rules

Content rules determine the mandatory and optional attributes of the class instances that are stored
in the directory. In Active Directory, the content rules are completely expressed by the mustContain,

mayContain, systemMustContain, and systemMayContain attributes of the schema definitions for
each class. The union of values in the mustContain and systemMustContain attributes specifies the
attributes that are required to be present on an object instance of the class in question. The union of
values in the mustContain, systemMustContain, mayContain, and systemMayContain attributes
specifies the attributes that are allowed to be present on an object instance of the class in question.

3.1.1.2.4.6 Auxiliary Class

Active Directory provides support for statically linking auxiliary classes to the classSchema definition
of another object class. When an auxiliary class aux is statically linked to some other class cl, it is as
if all of the mandatory and optional attributes of the auxiliary class aux are added to the class cl.

The governsID of auxiliary class aux is contained in the auxiliaryClass attribute of cl if aux was
statically linked to cl by modifying the auxiliaryClass attribute of cl's classSchema definition as
specified in section 3.1.1.3.1.1.5. The governsID of auxiliary class aux is contained in the

systemAuxiliaryClass attribute of cl if aux was statically linked to cl by modifying the
systemAuxiliaryClass attribute of cl's classSchema definition as specified in section 3.1.1.3.1.1.5.

A statically linked auxiliary class with mandatory attributes must be linked to the class cl through
the systemAuxiliaryClass attribute of cl at the time cl is defined as described in section
3.1.1.3.1.1.5. The objectClass attribute of objects of class cl does not include the names of statically

linked auxiliary classes or the classes in their superclass chains.

Active Directory also provides support for dynamically linking auxiliary classes on objects, which

reflects the model of auxiliary object classes described in [X501] section 8.3.3. In this case, the
dynamically linked auxiliary class affects only the individual object to which it is linked, as opposed
to a statically linked auxiliary class, which is linked to a class and affects every object of that class.
The classSchema of the class is not affected by dynamic auxiliary classes. When an auxiliary class is
dynamically linked to an object, the mandatory and optional attributes of the auxiliary class become
mandatory and optional attributes of the object. Refer to section 3.1.1.3.1.1.5 for auxiliary class
related LDAP operations supported by Active Directory.

If an object is dynamically linked to one or more auxiliary classes, attribute objectClass of the object
contains the following values in the order described below.

1. Class top remains as the first value;

2. Then it is followed by the set of dynamic auxiliary classes and the classes in their superclass
chains, excluding those already present in the superclass chain of the most specific structural
class. There is no specific order among the classes in this set, and no class is listed more than

once.

3. Next, the classes in the superclass chain of the most specific structural class are listed after that,
in the order of inheritance from top.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98847
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

127 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4. The most specific structural class remains last in the sequence.

The auxiliaryClass or systemAuxiliaryClass attributes are not affected by dynamic auxiliary classes.

For example, a user object with auxiliary class mailRecipient dynamically added has the following
five-element sequence as the value of objectClass:

[top, mailRecipient, person, organizationalPerson, user]

Dynamic auxiliary classes are not supported when the forest functional level is
DS_BEHAVIOR_WIN2000.

3.1.1.2.4.7 RDN Attribute of a Class

Each class designates an RDN attribute. The RDN attribute's name and value provide the RDN for
the class, for example "ou=ntdev", "cn=Peter Houston". If not specified in a class by attribute

rDNAttID, the RDN attribute is inherited from the superclass of the class. The RDN attribute is of
syntax String(Unicode).

3.1.1.2.4.8 Class classSchema

The attributes of class classSchema are specified in the following table.

The term "Unique" (in quotation marks) in the table is defined in section 3.1.1.2.3.

The term system-only in the table is defined in section 3.1.1.2.3.

Attribute Description

objectClass Equals the sequence [top, classSchema]. System-only.

governsID "Unique" OID that identifies this class. System-only.

schemaIDGUID "Unique" GUID that identifies this class, used in security descriptors. If not

specified on Add, the DC generates a GUID. This GUID MUST NOT be the

NULL GUID. System-only.

msDS-IntId Optional. 32-bit unsigned integer. System-only.

rDNAttID Optional. attributeID of the RDN attribute. If the rDNAttID is not present, the

RDN attribute is inherited from the superclass of this class. System-only.

subClassOf governsID of the superclass of this class. System-only. Also see section

3.1.1.2.5.2 for auto-generated behavior when a new classSchema object is

created.

systemMustContain Optional. attributeIDs of the mandatory attributes of this class. This attribute

is system-only.

systemMayContain Optional. attributeIDs of the optional attributes of this class. This attribute is

system-only.

systemPossSuperiors Optional. governsIDs of the classes that can be parents of this class within an

NC tree. This attribute is system-only.

systemAuxiliaryClass Optional. governsIDs of the auxiliary classes that are statically linked to this

class. This attribute is system-only.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

128 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

objectClassCategory Class category (section 3.1.1.2.4.1), encoded as follows:

0: 88 Class

1: Structural class

2: Abstract class

3: Auxiliary class

System-only.

systemFlags Optional. Flags that determine specific system operations; see section 2.2.10

for values. The single systemFlags value specific to a classSchema object is:

FLAG_SCHEMA_BASE_OBJECT: this class is part of the base schema.

Modifications to a base schema object are restricted as described in section

3.1.1.2.5.

System-only.

systemOnly Optional. Only a DC can create (section 3.1.1.5.2.2) and modify (section

3.1.1.5.3.2) instances of a system-only class. System-only.

cn RDN for the schema object.

lDAPDisplayName "Unique" name that identifies this class, used by LDAP clients. If not specified

on Add, the DC generates a value as specified in section 3.1.1.2.3.4. The

syntax of lDAPDisplayName is described in [RFC2251] section 4.1.4.

mustContain Optional. attributeIDs of the mandatory attributes of this class in addition to

the systemMustContain attributes.

mayContain Optional. attributeIDs of the optional attributes of this class in addition to the

systemMayContain attributes.

possSuperiors Optional. governsIDs of the classes that can be parents of this class within an

NC tree, in addition to the systemPossSuperiors classes.

auxiliaryClass Optional. governsIDs of the auxiliary classes that are statically linked to this

class, in addition to the systemAuxiliaryClass classes.

defaultSecurityDescriptor Optional. The default security descriptor (in SDDL format, [MS-DTYP] section

2.5.1) that is assigned to new instances of this class if no security descriptor

is specified during creation of the class or is merged into a security descriptor

if one is specified. The rules for security descriptor merging are specified in

[MS-DTYP] section 2.5.3.4.

defaultObjectCategory A reference to some classSchema object. This value is the default value of

the objectCategory attribute of new instances of this class if none is specified

during LDAP Add. Also see section 3.1.1.2.5.2 for auto-generated behavior

when a new classSchema object is created.

defaultHidingValue Optional. If defaultHidingValue is true on a classSchema object, then when an

Add creates an instance of this class (that is, where this class is the most

specific class) and the Add does not specify a value for the

showInAdvancedViewOnly attribute, it is as if the Add had specified true for

the showInAdvancedViewOnly attribute.

The showInAdvancedViewOnly attribute is interpreted by LDAP clients, not by

the DC. If true, certain user interfaces do not display the object.

showInAdvancedViewOnly Specifies whether the attribute is to be visible in the advanced mode of user

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

129 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Description

interfaces.

Also see defaultHidingValue defined previously and section 3.1.1.2.5.2 for

auto-generated behavior when a new classSchema object is created.

3.1.1.2.5 Schema Modifications

This section documents the special behavior of schema objects with respect to LDAP Add, Modify,

Modify DN, and Delete requests.

Only the DC that owns the Schema Master FSMO role performs originating updates of objects in the
schema NC, as specified in section 3.1.1.1.11.

All transactions that perform originating updates to objects in the schema NC are serialized, even if
the updates do not appear to conflict and thus do not seem to require serialization.

Many attributes of attributeSchema and classSchema objects are system-only, as specified in
sections 3.1.1.2.3 and 3.1.1.2.4. An LDAP Modify request that attempts to modify a system-only

attribute (except as specified in section 3.1.1.5.3.2) fails with error constraintViolation /
ERROR_DS_CANT_MOD_SYSTEM_ONLY.

A Delete of an attributeSchema or classSchema object fails, with error unwillingToPerform /
ERROR_DS_CANT_DELETE.

There is no constraint on the amount of time between when an object in the schema NC is
successfully added or modified and when the DC enforces the updated schema. Therefore, it is

possible that there is a period of time during which the schema enforced by the DC does not reflect
the schema represented by the objects in the schema NC. Although the protocol places no boundary
or requirements on the length of this time period, it is recommended that implementations minimize
the length of this time period to improve the usability of the directory for clients.

The server MUST guarantee that all successful schema modifications are eventually enforced.

3.1.1.2.5.1 Consistency and Safety Checks

This section documents schema object special behaviors that are not closely tied to the defunct
state. These special behaviors are divided into two classes:

Consistency checks

Safety checks

Consistency checks maintain the consistency of the schema. Safety checks reduce the possibility of
a schema update by one application breaking another application.

If an Add or Modify request fails either a consistency or a safety check, the response is error
unwillingToPerform / <unrestricted>.

3.1.1.2.5.1.1 Consistency Checks

The term "Unique" (in quotation marks) in the following statements is defined in section 3.1.1.2.3.

An Add or Modify request on an attributeSchema object succeeds only if the resulting object passes
all of the following tests:

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

130 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The value of lDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4.

The values of attributeID, lDAPDisplayName, mAPIID (if present) and schemaIDGUID are

"Unique".

A nonzero linkID, if any, is unique among all values of the linkID attribute on objects in the

schema NC, regardless of forest functional level. If a linkID is an odd number, it is not one, and
an object exists whose linkID is the even number one smaller.

The values of attributeSyntax, oMSyntax, and oMObjectClass match some defined syntax (section

3.1.1.2.2).

Flag fANR is only present in the searchFlags attribute if the syntax is String(Unicode),

String(IA5), String(Printable), String(Teletex) or String(Case).

If rangeLower and rangeUpper are present, rangeLower is smaller than or equal to rangeUpper.

An Add or Modify request on a classSchema object succeeds only if the resulting object passes all of

the following tests.

The value of lDAPDisplayName is syntactically valid, per [RFC2251] section 4.1.4.

The values of governsID, lDAPDisplayName, and schemaIDGUID are "Unique".

All attributes that are referenced in the systemMayContain, mayContain, systemMustContain, and

mustContain lists exist and are active.

All classes that are referenced in the subClassOf, systemAuxiliaryClass, auxiliaryClass,

systemPossSuperiors, and possSuperiors lists exist and are active.

All classes in the systemAuxiliaryClass and auxiliaryClass attributes have either 88 class or

auxiliary class specified as their objectClassCategory.

All classes in the systemPossSuperiors and possSuperiors attributes have either 88 class or

structural class specified as their objectClassCategory.

The superclass chain of a class follows the rules for inheritance as specified in section

3.1.1.2.4.2.

The dynamicObject class is not referenced by the subClassOf attribute of a class.

The attribute specified in the rDNAttID attribute has syntax String(Unicode).

Attribute defaultSecurityDescriptor, if present, is a valid SDDL string.

3.1.1.2.5.1.2 Safety Checks

The following checks reduce the possibility of schema updates by one application breaking another
application.

These checks apply to all schema objects:

A Modify adds no attributes to the mustContain or systemMustContain of an existing class.

A Modify does not add an auxiliary class to the auxiliaryClass or systemAuxiliaryClass of an

existing class, if doing so would effectively add either mustContain or systemMustContain
attributes to the class.

%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf

131 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A Modify does not change the objectClassCategory of an existing class.

A Modify does not change a constructed attribute (an attribute with

FLAG_ATTR_IS_CONSTRUCTED in systemFlags).

A Modify does not change class top, except to add back link attributes as may-contains, either by

adding back link attributes to mayContain of top, or by adding auxiliary classes to auxiliaryClass
of top whose only effect on top is adding back link attributes as may-contains.

A Modify does not change the subSchema object.

A Modify does not change the fRODCFilteredAttribute bit of the searchFlags attribute of an

attributeSchema object, if the DC functional level is DS_BEHAVIOR_WIN2008 or higher, and the
attributeSchema object cannot be a member of the filtered attribute set (see section
3.1.1.2.3.5).

These checks apply to schema objects that include FLAG_SCHEMA_BASE_OBJECT in the
systemFlags attribute:

A Modify does not change the lDAPDisplayName or cn of an attributeSchema or classSchema

object, or the defaultObjectCategory of a classSchema object.

A Modify does not change the classSchema objects attributeSchema, classSchema, subSchema

and dMD.

A Modify does not change the fCONFIDENTIAL bit of the searchFlags attribute of an

attributeSchema object.

A Modify does not change the attributeSecurityGUID on the following fixed list of attributeSchema

objects: accountExpires, badPwdCount, codePage, countryCode, description, displayName,
domainReplica, forceLogoff, homeDirectory, homeDrive, memberOf, lastLogoff, lastLogon,
lockOutObservationWindow, lockoutDuration, lockoutThreshold, logonCount, logonHours,
logonWorkstation, maxPwdAge, member, minPwdAge, minPwdLength, modifiedCount, objectSid,
oEMInformation, profilePath, primaryGroupID, pwdHistoryLength, pwdProperties,

sAMAccountName, scriptPath, serverState, serverRole, uASCompat, comment, pwdLastSet,

userAccountControl, userParameters.

3.1.1.2.5.2 Auto-Generated Attributes

If a classSchema object is created with an LDAP Add operation and the following attributes are not
included as part of the Add, they must be created on the object as specified in the following table.

Attribute Default auto-generated value

subClassOf Must refer to class top

showInAdvancedViewOnly TRUE

defaultObjectCategory Must refer to the new classSchema object itself

3.1.1.2.5.3 Defunct

A schema object with isDefunct = true is defunct; a schema object that is not defunct is active. This

section documents the special behavior of attributeSchema and classSchema objects related to the
defunct state.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

132 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The effect of being defunct depends upon the forest functional level as specified in the following
subsections. The following statements are independent of the forest functional level.

The isDefunct attribute being not present on an attributeSchema or classSchema object is

equivalent to isDefunct = false; modifications that move between these two representations of
the active state have no special behavior.

If an LDAP Modify changes the isDefunct attribute (giving it a value of true or false, or removing

it), this change must be the only change in the LDAP Modify request; otherwise, the request fails
with error unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

If a Modify sets isDefunct to true but the attributeSchema or classSchema object is base (that is,

it has FLAG_SCHEMA_BASE_OBJECT present in its systemFlags attribute), the Modify fails, with
error unwillingToPerform / ERROR_DS_ILLEGAL_BASE_SCHEMA_MOD.

LDAP Add cannot create instances of a defunct class (section 3.1.1.5.2.2), and LDAP Add and

Modify cannot create instances of a defunct attribute (see sections 3.1.1.5.2.2 and 3.1.1.5.3.2).

Making an attributeSchema or classSchema object defunct has no effect on the state of existing

objects that use the defunct attribute or class, but it changes the behavior of reads and updates

of such objects as described in sections 3.1.1.4.8 (Search), 3.1.1.5.2.2 (Add), 3.1.1.5.3.2
(Modify), and 3.1.1.5.5 (Delete).

3.1.1.2.5.3.1 Forest Functional Level Less Than WIN2003

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a DC behaves as follows with
respect to the defunct state:

The isDefunct attribute can be changed from not present (or false) to true on an attributeSchema

or classSchema object. This modification is subject to the following checks:

If the modification is to an attributeSchema object and the object is a mustContain,

systemMustContain, mayContain, or systemMayContain of an active class, the modification
fails.

If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or

possSuperiors of an active class, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>.

When isDefunct is true on an attributeSchema or classSchema object, an LDAP Modify can set

isDefunct to false (or remove the isDefunct attribute). This modification is subject to the following
check:

If the modification is to a classSchema object and the object references any defunct attributes

through its mustContain, systemMustContain, mayContain, or systemMayContain attributes,
or references any defunct classes through its subClassOf, auxiliaryClass, or possSuperiors
attributes, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>.

No other modification to a defunct attributeSchema or classSchema object is allowed. The error if

the modification fails is noSuchObject / <unrestricted>.

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

133 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.2.5.3.2 Forest Functional Level WIN2003 or Greater

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, a DC behaves as follows with
respect to the defunct state:

An LDAP Modify can change the isDefunct attribute from not present (or false) to true on an

attributeSchema or classSchema object. This modification is subject to the following checks, in
addition to the checks performed when the forest functional level is less than
DS_BEHAVIOR_WIN2003:

If the modification is to an attributeSchema object and the object is a mustContain,

systemMustContain, mayContain, systemMayContain, or rDNAttID of an active class, the

modification fails.

If the modification is to a classSchema object and the object is a subClassOf, auxiliaryClass, or

possSuperiors of an active class, the modification fails.

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>.

An LDAP Modify can change the isDefunct attribute from true to false (or not present) on an

attributeSchema or classSchema object. This modification is subject to the following checks, in
addition to the checks performed when the forest functional level is less than
DS_BEHAVIOR_WIN2003:

If the modification is to a classSchema object and the object references any defunct attributes

through its mustContain, systemMustContain, mayContain, systemMayContain or rDNAttID
attributes, or references any defunct classes through its subClassOf, auxiliaryClass, or
possSuperiors attributes, the modification fails.

The same uniqueness checks are performed when setting isDefunct to false as would have

been performed if the same object were being added to a schema where it was not present. In
particular, the uniqueness checks on attributeID, governsID, schemaIDGUID, mAPIID, linkID,
and lDAPDisplayName must pass.

The error if the isDefunct modification fails is unwillingToPerform / <unrestricted>.

An LDAP Modify can change the other attributes of defunct schema objects subject to the same

checks that apply to changes to active schema objects.

Therefore, for instance, a Modify can change the lDAPDisplayName of a defunct attributeSchema
object, or the lDAPDisplayName, mustContain, mayContain, subClassOf, auxiliaryClass, and
possSuperiors of a defunct classSchema object.

Because the checks that apply to changes to active schema objects are still in force, Modify
cannot (for instance) change the attributeID, governsID, schemaIDGUID, mAPIID, linkID,

attributeSyntax, oMSyntax, and oMObjectClass attributes of defunct schema objects.

Section 3.1.1.4.8 specifies the effects of the defunct state on reads of OID-valued attributes that

identify schema objects (mustContain, systemMustContain, mayContain, systemMayContain,
subClassOf, auxiliaryClass, and possSuperiors).

3.1.1.2.6 ATTRTYP

Any OID-valued quantity stored on an object is stored as an ATTRTYP, a 32-bit unsigned integer.
The ATTRTYP space is 32 bits wide and is divided into the following ranges.

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

134 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Range Description

[0x00000000..0x7FFFFFFF] ATTRTYPs that map to OIDs via the prefix table.

[0x80000000..0xBFFFFFFF] ATTRTYPs used as values of msDS-IntId attribute.

[0xC0000000..0xFFFEFFFF] Reserved for future use.

[0xFFFF0000.. 0xFFFFFFFF] Reserved for internal use (never appear on the wire).

The mapping from ATTRTYPs A to OID O works as follows:

If A in [0x00000000..0x7FFFFFFF], A maps to O via a prefix table as specified in [MS-DRSR]

section 5.16.4 (the OidFromAttid procedure).

If A in [0x80000000..0xBFFFFFFF], let X be the object such that X!msDS-IntId equals A. If X is

an attributeSchema object, O is X!attributeID; otherwise X is an classSchema object, and O is
X!governsID.

Given an OID O, the schema object X representing the class or attribute identified by O is the object
X such that either X!attributeID equals O or X!governsID equals O.

3.1.1.3 LDAP

Active Directory is a server for LDAP. This section specifies the extensions and variations of LDAP
that are supported by Active Directory. Except as otherwise noted, all material applies to both AD
DS and AD LDS. Also, except as noted, all information applies to all versions of AD DS and AD LDS.

This section is structured as follows:

Section 3.1.1.3.1 documents the interpretation of the LDAP RFCs made by Active Directory and

deviations from the LDAP RFCs.

The rootDSE (empty DN) is a mechanism for clients of an LDAP server to interact with the server

itself, rather than with particular objects contained by the server. Section 3.1.1.3.2 specifies the
rootDSE reads supported by Active Directory, and section 3.1.1.3.3 specifies the rootDSE

updates.

LDAP has several extension mechanisms in addition to the rootDSE. Section 3.1.1.3.4 specifies

the LDAP extensions that Active Directory supports.

3.1.1.3.1 LDAP Conformance

The purpose of this section is to document how the implementation of Active Directory DCs

interprets the LDAP v3 RFCs, including differences from those RFCs. Except as noted in the following
subsections, Active Directory is compliant to [RFC3377].

Active Directory DCs nominally implement support for LDAP v2 [RFC1777]. However, except as
noted in the next paragraph, Active Directory processes LDAP v2 requests and generates responses

as if LDAP v3 had been requested by the client.

When processing an LDAP v2 request, Active Directory exhibits the following behavioral differences
from processing an LDAP v3 request:

Instead of using the UTF-8 character encoding for LDAPString [RFC2251], the system's

configured code page is used. The code page is configured locally on the DC by the DC's
administrator.

%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=91337
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf

135 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Referrals and continuation references are generated using the format for LDAP v2 referrals as

specified in section 3.1.1.3.4.

All LDAP error codes returned by Active Directory are taken from the resultCode enumeration of the

LDAPResult structure defined in [RFC2251] section 4.1.10.

3.1.1.3.1.1 Schema

This section discusses the implementation of the schema in Active Directory DCs, as it relates to the
IETF RFC standards for LDAP schemas.

3.1.1.3.1.1.1 subSchema

Per [RFC2251] and [RFC2252], Active Directory exposes a subSchema object that is pointed to by
the subschemaSubentry attribute on the rootDSE. In accord with [RFC2251] section 3.2.2, this
subSchema object contains the required cn, objectClass, objectClasses, and attributeTypes
attributes. Additionally, it contains the dITContentRules attribute. It does not contain the

matchingRules, matchingRuleUse, dITStructureRules, nameForms, or ldapSyntaxes attributes. It
contains the modifyTimeStamp attribute but not the createTimeStamp attribute. The subSchema
object does not support the createTimeStamp attribute even though its object class derives from

top, which contains the createTimeStamp attribute as part of systemMayContain. In contrast to
[RFC2252] section 7.2, in Active Directory the subSchema class is defined to be structural rather
than auxiliary.

The meaning of the attributeTypes, objectClasses, and dITContentRules attributes are as described
in those RFCs. However, the values stored in these attributes use only a subset of the
AttributeTypeDescription, ObjectClassDescription, and DITContentRuleDescription grammars
described in [RFC2252]. The following grammars are used by Active Directory. Other than the

removal of certain elements, these grammars are identical to those of [RFC2252].

AttributeTypeDescription = "(" whsp

 numericoid whsp ; attributeID

 ["NAME" qdescrs] ; lDAPDisplayName

 ["SYNTAX" whsp noidlen whsp] ; see RFC 2252 section 4.3

 ["SINGLE-VALUE" whsp] ; default multi-valued

 ["NO-USER-MODIFICATION" whsp] ; default user modifiable

 whsp ")"

ObjectClassDescription = "(" whsp

 numericoid whsp ; governsID

 ["NAME" qdescrs] ; lDAPDisplayName

 ["SUP" oids] ; governsIDs of superior object classes

 [("ABSTRACT" / "STRUCTURAL" / "AUXILIARY") whsp]

 ; default structural

 ["MUST" oids] ; attributeIDs of required attributes

 ["MAY" oids] ; attributeIDs of optional attributes

 whsp ")"

DITContentRuleDescription = "("

 numericoid ; governsID of structural object class

 ["NAME" qdescrs] ; lDAPDisplayName

 ["AUX" oids] ; governsIDs of auxiliary classes

 ["MUST" oids] ; attributeIDs of required attributes

 ["MAY" oids] ; attributeIDs of optional attributes

 ")"

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90326
%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90326
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326

136 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Active Directory supports additional SYNTAX values not defined in [RFC2252]. The following table

lists the SYNTAX values returned for each LDAP syntax name. See section 3.1.1.2.2 for more

information on syntaxes.

LDAP syntax name SYNTAX Value

Boolean 1.3.6.1.4.1.1466.115.121.1.7

Enumeration 1.3.6.1.4.1.1466.115.121.1.27

Integer 1.3.6.1.4.1.1466.115.121.1.27

LargeInteger 1.2.840.113556.1.4.906

Object(Access-Point) 1.3.6.1.4.1.1466.115.121.1.2

Object(DN-Binary) 1.2.840.113556.1.4.903

Object(DN-String) 1.2.840.113556.1.4.904

Object(DS-DN) 1.3.6.1.4.1.1466.115.121.1.12

Object(OR-Name) 1.2.840.113556.1.4.1221

Object(Presentation-Address) 1.3.6.1.4.1.1466.115.121.1.43

Object(Replica-Link) OctetString

String(Case) 1.2.840.113556.1.4.1362

String(Generalized-Time) 1.3.6.1.4.1.1466.115.121.1.24

String(IA5) 1.3.6.1.4.1.1466.115.121.1.26

String(NT-Sec-Desc) 1.2.840.113556.1.4.907

String(Numeric) 1.3.6.1.4.1.1466.115.121.1.36

String(Object-Identifier) 1.3.6.1.4.1.1466.115.121.1.38

String(Octet) 1.3.6.1.4.1.1466.115.121.1.40

String(Printable) 1.3.6.1.4.1.1466.115.121.1.44

String(Sid) 1.3.6.1.4.1.1466.115.121.1.40

String(Teletex) 1.2.840.113556.1.4.905

String(Unicode) 1.3.6.1.4.1.1466.115.121.1.15

String(UTC-Time) 1.3.6.1.4.1.1466.115.121.1.53

In addition to the preceding attributes, Active Directory contains two additional subSchema

attributes, named extendedClassInfo and extendedAttributeInfo. These return additional data about
the classes and attributes in a format similar to objectClasses and attributeTypes, respectively. The
grammar used for extendedClassInfo is as follows.

ObjectClassDescriptionExtended = "(" whsp

http://go.microsoft.com/fwlink/?LinkId=90326
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

137 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 numericoid whsp ; governsID

 ["NAME" qdescrs] ; lDAPDisplayName

 ["CLASS-GUID" whsp guid] ; schemaIDGUID

 whsp ")"

The NAME field is as in the ObjectClassDescription grammar. The CLASS-GUID field contains the

value of the class's schemaIDGUID attribute. That value, which is a GUID, is expressed not in the
dashed-string GUID format of [RFC4122] section 3 but rather as the hexadecimal representation of

the binary format of the GUID. For example, the GUID whose dashed-string representation is
"3fdfee4f-47f4-11d1-a9c3-0000f80367c1" would be expressed as
"4feedf3ff447d111a9c30000f80367c1" in the CLASS-GUID field.

The grammar for extendedAttributeInfo is as follows.

AttributeTypeDescriptionExtended = "(" whsp

 numericoid whsp ; attributeID

 ["NAME" qdescrs] ; lDAPDisplayName

 ["RANGE-LOWER" whsp numericstring] ; rangeLower

 ["RANGE-UPPER" whsp numericstring] ; rangeUpper

 ["PROPERTY-GUID" whsp guid] ; schemaIDGUID

 ["PROPERTY-SET-GUID" whsp guid] ; attributeSecurityGUID

 ["INDEXED" whsp] ; fATTINDEX in searchFlags

 ["SYSTEM-ONLY" whsp] ; systemOnly

 whsp ")"

The NAME field is as in the AttributeTypeDescription grammar. The RANGE-LOWER and RANGE-
UPPER fields are only present if the attribute's attributeSchema contains values for the rangeLower
and rangeUpper attributes, respectively. If present, those fields contain the values of those

attributes. The PROPERTY-GUID field contains the value of the attribute's schemaIDGUID. If the
attribute has an attributeSecurityGUID attribute, the PROPERTY-SET-GUID field contains the value
of that attribute; otherwise, it contains the value of the NULL GUID. For both PROPERTY-GUID and

PROPERTY-SET-GUID, the GUID is represented in the same form as that CLASS-GUID from the
ObjectClassDescriptionExtended grammar. If the fATTINDEX bit of the attribute's searchFlags is set,
the INDEXED field is present. If the attribute's systemOnly attribute is true, the SYSTEM-ONLY field

is present.

The attributeTypes, objectClasses, dITContentRules, extendedClassInfo, and extendedAttributeInfo
attributes on the subSchema object are read-only. They permit applications to discover the schema
on the DC, but they are not the mechanism for changing the schema on the DC. DCs change their
schema in response to the addition or modification of classSchema and attributeSchema objects in
the schema NC. These objects also contain attributes that supply additional information about the
schema that is not present in the attributes of the subSchema object, such as the systemFlags

attribute, which specifies additional properties of an attribute (for example, whether it is a
constructed attribute). The attributeSchema and classSchema objects and their associated attributes
are specified in section 3.1.1.2.

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater, the attributeTypes,

dITContentRules, extendedAttributeInfo, extendedClassInfo, and objectClasses attributes on the
subSchema object do not contain defunct attributes or classes, only active attributes or classes.

%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

138 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.1.1.2 Syntaxes

The syntaxes used in Active Directory are based on [RFC2252] section 6. Where Active Directory
and [RFC2252] have syntaxes in common, the same means of encoding the value into the syntax is

used. However, Active Directory has a number of syntaxes that are not defined in [RFC2252], and
vice versa. Additionally, even when Active Directory and [RFC2252] have syntaxes in common, in
many cases they use different names for the same syntax, and in all cases they use different OIDs
to identify the same syntax.

Active Directory does not use the syntaxes defined in [RFC2256] section 6. The list of syntaxes in
Active Directory, their encodings, and how they map to the [RFC2252] syntaxes are documented in
section 3.1.1.2.2.

3.1.1.3.1.1.3 Attributes

Sections 5.1 through 5.4 of [RFC2252], as well as section 5 of [RFC2256] and section 2 of
[RFC2798], define a set of attributes common to LDAP directories. Additionally, portions of the

Active Directory schema are derived from [RFC1274] and [RFC2307]. The following tables show, for
each of these RFCs, the attributes that are either included in the Active Directory default schemas

of Windows Server 2003 operating system, Active Directory Application Mode (ADAM), Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, and Windows Server 2012 R2 operating system, or present as readable attributes
of the rootDSE of Windows 2000 operating system, Windows Server 2003, ADAM, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 DCs
(both AD DS and AD LDS). Some of these attributes were added to the schema of Windows
Server 2003 or Windows Server 2003 R2 operating system but were not present in the

Windows 2000 schema; [MS-ADA1], [MS-ADA2], and [MS-ADA3] specify the attributes included in
each version of the schema. For more information about rootDSE attributes, which are not part of
the schema, see section 3.1.1.3.2.

RFC 1274

Attribute Included by AD DS? Included by AD LDS?

objectClass Yes Yes

knowledgeInformation Yes No

serialNumber Yes Yes

streetAddress Yes Yes

title Yes Yes

description Yes Yes

searchGuide Yes Yes

businessCategory Yes Yes

postalAddress Yes Yes

postalCode Yes Yes

postOfficeBox Yes Yes

physicalDeliveryOfficeName Yes Yes

http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=91342
http://go.microsoft.com/fwlink/?LinkId=90271
http://go.microsoft.com/fwlink/?LinkId=90333
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

139 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

telephoneNumber Yes Yes

telexNumber Yes Yes

teletexTerminalIdentifier Yes Yes

facsimileTelephoneNumber Yes Yes

x121Address Yes Yes

internationalISDNNumber Yes Yes

registeredAddress Yes Yes

destinationIndicator Yes Yes

preferredDeliveryMethod Yes Yes

presentationAddress Yes No

supportedApplicationContext Yes No

member Yes Yes

owner Yes Yes

roleOccupant Yes No

seeAlso Yes Yes

userPassword Yes* Yes*

userCertificate Yes Yes

cACertificate Yes No

authorityRevocationList Yes No

certificateRevocationList Yes No

crossCertificatePair Yes No

textEncodedORAddress Yes No

roomNumber Yes Yes

photo Yes Yes

userClass Yes No

host Yes No

manager Yes Yes

documentIdentifier Yes No

documentTitle Yes No

documentVersion Yes No

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

140 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

documentAuthor Yes No

documentLocation Yes No

secretary Yes Yes

otherMailbox Yes No

associatedDomain Yes No

associatedName Yes No

homePostalAddress Yes Yes

personalTitle Yes Yes

organizationalStatus Yes No

buildingName Yes No

audio Yes Yes

documentPublisher Yes No

aliasedObjectName No No

commonName No No

surname No No

countryName No No

localityName No No

stateOrProvinceName No No

organizationName No No

mhsDeliverableContentLength No No

mhsDeliverableContentTypes No No

mhsDeliverableEits No No

mhsDLMembers No No

mhsDLSubmitPermissions No No

mhsMessageStoreName No No

mhsORAddresses No No

mhsPreferredDeliveryMethods No No

mhsSupportedAutomaticActions No No

mhsSupportedContentTypes No No

mhsSupportedOptionalAttributes No No

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

141 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

userid No No

rfc822Mailbox No No

info No No

favouriteDrink No No

homeTelephoneNumber No No

lastModifiedTime No No

lastModifiedBy No No

domainComponent No No

aRecord No No

mXRecord No No

nSRecord No No

sOARecord No No

cNAMERecord No No

mobileTelephoneNumber No No

pagerTelephoneNumber No No

friendlyCountryName No No

uniqueIdentifier No No

janetMailbox No No

mailPreferenceOption No No

dSAQuality No No

singleLevelQuality No No

subtreeMinimumQuality No No

subtreeMaximumQuality No No

personalSignature No No

dITRedirect No No

* Active Directory uses the userPassword attribute to set or change passwords only in limited

circumstances. See section 3.1.1.3.1.5.

RFC 2252

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

142 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

createTimeStamp Yes Yes

modifyTimeStamp Yes Yes

subSchemaSubEntry Yes Yes

attributeTypes Yes Yes

objectClasses Yes Yes

namingContexts Yes Yes

supportedExtension Yes Yes

supportedControl Yes Yes

supportedSASLMechanisms Yes Yes

supportedLDAPVersion Yes Yes

dITContentRules Yes Yes

creatorsName No No

modifiersName No No

matchingRules No No

matchingRulesUse No No

altServer No No

ldapSyntaxes No No

dITStructureRules No No

nameForms No No

RFC 2256

Attribute Included by AD DS? Included by AD LDS?

objectClass Yes Yes

knowledgeInformation Yes No

cn Yes Yes

sn Yes Yes

serialNumber Yes Yes

c Yes Yes

l Yes Yes

st Yes Yes

%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

143 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

street Yes Yes

o Yes Yes

ou Yes Yes

title Yes Yes

description Yes Yes

searchGuide Yes Yes

businessCategory Yes Yes

postalAddress Yes Yes

postalCode Yes Yes

postOfficeBox Yes Yes

physicalDeliveryOfficeName Yes Yes

telephoneNumber Yes Yes

telexNumber Yes Yes

teletexTerminalIdentifier Yes Yes

facsimileTelephoneNumber Yes Yes

x121Address Yes Yes

internationalISDNNumber Yes Yes

registeredAddress Yes Yes

destinationIndicator Yes Yes

preferredDeliveryMethod Yes Yes

presentationAddress Yes No

supportedApplicationContext Yes No

member Yes Yes

owner Yes Yes

roleOccupant Yes No

seeAlso Yes Yes

userPassword Yes* Yes*

userCertificate Yes Yes

cACertificate Yes No

authorityRevocationList Yes No

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

144 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute Included by AD DS? Included by AD LDS?

certificateRevocationList Yes No

crossCertificatePair Yes No

name Yes Yes

givenName Yes Yes

initials Yes Yes

generationQualifier Yes Yes

x500uniqueIdentifier Yes Yes

distinguishedName Yes Yes

uniqueMember Yes Yes

houseIdentifier Yes No

deltaRevocationList Yes No

dmdName Yes Yes

aliasedObjectName No No

dnQualifier No No

protocolInformation No No

supportedAlgorithms No No

* Active Directory uses the userPassword attribute to set or change passwords only in limited

circumstances. See section 3.1.1.3.1.5.

RFC 2798

Attribute Included by AD DS? Included by AD LDS?

carLicense Yes Yes

departmentNumber Yes Yes

displayName Yes Yes

employeeNumber Yes Yes

employeeType Yes Yes

jpegPhoto Yes Yes

preferredLanguage Yes Yes

userSMIMECertificate Yes Yes

userPKCS12 Yes Yes

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

145 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RFC 2307

Attribute Included by AD DS? Included by AD LDS?

uidNumber Yes No

gidNumber Yes No

gecos Yes No

homeDirectory Yes No

loginShell Yes No

shadowLastChange Yes No

shadowMin Yes No

shadowMax Yes No

shadowWarning Yes No

shadowInactive Yes No

shadowExpire Yes No

shadowFlag Yes No

memberUid Yes No

memberNisNetgroup Yes No

nisNetgroupTriple Yes No

ipServicePort Yes No

ipServiceProtocol Yes No

ipProtocolNumber Yes No

oncRpcNumber Yes No

ipHostNumber Yes No

ipNetworkNumber Yes No

ipNetmaskNumber Yes No

macAddress Yes No

bootParameter Yes No

bootFile Yes No

nisMapName Yes No

nisMapEntry Yes No

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

146 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.1.1.4 Classes

Section 7 of [RFC2252], as well as section 7 of [RFC2256] and section 3 of [RFC2798], defines a set
of classes common to LDAP directories. In addition, portions of the Active Directory schema are

derived from [RFC1274] and [RFC2307]. The following tables show, for each of these RFCs, the
classes included in the Active Directory default schemas of Windows Server 2003 operating system,
Active Directory Application Mode (ADAM), Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server
2012 R2 operating system. Some of these classes were added to the schema of Windows
Server 2003 or Windows Server 2003 R2 operating system but were not present in the
Windows 2000 operating system schema; [MS-ADSC] specifies the classes included in each version

of the schema.

RFC 1274

Class Included by AD DS? Included by AD LDS?

top Yes Yes

country Yes Yes

locality Yes Yes

organization Yes Yes

organizationalUnit Yes Yes

person Yes Yes

organizationalPerson Yes Yes

organizationalRole Yes No

groupOfNames Yes Yes

residentialPerson Yes No

applicationProcess Yes No

applicationEntity Yes No

dSA Yes No

device Yes No

certificationAuthority Yes No

account Yes No

document Yes No

room Yes No

documentSeries Yes No

domain Yes Yes

rFC822LocalPart Yes No

http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=91342
http://go.microsoft.com/fwlink/?LinkId=90271
http://go.microsoft.com/fwlink/?LinkId=90333
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

147 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Class Included by AD DS? Included by AD LDS?

domainRelatedObject Yes No

friendlyCountry Yes No

simpleSecurityObject Yes No

Alias No No

strongAuthenticationUser No No

mhsDistributionList No No

mhsMessageStore No No

mhsMessageTransferAgent No No

mhsOrganizationalUser No No

mhsResidentialUser No No

mhsUserAgent No No

pilotObject No No

pilotPerson No No

dNSDomain No No

pilotOrganization No No

pilotDSA No No

qualityLabelledData No No

RFC 2252

Class Included by AD DS? Included by AD LDS?

subSchema Yes Yes

extensibleObject No No

RFC 2256

Class Included by AD DS? Included by AD LDS?

top Yes Yes

country Yes Yes

locality Yes Yes

organization Yes Yes

organizationalUnit Yes Yes

person Yes Yes

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

148 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Class Included by AD DS? Included by AD LDS?

organizationalPerson Yes Yes

organizationalRole Yes No

groupOfNames Yes Yes

residentialPerson Yes No

applicationProcess Yes No

applicationEntity Yes No

dSA Yes No

device Yes No

certificationAuthority Yes No

groupOfUniqueNames Yes No

cRLDistributionPoint Yes No

dMD Yes Yes

alias No No

strongAuthenticationUser No No

userSecurityInformation No No

certificationAuthority-V2 No No

RFC 2798

Class Included by AD DS? Included by AD LDS?

inetOrgPerson Yes Yes

RFC 2307

Class Included by AD DS? Included by AD LDS?

posixAccount Yes No

shadowAccount Yes No

posixGroup Yes No

ipService Yes No

ipProtocol Yes No

oncRpc Yes No

ipHost Yes No

ipNetwork Yes No

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

149 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Class Included by AD DS? Included by AD LDS?

nisNetgroup Yes No

nisMap Yes No

nisObject Yes No

ieee802Device Yes No

bootableDevice Yes No

3.1.1.3.1.1.5 Auxiliary Classes

Windows 2000 operating system had limited support for LDAP auxiliary classes. An auxiliary class

would be associated with the schema definition of a particular class C when the auxiliary class was
added to the auxiliaryClass or systemAuxiliaryClass attribute of the classSchema object that defines

C. In this case, all instances of C will inherit the attributes of the auxiliary class.

The server permits adding or removing an auxiliary class to or from the auxiliaryClass attribute of C
at any point in time. Doing so adds or removes the auxiliary class from every existing instance of C
but does not cause the object class of the auxiliary class to appear in the objectClass attribute of
those instances. Such an auxiliary class can have optional (mayContain) attributes but not

mandatory (mustContain) attributes. This is because there can be existing instances of C, in which
case adding a new mandatory attribute would cause those existing instances to violate the modified
schema.

The server permits adding an auxiliary class to the systemAuxiliaryClass attribute of C only when C
is defined, that is, when C's classSchema object is added to the schema NC. After a classSchema
object has been created, its systemAuxiliaryClass attribute cannot be modified. An auxiliary class

that is associated with C by the addition of it to C!systemAuxiliaryClass can have mandatory
(mustContain) as well as optional (mayContain) attributes. As in the previous case, the auxiliary
classes added in this manner are not shown in the objectClass attribute of the instances of C.

Dynamic auxiliary class support was introduced in Windows Server 2003 operating system in
addition to the Windows 2000 auxiliary class mechanism, and continues to be supported in Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, and Windows Server 2012 R2 operating system. This dynamic auxiliary class

mechanism reflects the model of auxiliary object classes described in [X501] section 8.3.3. The
server permits adding an auxiliary class to any instance I of a class by a request to add that
auxiliary class to I!objectClass. This will cause only that instance I to inherit the attributes of the
auxiliary class. The dynamic auxiliary class will be removed from I, after the values of all attributes
in the auxiliary class have been cleared by the client, by a request to remove the auxiliary class
from I!objectClass. Dynamic auxiliary classes can have both mandatory (mustContain) and optional
(mayContain) attributes.

If the dynamic auxiliary class that is added to I is a subclass of another auxiliary class, both
auxiliary classes are added to I when the child auxiliary class is added to I. However, removing the
child auxiliary class does not cause the server to remove its parent from I. A parent auxiliary class

can be removed from I only when all child auxiliary classes that inherit from the parent are also
removed from I.

For each I, I!objectClass contains the structural, abstract, and dynamic auxiliary object classes of

which I is an instance (and their inheritance chains). I!structuralObjectClass includes only the
structural class of which I is an instance and its inheritance chain. I!msDS-Auxiliary-Classes contains

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=98847
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

150 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

the dynamic auxiliary classes of which I is an instance along with their inheritance chain, except it
does not include those classes in the inheritance chain that are in I!structuralObjectClass.

3.1.1.3.1.2 Object Naming

This section discusses the naming of objects via distinguished names in Active Directory, as it differs
from the appropriate RFCs.

3.1.1.3.1.2.1 Naming Attributes

As with [RFC2253] section 2.3, Active Directory permits any attribute to be used as the
AttributeType in an RDN. However, Active Directory imposes the additional restriction that the
AttributeType used must be of String(Unicode) syntax. Furthermore, all objects of the same class

use the same attribute in their RDN. The attribute to be used in the RDN is specified by the
rDNAttID attribute in the classSchema object that defines the class. The rDNAttID attribute contains
the attribute to be used in the RDN. Multivalued RDNs are not permitted (see section 3.1.1.3.1.2.3),
so if the attribute A specified by rDNAttID is multivalued, an attempt to add an additional value to A

on an object O for which O!rDNAttID = A is rejected with the error invalidDNSyntax /
ERROR_DS_BAD_NAME_SYNTAX if it takes place at the time of the object's creation, or the error

notAllowedOnRDN / <unrestricted> if it takes place in a subsequent LDAP Modify operation.

The AttributeValue of the RDN must be unique among sibling objects. For example, the following
two DNs cannot coexist in the directory, because two identical AttributeValues ("Abc") would exist in
the same container ("OU=Users,DC=Fabrikam,DC=com"):

CN=Abc,OU=Users,DC=Fabrikam,DC=com

L=Abc,OU=Users,DC=Fabrikam,DC=com

The server will reject an attempt to create such a non-uniquely named object with the error
entryAlreadyExists / <unrestricted>. This requirement for unique AttributeValues guarantees the
uniqueness of canonical names.

3.1.1.3.1.2.2 NC Naming

The DN of a domain NC is derived from the DNS name of the domain using the transformation
algorithm of [RFC2247] section 3. The object at the root of each domain NC is a domainDNS object,

in accord with section 5.2 of that RFC. The rDNAttID for the domainDNS class is dc, in accord with
section 4 of the RFC. While the same attribute OID is used for the dc attribute in Active Directory as
in section 4 of the RFC, the syntax of the attribute in Active Directory is String(Unicode) rather than
the specified String(IA5). The dcObject auxiliary class, specified in section 5.1 of the RFC, is not
present in Active Directory.

When operating as AD DS, the DN for the config NC is the RDN "CN=Configuration", followed by the
DN of the domain NC of the forest root domain. When operating as AD LDS, the DN for the config

NC is the RDN "CN=Configuration, CN={guid}", where guid is a GUID in dashed-string form
([RFC4122] section 3). For example,

CN=Configuration, CN={FD783EE9-0216-4B83-8A2A-60E45AECCB81}

is a possible DN of the config NC when operating as AD LDS.

The DN for the schema NC is the RDN "CN=Schema" followed by the DN of the config NC.

%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=91344
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460

151 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When operating as AD DS, an application NC is named in the same way as a domain NC; the root of
each AD DS application NC is a domainDNS object. When operating as AD LDS, the DN of an

application NC consists of one or more RDNs.

3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs

[RFC2253] section 2 defines the following grammar rule for RelativeDistinguishedName, which
explicitly allows RDNs to contain multiple attributes and values:

RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue

Active Directory is conformant with this rule, with the restriction that MAX equals 1 within the scope
of the rule. As a result, multivalued RDNs that consist of multiple attributes (sometimes referred to

as "multi-AVA RDNs"), or multiple instances of the same attribute, are both disallowed in Active
Directory. An attempt to create such a DN is considered an attempt to create a syntactically invalid
DN, and returns the error invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX. For example,
assuming that F is a multivalued attribute of String(Unicode) syntax, the following two DNs are both
disallowed because they contain multivalued RDNs:

F=John Smith+F=David Jones, OU=Users,DC=Fabrikam,DC=com

F=John Smith+l=Redmond, OU=Users,DC=Fabrikam,DC=com

(Note that, if it is assumed that these DNs represent an object of a class C for which C!rDNAttID =
F, the second example is also disallowed because it contains the l attribute in the RDN. The server
will return a namingViolation / <unrestricted> error when an attempt is made to add an object of
class C whose RDN contains a different AttributeType than that declared in C!rDNAttID.)

3.1.1.3.1.2.4 Alternative Forms of DNs

In addition to the form of the DN defined in [RFC2253], Active Directory supports several alternative
forms of DNs that can be used to specify objects in requests sent to the DC, for example, as the
baseObject in a SearchRequest or as a AttributeValue in a ModifyRequest.

The first alternative form is in the format

<GUID=object_guid>

where object_guid is a GUID that corresponds to the value of the objectGUID attribute of the

object being specified. All DCs support object_guid expressed as the hexadecimal representation of
the binary form of a GUID ([MS-DTYP] section 2.3.4). Windows Server 2003 operating system,
Windows Server 2008 operating system, Windows Server 2008 R2 operating system, Windows
Server 2012 operating system, and Windows Server 2012 R2 operating system DCs also support the
dashed-string form of a GUID ([RFC4122] section 3).

The second alternative form is in the format

<SID=sid>

where sid is the security identifier (SID) that corresponds to the value of the objectSid attribute of
the object being specified. The sid is expressed as either the hexadecimal representation of a binary

SID structure ([MS-DTYP] section 2.4.2.2) in little-endian byte order, or as a SID string ([MS-
DTYP] section 2.4.2.1). Windows 2000 operating system DCs support only the hexadecimal
representation.

%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

152 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The third alternative form is in the format

<WKGUID=guid, object_DN>

where guid is a GUID expressed as the hexadecimal representation of the binary form of the GUID.

A DN of this form is resolved to an object O by applying the following algorithm.

MapWellKnownGuidToDN(GUID guid, DN object_DN)

This algorithm resolves a well-known GUID, expressed as a GUID, guid, and an object, object_DN,

into the DN of the object O that is identified by that well-known GUID.

If object_DN does not name an object in the directory, reject the DN.

Otherwise, let C be the object named by object_DN.

If there exists a value V in C!wellKnownObjects such that the binary portion of V contains the

same GUID as guid, then the DN of O is the DN portion of V.

Otherwise, if there exists a value V' in C!otherWellKnownObjects such that the binary portion of

V' contains the same GUID as guid, then the DN of O is the DN portion of V'.

Otherwise, reject the DN.

Normally, Active Directory will return DNs in the [RFC2253] format. However, clients can request
that Active Directory return DNs in the "extended DN" format. This format combines an RFC 2253-

style DN with a representation of the object's objectGUID and objectSid attributes. This form is
documented in the LDAP section 3.1.1.3.4.1.5, which defines the
LDAP_SERVER_EXTENDED_DN_OID control that is used by the client to request that the DC use the
"extended DN" form when returning DNs. The "extended DN" form is not accepted as a means of
specifying DNs in requests sent to the DC. The "extended DN" form is only used in LDAP responses
from the DC, and only when the LDAP_SERVER_EXTENDED_DN_OID control is used to request such

a form.

3.1.1.3.1.2.5 Alternative Form of SIDs

Attributes of String(SID) syntax contain a SID in binary form. However, a client may instead specify
a value for such an attribute as a UTF-8 string that is a valid SDDL SID string beginning with "S-"
(see [MS-DTYP] section 2.4.2.1). The server will convert such a string to the binary form of the SID
and use that binary form as the value of the attribute.

3.1.1.3.1.3 Search Operations

3.1.1.3.1.3.1 Search Filters

Active Directory does not support the extensible match rules defined in [RFC2252] section 8,
[RFC2256] section 8, and [RFC2798] section 9. Active Directory exposes three extensible match

rules that are defined in section 3.1.1.3.4.4. Other than these three rules, the rules that Active
Directory uses for comparing values (for example, comparing two String(Unicode) attributes for

equality or ordering) are not exposed as extensible match rules. These comparison rules are
documented for each syntax type in section 3.1.1.2.2.4. When performing an extensible match
search against Active Directory, if the type field of the MatchingRuleAssertion is not specified
([RFC2251] section 4.5.1), the extensible match filter clause is evaluated to "Undefined". The
dnAttributes field of the MatchingRuleAssertion is ignored and always treated as if set to false.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=91342
http://go.microsoft.com/fwlink/?LinkId=90325

153 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Active Directory supports the approxMatch filter clause of [RFC2251] section 4.5.1. However, it is
implemented identically to equalityMatch; for example, the filter is true if the values are equal. No

approximation is performed. Filter clauses of the form "(X=Y)" and "(X~=Y)" may be freely
substituted for each other.

Active Directory in Windows 2000 operating system does not implement three-value logic for search
filter evaluation as defined in [RFC2251] section 4.5.1. In Windows 2000, filters evaluate to either
"true" or "false". Filters that would evaluate to "Undefined", as per the RFC, are instead evaluated to
"false". Active Directory in Windows Server 2003 operating system, Windows Server 2008 operating
system, Windows Server 2008 R2 operating system, Windows Server 2012 operating system, and
Windows Server 2012 R2 operating system uses three-value logic for evaluating search filters, in
conformance with the RFC.

Active Directory does not support constructed attributes (defined in section 3.1.1.4.5) in search
filters. When a search operation is performed with such a search filter, Active Directory fails with
inappropriateMatching ([RFC2251] section 4.1.10).

3.1.1.3.1.3.2 Selection Filters

Active Directory supports the ability to filter the values of an attribute that are returned. By default,

all values up to the default range of a given attribute are returned. A selection filter is used to filter
values to be returned by the server. When no selection filter is specified, the returned values of an
attribute MUST NOT be filtered. An explicit selection filter specifies the filtering on the attribute
values to be returned by the server.

Selection filtering is requested by specifying an Attribute Description ([RFC2251] section 4.1.5) with
the "filtered" option. This option takes the form:

filtered=B:char_count:binary_value

where char_count is the number (in decimal) of hexadecimal digits in binary_value and
binary_value is the hexadecimal representation of a binary value. Each byte is represented by a
pair of hexadecimal characters in binary_value, with the first character of each pair corresponding

to the most-significant nibble of the byte. The first pair in binary_value corresponds to the first
byte of the binary value, with subsequent pairs corresponding to the remaining bytes in sequential
order. Note that char_count is always even in a syntactically valid selection filter.

The binary value is a BER encoded filter, as specified in [RFC2251] section 4.5.1.

Selection filters are available in DCs with a functional level of DS_BEHAVIOR_WIN2012R2 or
greater.

3.1.1.3.1.3.3 Range Retrieval of Attribute Values

When retrieving the values from a multivalued attribute, Active Directory limits the number of
values that can be retrieved from one attribute in a single search request. The maximum number of

values that will be returned by Active Directory at one time is determined by the MaxValRange
policy (see section 3.1.1.3.4.6). To permit all the values of a multivalued attribute to be retrieved,
Active Directory provides a "range retrieval" mechanism. This mechanism permits a client-specified

subset of the values to be retrieved in a search request. By performing multiple search requests,
each retrieving a distinct subset, the complete set of values for the attribute can be retrieved.

Range retrieval is requested by attaching a range option to the name of the attribute (for example,
the AttributeDescription, as specified in [RFC2251] section 4.1.5) to be retrieved by the search

request. This option takes the form

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325

154 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

range=low-high

where low is the zero-based index of the first value of the attribute to retrieve, and high is the
zero-based index of the last value of the attribute to retrieve. For example, to retrieve the 100th
through the 500th values of the member attribute, the attributes list in the SearchRequest would

specify the AttributeDescription "member;range=99-499". Zero is used for low to specify the first
entry. A client can substitute an asterisk for high to indicate all remaining entries (subject to any
limitations imposed by the server on the maximum number of values to return). The server may
return fewer values than requested.

When the server receives a range retrieval request, it will include a range option in the
AttributeDescription returned. This range option will take the same form as described previously,
with low indicating the zero-based index of the first value of the attribute that the server returned

and high indicating the zero-based index of the last value of the attribute that the server returned.
However, if the set of attributes returned includes the last value in the attribute, the server will
substitute an asterisk for high, indicating to the client that there are no more values to be retrieved.

If a SearchRequest does not contain a range option for a given attribute, but that attribute has too

many values to be returned at one time, the server returns a SearchResultEntry containing (1) the
attribute requested without the range option and with no values, and (2) the attribute requested

with a range option attached and with the values corresponding to that range option.

The ordering of the values returned in a range retrieval request is arbitrary but consistent across
multiple range retrieval requests on the same LDAP connection, provided that the attribute is not
modified between successive range retrieval requests.

3.1.1.3.1.3.4 Ambiguous Name Resolution

ANR is a search algorithm in Active Directory that permits a client to search multiple naming-related

attributes on objects via a single clause in a search filter. A substring search against the aNR
attribute is interpreted by the DC as a substring search against a set of attributes, known as the
"ANR attribute set". The intent is that the attributes in the ANR attribute set are those attributes
that are commonly used to identify an object, such as the displayName and name attributes,

thereby permitting a client to query for an object when the client possesses some identifying
material related to the object but does not know the attribute of the object that contains that
identifying material. The ANR attribute set consists of those attributes whose searchFlags attribute

contains the fANR flag (see section 3.1.1.2.3).

A server performs an ANR search by rewriting a search filter that contains one or more occurrences
of the aNR attribute so that the filter no longer contains any occurrences of the aNR attribute, then
performing a regular LDAP search using the rewritten search filter. The search filter is rewritten
according to the following algorithm:

1. If the ANR attribute set does not contain the attribute legacyExchangeDN, then let S be the ANR

attribute set and let PLegacy be false. Otherwise, let S be the ANR attribute set excluding
legacyExchangeDN and let PLegacy be true. In either case, S is a set containing attributes
A1...An.

2. Let P1 be the value of the fSupFirstLastANR heuristic of the dSHeuristics attribute (see section

6.1.1.2.4.1.2). Let P2 be the value of the fSupLastFirstANR heuristic of the dSHeuristics attribute.

3. Let F be the search filter of the search request.

4. For each LDAP search filter clause C of the form "(aNR=*)" in F, resolve the clause to "false".

(Such a clause tests for the presence of a value for the aNR attribute itself, and this attribute is
not present on any object.)

%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

155 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5. For each LDAP search filter clause C of the form "(aNR=substringFilter)", where
substringFilter is an LDAP substring filter of the form "i*f", in F:

1. If i is the empty string, resolve clause C to the value "Undefined" (see [RFC2251] section
4.5.1).

2. If i is non-empty, replace clause C with the clause "(aNR=i)" and apply the rule for
"(aNR=value) in the next step of this algorithm.

6. For each LDAP search filter clause C of the form "(aNR=value)" or "(aNR~=value)" or
"(aNR>=value)" or "(aNR<=value)" in F:

1. If value's first non-space character is an equal sign ("=") similar to "=value1" or " =value1",
it is used for an exact string search instead of a substring search. Set "value" to "value1",
apply the following steps in rule 6, and replace all the "value*" with "value".

2. If value does not contain any space characters, or if P1 is true and P2 is true, construct an
LDAP search filter clause C' of the form "(|(A1=value*)...(An=value*))" if PLegacy is false, or

of the form "(|(A1=value*)...(An=value*)(legacyExchangeDN=value)" if PLegacy is true.
(This clause resolves to "true" for an object if value is a prefix of the value of any attribute in
the ANR set on that object, except an exact match is always performed on the
legacyExchangeDN attribute.)

3. If value does contain one or more space characters, then:

1. Split value into two components, value1 and value2, at the location of the first space,
discarding that space.

2. If PLegacy is false, do the following:

1. If P1 is false and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(&(givenName=value1*) (sn=value2*))
(&(givenName=value2*)(sn=value1*)))". (This clause resolves to "true" for an object

if value is a prefix of the value of any attribute in the ANR set on that object, or if the

two parts of the split value are prefixes of the givenName and sn attributes on that
object, regardless of which part matches which attribute.)

2. If P1 is true and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(&(givenName=value2*) (sn=value1*)))". (This clause
will resolve to "true" for an object if value is a prefix of the value of any attribute in the
ANR set on that object, or if the first part of the split value is a prefix of the sn attribute

and the second part is a prefix of the givenName attribute on that object.)

3. If P1 is false and P2 is true, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(&(givenName=value1*) (sn=value2*)))". (This clause
will resolve to "true" for an object if value is a prefix of the value of any attribute in the
ANR set on that object, or if the first part of the split value is a prefix of the givenName
attribute and the second part is a prefix of the sn attribute on that object.)

3. If PLegacy is true, do the following:

1. If P1 is false and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(legacyExchangeDN=value)(&(givenName=value1*)
(sn=value2*)) (&(givenName=value2*)(sn=value1*)))". (This clause resolves to
"true" for an object if value equals the value of legacyExchangeDN on that object or
value is a prefix of the value of any attribute in the ANR set on that object, or if the two

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

156 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

parts of the split value are prefixes of the givenName and sn attributes on that object,
regardless of which part matches which attribute.)

2. If P1 is true and P2 is false, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(legacyExchangeDN=value) (&(givenName=value2*)

(sn=value1*)))". (This clause will resolve to "true" for an object if value equals the
value of legacyExchangeDN on that object or value is a prefix of the value of any
attribute in the ANR set on that object, or if the first part of the split value is a prefix of
the sn attribute and the second part is a prefix of the givenName attribute on that
object.)

3. If P1 is false and P2 is true, then construct an LDAP search filter clause C' of the form
"(|(A1=value*)...(An=value*)(legacyExchangeDN=value) (&(givenName=value1*)

(sn=value2*)))". (This clause will resolve to "true" for an object if value equals the
value of legacyExchangeDN on that object or value is a prefix of the value of any other
attribute in the ANR set on that object, or if the first part of the split value is a prefix of
the givenName attribute and the second part is a prefix of the sn attribute on that
object.)

4. Remove clause C from F, and insert C' into F at the position vacated by C.

Note that the replacement clause C' always contains equality matches, regardless of the type of
match in the original clause C.

3.1.1.3.1.3.5 Searches Using the objectCategory Attribute

When an LDAP search filter F contains a clause C of the form "(objectCategory=V)", if V is not a DN
but there exists an object O such that O!objectClass = classSchema and O!lDAPDisplayName = V,
then the server treats the search filter as if clause C was replaced in F with the clause

"(objectCategory=V')", where V' is O!defaultObjectCategory.

For example, if the LDAP search filter contains clause "(objectCategory=contact)", because the
defaultObjectCategory of class contact is

CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com, Active Directory will treat the
clause as "(objectCategory=CN=person,CN=schema,CN=configuration,DC=Fabrikam,DC=com)".

3.1.1.3.1.3.6 Restrictions on rootDSE Searches

When performing a search against the rootDSE and specifying a list of attributes to be returned, the
attributes to be returned must be specified by their LDAP display name. Specifying the attribute by
their numeric OID will be treated by the server the same as specifying a nonexistent attribute. The
server supports specifying the attributes to be returned by their numeric OIDs in searches that do
not use the rootDSE as the search base.

When performing a search against the rootDSE, the server will ignore the contents of the search

filter, except as noted in section 6.3.

3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3

When using the LDAPv3 protocol, Active Directory returns referrals and continuation references in
accord with [RFC2251] section 4.5.3. When using the LDAPv2 protocol, Active Directory also returns
referrals and continuation references, although these are not part of the LDAPv2 protocol, as defined
in [RFC1777].

When Active Directory generates a referral in the LDAPv2 protocol, it sets the resultCode field in the
LDAPResult structure (defined in [RFC1777]) to the value 9. This is a value not defined in [RFC1777]

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90290

157 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

or [RFC2251] but that, by convention, is used by LDAPv2 servers to indicate the presence of a
referral in the response.

The contents of the referral are conveyed in the errorMessage field of the LDAPResult. This field
consists of the string "Referral:", followed by a newline character, followed by one or more

LDAPURLs (defined in [RFC2255]). Each LDAPURL is separated by a newline character. The meaning
of these LDAPURLs is equivalent to that of an LDAPURL in an LDAPv3 referral; that is, they indicate
a server or servers against which the operation can be retried.

Active Directory uses the same mechanism to return continuation references in LDAPv2. When a
continuation reference is required, the DC will return a SearchResponse message (defined in
[RFC1777]) in which the resultCode and errorMessage fields in the embedded LDAPResult are set as
described previously for LDAPv2 referrals. As with the LDAPv2 referrals, the meaning of the

LDAPURLs embedded in the errorMessage field is equivalent to their LDAPv3 equivalent; that is,
they indicate another server or NC in which the search can be continued.

3.1.1.3.1.5 Password Modify Operations

Active Directory provides the ability to change a security principal's password (that is, the Windows
password for that security principal) by performing LDAP Modify operations. The password change is

modeled as an LDAP modify of either the unicodePwd or userPassword attribute of the security
principal object. The difference between these two attributes is discussed in the sections that follow.
However, regardless of whether the password is modified via unicodePwd or userPassword, the
same attribute on the object is modified. If running as AD DS, both are treated like a write to the
clearTextPassword attribute in [MS-SAMR] section 3.1.1.8.5. If running as AD LDS, a write to
userPassword updates unicodePwd.

3.1.1.3.1.5.1 unicodePwd

Active Directory stores the password on a user object or inetOrgPerson object in the unicodePwd
attribute. This attribute is written by an LDAP Modify under the following restricted conditions.
Windows 2000 operating system servers require that the client have a 128-bit (or better) SSL/TLS-
encrypted connection to the DC in order to modify this attribute. On Windows Server 2003 operating

system, Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, and Windows Server 2012 R2 operating system, the DC

also permits modification of the unicodePwd attribute on a connection protected by 128-bit (or
better) SASL-layer encryption instead of SSL/TLS. In Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2, if the
fAllowPasswordOperationsOverNonSecureConnection heuristic of the dSHeuristics attribute (section
6.1.1.2.4.1.2) is true and Active Directory is operating as AD LDS, then the DC permits modification
of the unicodePwd attribute over a connection that is neither SSL/TLS-encrypted nor SASL-

encrypted. The unicodePwd attribute is never returned by an LDAP search.

When a DC receives an LDAP Modify request to modify this attribute, it follows the following
procedure:

If the Modify request contains a delete operation containing a value Vdel for unicodePwd

followed by an add operation containing a value Vadd for unicodePwd, the server considers the

request to be a request to change the password. The server decodes Vadd and Vdel using the
password decoding procedure documented later in this section. Vdel is the old password, while

Vadd is the new password.

If the Modify request contains a single replace operation containing a value Vrep for unicodePwd,

the server considers the request to be a administrative reset of the password, that is, a password

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90329
http://go.microsoft.com/fwlink/?LinkId=90290
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

158 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

modification without knowledge of the old password. The server decodes Vrep using the
password decoding procedure documented later in this section and uses it as the new password.

For the password change operation to succeed, the server enforces the requirement that the user or
inetOrgPerson object whose password is being changed must possess the "User-Change-Password"

control access right on itself, and that Vdel must be the current password on the object. For the
password reset to succeed, the server enforces the requirement that the client possess the "User-
Force-Change-Password" control access right on the user or inetOrgPerson object whose password is
to be reset.

The syntax of the unicodePwd attribute is Object(Replica-Link). However, the DC requires that the
password value be specified in a UTF-16 encoded Unicode string containing the password
surrounded by quotation marks, which has been BER-encoded as an octet string per the

Object(Replica-Link) syntax. BER encoding and decoding is defined in [ITUX690]. To decode such a
value V, the server follows this password decoding procedure:

If V is not a valid BER-encoding of an octet string, reject the password operation with the error

protocolError / ERROR_DS_DECODING_ERROR.

BER-decode V to produce Vdecoded.

If the first and last characters of Vdecoded are not the UTF-16 Unicode representation of

quotation marks, reject the password operation with the error constraintViolation/
ERROR_DS_UNICODEPWD_NOT_IN_QUOTES.

Remove the first and last characters from Vdecoded to produce Vpassword.

Vpassword is the value the DC uses for the password—the actual password, not a password hash.
This encoding is used for both the old and the new passwords in a password change request.

Following is an example of the first steps of password encoding. Suppose the implementer wants to
set unicodePwd to the string "new".

ASCII "new": 0x6E 0x65 0x77

UTF-16 "new": 0x6E 0x00 0x65 0x00 0x77 0x00

UTF-16 "new"

 with quotes: 0x22 0x00 0x6E 0x00 0x65 0x00 0x77 0x00 0x22 0x00

The 10-byte octet string is then BER-encoded and sent in an LDAP Modify request as described

previously.

3.1.1.3.1.5.2 userPassword

Active Directory supports modifying passwords on objects via the userPassword attribute, provided
that (1) either the DC is running as AD LDS, or the DC is running as AD DS and the domain
functional level is DS_BEHAVIOR_WIN2003 or greater, and (2) the fUserPwdSupport heuristic is
true in the dSHeuristics attribute (section 6.1.1.2.4.1.2). If fUserPwdSupport is false, the
userPassword attribute is treated as an ordinary attribute and has no special semantics associated
with it. If fUserPwdSupport is true but the DC is running as AD DS and the domain functional level is

less than DS_BEHAVIOR_WIN2003, the DC fails the operation with the error constraintViolation /

ERROR_NOT_SUPPORTED.

As with the unicodePwd attribute, changing a password via the userPassword attribute is modeled as
an LDAP Modify operation containing a Delete operation followed by an Add operation, and resetting
a password is modeled as an LDAP Modify operation containing a single Replace operation. The

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89924
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

159 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

control access rights required are the same as for the unicodePwd attribute, as is the requirement
that when changing a password, Vdel must match the object's current password.

The special encoding required for updating the unicodePwd attribute is not used with the
userPassword attribute; that is, Vpassword = V. The same restrictions on SSL/TLS- or SASL-

protected connections are enforced. The password values are sent to the server as UTF-8 strings,
and surrounding quotation marks are not used. For example, the following LDAP Data Interchange
Format (LDIF) sample changes a password from oldPassword to newPassword.

dn: CN=John Smith, OU=Users,DC=Fabrikam,DC=com

changetype: modify

delete: userPassword

userPassword: oldPassword

-

add: userPassword

userPassword: newPassword

-

The following example uses LDIF to reset the password to newPassword.

dn: CN=John Smith, OU=Users,DC=Fabrikam,DC=com

changetype: modify

replace: userPassword

userPassword: newPassword

-

Optionally, when performing a password change operation, the add operation portion of the LDAP
modify can be omitted. The server treats this as a request to change the user or inetOrgPerson

object's password to the empty string.

3.1.1.3.1.6 Dynamic Objects

The Windows Server 2003 operating system, Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server
2012 R2 operating system versions of Active Directory have support for dynamic objects, as

specified in [RFC2589]. The Active Directory implementation is conformant to that RFC, except that
it does not implement the dynamicSubtrees attribute used to represent which NCs support dynamic
objects.

Dynamic objects are supported in all NCs except for the schema NC and the config NC. A dynamic
object cannot be the parent of an object that is not dynamic, and the server will reject such a
request with the error unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM. When a
dynamic object reaches the end of its time-to-live, the object is expunged from the directory by the

server and does not leave behind a tombstone.

3.1.1.3.1.7 Modify DN Operations

Because Active Directory does not support multivalued RDNs (see section 3.1.1.3.1.2.3), the
deleteoldrdn field of a ModifyDNRequest (defined in [RFC2251] section 4.9) must always be set to
true. If deleteoldrdn is set to false, the server fails the request with the error unwillingToPerform /
ERROR_INVALID_PARAMETER.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90370
http://go.microsoft.com/fwlink/?LinkId=90325

160 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.1.8 Aliases

LDAP aliases, the class for which is defined in [RFC2256] section 7.2 and which are discussed in
[RFC2251] section 4.1.10, are not supported in Active Directory.

3.1.1.3.1.9 Error Message Strings

When the server fails an LDAP operation with an error, and the server has sufficient resources to
compute a string value for the errorMessage field of the LDAPResult, it includes a string in the
errorMessage field of the LDAPResult (see [RFC2251] section 4.1.10). The string contains further
information about the error.

The first eight characters of the errorMessage string are a 32-bit integer, expressed in

hexadecimal. Where protocol specifies the extended error code "<unrestricted>" there is no
restriction on the value of the 32-bit integer. It is recommended that implementations use a
Windows error code for the 32-bit integer in this case in order to improve usability of the directory
for clients. Where protocol specifies an extended error code which is a Windows error code, the 32-

bit integer is the specified Windows error code. Any data after the eighth character is strictly
informational and used only for debugging. Conformant implementations need not put any value

beyond the eighth character of the errorMessage field.

When the server returns a referral and not an error, the errorMessage field is used as described in
section 3.1.1.3.1.1.4.

3.1.1.3.1.10 Ports

An AD DS DC accepts LDAP connections on the standard LDAP and LDAPS (LDAP over SSL/TLS)
ports: 389 and 636. If the AD DS DC is a GC server, it also accepts LDAP connections for GC access

on port 3268 and LDAPS connections for GC access on port 3269.

An AD LDS DC accepts LDAP and LDAPS connections on ports that are configured when creating the
DC.

3.1.1.3.1.11 LDAP Search Over UDP

Active Directory supports search over UDP only for searches against rootDSE. It encodes the results
of an LDAP search performed over UDP in the same manner as it does a search performed over TCP;

specifically, as one or more SearchResultEntry messages followed by a SearchResultDone message,
as described in [RFC2251]. This means that the search response is not encoded as described in
[RFC1798]. Only LDAP search and LDAP abandon operations are supported over UDP by Active
Directory.

3.1.1.3.1.12 Unbind Operation

Upon receipt of an unbind request on an LDAP connection, all outstanding requests on the

connection are abandoned, and the Active Directory DC closes the connection.

3.1.1.3.2 rootDSE Attributes

This section specifies the readable attributes on the rootDSE of Windows 2000 operating system,
Windows Server 2003 operating system, Active Directory Application Mode (ADAM), Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, and Windows Server 2012 R2 operating system DCs (both AD DS and AD LDS).

http://go.microsoft.com/fwlink/?LinkId=91339
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90292

161 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

All of these rootDSE attributes are read-only; an LDAP request to modify any of them will be
rejected with the error unwillingToPerform / <unrestricted>.

The rootDSE attributes are not described by the schema, but occurrences of rootDSE attribute
names are underlined in this document as per the convention for any other LDAP attribute.

The following table specifies which of these rootDSE attributes are supported by each
Windows Server operating system or ADAM version.

Attribute

name

Windo

ws 20

00

Wind

ows

Serv

er 20

03

A

D

A

M

Wind

ows

Serv

er 20

08

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2 AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

configuration

NamingCont

ext

X X X X X X X X X X X

currentTime X X X X X X X X X X X

defaultNami

ngContext

X X X X X X X X X X X

dNSHostNam

e

X X X X X X X X X X X

dsSchemaAtt

rCount

X X X X X X X X X X X

dsSchemaCl

assCount

X X X X X X X X X X X

dsSchemaPr

efixCount

X X X X X X X X X X X

dsServiceNa

me

X X X X X X X X X X X

highestCom

mittedUSN

X X X X X X X X X X X

isGlobalCatal

ogReady

X X X X X X

isSynchroniz

ed

X X X X X X X X X X X

ldapServiceN

ame

X X X X X X

namingConte

xts

X X X X X X X X X X X

162 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Windo

ws 20

00

Wind

ows

Serv

er 20

03

A

D

A

M

Wind

ows

Serv

er 20

08

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2 AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

netlogon X X X X X X

pendingProp

agations

X X X X X X X X X X X

rootDomainN

amingContex

t

X X X X X X

schemaNami

ngContext

X X X X X X X X X X X

serverName X X X X X X X X X X X

subschemaS

ubentry

X X X X X X X X X X X

supportedCa

pabilities

X X X X X X X X X X X

supportedCo

ntrol

X X X X X X X X X X X

supportedLD

APPolicies

X X X X X X X X X X X

supportedLD

APVersion

X X X X X X X X X X X

supportedSA

SLMechanis

ms

X X X X X X X X X X X

domainContr

ollerFunction

ality

 X X X X X X X X X X

domainFunct

ionality

 X X X X X

forestFunctio

nality

 X X X X X X X X X X

msDS-

ReplAllInbou

ndNeighbors

 X X X X X X X X X X

msDS-

ReplAllOutbo

 X X X X X X X X X X

163 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Windo

ws 20

00

Wind

ows

Serv

er 20

03

A

D

A

M

Wind

ows

Serv

er 20

08

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2 AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

undNeighbor

s

msDS-

ReplConnecti

onFailures

 X X X X X X X X X X

msDS-

ReplLinkFailu

res

 X X X X X X X X X X

msDS-

ReplPending

Ops

 X X X X X X X X X X

msDS-

ReplQueueSt

atistics

 X X X X X X X X X X

msDS-

TopQuotaUs

age

 X X X X X X X X X X

supportedCo

nfigurableSe

ttings

 X X X X X X X X X X

supportedExt

ension

 X X X X X X X X X X

validFSMOs X X X X X X X X X X

dsaVersionSt

ring

 X X X X X X X X X

msDS-

PortLDAP

 X X X X X X X X X

msDS-

PortSSL

 X X X X X X X X X

msDS-

PrincipalNam

e

 X X X X X X X X X

serviceAccou

ntInfo

 X X X X X X X X X

spnRegistrati X X X X X X X X X

164 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Windo

ws 20

00

Wind

ows

Serv

er 20

03

A

D

A

M

Wind

ows

Serv

er 20

08

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2 AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

onResult

tokenGroups X X X X X X X X X

usnAtRifm X X X X X X X X

The following table shows, for each rootDSE attribute, whether or not the attribute is operational

(that is, whether the server returns the attribute only when it is explicitly requested) and the LDAP
syntax of the returned value.

Attribute name Operational? LDAP syntax

configurationNamingContext N Object(DS-DN)

currentTime N String(Generalized-Time)

defaultNamingContext N Object(DS-DN)

dNSHostName N String(Unicode)

dsSchemaAttrCount Y Integer

dsSchemaClassCount Y Integer

dsSchemaPrefixCount Y Integer

dsServiceName N Object(DS-DN)

highestCommittedUSN N LargeInteger

isGlobalCatalogReady N Boolean

isSynchronized N Boolean

ldapServiceName N String(Unicode)

namingContexts N Object(DS-DN)

netlogon Y String(Octet)

pendingPropagations Y Object(DS-DN)

rootDomainNamingContext N Object(DS-DN)

schemaNamingContext N Object(DS-DN)

serverName N Object(DS-DN)

165 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute name Operational? LDAP syntax

subschemaSubentry N Object(DS-DN)

supportedCapabilities N String(Object-Identifier)

supportedControl N String(Object-Identifier)

supportedLDAPPolicies N String(Unicode)

supportedLDAPVersion N Integer

supportedSASLMechanisms N String(Unicode)

domainControllerFunctionality N Integer

domainFunctionality N Integer

forestFunctionality N Integer

msDS-ReplAllInboundNeighbors Y String(Unicode)*

msDS-ReplAllOutboundNeighbors Y String(Unicode)*

msDS-ReplConnectionFailures Y String(Unicode)*

msDS-ReplLinkFailures Y String(Unicode)*

msDS-ReplPendingOps Y String(Unicode)*

msDS-ReplQueueStatistics Y String(Unicode)*

msDS-TopQuotaUsage Y String(Unicode)**

supportedConfigurableSettings Y String(Unicode)

supportedExtension Y String(Object-Identifier)

validFSMOs Y Object(DS-DN)

dsaVersionString Y String(Unicode)

msDS-PortLDAP Y Integer

msDS-PortSSL Y Integer

msDS-PrincipalName Y String(Unicode)

serviceAccountInfo Y String(Unicode)

spnRegistrationResult Y Integer

tokenGroups Y String (SID)

usnAtRifm Y LargeInteger

* These values contain XML. At the client's request, the server will return the value as binary data in
String(Octet) syntax instead.

** This value contains XML.

166 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.1 configurationNamingContext

Returns the DN of the root of the config NC on this DC.

3.1.1.3.2.2 currentTime

Returns the current system time on the DC, as expressed as a string in the Generalized Time format
defined by ASN.1 (see [ISO-8601] and [ITUX680], as well as the documentation for the LDAP
String(Generalized-Time) syntax in 3.1.1.2.2.2).

3.1.1.3.2.3 defaultNamingContext

Returns the DN of the root of the default NC of this DC. For AD LDS, the defaultNamingContext

attribute does not exist if a value has not been set for the msDS-DefaultNamingContext attribute of
the DC's nTDSDSA object.

3.1.1.3.2.4 dNSHostName

Returns the DNS address of this DC.

3.1.1.3.2.5 dsSchemaAttrCount

Returns an integer specifying the total number of attributes that are defined in the schema.

3.1.1.3.2.6 dsSchemaClassCount

Returns an integer specifying the total number of classes that are defined in the schema.

3.1.1.3.2.7 dsSchemaPrefixCount

Returns the number of entries in the DC's prefix table: the field prefixTable of the variable dc

specified in [MS-DRSR] section 5.30.

3.1.1.3.2.8 dsServiceName

Returns the DN of the nTDSDSA object for the DC.

3.1.1.3.2.9 highestCommittedUSN

Returns the USN of this DC. In terms of the state model of section 3.1.1.1 this is dc.usn.

3.1.1.3.2.10 isGlobalCatalogReady

Returns a Boolean value indicating if this DC is a global catalog that has completed at least one
synchronization of its global catalog data with its replication partners. Returns true if it meets this
criteria or false if either the global catalog on this DC has not completed synchronization or this DC
does not host a global catalog.

3.1.1.3.2.11 isSynchronized

Returns a Boolean value indicating if the DC has completed at least one synchronization with its
replication partners. Returns either true, if it is synchronized, or false, if it is not.

http://go.microsoft.com/fwlink/?LinkId=89920
http://go.microsoft.com/fwlink/?LinkId=89923
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf

167 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.12 ldapServiceName

Returns the LDAP service name for the LDAP server on the DC. The format of the value is <DNS
name of the forest root domain>:<Kerberos principal name>, where Kerberos principal

name is a string representation of the Kerberos principal name for the DC's computer object, as
defined in [RFC1964] section 2.1.1.

3.1.1.3.2.13 namingContexts

Returns a multivalued set of DNs. For each NC-replica n hosted on this DC, this attribute contains
the DN of the root of n.

3.1.1.3.2.14 netlogon

LDAP searches that request this rootDSE attribute get resolved as LDAP ping operations, as specified
in section 6.3. Active Directory supports LDAP searches for this attribute via both UDP and TCP/IP.
See section 3.1.1.3.1.11 for details on LDAP over UDP.

3.1.1.3.2.15 pendingPropagations

Returns a set of DNs of objects whose nTSecurityDescriptor attribute (that is, the object's security

descriptor) has been updated but the inheritable portion of the update has not yet been propagated
to descendant objects (see Security Descriptor Requirements, section 6.1.3). An object is included
in the set only if the update that caused the temporary inconsistency in the object's
nTSecurityDescriptor was performed on the LDAP connection that is reading the
pendingPropagations rootDSE attribute.

3.1.1.3.2.16 rootDomainNamingContext

Returns the DN of the root domain NC for this DC's forest.

3.1.1.3.2.17 schemaNamingContext

Returns the DN of the root of the schema NC on this DC.

3.1.1.3.2.18 serverName

Returns the DN of the server object, contained in the config NC, that represents this DC.

3.1.1.3.2.19 subschemaSubentry

Returns the DN for the location of the subSchema object where the classes and attributes in the
directory are defined. The subSchema object pointed to by this attribute contains a read-only copy
of the schema described in the format specified in section 3.1.1.3.1.1.1

3.1.1.3.2.20 supportedCapabilities

Returns a multivalued set of OIDs specifying the capabilities supported by this DC. The definition of

each OID is explained in section 3.1.1.3.4.3.

3.1.1.3.2.21 supportedControl

Returns a multivalued set of OIDs specifying the LDAP controls supported by this DC. The definition
of each OID is explained in section 3.1.1.3.4.1

http://go.microsoft.com/fwlink/?LinkId=90304
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

168 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.22 supportedLDAPPolicies

Returns a multivalued set of strings specifying the LDAP administrative query policies supported by
this DC. The policy strings returned are listed in section 3.1.1.3.4.6.

3.1.1.3.2.23 supportedLDAPVersion

Returns a set of integers specifying the versions of LDAP supported by this DC. Active Directory
supports version 2 and version 3 of LDAP, so it returns {2,3} as an LDAP multivalue.

3.1.1.3.2.24 supportedSASLMechanisms

Returns a multivalued set of strings specifying the security mechanisms supported for SASL

negotiation (see [RFC2222], [RFC2829], and [RFC2831]). The definition of each value is explained
in section 3.1.1.3.4.5.

3.1.1.3.2.25 domainControllerFunctionality

Returns an integer indicating the functional level of the DC. This value is populated from the msDS-
Behavior-Version attribute on the nTDSDSA object that represents the DC (section 6.1.4.2).

Value Identifier

0 DS_BEHAVIOR_WIN2000

2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2

5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2

3.1.1.3.2.26 domainFunctionality

Returns an integer indicating the functional level of the domain. This value is populated from the
msDS-Behavior-Version attribute on the domain NC root object and the crossRef object that
represents the domain (section 6.1.4.3).

Value Identifier

0 DS_BEHAVIOR_WIN2000

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS

2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2

5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2

http://go.microsoft.com/fwlink/?LinkId=90322
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90387
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

169 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.27 forestFunctionality

Returns an integer indicating the functional level of the forest. This value is populated from the
msDS-Behavior-Version attribute on the crossRefContainer object (section 6.1.4.4).

Value Identifier

0 DS_BEHAVIOR_WIN2000

1 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS

2 DS_BEHAVIOR_WIN2003

3 DS_BEHAVIOR_WIN2008

4 DS_BEHAVIOR_WIN2008R2

5 DS_BEHAVIOR_WIN2012

6 DS_BEHAVIOR_WIN2012R2

3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures,

msDS-ReplLinkFailures, and msDS-ReplPendingOps

Returns alternate representations of the structures returned by IDL_DRSGetReplInfo() (see [MS-
DRSR] section 4.1.13), either as binary data structures or as XML. The relationship between each of
these rootDSE attributes and the IDL_DRSGetReplInfo data is shown in the following table.

rootDSE

attribute name

Equivalent DS_REPL_

INFO_TYPE XML structure Binary structure

msDS-

ReplAllInboundN

eighbors

DS_REPL_INFO_NEIGHBORS DS_REPL_NEIGHBOR

W

DS_REPL_NEIGHBORW_BL

OB

msDS-

ReplConnectionF

ailures

DS_REPL_INFO_KCC_DSA_CONN

ECT_FAILURES

DS_REPL_KCC_DSA_

FAILUREW

DS_REPL_KCC_DSA_FAIL

UREW_BLOB

msDS-

ReplLinkFailures

DS_REPL_INFO_KCC_DSA_LINK_

FAILURES

DS_REPL_KCC_DSA_

FAILUREW

DS_REPL_KCC_DSA_FAIL

UREW_BLOB

msDS-

ReplPendingOps

DS_REPL_INFO_PENDING_OPS DS_REPL_OPW DS_REPL_OPW_BLOB

For each rootDSE attribute named in the first column, the information returned is exactly the same
information that is returned by a call to IDL_DRSGetReplInfo, specifying the value in the second
column as the DRS_MSG_GETREPLINFO_REQ_V1.InfoType or
DRS_MSG_GETREPLINFO_REQ_V2.InfoType. See [MS-DRSR] for the definition of these, as well as

for the definition of the following constants and structures used in the table above:

DS_REPL_INFO_NEIGHBORS

DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES

DS_REPL_INFO_KCC_DSA_LINK_FAILURES

%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

170 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

DS_REPL_INFO_PENDING_OPS

DS_REPL_NEIGHBORW

DS_REPL_KCC_DSA_FAILUREW

DS_REPL_OPW

The remaining structures in the table above are documented in section 2.2.

Without any attribute qualifier, the data is returned as XML. The parent element of the XML is the
name of the structure contained in the "XML structure" column in the table, and the child element
names and order in the XML exactly follow the names of the fields in that structure as well. The
meaning of each child element is the same as the meaning of the corresponding field in the
structure. Values of integer types are represented as decimal strings. Values of FILETIME type are
represented as XML dateTime values in Coordinated Universal Time (UTC), for example, "04-

07T18:39:09Z", as defined in [XMLSCHEMA2/2]. Values of GUID fields are represented as
GUIDStrings.

If the ";binary" attribute qualifier is specified when the attribute is requested, the value of this
attribute is returned as binary data, specifically, the structure contained in the "Binary structure"
column. In this representation, fields that would contain strings are represented as integer offsets
(relative to the beginning of the binary data) to a null-terminated UTF-16 encoded string embedded

in the returned binary data.

3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors

This attribute is equivalent to msDS-ReplAllInboundNeighbors, except that it returns representations
of each value of the repsTo abstract attribute for each NC-replica (for example, outbound
replication), while msDS-ReplAllInboundNeighbors returns representations of each value of the
repsFrom abstract attribute (for example, inbound replication). Like msDS-ReplAllInboundNeighbors,

the server will return the data in either XML or binary form, depending on the presence of the
";binary" attribute qualifier, and uses the DS_REPL_NEIGHBOR and DS_REPL_NEIGHBORW_BLOB
structures for its XML and binary representations, respectively.

3.1.1.3.2.30 msDS-ReplQueueStatistics

Reading the msDS-ReplQueueStatistics attribute returns replication queue statistics.

Like the other ms-dsRepl* rootDSE attributes, the server returns either XML or binary data,

depending on the presence of the ";binary" attribute qualifier. For XML, it returns the following
representation:

<DS_REPL_QUEUE_STATISTICSW>

<ftimeCurrentOpStarted> ftimeCurrentOpStartedValue </ftimeCurrentOpStarted>

<cNumPendingOps> cNumPendingOpsValue </cNumPendingOps>

<ftimeOldestSync> ftimeOldestSyncValue </ftimeOldestSync>

<ftimeOldestAdd> ftimeOldestAddValue </ftimeOldestAdd>

<ftimeOldestMod> ftimeOldestModValue </ftimeOldestMod>

<ftimeOldestDel> ftimeOldestDelValue </ftimeOldestDel>

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90609
%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

171 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<ftimeOldestUpdRefs> ftimeOldestUpdRefsValue </ftimeOldestUpdRefs>

</DS_REPL_QUEUE_STATISTICSW>

The structure returned by this attribute for the binary representation is
DS_REPL_QUEUE_STATISTICSW_BLOB (section 2.2.5).

The information returned by reading this attribute is derived from the field replicationQueue of the
variable dc specified in [MS-DRSR] section 5.30. dc.replicationQueue is used to serialize
IDL_DRSReplicaSync, IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, and
IDL_DRSUpdateRefs request processing [MS-DRSR] on the DC. msDS-ReplQueueStatistics returns
the following information about the current state of this queue:

ftimeCurrentOpStartedValue is the date and time that the current IDL_DRSReplicaSync,

IDL_DRSReplicaAdd, IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs request
left the queue and started running.

cNumPendingOpsValue is the number of queued IDL_DRSReplicaSync, IDL_DRSReplicaAdd,

IDL_DRSReplicaModify, IDL_DRSReplicaDel, or IDL_DRSUpdateRefs requests.

ftimeOldestSyncValue is the date and time that the oldest queued IDL_DRSReplicaSync

request entered the queue.

ftimeOldestAddValue is the date and time that the oldest queued IDL_DRSReplicaAdd request

entered the queue.

ftimeOldestModValue is the date and time that the oldest queued IDL_DRSReplicaModify

request entered the queue.

ftimeOldestDelValue is the date and time that the oldest queued IDL_DRSReplicaDel request

entered the queue.

ftimeOldestUpdRefsValue is the date and time that the oldest queued IDL_DRSUpdateRefs

request entered the queue.

cNumPendingOpsValue is an integer represented as a decimal string. The remaining values are
represented as XML dateTime values in UTC, defined in [XMLSCHEMA2/2].

If a designated request does not exist, the corresponding portion of the msDS-ReplQueueStatistics

response contains a zero filetime in the binary format, and the XML dateTime value "1601-01-
01T00:00:00Z" in XML format. For instance, if there is no IDL_DRSUpdateRefs request in the
replication queue, the msDS-ReplQueueStatistics XML response includes:

<ftimeOldestUpdRefs>1601-01-01T00:00:00Z</ftimeOldestUpdRefs>

3.1.1.3.2.31 msDS-TopQuotaUsage

Returns a multivalued set of strings specifying the top 10 quota users in all NC-replicas on this DC.

The format of each value is as follows, where quota usage is measured in number of objects:

<MS_DS_TOP_QUOTA_USAGE>

<partitionDN> DN of NC-replica </partitionDN>

<ownerSID> Security Identifier (SID) of quota user </ownerSID>

<quotaUsed> Amount of quota used by this quota user </quotaUsed>

%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90609

172 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<tombstoneCount> Number of tombstoned objects owned by this quota user
</tombstoneCount>

<liveCount> Number of live (non-deleted) objects owned by this quota user </liveCount >

</MS_DS_TOP_QUOTA_USAGE>

A client qualifies the attribute description for this attribute in an LDAP query with a "range qualifier"
to specify a different range of quota users to return other than the top 10. The DC responds to this
by returning the quota usage for the requested range of quota users. Following are examples of
range qualifiers and what would be returned:

An attribute specification of the form msDS-TopQuotaUsage;Range=0-* will return the complete

list of quota usage.

An attribute specification of the form msDS-TopQuotaUsage;Range=1-9 will return the second

highest through the 10th highest quota usage.

An attribute specification of the form msDS-TopQuotaUsage;Range=2-2 will return the third

highest quota usage.

The caller must have the RIGHT_DS_READ_PROPERTY access right on the Quotas container (see
section 6.1.1.4.3). If the caller does not have this access right, the search operation will succeed but

no results will be returned.

3.1.1.3.2.32 supportedConfigurableSettings

Returns a multivalued set of strings specifying the configurable settings supported by this DC. The
setting strings returned are listed in section 3.1.1.3.4.7.

3.1.1.3.2.33 supportedExtension

Returns a multivalued set of OIDs specifying the extended LDAP operations that the DC supports.
The definition of each OID is explained in section 3.1.1.3.4.2.

3.1.1.3.2.34 validFSMOs

Returns a set of DN s of objects representing the FSMO roles owned by this DC. Each object
identifies a distinct FSMO role.

The valid types of FSMO role, and the object used to represent an instance of that type in the
validFSMOs attribute, are as follows:

Schema Master FSMO Role - the root of the schema NC

Domain Naming FSMO Role - the Partitions container in the config NC

Infrastructure Master FSMO Role - the Infrastructure container in a domain NC

Primary Domain Controller (PDC) Emulator FSMO Role - the root of a domain NC

RID Master FSMO Role - the RID Manager object of a domain NC, which is the object referenced

by the rIDManagerReference attribute on the root of the domain NC

Because an AD LDS forest does not contain domain NCs, it does not contain instances of the
Infrastructure Master, PDC Emulator, and RID Master FSMO roles, and the corresponding objects will
not be present in the validFSMOs attribute of any DC running AD LDS.

%5bMS-ADA3%5d.pdf

173 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A server indicates that it owns a given FSMO role F only if IsEffectiveRoleOwner(RoleObject(nc, e))
returns true, where the procedures IsEffectiveRoleOwner and RoleObject are defined in section

3.1.1.5.1.8. The parameters nc and e are defined as follows for each FSMO Role F:

Schema Master FSMO

nc: Schema NC

e: SchemaMasterRole

Domain Naming FSMO

nc: Config NC

e: DomainNamingMasterRole

Infrastructure Master FSMO

nc: Default NC (AD DS)

e: InfrastructureMasterRole

RID Master FSMO

nc: Default NC (AD DS)

e: RidAllocationMasterRole

PDC Emulator FSMO

nc: Default NC (AD DS)

e: PdcEmulationMasterRole

3.1.1.3.2.35 dsaVersionString

Returns a string indicating the version of Active Directory running on the DC. For instance, when
running Windows Server 2008 operating system Beta 2, the Active Directory version string is
"6.0.5384.32 (winmain_beta2.060727-1500)".

This rootDSE attribute is readable by Domain Administrators (section 6.1.1.6.5) and Enterprise
Administrators (section 6.1.1.6.10) only.

3.1.1.3.2.36 msDS-PortLDAP

Returns the integer TCP/UDP port number on which the DC is listening for LDAP requests. For AD
DS, this always equals 389. For AD LDS, the port is configurable.

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-

PortLDAP.

3.1.1.3.2.37 msDS-PortSSL

Returns the integer TCP/UDP port number on which the DC is listening for TLS/SSL-protected LDAP
requests. For AD DS, this always equals 636. For AD LDS, the port is configurable.

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-
PortSSL.

%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf

174 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.38 msDS-PrincipalName

Returns a string name of the security principal that has authenticated on the LDAP connection. If the
client authenticated as a Windows security principal, the string contains either (1) the NetBIOS

domain name, followed by a backslash ("\"), followed by the sAMAccountName of the security
principal, or (2) the SID of the security principal, in SDDL SID string format ([MS-DTYP] section
2.4.2.1). If the client authenticated as an AD LDS security principal, the string contains the DN of
the security principal. If the connection is not authenticated (only possible if the fLDAPBlockAnonOps
heuristic in the dSHeuristics attribute is false; see section 6.1.1.2.4.1.2), the string is "NT
AUTHORITY\ANONYMOUS LOGON".

Note This rootDSE attribute is different from the schema attribute of the same name, msDS-

PrincipalName.

3.1.1.3.2.39 serviceAccountInfo

Returns a set of strings, each string containing a name-value pair encoded as name=value.

The serviceAccountInfo attribute contains information outside the state model. The possible name-
value pairs are as follows:

replAuthenticationMode: The value is the value of the msDS-ReplAuthenticationMode attribute on
the root of the config NC, or "1" if that attribute is not set. See section 6.1.1.1.2 for the effects of
the msDS-ReplAuthenticationMode attribute.

accountType: If the service account is a domain account account, the value is "domain".
Otherwise the service account is a local account, and the value is "local".

systemAccount: If the service account is a system account (meaning it has one of the SIDs SID
"S-1-5-20" and "S-1-5-18") the value is "true"; otherwise the value is "false".

domainType: If the DC is running on a computer that is part of an Active Directory domain (always
the case for an AD DS DC), the value is "domainWithKerb". If the DC is running on a computer
that is part of an NT (pre–Active Directory) domain, the value is "domainNoKerb". Otherwise the

DC is running on a computer that is not part of a domain, and the value is "nonMember".

serviceAcccountName: If the value of replAuthenticationMode is "0", the value is the SAM
name of the DC's service account. Otherwise this name-value pair is not present.

machineDomainName: If domainType is "domainWithKerb" or "domainNoKerb" the value is

the NetBIOS name of the domain. Otherwise the value is the NetBIOS name of the computer.

3.1.1.3.2.40 spnRegistrationResult

When running as AD DS, this value is 0. When running as AD LDS, if the DC was unable to register
its service principal names (SPNs) ([MS-DRSR] section 2.2.2), this attribute returns the
Windows error code associated with the failure. Otherwise, it returns zero.

Note When running as AD DS on Windows Server 2008 operating system, Windows Server 2008 R2

operating system, Windows Server 2012 operating system, or Windows Server 2012 R2 operating
system, this value is 21.

%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf

175 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.2.41 tokenGroups

Returns the SIDs contained in the security context as which the client has authenticated the LDAP
connection. Refer to section 5.1.3 for details on LDAP Authorization. Refer to section 3.1.1.4.5.19

for details on the algorithm used to compute this attribute.

3.1.1.3.2.42 usnAtRifm

This attribute contains information outside the state model. If the DC is an RODC and was installed
using the Install From Media feature, reading the usnAtRifm attribute returns the value of dc.usn
(section 3.1.1.1.9) that was present in the Active Directory database on the installation media.

3.1.1.3.3 rootDSE Modify Operations

This section specifies the modifiable attributes on the rootDSE of Windows 2000 operating system,
Windows Server 2003 operating system, Active Directory Application Mode (ADAM), Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012

operating system, and Windows Server 2012 R2 operating system DCs (both AD DS and AD LDS).

rootDSE modify operations are used to trigger behaviors on a specific DC. For example, one such
operation causes the DC to acquire the Schema Master FSMO. All of these rootDSE attributes are

write-only; an LDAP request to read will be treated as if the attribute does not exist.

The following table specifies the set of modifiable rootDSE attributes included in each Windows or
ADAM version.

Attribute

name

Win

dow

s 20

00

Win

dow

s 20

00

ope

rati

ng

syst

em

Ser

vice

Pac

k 1

(SP

1)

Wi

nd

ow

s

Ser

ver

 20

03

Wi

nd

ow

s

Ser

ver

 20

03

SP

3

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

becomeD

omainMas

ter

X X X X X X X X X X X X X X

becomeIn

frastructu

reMaster

X X X X X X X X

becomePd

c

X X X X X X X X

becomePd

cWithChe

ckPoint

X X X X X X X X

%5bMS-GLOS%5d.pdf

176 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Win

dow

s 20

00

Win

dow

s 20

00

ope

rati

ng

syst

em

Ser

vice

Pac

k 1

(SP

1)

Wi

nd

ow

s

Ser

ver

 20

03

Wi

nd

ow

s

Ser

ver

 20

03

SP

3

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

becomeRi

dMaster

X X X X X X X X

becomeSc

hemaMast

er

X X X X X X X X X X X X X X

checkPha

ntoms

X X X X X X X X

doGarbag

eCollectio

n

X X X X X X X X X X X X X X

dumpDat

abase

X X X X X X X X X X X X X X

fixupInher

itance

X X X X X X X X X X X X X X

invalidate

RidPool

X X X X X X X X

recalcHier

archy

X X X X X X X X

schemaU

pdateNow

X X X X X X X X X X X X X X

schemaU

pgradeInP

rogress

 X X X X X X

removeLi

ngeringO

bject

 X X X X X X X X X X X X X

doLinkCle

anup

 X X X X X X X X X X X X

doOnline

Defrag

 X X X X X X X X X X X X

replicateS X X X X X X X X X X X X

177 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Win

dow

s 20

00

Win

dow

s 20

00

ope

rati

ng

syst

em

Ser

vice

Pac

k 1

(SP

1)

Wi

nd

ow

s

Ser

ver

 20

03

Wi

nd

ow

s

Ser

ver

 20

03

SP

3

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

ingleObje

ct

updateCa

chedMem

berships

 X X X X X X

doGarbag

eCollectio

nPhantom

sNow

 X X X X X X X X X X

invalidate

GCConnec

tion

 X X X X X X X X

renewSer

verCertific

ate

 X X X X X X X X

rODCPurg

eAccount

 X X X X

runSamU

pgradeTa

sks

 X X X X

sqmRunO

nce

 X X X X

runProtec

tAdminGr

oupsTask

 X X X

disableOp

tionalFeat

ure

 X X X X X X

enableOpt

ionalFeatu

re

 X X X X X X

dumpRefe

rences

 X X X X

178 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute

name

Win

dow

s 20

00

Win

dow

s 20

00

ope

rati

ng

syst

em

Ser

vice

Pac

k 1

(SP

1)

Wi

nd

ow

s

Ser

ver

 20

03

Wi

nd

ow

s

Ser

ver

 20

03

SP

3

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

D

S

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

dumpLink

s

 X X

schemaU

pdateIndi

cesNow

 X X

null X X

Each of these operations is executed by performing an LDAP Modify operation with a NULL DN for

the object to be modified (indicating the rootDSE) and specifying the name of the operation as the
attribute to be modified. In [RFC2849] terminology the rootDSE attribute to be modified is the
"AttributeDescription" of the "mod-spec" associated with the "change-modify" record. In many of
the cases, the type of the modify (add or replace) and the values specified do not matter and are
ignored. Whether the type and values matter, and what the client specifies if they do matter, will be
indicated for each operation in the following sections. Examples are given as LDAP Data Interchange

Format (LDIF) samples, described in [RFC2849]. In Windows, LDIF is implemented by the ldifde.exe
command-line tool.

To perform many of these operations, the caller must be authenticated as a user that has a
particular control access right or privilege; or, in some cases, as a user that is a member of a
particular group. In each section that follows, the rights, privileges, or group membership, if any,
that are required of the caller to perform a specific operation are specified. If the caller does not
have the required rights, privileges, or group membership, the server returns the error

insufficientAccessRights / ERROR_ACCESS_DENIED.

3.1.1.3.3.1 becomeDomainMaster

Performing this operation causes the DC to request a transfer of the Domain Naming FSMO to itself,
per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must
have the "Change-Domain-Master" control access right on the Partitions container in the config NC

for this to succeed. This operation cannot be performed on an RODC; an RODC will return error

unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after the
transfer of the Domain Naming FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

http://go.microsoft.com/fwlink/?LinkId=90389
http://go.microsoft.com/fwlink/?LinkId=90389
%5bMS-DRSR%5d.pdf

179 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

changetype: modify

add: becomeDomainMaster

becomeDomainMaster: 1

-

3.1.1.3.3.2 becomeInfrastructureMaster

Performing this operation causes the DC to request a transfer of the Infrastructure Master FSMO to
itself, per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3

(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must
have the "Change-Infrastructure-Master" control access right on the Infrastructure container in the
domain NC replica. This operation cannot be performed on an RODC; an RODC will return the error
unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after the
transfer of the Infrastructure Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeInfrastructureMaster

becomeInfrastructureMaster: 1

-

3.1.1.3.3.3 becomePdc

Performing this operation causes the DC to request a transfer of the PDC Emulator FSMO to itself,
per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_PDC). The requester must

have the "Change-PDC" control access right on the root of the domain NC replica. This operation
cannot be performed on an RODC; an RODC will return the error unwillingToPerform /
ERROR_INVALID_PARAMETER. The LDAP operation returns success after the transfer of the PDC

Emulator FSMO has completed successfully.

Prior to transferring the PDC FSMO to the DC, if the domain is in mixed mode, the DC attempts to
synchronize with the DC that is currently the Owner of the PDC FSMO in such a way as to avoid
causing a full synchronization by BDCs running Windows NT 4.0 operating system (see section
3.1.1.7). However, the FSMO role transfer will be performed even if this synchronization is
unsuccessful.

In order to perform this operation, the requester must provide the domain's SID, in binary format

(defined in [MS-DTYP] section 2.4.2), as the value of the modify operation. In LDIF, this would be
performed as follows. Note that LDIF requires that binary values be base-64 encoded.

dn:

changetype: modify

add: becomePdc

becomePdc:: base-64 encoding of the domain SID in binary

-

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

180 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.4 becomePdcWithCheckPoint

This operation is the same as becomePdc except for the following. Prior to transferring the PDC
FSMO, if the domain is in mixed mode, the DC attempts to synchronize with the DC that is the

current the owner of the PDC FSMO. becomePdc transfers the PDC FSMO role even if this
synchronization is unsuccessful, while becomePdcWithCheckPoint does not.

3.1.1.3.3.5 becomeRidMaster

Performing this operation causes the DC to request a transfer of the RID Master FSMO to itself, per
the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_RID_REQ_ROLE). The requester

must have the "Change-RID-Master" control access right on the RID Manager object, which is the
object referenced by the rIDManagerReference attribute located on the root of the domain NC. The
requester must also have read permission on the previously mentioned rIDManagerReference
attribute. This operation cannot be performed on an RODC; an RODC returns the error
unwillingToPerform / ERROR_INVALID_PARAMETER. The LDAP operation returns success after the

transfer of the RID Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeRidMaster

becomeRidMaster: 1

-

3.1.1.3.3.6 becomeSchemaMaster

Performing this operation causes the DC to request a transfer of the Schema Master FSMO to itself,

per the FSMO role transfer procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_ROLE). The requester must
have the "Change-Schema-Master" control access right on the root of the schema NC replica. This
operation cannot be performed on an RODC; an RODC will return the error unwillingToPerform /

ERROR_INVALID_PARAMETER. The LDAP operation returns success after the transfer of the Schema
Master FSMO has completed successfully.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: becomeSchemaMaster

becomeSchemaMaster: 1

-

3.1.1.3.3.7 checkPhantoms

This operation requests that the reference update task (see section 3.1.1.6.2) be immediately
performed on the DC. During the operation, if the referential integrity on any of the objects is found

to be incorrect and it cannot be corrected, then the operation returns an error and does not process

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf

181 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

any of the remaining objects. This task runs periodically; on a correctly functioning DC, there is no
need to run it explicitly. The requester must have the "DS-Check-Stale-Phantoms" control access

right on the nTDSDSA object for the DC.

No action is taken if the Recycle Bin optional feature is not enabled and the operation is performed

against a DC that does not own the Infrastructure Master FSMO.

No action is taken if the operation is performed against a DC that is a global catalog.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: checkPhantoms

checkPhantoms: 1

-

3.1.1.3.3.8 doGarbageCollection

This operation requests that garbage collection be immediately performed on the DC. Tombstones
and recycled-objects are subject to the requirement that they must be kept for at least the
tombstone lifetime (see 3.1.1.6.2), but they may be kept longer. Deleted-objects are subject to the
requirement that they must be kept for at least the deleted-object lifetime. Garbage collection
identifies tombstones and recycled-objects that have been kept for at least the tombstone lifetime
and removes them. Additionally, garbage collection identifies deleted-objects that have been kept
for at least the deleted-object lifetime and transforms them to recycled-objects. On a correctly

functioning DC, there should not be a need to manually trigger garbage collection via this operation.
The requester must have the "Do-Garbage-Collection" control access right on the DC's DSA object.

This operation is triggered by setting the doGarbageCollection attribute to "1".

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: doGarbageCollection

doGarbageCollection: 1

-

3.1.1.3.3.9 dumpDatabase

This operation is triggered by setting the attribute to a space-separated list of attributes. The

requester must be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation for the description and sn

attributes.

dn:

changetype: modify

add: dumpDatabase

dumpDatabase: description sn

%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

182 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

-

The effects of dumpDatabase are outside the state model. An update of dumpDatabase causes the

contents of the DC's database to be written to a text file on the DC's disk. All the attributes specified
in the dumpDatabase value are included in the dump, except that certain security-sensitive
attributes are omitted from the dump even if requested. The dump may include attributes that were
not explicitly requested.

3.1.1.3.3.10 fixupInheritance

The fixupInheritance attribute permits administrative tools to request that the DC recompute
inherited security permissions on objects to ensure that they conform to the security descriptor
requirements (see section 6.1.3), in case the current state of the permissions on the object is
erroneous. This operation is not necessary on a correctly functioning DC. The requester must have
the "Recalculate-Security-Inheritance" control access right on the nTDSDSA object for the DC. The
LDAP Operation returning success means the system accepts the request to perform security-

descriptor propagation.

This operation is triggered by setting the fixupInheritance attribute to "1".

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: fixupInheritance

fixupInheritance: 1

-

In Windows Server 2003 operating system, Windows Server 2008 operating system, Windows

Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server
2012 R2 operating system, setting the fixupInheritance attribute to the special values "forceupdate"

and "downgrade" has effects outside the state model.

In Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

and Windows Server 2012 R2, the fixupInheritance attribute can trigger security-descriptor
propagation under an object, specified using an identifier outside the state model, rather than
throughout the directory. This is performed by setting the fixupInheritance attribute to the string
"dnt:" followed by an implementation-specific identifier representing the object. Consider the
following example.

dn:

changetype: modify

add: fixupInheritance

fixupInheritance: dnt:54758

-

3.1.1.3.3.11 invalidateRidPool

This operation causes the DC to discard its current pool of RIDs, used for allocating security
principals in the directory. The DC requests a fresh pool of RIDs from the DC that owns the RID
Master FSMO, per the procedure documented in [MS-DRSR] section 4.1.10.4.3
(PerformExtendedOpRequestMsg, ulExtendedOp = EXOP_FSMO_REQ_RID_ALLOC). The LDAP

%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf

183 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Operations returns success when the RID pool has been invalidated. Obtaining a fresh pool of RIDs
from the DC that owns the RID Master FSMO is an asynchronous operation.

The requester must have the "Change-RID-Master" control access right on the RID Manager object,
which is the object referenced by the rIDManagerReference attribute located on the root of the

domain NC. The requester must also have read permission on the previously mentioned
rIDManagerReference attribute. This operation cannot be performed on an RODC; an RODC returns
the error unwillingToPerform / ERROR_INVALID_PARAMETER.

In order to perform this operation, the requester provides the domain's SID, in binary format
(defined in [MS-DTYP] section 2.4.2), as the value of the modify operation.

The following shows an LDIF sample that performs this operation. LDIF requires that binary values,
like the domain SID, be base-64 encoded.

dn:

changetype: modify

add: invalidateRidPool

invalidateRidPool:: base-64 encoding of the binary-format domain SID

-

3.1.1.3.3.12 recalcHierarchy

The requester must have the "Recalculate-Hierarchy" control access right on the nTDSDSA object for
the DC. The type of modification can be add or replace, and the values specified in the LDAP Modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: recalcHierarchy

recalcHierarchy: 1

-

The effects of recalcHierarchy are outside the state model. An update of recalcHierarchy causes the
hierarchy table used to support the MAPI address book to be recalculated immediately.

3.1.1.3.3.13 schemaUpdateNow

The requester must have the "Update-Schema-Cache" control access right on the nTDSDSA object
for the DC or on the root of the schema NC. After the completion of this operation, the subschema
exposed by the server reflects the current state of the schema as defined by the attributeSchema
and classSchema objects in the schema NC.

The type of modification can be add or replace, and the values specified in the LDAP modify

operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: schemaUpdateNow

schemaUpdateNow: 1

-

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

184 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The other effects of schemaUpdateNow are outside the state model. An update of

schemaUpdateNow causes the in-memory cache of the schema to be recalculated from the copy of

the schema stored in the schema NC.

3.1.1.3.3.14 schemaUpgradeInProgress

This operation causes the fschemaUpgradeInProgress field of LDAPConnection instances in
dc.LDAPConnections ([MS-DRSR] section 5.115) to be set. schemaUpgradeInProgress causes the DC
to skip certain constraint validations when adding, updating, or removing directory objects. The
skipped constraint validations are documented in the applicable constraint sections of this
document. The requester must have the "Change-Schema-Master" control access right on the root
of the schema NC-replica.

On the Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, and Windows Server 2012 R2 operating system, when
schemaUpgradeInProgress is set to 1 the fschemaUpgradeInProgress field is set to true on the
LDAPConnection instance in dc.ldapConnections that corresponds to the LDAP connection on which

the schemaUpgradeInProgress operation was performed. On these operating systems, when
schemaUpgradeInProgress is set to zero the fschemaUpgradeInProgress field is set to false on

the LDAPConnection instance in dc.ldapConnections that corresponds to the LDAP connection on
which the schemaUpgradeInProgress operation was performed.

On the Windows Server 2003 operating system and Windows Server 2003 R2 operating system,
when schemaUpgradeInProgress is set to 1 the fschemaUpgradeInProgress field is set to true in
every LDAPConnection instance in dc.ldapConnections. On these operating systems, when
schemaUpgradeInProgress is set to zero the fschemaUpgradeInProgess field is set to false on
every LDAPConnection instance in dc.ldapConnections.

The type of modification can be add or replace. The following shows an LDIF sample that performs
this operation.

dn:

changetype: modify

add: schemaUpgradeInProgress

schemaUpgradeInProgress: 1

-

schemaUpgradeInProgress operation permits modifications to be performed that would otherwise

violate constraints had schemaUpgradeInProgress not been set.

3.1.1.3.3.15 removeLingeringObject

This operation causes the DC to expunge a lingering object. A DC that was offline for longer than the

value of the tombstone lifetime can contain objects that have been deleted on other DCs and for
which tombstones no longer exist. The result is that when that DC is brought back online, any such
objects can continue to exist in its NC replica even though the objects should have been deleted.
Such objects are known as lingering objects.

Expunge is specified in section 3.1.1.1.6. Lingering object expunge can be performed on an object in
a read-only NC. For more details on the lingering object expunge process, see
IDL_DRSReplicaVerifyObjects and IDL_DRSGetObjectExistence in [MS-DRSR] sections 4.1.24 and

4.1.12.

The requester must have the "DS-Replication-Synchronize" control access right on the root of the
NC replica that contains the lingering object.

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

185 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The value specified for this operation contains (1) the DN of the DSA object of a DC holding a
writable replica of the NC containing the lingering object, and (2) the DN of the lingering object.

These are encoded in the value string as two DNs separated by a colon: "DSA Object DN:Lingering
Object DN". Each DN specified may be either an [RFC2253]-style DN or one of the alternative DN

formats described in section 3.1.1.3.1.2.4. If the value is not in the specified format, the server
rejects the request with the error operationsError / ERROR_DS_OBJ_NOT_FOUND.

The DC performing the modify request first verifies that the lingering object specified in the request
does not exist on the DC specified in the request. If this verification fails for any reason, the request
returns the error operationsError / ERROR_DS_GENERIC_ERROR. If the verification succeeds, the
DC expunges the lingering object specified in the request and then returns success.

The following shows an LDIF sample that performs this operation. The sample requests that the

lingering object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be removed, and
specifies that the server whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-
01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com"
be used to verify the nonexistence of the lingering object.

dn:

changetype: modify

replace: removeLingeringObject

removeLingeringObject: CN=NTDS Settings,

CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name,

CN=Sites,CN=Configuration,DC=Fabrikam,DC=com:CN=TestObject,

CN=Users, DC=Fabrikam, DC=com

-

3.1.1.3.3.16 doLinkCleanup

This operation causes the DC to immediately begin performing any delayed link processing
necessary to satisfy the requirements of delayed link processing, as specified in section 3.1.1.1.16.
This processing runs automatically as needed to satisfy those requirements; on a correctly

functioning DC, there is no need to explicitly request such processing. The requester must have the

"Do-Garbage-Collection" control access right on the nTDSDSA object for the DC.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: doLinkCleanup

doLinkCleanup: 1

-

3.1.1.3.3.17 doOnlineDefrag

This operation is triggered by setting the doOnlineDefrag attribute to a non-negative integer. The

requester must have the "Do-Garbage-Collection" control access right on the nTDSDSA object for

the DC. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

replace: doOnlineDefrag

doOnlineDefrag: 60

http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

186 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

-

The effects of doOnlineDefrag are outside the state model. An update of doOnlineDefrag causes an

online defragmentation of the DC's directory database. If the doOnlineDefrag value is positive, it
starts the defragmentation task, which runs until complete or until the specified number of seconds
have elapsed. If the doOnlineDefrag value is zero, the defragmentation task is stopped if it is
running.

3.1.1.3.3.18 replicateSingleObject

This operation causes the DC to request replication of a single object, specified in the modify
request, from a source DC to the DC processing the request. The requester must have the "DS-
Replication-Synchronize" control access right on the root of the NC that contains the object to be
replicated.

The type of modification specified in the LDAP modify operation does not matter; however the value

specified does matter. The value specified for the replicateSingleObject attribute in the modify
request contains (1) the DN of the DSA object of the source DC, and (2) the DN of the object to be

replicated. These are encoded in the value string as two DNs separated by a colon: "DSA Object
DN:Object To Be Replicated DN". Each DN specified may be either an RFC 2253-style DN or one
of the alternative DN formats described in section 3.1.1.3.1.2.4. If the value is not in the specified
format, the server rejects the request with the error operationsError /
ERROR_DS_OBJ_NOT_FOUND.

If the DC is an RODC, an additional colon may be added to the end of the value string, followed by
the literal string "SECRETS_ONLY". The presence of this additional parameter indicates that the

RODC should request replication of the object's secret attributes instead of the other attributes.
When this flag is specified, the "DS-Replication-Synchronize" control access right is not checked.
Instead, the requester must possess the "Read-Only-Replication-Secret-Synchronization" control
access right on the root of the NC containing the object whose secret attributes are to be replicated.

This operation is a synchronous operation. The LDAP response is returned by the server after the

replication of the object from the source DC to the DC processing the request has completed.

However, if the object to be replicated does not exist on the source DC, or if the object to be
replicated has been deleted on the source DC, or if the object to be replicated does not have a
parent object on the DC processing the request, an error is returned and the replication is not
performed.

The following shows an LDIF sample that performs the replicateSingleObject operation. This sample
requests that the object whose DN is "CN=TestObject, CN=Users, DC=Fabrikam, DC=com" be
replicated from the DC whose nTDSDSA object is "CN=NTDS Settings,CN=TESTDC-

01,CN=Servers,CN=Default-First-Site-Name,CN=Sites,CN=Configuration,DC=Fabrikam,DC=com".

dn:

changetype: modify

replace: replicateSingleObject

replicateSingleObject: CN=NTDS Settings,

CN=TESTDC-01,CN=Servers,CN=Default-First-Site-Name,

CN=Sites,CN=Configuration,DC=Fabrikam,DC=com:CN=TestObject,

CN=Users, DC=Fabrikam, DC=com

-

%5bMS-ADSC%5d.pdf

187 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.19 updateCachedMemberships

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The requester must have the "Refresh-Group-Cache" control access right

on the nTDSDSA object for the DC.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: updateCachedMemberships

updateCachedMemberships: 1

-

The effects of updateCachedMemberships are outside the state model. An update of

updateCachedMemberships causes the DC to refresh its cache of universal group memberships from
a GC server.

3.1.1.3.3.20 doGarbageCollectionPhantomsNow

This operation is triggered by setting the doGarbageCollectionPhantomsNow attribute to "1". The
requester must have the "Do-Garbage-Collection" control access right on the nTDSDSA object for
the DC.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: doGarbageCollectionPhantomsNow

doGarbageCollectionPhantomsNow: 1

-

The effects of doGarbageCollectionPhantomsNow are outside the state model. An update of

doGarbageCollectionPhantomsNow causes a garbage-collector to run that reclaims storage used to
implement referential integrity.

3.1.1.3.3.21 invalidateGCConnection

The type of modification to the invalidateGCConnection attribute and the values specified in the
LDAP Modify operation do not matter. The requester must be a member of either the
BUILTIN\Administrators group (section 6.1.1.4.12.2) or the BUILTIN\Server Operators group
(section 6.1.1.4.12.18).

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: invalidateGCConnection

invalidateGCConnection: 1

-

The effects of invalidateGCConnection are outside the state model. This operation causes the DC to

rediscover the GC server that it uses in its implementation of referential integrity (section
3.1.1.1.6).

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

188 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.22 renewServerCertificate

The persistent state of a DC does not include the certificates that are necessary to authenticate the
DC when a client makes an LDAPS (LDAP over SSL/TLS) connection. A DC obtains the certificates it

needs by querying the operating system for them at startup. This operation provides a means for
the requester to request that the DC repeat the query to the operating system for the certificates—
for example, if the available certificates have changed since startup. The requester must have the
"Reload-SSL-Certificate" control access right on the nTDSDSA object for the DC.

An LDAP Modify of the renewServerCertificate attribute causes the DC to query the operating system
for certificates. When the operation returns, the DC has performed the query and the certificates it
found are available for use in LDAPS connections.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: renewServerCertificate

renewServerCertificate: 1

-

3.1.1.3.3.23 rODCPurgeAccount

An LDAP Modify of the rODCPurgeAccount attribute causes the RODC to purge cached secret
attributes of a specified security principal. The requester must have the "Read-Only-Replication-

Secret-Synchronization" control access right on the root of the default NC. The Modify request must
be directed to an RODC that hosts an NC replica that contains the specified RODC object. If the
RODC to which the operation is directed does not host such an NC, then the error operationsError /
ERROR_DS_CANT_FIND_EXPECTED_NC is returned. If the operation is sent to a DC that is not an

RODC, then the error operationsError / ERROR_DS_GENERIC_ERROR is returned.

The value specified for the rODCPurgeAccount attribute in the LDAP modify request must be the DN
of the object whose secret attributes are to be purged. The DN specified may be either an

[RFC2253]-style DN or one of the alternative DN formats described in section 3.1.1.3.1.2.4. If the
value is not in the specified format or the object does not exist, the server rejects the request with
the error operationsError / ERROR_DS_OBJ_NOT_FOUND. The server returns success upon
successfully purging the secret attributes of the specified security principal.

The following shows an LDIF sample that performs this operation. This sample purges the cached
secret attributes of the user whose DN is "CN=TestUser, CN=Users, DC=Fabrikam, DC=com" from

the RODC to which this operation is sent.

dn:

changetype: modify

replace: rODCPurgeAccount

rODCPurgeAccount: CN=TestUser, CN=Users, DC=Fabrikam, DC=com

-

%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327

189 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.24 runSamUpgradeTasks

An LDAP Modify of the runSamUpgradeTasks attribute causes the default groups and memberships
(as specified in [MS-SAMR] section 3.1.4.2) to be created in the domain if they are not already

created. This operation is useful in a domain with different versions of domain controllers where the
default groups and memberships are not yet created.

If a partial set of these modifications has already been performed in the domain through this task,
the Modify operation of this attribute MUST cause the rest of the operations to be performed. If all
such modifications have already been performed, the Modify operation of this attribute MUST NOT
make any changes in the domain.

The requester MUST be a member of the "Domain Admins" group in the domain to perform this

operation.

The DC, on receiving this request, MUST verify that the otherWellKnownObjects attribute on the
object "CN=Server, CN=System, DC=<domain>" on the DC with the PDC role contains "B:32:
6ACDD74F3F314AE396F62BBE6B2DB961:X", where <domain> is the domain NC DN, and X is the

DN of the nTDSDSA object of the DC receiving the request. If this condition is not satisfied, the
LDAP Modify returns operationsError / ERROR_DS_GENERIC_ERROR.

If these conditions are satisfied, the default groups and memberships (as specified in [MS-SAMR]
section 3.1.4.2) are created in the domain.

The type of modification and values specified in the LDAP Modify operation do not matter. The
following shows an LDIF sample that performs this operation. This sample triggers the default
groups and memberships created on the target domain.

dn:

changetype: modify

add: runSamUpgradeTasks

runSamUpgradeTasks: 1

-

3.1.1.3.3.25 sqmRunOnce

The type of modification can be add or replace, and the values specified in the LDAP modify

operation do not matter. The requester must have the SE_DEBUG_PRIVILEGE.

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: sqmRunOnce

sqmRunOnce: 1

-

The effects of sqmRunOnce are outside the state model. An update of sqmRunOnce causes the DC

to report statistical data on the types and numbers of operations that the DC has performed using
an implementation-defined reporting mechanism.

%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf

190 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.3.26 runProtectAdminGroupsTask

The type of modification made to the runProtectAdminGroupsTask attribute and the values specified
in the LDAP Modify operation have no significance. If the DC is the PDC FSMO role owner, an LDAP

Modify of the runProtectAdminGroupsTask attribute causes the DC to run the AdminSDHolder
protection operation (section 3.1.1.6.1). Otherwise, the Modify request does not have any effect.
The requester must have the "Run-Protect-Admin-Groups-Task" control access right on the domain
root of the DC. The LDAP server returns success after the AdminSDHolder operation has completed.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: runProtectAdminGroupsTask

runProtectAdminGroupsTask: 1

-

3.1.1.3.3.27 disableOptionalFeature

This operation requests that an optional feature (as described in section 3.1.1.9) be disabled for
some scope. The requester must have the correct "Manage-Optional-Features" control access on the
object representing the scope.

This operation is triggered by setting the disableOptionalFeature attribute to a value that contains
the DN of the object that represents the scope, followed by the colon (:) character, followed by the
GUID of the optional feature to be enabled, expressed as a GUIDString.

If the server does not recognize the GUID as identifying a known feature, the server will return the

error operationsError / ERROR_INVALID_PARAMETER.

If the DN represents an existing object but the object does not represent a scope, the server will
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent
an existing object, the server will return the error operationsError / ERROR_INVALID_PARAMETER.

If the feature is not marked as being valid for the specified scope, the server will return the error
unwillingToPerform / ERROR_DS_NOT_SUPPORTED.

If the specified scope is forest-wide, and this operation is not performed against the DC that holds

the Domain Naming Master role, the server will return the error unwillingToPerform /
ERROR_DS_NOT_SUPPORTED.

If the feature is not marked as being able to be disabled, the server will return the error
unwillingToPerform / ERROR_DS_NOT_SUPPORTED.

If the specified optional feature is not already enabled in the specified scope, the server will return
the error noSuchAttribute / ERROR_DS_CANT_REM_MISSING_ATT_VAL.

The LDAP server returns success when the specified optional feature has been successfully disabled.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: disableOptionalFeature

disableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso,DC=Com:766DDCD8-ACD0-445E-

F3B9-A7F9B6744F2A

%5bMS-GLOS%5d.pdf

191 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

-

3.1.1.3.3.28 enableOptionalFeature

This operation requests that an optional feature (as described in section 3.1.1.9) be enabled for
some scope. The requester must have the "Manage-Optional-Features" control access right on the
object representing the scope.

This operation is triggered by setting the enableOptionalFeature attribute to a value that contains
the DN of the object that represents the scope, followed by the ':' character, followed by the GUID

of the optional feature to be enabled, expressed as a GUIDString.

If the server does not recognize the GUID as identifying a known feature, the server will return the
error operationsError / ERROR_INVALID_PARAMETER.

If the DN represents an existing object but the object does not represent a scope, the server will
return the error unwillingToPerform / ERROR_DS_NOT_SUPPORTED. If the DN does not represent

an existing object, the server will return the error operationsError / ERROR_INVALID_PARAMETER.

If the feature is not marked as being valid for the specified scope, the server will return the error

unwillingToPerform / ERROR_DS_NOT_SUPPORTED.

If the specified scope is forest-wide and this operation is not performed against the DC that holds
the Domain Naming Master role, the server will return the error unwillingToPerform /
ERROR_DS_NOT_SUPPORTED.

If the specified optional feature is already enabled in the specified scope, the server will return the
error attributeOrValueExists / ERROR_DS_ATT_VAL_ALREADY_EXISTS.

The LDAP server returns success when the specified optional feature has been successfully enabled.

An LDIF sample that performs this operation is shown as follows.

dn:

changetype: modify

add: enableOptionalFeature

enableOptionalFeature: cn=Partitions,cn=Configuration,DC=Contoso,DC=Com:766DDCD8-ACD0-445E-

F3B9-A7F9B6744F2A

-

3.1.1.3.3.29 dumpReferences

This operation is triggered by setting the attribute to the DN of an existing object. The requester
must be a member of the BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation for the object whose DN is
"CN=TestObject,CN=Users,DC=Fabrikam,DC=com":

changetype: modify

add: dumpReferences

dumpReferences: CN=TestObject,CN=Users,DC=Fabrikam,DC=com

-

192 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The effects of dumpReferences are outside the state model. An update of dumpReferences causes all

attributes that reference the given DN and all objects containing those attributes to be written to a

text file on the DC's disk.

3.1.1.3.3.30 dumpLinks

The type of modification made to the dumpLinks attribute and the values specified in the LDAP
Modify operation have no significance. The requester must be a member of the
BUILTIN\Administrators group (section 6.1.1.4.12.2).

The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: dumpLinks

dumpLinks: 1

-

The effects of dumpLinks are outside the state model. An update of dumpLinks causes the portion of
the contents of the DC's database relating to link values to be written to a text file on the DC's disk.

3.1.1.3.3.31 schemaUpdateIndicesNow

The requester must have the "Update-Schema-Cache" control access right on the nTDSDSA object
for the DC or on the root of the schema NC. This operation is supported only when the
fDisableAutoIndexingOnSchemaUpdate heuristic (section 6.1.1.2.4.1.2) is "2". If
fDisableAutoIndexingOnSchemaUpdate is not "2", the operation fails with an error. After the
completion of this operation, the subschema exposed by the server reflects the current state of the

schema as defined by the attributeSchema and classSchema objects in the schema NC.

The type of modification can be add or replace, and the values specified in the LDAP modify
operation do not matter. The following shows an LDIF sample that performs this operation.

dn:

changetype: modify

add: schemaUpdateIndicesNow

schemaUpdateIndicesNow: 1

-

The other effects of schemaUpdateIndicesNow are outside the state model. An update of

schemaUpdateIndicesNow causes the DC to verify its data indices. See section 3.1.1.3.4.1.32.1 for a
note on indices.

3.1.1.3.3.32 null

The type of modification made to the null attribute and the values specified in the LDAP Modify
operation have no significance. Writing to this attribute has no effect.

3.1.1.3.4 LDAP Extensions

This section describes the extensions to LDAP that are supported by Active Directory DCs in
Windows 2000 operating system, Windows Server 2003 operating system, Active Directory

Application Mode (ADAM), Windows Server 2008 operating system, Windows Server 2008 R2

193 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

operating system, Windows Server 2012 operating system, and Windows Server 2012 R2 operating
system. These extensions are:

LDAP extended controls

LDAP extended operations

LDAP capabilities

Matching rules

SASL mechanisms

Policies

Configurable settings

IP Deny list

3.1.1.3.4.1 LDAP Extended Controls

LDAP extended controls are an extensibility mechanism in version 3 of LDAP, as discussed in

[RFC2251] section 4.1.12. The following sections describe the LDAP extended controls implemented
by DCs in Windows 2000 operating system, Windows Server 2003 operating system, Active
Directory Application Mode (ADAM), Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server
2012 R2 operating system (both AD DS and AD LDS).

The LDAP extended controls supported by a DC are exposed as OIDs in the supportedControl
attribute of the rootDSE. Each OID corresponds to a human-readable name, as shown in the

following table.

Extended control name OID

LDAP_PAGED_RESULT_OID_STRING 1.2.840.113556.1.4.319

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID 1.2.840.113556.1.4.521

LDAP_SERVER_DIRSYNC_OID 1.2.840.113556.1.4.841

LDAP_SERVER_DOMAIN_SCOPE_OID 1.2.840.113556.1.4.1339

LDAP_SERVER_EXTENDED_DN_OID 1.2.840.113556.1.4.529

LDAP_SERVER_GET_STATS_OID 1.2.840.113556.1.4.970

LDAP_SERVER_LAZY_COMMIT_OID 1.2.840.113556.1.4.619

LDAP_SERVER_PERMISSIVE_MODIFY_OID 1.2.840.113556.1.4.1413

LDAP_SERVER_NOTIFICATION_OID 1.2.840.113556.1.4.528

LDAP_SERVER_RESP_SORT_OID 1.2.840.113556.1.4.474

LDAP_SERVER_SD_FLAGS_OID 1.2.840.113556.1.4.801

LDAP_SERVER_SEARCH_OPTIONS_OID 1.2.840.113556.1.4.1340

http://go.microsoft.com/fwlink/?LinkId=90325

194 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name OID

LDAP_SERVER_SORT_OID 1.2.840.113556.1.4.473

LDAP_SERVER_SHOW_DELETED_OID 1.2.840.113556.1.4.417

LDAP_SERVER_TREE_DELETE_OID 1.2.840.113556.1.4.805

LDAP_SERVER_VERIFY_NAME_OID 1.2.840.113556.1.4.1338

LDAP_CONTROL_VLVREQUEST 2.16.840.1.113730.3.4.9

LDAP_CONTROL_VLVRESPONSE 2.16.840.1.113730.3.4.10

LDAP_SERVER_ASQ_OID 1.2.840.113556.1.4.1504

LDAP_SERVER_QUOTA_CONTROL_OID 1.2.840.113556.1.4.1852

LDAP_SERVER_RANGE_OPTION_OID 1.2.840.113556.1.4.802

LDAP_SERVER_SHUTDOWN_NOTIFY_OID 1.2.840.113556.1.4.1907

LDAP_SERVER_FORCE_UPDATE_OID 1.2.840.113556.1.4.1974

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID 1.2.840.113556.1.4.1948

LDAP_SERVER_RODC_DCPROMO_OID 1.2.840.113556.1.4.1341

LDAP_SERVER_DN_INPUT_OID 1.2.840.113556.1.4.2026

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID 1.2.840.113556.1.4.2065

LDAP_SERVER_SHOW_RECYCLED_OID 1.2.840.113556.1.4.2064

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID 1.2.840.113556.1.4.2066

LDAP_SERVER_DIRSYNC_EX_OID 1.2.840.113556.1.4.2090

LDAP_SERVER_UPDATE_STATS_OID 1.2.840.113556.1.4.2205

LDAP_SERVER_TREE_DELETE_EX_OID 1.2.840.113556.1.4.2204

LDAP_SERVER_SEARCH_HINTS_OID 1.2.840.113556.1.4.2206

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID 1.2.840.113556.1.4.2211

LDAP_SERVER_POLICY_HINTS_OID 1.2.840.113556.1.4.2239

LDAP_SERVER_SET_OWNER_OID 1.2.840.113556.1.4.2255

LDAP_SERVER_BYPASS_QUOTA_OID 1.2.840.113556.1.4.2256

The following table lists the set of LDAP extended controls supported in each Windows Server

operating system or ADAM version.

195 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name

Windo

ws 200

0

Wind

ows

Serve

r 200

3

Wind

ows

Serve

r 200

3

opera

ting

syste

m

with

Servic

e

Pack

1

(SP1)

AD

A

M

RT

W

AD

A

M

SP

1

Wind

ows

Serve

r 200

8

Windo

ws

Server

2008 R

2

Win

dow

s

Serv

er

201

2

Win

dow

s

Serv

er

201

2 R2

LDAP_PAGED_RESULT_O

ID_STRING

X X X X X X X X X

LDAP_SERVER_CROSSD

OM_MOVE_TARGET_OID

X X X X X X X X X

LDAP_SERVER_DIRSYNC

_OID

X X X X X X X X X

LDAP_SERVER_DOMAIN_

SCOPE_OID

X X X X X X X X X

LDAP_SERVER_EXTENDE

D_DN_OID

X X X X X X X X X

LDAP_SERVER_GET_STA

TS_OID

X X X X X X X X X

LDAP_SERVER_LAZY_CO

MMIT_OID

X X X X X X X X X

LDAP_SERVER_PERMISS

IVE_MODIFY_OID

X X X X X X X X X

LDAP_SERVER_NOTIFICA

TION_OID

X X X X X X X X X

LDAP_SERVER_RANGE_O

PTION_OID*

X X X X X X X X X

LDAP_SERVER_RESP_SO

RT_OID

X X X X X X X X X

LDAP_SERVER_SD_FLAG

S_OID

X X X X X X X X X

LDAP_SERVER_SEARCH_

OPTIONS_OID

X X X X X X X X X

LDAP_SERVER_SORT_OI

D

X X X X X X X X X

LDAP_SERVER_SHOW_D

ELETED_OID

X X X X X X X X X

196 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name

Windo

ws 200

0

Wind

ows

Serve

r 200

3

Wind

ows

Serve

r 200

3

opera

ting

syste

m

with

Servic

e

Pack

1

(SP1)

AD

A

M

RT

W

AD

A

M

SP

1

Wind

ows

Serve

r 200

8

Windo

ws

Server

2008 R

2

Win

dow

s

Serv

er

201

2

Win

dow

s

Serv

er

201

2 R2

LDAP_SERVER_TREE_DE

LETE_OID

X X X X X X X X X

LDAP_SERVER_VERIFY_

NAME_OID

X X X X X X X X X

LDAP_CONTROL_VLVREQ

UEST

 X X X X X X X X

LDAP_CONTROL_VLVRES

PONSE

 X X X X X X X X

LDAP_SERVER_ASQ_OID X X X X X X X X

LDAP_SERVER_QUOTA_C

ONTROL_OID

 X X X X X X X X

LDAP_SERVER_SHUTDO

WN_NOTIFY_OID**

 X X X X X X

LDAP_SERVER_FORCE_U

PDATE_OID

 X X X X

LDAP_SERVER_RANGE_R

ETRIEVAL_NOERR_OID

 X X X X X

LDAP_SERVER_RODC_D

CPROMO_OID

 X X X X

LDAP_SERVER_DN_INPU

T_OID

 X X X X

LDAP_SERVER_SHOW_D

EACTIVATED_LINK_OID

 X X X

LDAP_SERVER_SHOW_R

ECYCLED_OID

 X X X

LDAP_SERVER_POLICY_

HINTS_DEPRECATED_OI

D

 X X X

LDAP_SERVER_DIRSYNC

_EX_OID

 X X

197 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name

Windo

ws 200

0

Wind

ows

Serve

r 200

3

Wind

ows

Serve

r 200

3

opera

ting

syste

m

with

Servic

e

Pack

1

(SP1)

AD

A

M

RT

W

AD

A

M

SP

1

Wind

ows

Serve

r 200

8

Windo

ws

Server

2008 R

2

Win

dow

s

Serv

er

201

2

Win

dow

s

Serv

er

201

2 R2

LDAP_SERVER_UPDATE_

STATS_OID

 X X

LDAP_SERVER_TREE_DE

LETE_EX_OID

 X X

LDAP_SERVER_SEARCH_

HINTS_OID

 X X

LDAP_SERVER_EXPECTE

D_ENTRY_COUNT_OID

 X X

LDAP_SERVER_POLICY_

HINTS_OID

 X X

LDAP_SERVER_SET_OW

NER_OID

 X

LDAP_SERVER_BYPASS_

QUOTA_OID

 X

* This OID does not identify an LDAP extended control. Its presence in the supportedControl

attribute indicates that the DC is capable of range retrieval (see section 3.1.1.3.1.3.3) of LDAP
multivalued attributes. However, its absence does not indicate lack of support for range retrieval.
This OID is not present in the supportedControl attribute of Windows 2000 DCs, but those DCs do
support range retrieval.

** Although exposed on the supportedControl attribute of Windows Server 2003 SP1, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 DCs,

this control is only functional on DCs running the Small Business Server version of that operating
system.

A client sends a control to the DC by attaching a Control structure (defined in [RFC2251] section
4.1.12) to an LDAP operation. The client sets the controlType field to the control's OID and the
controlValue field as specified in the discussion for the control that follows. If the controlValue field

contains data that is not in conformance with the specification of the control, including the case
where the controlValue field contains data and the specification of the control states that the

controlValue field is omitted, then if the control is marked critical the server returns the error
unavailableCriticalExtension / ERROR_INVALID_PARAMETER. If the controlValue field is incorrect but
the control is not marked critical, the server ignores the control.

http://go.microsoft.com/fwlink/?LinkId=90325

198 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A control sent by the client to a DC is known as a request control. In some cases, the server
includes a corresponding Control structure attached to the response for the LDAP operation. These

controls, known as response controls, are discussed below in conjunction with the request control
that causes that response control to be returned.

A brief description of each LDAP control is given in the following table. Additionally, each control is
discussed in more detail in the sections that follow. References to ASN.1 and BER encoding in the
following section are references to [ITUX680] and [ITUX690], respectively.

Extended control name Description

LDAP_PAGED_RESULT_OID_STRING Splits the results of an LDAP search across multiple

result sets.

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID Used with an LDAP Modify DN operation to move an

object from one domain to another domain.

LDAP_SERVER_DIRSYNC_OID Used with an LDAP search operation to retrieve the

changes made to objects since a previous

LDAP_SERVER_DIRSYNC_OID search was performed.

LDAP_SERVER_DOMAIN_SCOPE_OID Instructs the DC not to generate LDAP continuation

references in response to a search operation.

LDAP_SERVER_EXTENDED_DN_OID Used to request than an LDAP search operation

return DNs in an extended format containing the

values of the objectGUID and objectSid attributes.

LDAP_SERVER_GET_STATS_OID Used with an LDAP search request to instruct the DC

to return statistical data related to how the search

was performed.

LDAP_SERVER_LAZY_COMMIT_OID Instructs the DC that it MAY sacrifice durability

guarantees on updates to improve performance.

LDAP_SERVER_PERMISSIVE_MODIFY_OID Instructs the DC that an LDAP modify should succeed

even if it attempts to add a value already present on

the attribute or remove a value not present on the

attribute.

LDAP_SERVER_NOTIFICATION_OID Used with an LDAP search operation to register the

client to be notified when changes are made to an

object in the directory.

LDAP_SERVER_SD_FLAGS_OID Instructs the DC which portions of a Windows

security descriptor to retrieve during an LDAP search

operation.

LDAP_SERVER_SEARCH_OPTIONS_OID Used to pass flags to the DC to control search

behaviors; specifically, to prevent LDAP continuation

references from being generated and to search all NC

replicas that are subordinate to the search base,

even if the search base is not instantiated on the DC.

LDAP_SERVER_SORT_OID and

LDAP_SERVER_RESP_SORT_OID

Request and response controls, respectively, for

instructing the DC to sort the search results.

LDAP_SERVER_SHOW_DELETED_OID Used with an LDAP operation to specify that

tombstones and deleted-objects are visible to the

http://go.microsoft.com/fwlink/?LinkId=89923
http://go.microsoft.com/fwlink/?LinkId=89924
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

199 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name Description

operation.

LDAP_SERVER_TREE_DELETE_OID Used with an LDAP delete operation to cause the

server to recursively delete the entire subtree of

objects located under the object specified in the

search request (including the specified object).

LDAP_SERVER_VERIFY_NAME_OID Permits the client to specify which GC the DC should

use when processing an add or modify request to

verify the existence of any objects pointed to by DN

attribute values.

LDAP_CONTROL_VLVREQUEST and

LDAP_CONTROL_VLVRESPONSE

Request and response control, respectively, used

with an LDAP search operation to retrieve a "sliding

window" subset of the objects that satisfy the search

request.

LDAP_SERVER_ASQ_OID Used to specify that an LDAP search operation should

not be performed against the object specified as the

base in the search, but rather against the set of

objects named by a specified attribute of Object(DS-

DN) syntax on the base object.

LDAP_SERVER_QUOTA_CONTROL_OID Used with an LDAP search operation to retrieve the

quota of a user.

LDAP_SERVER_RANGE_OPTION_OID Indicates that the server is capable of range retrieval

(see section 3.1.1.3.1.3.3).

LDAP_SERVER_SHUTDOWN_NOTIFY_OID Used with an LDAP search operation to cause the

client to be notified when the DC is shutting down.

LDAP_SERVER_FORCE_UPDATE_OID When attached to an LDAP update operation, causes

the DC to perform the update even if that update

would not affect the state of the DC.

LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID Instructs the DC that, when performing a search

using range retrieval (see section 3.1.1.3.1.3.3) on

an attribute whose values are forward link values or

back link values and the value of low is greater than

or equal to the number of values in the attribute, no

error should be returned.

LDAP_SERVER_RODC_DCPROMO_OID This control is used as part of the process of

promoting a computer to be an RODC.

LDAP_SERVER_DN_INPUT_OID This control is used to specify the DN of an object

during an LDAP operation. Currently this control is

used only while retrieving the constructed attribute

msDS-IsUserCachableAtRodc (see section

3.1.1.3.4.1.24).

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID Used with an LDAP search operation to specify that

link attributes that refer to deleted-objects are visible

to the search operation. If used in conjunction with

LDAP_SERVER_SHOW_DELETED_OID or

LDAP_SERVER_SHOW_RECYCLED_OID, link

attributes that are stored on deleted-objects are also

%5bMS-ADA2%5d.pdf

200 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended control name Description

visible to the search operation. This applies both to

the search filter and the set of attributes returned by

the search operation.

LDAP_SERVER_SHOW_RECYCLED_OID Used with an LDAP operation to specify that

tombstones, deleted-objects, and recycled-objects

are visible to the operation.

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID The

LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID

control has the exact semantics and behaviors as

LDAP_SERVER_POLICY_HINTS_OID (section

3.1.1.3.4.1.27); this control MAY be used by clients

when the server does not support

LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD

use LDAP_SERVER_POLICY_HINTS_OID when it is

supported by the server.

LDAP_SERVER_DIRSYNC_EX_OID Used with an LDAP search operation to retrieve the

changes made to objects since a previous

LDAP_SERVER_DIRSYNC_EX_OID search was

performed.

LDAP_SERVER_UPDATE_STATS_OID The LDAP_SERVER_UPDATE_STATS_OID control

indicates that the requester requires statistics from

the DC.

LDAP_SERVER_TREE_DELETE_EX_OID Used with an LDAP delete operation to cause the

server to recursively delete the entire subtree of

objects, up to a specified number of objects, located

under the object specified in the search request

(including the specified object).

LDAP_SERVER_SEARCH_HINTS_OID Provides hints to the DC during LDAP search

operations.

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID Monitors the result of an LDAP search operation and

potentially modifies the return code.

LDAP_SERVER_POLICY_HINTS_OID Used with an LDAP operation to enforce password

history policies during password set.

LDAP_SERVER_SET_OWNER_OID Used with an LDAP add operation to set the owner of

the object to a SID other than that of the requester.

LDAP_SERVER_BYPASS_QUOTA_OID Used with an LDAP add operation to specify that

quota limits do not apply for the add operation.

3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING

This control, which is used as both a request control and a response control, is documented in
[RFC2696].

DCs limit the number of objects that can be returned in a single search operation to the value

specified by the MaxPageSize policy defined in section 3.1.1.3.4.6. The use of the
LDAP_PAGED_RESULT_OID_STRING control permits clients to perform searches that return more

http://go.microsoft.com/fwlink/?LinkId=91352

201 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

objects than this limit by splitting the search into multiple searches, each of which returns no more
objects than this limit.

3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID

The LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control is used with an LDAP Modify DN
operation to instruct the DC to move an object from one domain to another (see the Modify DN
operation in section 3.1.1.5). This control is used by the client when moving an object from one
domain to another. The client sends the LDAP Modify DN operation to which this control is attached
to a DC in the domain containing the object to be moved. If the client does not specify the
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control in the LDAP Modify DN request, then the
server interprets the update as an intradomain Modify DN operation.

When operating as AD LDS, a DC rejects this control with the error operationsError /
<unrestricted>.

When sending this control to the DC, the controlValue field is set to a UTF-8 string containing the
fully qualified domain name of a DC in the domain to which the object is to be moved. The string

is not BER-encoded. Sending this control to the DC does not cause the server to include any controls
in its response.

3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID

The LDAP_SERVER_DIRSYNC_OID control is used with an LDAP search operation to retrieve the
changes made to objects since a previous search with an LDAP_SERVER_DIRSYNC_OID control was
performed. The LDAP_SERVER_DIRSYNC_OID control can only be used to monitor for changes
across an entire NC replica, not a subtree within an NC replica.

When sending this control to the DC, the controlValue field is set to the BER encoding of the

following ASN.1 structure.

DirSyncRequestValue ::= SEQUENCE {

 Flags INTEGER

 MaxBytes INTEGER

 Cookie OCTET STRING

}

The Flags value has the following format presented in big-endian byte order. X denotes unused bits

set to 0 by the client and ignored by the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

I

V

X X X X X X X X X X X X X X X X X P

D

O

X A

F

O

X X X X X X X X X X O

S

The Flags value is a combination of zero or more bit flags from the following table, and is used to
specify additional behaviors for the LDAP_SERVER_DIRSYNC_OID control.

%5bMS-GLOS%5d.pdf

202 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Bit flag name and value Description

LDAP_DIRSYNC_OBJECT_SECURITY (OS)

0x00000001

Windows Server 2003 operating system, Windows

Server 2008 operating system, Windows Server 2008 R2

operating system, Windows Server 2012 operating

system, and Windows Server 2012 R2 operating system:

If this flag is present, the client can only view objects and

attributes that are otherwise accessible to the client. If

this flag is not present, the server checks if the client has

access rights to read the changes in the NC.

Windows 2000 operating system: Not supported.

LDAP_DIRSYNC_ANCESTORS_FIRST_ORDER

(AFO)

0x00000800

The server returns parent objects before child objects.

LDAP_DIRSYNC_PUBLIC_DATA_ONLY (PDO)

0x00002000

Windows Server 2003, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows

Server 2012 R2: This flag can optionally be passed to the

DC, but it has no effect.

Windows 2000: Not supported.

LDAP_DIRSYNC_INCREMENTAL_VALUES (IV)

0x80000000

Windows Server 2003, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows

Server 2012 R2: If this flag is not present, all of the

values, up to a server-specified limit, in a multivalued

attribute are returned when any value changes. If this flag

is present, only the changed values are returned, provided

the attribute is a forward link value.

Windows 2000: Not supported.

MaxBytes specifies the maximum number of bytes to return in the reply message.

The minimum value for MaxBytes is 0x100000. When a lower value is specified, the value is

ignored and the maximum number of bytes in the reply message is 0x100000.

The maximum value for MaxBytes is determined by the size, in bytes, of a response with the
maximum number of objects that can be returned in a single search as specified by the
MaxPageSize policy, section 3.1.1.3.4.6. When a higher value is specified, the value is ignored and
the maximum number of bytes in the reply message is the size, in bytes, of a response with the

MaxPageSize number of objects.

Cookie is an opaque value that was returned by the DC on a previous search request that included
the LDAP_SERVER_DIRSYNC_OID control. The contents of Cookie are defined by the server and
cannot be interpreted by the client. A search request with the LDAP_SERVER_DIRSYNC_OID control
attached will return the changes made to objects since the point in time when the previous search
request, which returned the value of Cookie that is being used in the current search request, took
place. If there was no previous LDAP_SERVER_DIRSYNC_OID search request, Cookie is NULL, in

which case the search will return all objects that satisfy the search request, along with a value of

Cookie to use for the next LDAP_SERVER_DIRSYNC_OID search request.

If the base of the search is not the root of an NC, and the LDAP_DIRSYNC_OBJECT_SECURITY bit in
the Flags field is not set, the server will return the error insufficientAccessRights /
ERROR_DS_DRA_ACCESS_DENIED. If the LDAP_DIRSYNC_OBJECT_SECURITY bit in the Flags field
is set, the server will return the error unwillingToPerform / <unrestricted>. If the search scope is
not subtree scope, the server will treat the search as if subtree scope was specified.

203 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Any valid LDAP search filter can be specified.

Any attributes can be requested in the search. Only those objects for which these attributes have
been created or modified since the time represented by Cookie will be considered for inclusion in
the search.

If the list of requested attributes contains an asterisk (*) plus some attribute, then the asterisk is
ignored. That is, the list is effectively equal to the list with only the attributes explicitly requested.

The search results MUST always contain the objectGUID and instanceType attributes of each object,
even if those attributes were not specified in the search request.

When the server receives a search request with the LDAP_SERVER_DIRSYNC_OID control attached
to it, it includes a response control in the search response. The controlType field of the returned
Control structure is set to the OID of the LDAP_SERVER_DIRSYNC_OID control, and the controlValue

is the BER encoding of the following ASN.1 structure.

DirSyncResponseValue ::= SEQUENCE {

 MoreResults INTEGER

 unused INTEGER

 CookieServer OCTET STRING

}

The structure of the controlValue in the response control is the same as the structure of the

controlValue in the request control, but the fields are interpreted differently. MoreResults is
nonzero if there are more changes to retrieve, unused is not used, and CookieServer is the value
to be used for Cookie in the next LDAP_SERVER_DIRSYNC_OID control sent in a search request to
the server.

Further details about how this control is processed are described in the pseudocode for the
ProcessDirSyncSearchRequest procedure in [MS-DRSR] section 5.114.3.

3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID

The LDAP_SERVER_DOMAIN_SCOPE_OID control is used to instruct the DC not to generate any
LDAP continuation references when performing an LDAP operation. The effect of this is to limit any
search using it to the single NC replica in which the object that serves as the root of the search is
located.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID

The LDAP_SERVER_EXTENDED_DN_OID control is used with an LDAP search request to cause the
DC to return extended DNs. The extended form of an object's DN includes a string representation of
the object's objectGUID attribute; for objects that have an objectSid attribute, the extended form

also includes a string representation of that attribute. The DC uses this extended DN for all DNs in
the LDAP search response. Attributes with Object(OR-Name) syntax are not affected by this control,
because in those cases, the DC always uses the DN form as specified in [RFC2253].

The extended DN format is as follows:

<GUID=guid_value>;<SID=sid_value>;dn

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327

204 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

where guid_value is the value of the object's objectGUID attribute, sid_value is the value of the
object's objectSid attribute, and dn is the object's RFC 2253 DN. For objects that do not have an

objectSid attribute, the format is instead as follows:

<GUID=guid_value>;dn

When sending this control to a Windows 2000 operating system DC, the controlValue field is
omitted. When sending this control to a Windows Server 2003 operating system, Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, or Windows Server 2012 R2 operating system DC, the controlValue field is either
omitted or is set to the BER encoding of the following ASN.1 structure:

ExtendedDNRequestValue ::= SEQUENCE {

 Flag INTEGER

}

If the controlValue field is omitted, the value of Flag is treated as 0.

If the value of Flag is 0, the DC returns the values of the objectGUID and objectSid attributes as a
hexadecimal representation of their binary format.

If the value of Flag is 1, the DC returns the GUID in dashed-string format ([RFC4122] section 3)
and the SID in SDDL SID string format ([MS-DTYP] section 2.4.2.1). The returned SDDL SID string
begins with "S-".

If the value of Flag is neither 0 nor 1, then it does not conform with the specification of this control

and the server behaves as described in section 3.1.1.3.4.1.

For example, setting Flag to 0 (or omitting the controlValue field) might return the following
extended DN:

<GUID=b3d4bfbd3c45ee4298e27b4a698a61b8>;<SID=01050000000000051500000061eb5b8c50e
f705befda808bf4010000>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com

While setting Flag to 1 would return the same object's extended DN in the following form:

<GUID=bdbfd4b3-453c-42ee-98e2-7b4a698a61b8>;<SID=S-1-5-21-2354834273-1534127952-
2340477679-500>;CN=Administrator, CN=Users,DC=Fabrikam,DC=com

Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID

The LDAP_SERVER_GET_STATS_OID control is used with an LDAP search operation.

When sending this control to a DC running Windows 2000 operating system, the client omits the

controlValue field. When sending this control to a DC running Windows Server 2003 operating
system, Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, or Windows Server 2012 R2 operating system, the client

either omits the controlValue field or sets the controlValue field to one of the 32-bit unsigned integer
values in the following table. The values are not BER-encoded.

Value name Value Description

SO_NORMAL 0 Perform the search as if no LDAP_SERVER_GET_STATS_OID control was

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-DTYP%5d.pdf

205 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value name Value Description

included in the search request.

SO_STATS 1 Perform the search and return data related to the resources consumed

performing the search, as well as the actual search results.

SO_ONLY_OPTIMIZE 2 Return data related to how the search would be performed, but do not

actually return the search results.

SO_EXTENDED_FMT 4 Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

and Windows Server 2012 R2: Returns the data in an alternative format

documented later in this section.

Windows 2000, Windows Server 2003, and Active Directory Application

Mode (ADAM): Not supported.

Omitting the controlValue field is equivalent to specifying the SO_STATS value.

When the server receives a search request with the LDAP_SERVER_GET_STATS_OID control
attached to it, it includes a response control in the search response. The controlType field of the
returned Control structure is set to the OID of the LDAP_SERVER_GET_STATS_OID control. The
controlValue field is included in the returned Control structure.

The response to this control contains information outside the state model. This control instructs the
server to return internal data related to how the LDAP search was performed.

For Windows 2000 DCs, the returned controlValue is the BER encoding of the following ASN.1
structure:

StatsResponseValueV1 ::= SEQUENCE {

 threadCountTag INTEGER

 threadCount INTEGER

 coreTimeTag INTEGER

 coreTime INTEGER

 callTimeTag INTEGER

 callTime INTEGER

 searchSubOperationsTag INTEGER

 searchSubOperations INTEGER

}

where threadCountTag, coreTimeTag, callTimeTag, and searchSubOperationsTag are equal

to 1, 2, 3, and 4, respectively. threadCount is the number of threads that were processing LDAP
requests on the DC at the time the search operation was performed, coreTime is the time, in

milliseconds, that the core logic in the DC spent processing the request, callTime is the overall
time, in milliseconds, that the DC spent processing the request, and searchSubOperations is the
number of individual operations that the DC performed in processing the request.

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows 2000 DC MUST return the value 0
for the suboperations field of this structure.

For Windows Server 2003 and ADAM DCs, the controlValue of the response control is the BER
encoding of the following ASN.1 structure.

StatsResponseValueV2 ::= SEQUENCE {

 threadCountTag INTEGER

206 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 threadCount INTEGER

 callTimeTag INTEGER

 callTime INTEGER

 entriesReturnedTag INTEGER

 entriesReturned INTEGER

 entriesVisitedTag INTEGER

 entriesVisited INTEGER

 filterTag INTEGER

 filter OCTET STRING

 indexTag INTEGER

 index OCTET STRING

}

In this structure, threadCountTag, threadCount, callTimeTag, and callTime are as in the

Windows 2000 structure. entriesReturnedTag, entriesVisitedTag, filterTag, and indexTag are
5, 6, 7, and 8, respectively. entriesReturned is the number of objects returned in the search
result. entriesVisited is the number of objects that the DC considered for inclusion in the search

result. filter is a UTF-8 string that represents the optimized form of the search filter that is used by
the DC to perform a search. index is a string, defined by the system default code page, that
indicates which database indexes were used by the DC to perform the search.

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows Server 2003 or ADAM DC MUST
return the value 0 for the entriesReturned and entriesVisited fields of this structure. The server
MUST return NULL for the filter and index fields of this structure.

For Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server

2012 R2 DCs, the controlValue of the response control is the BER encoding of the following ASN.1
structure if the SO_EXTENDED_FMT flag is not specified.

StatsResponseValueV3 ::= SEQUENCE {

 threadCountTag INTEGER

 threadCount INTEGER

 callTimeTag INTEGER

 callTime INTEGER

 entriesReturnedTag INTEGER

 entriesReturned INTEGER

 entriesVisitedTag INTEGER

 entriesVisited INTEGER

 filterTag INTEGER

 filter OCTET STRING

 indexTag INTEGER

 index OCTET STRING

 pagesReferencedTag INTEGER

 pagesReferenced INTEGER

 pagesReadTag INTEGER

 pagesRead INTEGER

 pagesPrereadTag INTEGER

 pagesPreread INTEGER

 pagesDirtiedTag INTEGER

 pagesDirtied INTEGER

 pagesRedirtiedTag INTEGER

 pagesRedirtied INTEGER

 logRecordCountTag INTEGER

 logRecordCount INTEGER

 logRecordBytesTag INTEGER

 logRecordBytes INTEGER

}

207 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

In this structure, fields with the same name as fields in the Windows Server 2003 structure are as in

the Windows Server 2003 structure. pagesReferencedTag, pagesReadTag, pagesPrereadTag,
pagesDirtiedTag, pagesRedirtiedTag, logRecordCountTag, and logRecordCountBytesTag
are 9, 10, 11, 12, 13, 14, and 15, respectively. pagesReferenced is the number of database pages
referenced by the DC in processing the search. pagesRead is the number of database pages read
from disk, and pagesPreread is the number of database pages preread from disk by the DC in
processing the search. pagesDirtied is the number of clean database pages modified by the DC in

processing the search, while pagesRedirtied is the number of previously modified database pages
that were modified by the DC in processing the search. logRecordCount and logRecordBytes are
the number and size in bytes, respectively, of database log records generated by the DC in
processing the search.

For Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server
2012 R2 DCs, if the SO_EXTENDED_FMT flag is specified, an alternative format is used for the

controlValue of the response control instead of the format shown previously. Unlike the previous

formats in which each statistic is assigned a fixed position within the structure, in the alternative
format the ordering of the statistics can change. Rather than relying on position, each statistic has
an associated human-readable string that specifies what that statistic is. Additionally, the use of
these associated strings alleviates the need to hard-code the positional information into the client-
side parser of the response control, permitting the DC to be updated to return addition statistics
without necessitating a corresponding client-side change.

When using the alternative format, the controlValue of the response control is the BER encoding of
the following ASN.1 structure.

StatsResponseValueV4 ::= SEQUENCE OF SEQUENCE {

 statisticName OCTET STRING

 CHOICE {

 [0] intStatistic INTEGER

 [1] stringStatistic OCTET STRING

 }

}

If the human-readable string in an element of the StatsResponseValueV4 structure is the empty

string, then the element contains an undefined value of no significance.

Effectively, this is an array of statistics, in which each statistic has a human-readable name (the
statisticName field) and a value. If it is an integer-valued statistic, the value is stored in the
intStatistic field. If it is a string-valued statistic, the value is stored in the stringStatistic field.

When the SO_EXTENDED_FMT flag is specified, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2 DCs return the same statistics as if the flag

was not specified. The only difference is the format used to return the statistics. The wording of the
statisticName field is implementation-defined. Currently, the wording as it maps to each statistic
as specified in the non-SO_EXTENDED_FMT version of the structure is as follows.

threadCount "Thread count"

callTime "Call time (in ms)"

entriesReturned "Entries Returned"

entriesVisited "Entries Visited"

filter "Used Filter"

index "Used Indexes"

208 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pagesReferenced "Pages Referenced"

pagesRead "Pages Read From Disk"

pagesPreread "Pages Pre-read From Disk"

pagesDirtied "Clean Pages Modified"

pagesRedirtied "Dirty Pages Modified"

logRecordCount "Log Records Generated"

logRecordBytes "Log Record Bytes Generated"

If the client does not have the SE_DEBUG_PRIVILEGE, a Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, or Windows Server 2012 R2 DC MUST return the value 0 for
the entriesReturned, entriesVisited, pagesReferenced, pagesRead, pagesPreread,
pagesDirtied, pagesRedirtied, logRecordCount, and ogRecordBytes fields, regardless of the
format in which the data is returned. The server MUST return NULL for the filter and index fields,
regardless of the format in which the data is returned.

3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID

The LDAP_SERVER_LAZY_COMMIT_OID control is used to modify the behavior of any LDAP
operation. The presence of this control instructs the DC that it may sacrifice durability guarantees on
updates to improve performance.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID

The LDAP_SERVER_PERMISSIVE_MODIFY_OID control is used to modify the behavior of an LDAP
modify operation. An LDAP modify operation normally returns an error if it attempts to add an
attribute that already exists on an object to that object (or, in the case of multivalued attributes, it
attempts to add a value that is already present in the attribute). An LDAP modify operation will also
normally fail if it attempts to delete an attribute that does not exist on the specified object or that

does not contain the value specified in the deletion request. With this control, adding a value to an

attribute that already exists and already contains the value to be added will cause the server to
return success even though no modification was actually performed by the server. Similarly,
deletion of an attribute that does not exist or does not contain the specified value will return
success.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID

The LDAP_SERVER_NOTIFICATION_OID control is used with an LDAP search operation to register
the client that is to be notified when changes are made to an object in the directory.

Notifications are asynchronous operations. When the DC receives a search request with this control
attached, it does not immediately send a response to the request. Instead, when an object is

modified, if that object falls within the scope of the search request to which the

LDAP_SERVER_NOTIFICATION_OID control was attached, the DC sends a SearchEntry response that
contains the modified object to the client, using the messageID from the original search request
(SearchEntry and messageID are defined in [RFC2251] section 4.1.1). The SearchEntry response
will contain those attributes of the object that were requested in the original request. These
attributes are not necessarily the attributes that were modified. A client indicates that it no longer

http://go.microsoft.com/fwlink/?LinkId=90325

209 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

requires notifications by sending an LDAP abandon operation, specifying the messageID of the
original search request.

LDAP search requests that include this control are subject to the following restrictions:

The only filter permitted in the search request is "(objectclass = *)". The server will return the

error unwillingToPerform / <unrestricted> if this is not the case.

Base, one-level, and subtree search scopes are permitted. For Windows 2000 operating system

DCs, if the base DN specified in a subtree search is not the root of an NC, the server returns the
error unwillingToPerform / <unrestricted>. Windows Server 2003 operating system, Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server
2012 operating system, and Windows Server 2012 R2 operating system DCs do not have this

restriction.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its eventual
responses.

3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID

LDAP_SERVER_RANGE_OPTION_OID, unlike the other controls discussed in this section, does not
actually designate an LDAP extended control. Nonetheless, it is included in this discussion because
its OID is found in the supportedControl attribute of the DC's rootDSE. The presence of this OID
indicates that the DC supports range retrieval of multivalued attributes. Range retrieval is a
mechanism that permits attributes that have too many values to be retrieved in a single LDAP
search request to be retrieved via multiple LDAP search requests. Range retrieval is documented in
section 3.1.1.3.1.3.3.

Note that although this OID is not present in the supportedControl attribute of Windows 2000
operating system DCs, such DCs nonetheless support range retrieval.

3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID

The LDAP_SERVER_SD_FLAGS_OID control is used with an LDAP Search request to control the
portion of a Windows Security Descriptor to retrieve. The DC returns only the specified portion of the
security descriptors. It is also used with LDAP Add and Modify requests to control the portion of a

Windows security descriptor to modify. The DC modifies only the specified portion of the security
descriptor.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

SDFlagsRequestValue ::= SEQUENCE {

 Flags INTEGER

}

The Flags value has the following format presented in big-endian byte order. X denotes unused bits

that SHOULD be set to 0 by the client and that MUST be ignored by the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X S D G O

210 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

S

I

S

I

S

I

S

I

The Flags value is a combination of zero or more bit flags from the following table.

Bit flag name and value Portion of security descriptor to retrieve/update

OWNER_SECURITY_INFORMATION (OSI)

0x1

Owner identifier of the object.

GROUP_SECURITY_INFORMATION (GSI)

0x2

Primary group identifier.

DACL_SECURITY_INFORMATION (DSI)

0x4

Discretionary access control list (DACL) of the object.

SACL_SECURITY_INFORMATION (SSI)

0x8

System access control list (SACL) of the object.

Specifying Flags with no bits set, or not using the LDAP_SERVER_SD_FLAGS_OID control, is
equivalent to setting Flags to (OWNER_SECURITY_INFORMATION |
GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION |
SACL_SECURITY_INFORMATION). Sending this control to the DC does not cause the server to

include any controls in its response.

3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID

The LDAP_SERVER_SEARCH_OPTIONS_OID control is used with an LDAP Search request to control
various behaviors.

When sending this control to the DC, the controlValue field is set to the BER encoding of the

following ASN.1 structure.

SearchOptionsRequestValue ::= SEQUENCE {

 Flags INTEGER

}

The Flags value has the following format presented in big-endian byte order. X denotes unused bits

that SHOULD be set to 0 by the client and that MUST be ignored by the server.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X S

S

F

P

R

S

S

F

D

S

%5bMS-GLOS%5d.pdf

211 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The Flags value is a combination of zero or more bit flags from the following table.

Bit flag name and value Description

SERVER_SEARCH_FLAG_DOMAIN_SCOPE

(SSFDS)

1

Prevents continuation references from being generated when

the search results are returned. This performs the same

function as the LDAP_SERVER_DOMAIN_SCOPE_OID control.

SERVER_SEARCH_FLAG_PHANTOM_ROOT

(SSFPR)

2

For AD DS, instructs the server to search all NC replicas

except application NC replicas that are subordinate to the

search base, even if the search base is not instantiated on

the server. For AD LDS, the behavior is the same except

that it also includes application NC replicas in the search.

For AD DS and AD LDS, this will cause the search to be

executed over all NC replicas (except for application NCs on

AD DS DCs) held on the DC that are subordinate to the

search base. This enables search bases such as the empty

string, which would cause the server to search all of the NC

replicas (except for application NCs on AD DS DCs) that it

holds.

Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID

This request control and its corresponding response control, LDAP_SERVER_RESP_SORT_OID, are
documented in [RFC2891].

DCs only support sorting on a single attribute at a time. Therefore, the client constructs a

SortKeyList that contains only one sequence. DCs running Windows 2000 operating system do not
support ordering rules when sorting, so the client omits the orderingRule field of the SortKeyList
when sending this control to a DC running Windows 2000; sorting uses the English: United States
sort order. Starting with Windows Server 2003 operating system, DCs support ordering rules for the

sort orders specified in the following table; if no ordering rule is specified, the DC uses the English:
United States sort order. Section 6.5 specifies, by reference to [MS-UCODEREF], the effect of each
sort order. Section 2.2.1 specifies the mapping between the sort orders that follow and the LCIDs

used in section 6.5.

Ordering rule OID Sort order

1.2.840.113556.1.4.1461 Afrikaans

1.2.840.113556.1.4.1462 Albanian

1.2.840.113556.1.4.1463 Arabic: Saudi Arabia

1.2.840.113556.1.4.1464 Arabic: Iraq

1.2.840.113556.1.4.1465 Arabic: Egypt

1.2.840.113556.1.4.1466 Arabic: Libya

1.2.840.113556.1.4.1467 Arabic: Algeria

1.2.840.113556.1.4.1468 Arabic: Morocco

1.2.840.113556.1.4.1469 Arabic: Tunisia

http://go.microsoft.com/fwlink/?LinkId=91357
%5bMS-UCODEREF%5d.pdf

212 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1470 Arabic: Oman

1.2.840.113556.1.4.1471 Arabic: Yemen

1.2.840.113556.1.4.1472 Arabic: Syria

1.2.840.113556.1.4.1473 Arabic: Jordan

1.2.840.113556.1.4.1474 Arabic: Lebanon

1.2.840.113556.1.4.1475 Arabic: Kuwait

1.2.840.113556.1.4.1476 Arabic: UAE

1.2.840.113556.1.4.1477 Arabic: Bahrain

1.2.840.113556.1.4.1478 Arabic: Qatar

1.2.840.113556.1.4.1479 Armenian

1.2.840.113556.1.4.1480 Assamese

1.2.840.113556.1.4.1481 Azeri: Latin

1.2.840.113556.1.4.1482 Azeri: Cyrillic

1.2.840.113556.1.4.1483 Basque

1.2.840.113556.1.4.1484 Belarussian

1.2.840.113556.1.4.1485 Bengali

1.2.840.113556.1.4.1486 Bulgarian

1.2.840.113556.1.4.1487 Burmese

1.2.840.113556.1.4.1488 Catalan

1.2.840.113556.1.4.1489 Chinese: Taiwan

1.2.840.113556.1.4.1490 Chinese: PRC

1.2.840.113556.1.4.1491 Chinese: Hong Kong SAR

1.2.840.113556.1.4.1492 Chinese: Singapore

1.2.840.113556.1.4.1493 Chinese: Macau SAR

1.2.840.113556.1.4.1494 Croatian

1.2.840.113556.1.4.1495 Czech

1.2.840.113556.1.4.1496 Danish

1.2.840.113556.1.4.1497 Dutch

1.2.840.113556.1.4.1498 Dutch:Belgium

1.2.840.113556.1.4.1499 English: United States

213 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1500 English: United Kingdom

1.2.840.113556.1.4.1665 English: Australia

1.2.840.113556.1.4.1666 English: Canada

1.2.840.113556.1.4.1667 English: New Zealand

1.2.840.113556.1.4.1668 English: Ireland

1.2.840.113556.1.4.1505 English: South Africa

1.2.840.113556.1.4.1506 English: Jamaica

1.2.840.113556.1.4.1507 English: Caribbean

1.2.840.113556.1.4.1508 English: Belize

1.2.840.113556.1.4.1509 English:Trinidad

1.2.840.113556.1.4.1510 English: Zimbabwe

1.2.840.113556.1.4.1511 English: Philippines

1.2.840.113556.1.4.1512 Estonian

1.2.840.113556.1.4.1513 Faeroese

1.2.840.113556.1.4.1514 Persian

1.2.840.113556.1.4.1515 Finnish

1.2.840.113556.1.4.1516 French: France

1.2.840.113556.1.4.1517 French: Belgium

1.2.840.113556.1.4.1518 French: Canada

1.2.840.113556.1.4.1519 French: Switzerland

1.2.840.113556.1.4.1520 French: Luxembourg

1.2.840.113556.1.4.1521 French: Monaco

1.2.840.113556.1.4.1522 Georgian

1.2.840.113556.1.4.1523 German: Germany

1.2.840.113556.1.4.1524 German: Switzerland

1.2.840.113556.1.4.1525 German: Austria

1.2.840.113556.1.4.1526 German: Luxembourg

1.2.840.113556.1.4.1527 German: Liechtenstein

1.2.840.113556.1.4.1528 Greek

1.2.840.113556.1.4.1529 Gujarati

214 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1530 Hebrew

1.2.840.113556.1.4.1531 Hindi

1.2.840.113556.1.4.1532 Hungarian

1.2.840.113556.1.4.1533 Icelandic

1.2.840.113556.1.4.1534 Indonesian

1.2.840.113556.1.4.1535 Inukitut

1.2.840.113556.1.4.1536 Italian:Italy

1.2.840.113556.1.4.1537 Italian:Switzerland

1.2.840.113556.1.4.1538 Japanese

1.2.840.113556.1.4.1539 Kannada

1.2.840.113556.1.4.1540 Kashmiri Arabic

1.2.840.113556.1.4.1541 Kashmiri

1.2.840.113556.1.4.1542 Kazakh

1.2.840.113556.1.4.1543 Khmer

1.2.840.113556.1.4.1544 Kirghiz

1.2.840.113556.1.4.1545 Konkani

1.2.840.113556.1.4.1546 Korean

1.2.840.113556.1.4.1547 Korean:Johab

1.2.840.113556.1.4.1548 Latvian

1.2.840.113556.1.4.1549 Lithuanian

1.2.840.113556.1.4.1550 Macedonian FYROM

1.2.840.113556.1.4.1551 Malaysian

1.2.840.113556.1.4.1552 Malay Brunei Darussalam

1.2.840.113556.1.4.1553 Malayalam

1.2.840.113556.1.4.1554 Maltese

1.2.840.113556.1.4.1555 Manipuri

1.2.840.113556.1.4.1556 Marathi

1.2.840.113556.1.4.1557 Nepali:Nepal

1.2.840.113556.1.4.1558 Norwegian:Bokmal

1.2.840.113556.1.4.1559 Norwegian:Nynorsk

215 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1560 Odia

1.2.840.113556.1.4.1561 Polish

1.2.840.113556.1.4.1562 Portuguese:Brazil

1.2.840.113556.1.4.1563 Portuguese:Portugal

1.2.840.113556.1.4.1564 Punjabi

1.2.840.113556.1.4.1565 Romanian

1.2.840.113556.1.4.1566 Russian

1.2.840.113556.1.4.1567 Sanskrit

1.2.840.113556.1.4.1568 Serbian:Cyrillic

1.2.840.113556.1.4.1569 Serbian:Latin

1.2.840.113556.1.4.1570 Sindhi:India

1.2.840.113556.1.4.1571 Slovak

1.2.840.113556.1.4.1572 Slovenian

1.2.840.113556.1.4.1573 Spanish: SpainTraditional Sort

1.2.840.113556.1.4.1574 Spanish: Mexico

1.2.840.113556.1.4.1575 Spanish: SpainModern Sort

1.2.840.113556.1.4.1576 Spanish: Guatemala

1.2.840.113556.1.4.1577 Spanish: Costa Rica

1.2.840.113556.1.4.1578 Spanish: Panama

1.2.840.113556.1.4.1579 Spanish: Dominican Republic

1.2.840.113556.1.4.1580 Spanish: Venezuela

1.2.840.113556.1.4.1581 Spanish: Colombia

1.2.840.113556.1.4.1582 Spanish: Peru

1.2.840.113556.1.4.1583 Spanish: Argentina

1.2.840.113556.1.4.1584 Spanish: Ecuador

1.2.840.113556.1.4.1585 Spanish: Chile

1.2.840.113556.1.4.1586 Spanish: Uruguay

1.2.840.113556.1.4.1587 Spanish: Paraguay

1.2.840.113556.1.4.1588 Spanish: Bolivia

1.2.840.113556.1.4.1589 Spanish: El Salvador

216 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1590 Spanish: Honduras

1.2.840.113556.1.4.1591 Spanish: Nicaragua

1.2.840.113556.1.4.1592 Spanish: Puerto Rico

1.2.840.113556.1.4.1593 Swahili: Kenya

1.2.840.113556.1.4.1594 Swedish

1.2.840.113556.1.4.1595 Swedish: Finland

1.2.840.113556.1.4.1596 Tamil

1.2.840.113556.1.4.1597 Tatar: Tatarstan

1.2.840.113556.1.4.1598 Telugu

1.2.840.113556.1.4.1599 Thai

1.2.840.113556.1.4.1600 Turkish

1.2.840.113556.1.4.1601 Ukrainian

1.2.840.113556.1.4.1602 Urdu: Pakistan

1.2.840.113556.1.4.1603 Urdu: India

1.2.840.113556.1.4.1604 Uzbek: Latin

1.2.840.113556.1.4.1605 Uzbek: Cyrillic

1.2.840.113556.1.4.1606 Vietnamese

1.2.840.113556.1.4.1607 Japanese: XJIS

1.2.840.113556.1.4.1608 Japanese: Unicode

1.2.840.113556.1.4.1609 Chinese: Big5

1.2.840.113556.1.4.1610 Chinese: PRCP

1.2.840.113556.1.4.1611 Chinese: Unicode

1.2.840.113556.1.4.1612 Chinese: PRC

1.2.840.113556.1.4.1613 Chinese: BOPOMOFO

1.2.840.113556.1.4.1614 Korean: KSC

1.2.840.113556.1.4.1615 Korean: Unicode

1.2.840.113556.1.4.1616 German Phone Book

1.2.840.113556.1.4.1617 Hungarian: Default

1.2.840.113556.1.4.1618 Hungarian: Technical

1.2.840.113556.1.4.1619 Georgian: Traditional

217 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Ordering rule OID Sort order

1.2.840.113556.1.4.1620 Georgian: Modern

Windows Server 2008 operating system, Windows Server 2008 R2 operating system, Windows

Server 2012 operating system, and Windows Server 2012 R2 operating system support an
additional sort behavior called "phonetic display name sort". This behavior is triggered by specifying
"msDS-PhoneticDisplayName;extended" as the attributeType in the SortKeyList ([RFC2891] section
1.1). When this option is present, the DC checks that the LDAP request satisfies the following
requirements:

The operation is an LDAP search request.

The orderingRule field specifies the Japanese sort order (namely, "1.2.840.113556.1.4.1538").

The LDAP_CONTROL_VLVREQUEST control is attached to the search.

The search request has been sent to a global catalog port (port 3268 or 3269).

The scope of the search request is wholeSubtree.

The base object of the search request specifies the DN "".

The filter is set to (&(showInAddressBook=X)(displayName=*)), where X is a distinguished name

and there exists an object O such that O!objectClass = addressBookContainer and
O!distinguishedName = X.

If one or more of these criteria are not satisfied, the server returns the error unwillingToPerform /
<unrestricted>.

If all of these criteria are satisfied, the DC performs a phonetic display name sort. In this sort, the
search results are sorted on the msDS-PhoneticDisplayName attribute, using the Japanese sort
order, in the normal fashion, except that if an object O does not have a value for the msDS-
PhoneticDisplayName attribute but does have a value V for the displayName attribute, the server

treats V as the value of O!msDS-PhoneticDisplayName for the purposes of the sort.

For example, consider an unsorted search result set consisting of four objects, as shown in the
following table. Note that object #2 does not have a value for msDS-PhoneticDisplayName.

Object # msDS-PhoneticDisplayName value displayName value

1 A C

2 D

3 B E

4 F C

Assuming for the purpose of this example that the letters A...Z sort in the order {A, ..., Z}, the

results of performing a phonetic display name sort on the preceding data is the following.

Object # msDS-PhoneticDisplayName value displayName value

1 A C

http://go.microsoft.com/fwlink/?LinkId=91357
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

218 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Object # msDS-PhoneticDisplayName value displayName value

3 B E

2 D

4 F C

In particular, object #2 was placed before object #4 because the sort treated it as if it had the value
"D" for its msDS-PhoneticDisplayName attribute.

3.1.1.3.4.1.14 LDAP_SERVER_SHOW_DELETED_OID

The LDAP_SERVER_SHOW_DELETED_OID control is used with an LDAP operation to specify that

tombstones and deleted-objects should be visible to the operation. For example, when the control is
used with an LDAP search operation, the search results include any tombstones or deleted-objects
that match the search filter.

The following table compares the behavior of the two similar controls
LDAP_SERVER_SHOW_DELETED_OID and LDAP_SERVER_SHOW_RECYCLED_OID (section
3.1.1.3.4.1.26).

Extended control name Deleted-objects Tombstones Recycled-objects

LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible

LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID

The LDAP_SERVER_TREE_DELETE_OID control is used with an LDAP delete operation to cause the
server to recursively delete the entire subtree of objects located underneath the object specified in
the delete operation. The object specified in the delete operation is also deleted.

The server deletes between 1 and 16,384 objects. If the server does not delete the entire tree in a
single LDAP delete request, it MUST NOT delete the root of the tree (the object specified in the
delete operation), and MUST return the error code adminLimitExceeded /
ERROR_DS_TREE_DELETE_NOT_FINISHED.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID

The LDAP_SERVER_VERIFY_NAME_OID control is used with LDAP Add and Modify requests to

identify the global catalog server (GC server) that is used to verify the existence of any objects
pointed to by DN attribute values (as specified in section 3.1.1.1.6). If the DC needs to call a GC
server while processing the Add or Modify request, it calls the GC server specified in this control. If
this control is not used, the DC is free to call any GC server in the forest.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure:

%5bMS-ADA2%5d.pdf

219 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

VerifyNameRequestValue ::= SEQUENCE {

 Flags INTEGER

 ServerName OCTET STRING

}

where Flags is ignored and ServerName is a UTF-16 encoded Unicode string containing the FQDN

of the GC server to contact for verification. Sending this control to the DC does not cause the server
to include any controls in its response.

If the LDAP Add or Modify request needs to call a GC server and the server designated by this
control in the request is not available or is not a GC server, the Add or Modify request fails with the
error unavailable / <unrestricted>.

3.1.1.3.4.1.17 LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE

The LDAP_CONTROL_VLVREQUEST control is used with an LDAP search operation to retrieve a
subset of the objects that satisfy the search request. This control permits the client to specify a

particular object (the "target object") in a sorted set of search results, and to request that the
server return a specified number of objects before and after the target object, in addition to the
target object itself. "Before" and "after" the target object are relative to the sort order of the search
result set. The server will not return objects whose attribute value, used as the sort key, is absent.
This control can only be used if the LDAP_SERVER_SORT_OID (section 3.1.1.3.4.1.13) control is
also specified.

When sending this control to the DC, the controlValue field is set to the BER encoding of the

following ASN.1 structure (maxInt is defined in [RFC2251] section 4.1.1):

VLVRequestValue ::= SEQUENCE {

 beforeCount INTEGER (0..maxInt),

 afterCount INTEGER (0..maxInt),

 CHOICE {

 byoffset [0] SEQUENCE {

 offset INTEGER (0 .. maxInt),

 contentCount INTEGER (0 .. maxInt)

 },

 greaterThanOrEqual [1] AssertionValue

 },

 contextID OCTET STRING OPTIONAL

}

where beforeCount indicates how many objects before the target object are to be included in the

search results, and afterCount indicates how many objects after the target object are to be
included in the search results.

byoffset and greaterThanOrEqual provide two mutually exclusive ways of specifying the target
object. These will now be discussed in turn.

First, the target object can be specified by its position relative to the first object in the sorted set of

objects that satisfy the search request, in which case the byoffset choice is used. In this case,
contentCount contains the client's estimation of the total number of objects that satisfy the search
criteria. If the client specifies 0 for contentCount, it is as if the client had specified a number
identical to the server's estimate of the total number of objects that satisfy the search criteria—the
quantity serverContentCount below. offset is used with contentCount to specify the position
(relative to the first object in the sorted set of search results) of the object to use as the target
object according to the following formula:

http://go.microsoft.com/fwlink/?LinkId=90325

220 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

p = serverContentCount * (offset / contentCount)

where serverContentCount is the DC's estimate of the total number of objects that satisfy the
search criteria. The object located at position p in the sorted list of search results is used as the
target object.

A value of offset equal to 1 means that the target object is the first object in the search result set,
while a value of offset equal to contentCount means the target object is the last object in the
search result set. The offset value cannot equal 0 unless contentCount also equals 0. If the client
specified 0 for contentCount, then p = offset in the preceding formula, so the target object is
offset-1 objects beyond the first object in the search result set, unless both offset and
contentCount are equal to 0, in which case the previous rule applies.

The second means of specifying the target object is by the greaterThanOrEqual choice, instead of

the byoffset choice. In this case, greaterThanOrEqual is an AssertionValue as defined in
[RFC2251] section 4.1.7. The target object is the first object in the sorted result set for which the
value of the attribute on which it is sorted (that is, the attribute specified by attributeType in the
LDAP_SERVER_SORT_OID control) is greater than or equal to the value specified by

greaterThanOrEqual. However, if the sort order is reversed (by specifying that the reverseOrder
field of the LDAP_SERVER_SORT_OID control is true), then the target object is the first object for

which the sort attribute value is less than or equal to the greaterThanOrEqual value.

If the contextID field is present, it is the opaque value returned by the DC as the
contextIDServer field of the LDAP_CONTROL_VLVRESPONSE control that was returned with the
search response to the previous search over the same "list" as this search. A "list" is a sorted set of
search results, defined by a search request value sent to a particular DC over a particular LDAP
connection. The client omits this field if this is the first search request that included the
LDAP_CONTROL_VLVREQUEST control for the "list", or if the client did not retain the

contextIDServer field of the previous LDAP_CONTROL_VLVRESPONSE for the "list". The presence
or absence of the contextID field in the request only affects performance. The contextID is valid
only on the DC that returned it. If an invalid contextID is present, then the
LDAP_CONTROL_VLVREQUEST control is ignored.

When the server receives a search request with the LDAP_CONTROL_VLVREQUEST control attached
to it, it includes a response control in the search response. The controlType field of the returned
Control structure is set to the OID of the LDAP_CONTROL_VLVRESPONSE control, and the

controlValue is the BER encoding of the following ASN.1 structure.

VLVResponseValue ::= SEQUENCE {

 targetPosition INTEGER (0 .. maxInt),

 contentCount INTEGER (0 .. maxInt),

 virtualListViewResult ENUMERATED {

 success (0),

 operationsError (1),

 unwillingToPerform (53),

 insufficientAccessRights (50),

 busy (51),

 timeLimitExceeded (3),

 adminLimitExceeded (11),

 sortControlMissing (60),

 offsetRangeError (61),

 other (80)

 },

 contextIDServer OCTET STRING OPTIONAL

}

http://go.microsoft.com/fwlink/?LinkId=90325

221 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

where targetPosition is the position of the target object relative to the beginning of the sorted set

of search results, contentCount is the server's estimate of the total number of objects that satisfy

the search request, contextIDServer is the opaque value described in the specification of the
contextID field earlier in this section, and virtualListViewResult is an LDAP error code that

indicates the success or failure of the DC in processing the LDAP_CONTROL_VLVREQUEST control.
These codes have the same meanings as defined for LDAP in [RFC2251], but they pertain
specifically to the processing of the control. Error codes sortControlMissing and offsetRangeError are
not defined in [RFC2251]. In the Active Directory implementation of virtual list view (VLV),
virtualListViewResult is set to error code sortControlMissing if the LDAP_SERVER_SORT_OID
control is not specified in conjunction with the LDAP_CONTROL_VLVREQUEST control. It is set to
error code offsetRangeError if contentCount is not equal to 0 but offset is equal to 0.

The Active Directory implementation of VLV is based on that described in [VLVDRAFT]. Although
implementers may consult that document as an informative reference, the preceding description
documents the protocol as implemented by Active Directory. No claim is made with regard to Active
Directory's conformance or nonconformance with the protocol as specified in [VLVDRAFT].

3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID

The LDAP_SERVER_ASQ_OID control is used with an LDAP search operation. When this control is
used, the search is not performed against the object specified in the search, or the objects located
underneath that object, but rather against the set of objects named by an attribute of Object(DS-
DN) syntax that is located on the object specified by the base DN of the search request. The specific
attribute to use to scope the search is named in the control. Only searches of base object scope can
be used with the LDAP_SERVER_ASQ_OID control.

For example, suppose there is an object o and a multivalued attribute A of Object(DS-DN) syntax

such that o.A contains the DNs of objects o1, o2, and o3. An LDAP base-scope search operation that
targets object o, with the LDAP_SERVER_ASQ_OID control attached and specifying the A attribute,
will cause the server to perform the search not against object o but against objects o1, o2, and o3.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure:

ASQRequestValue ::= SEQUENCE {

 sourceAttribute OCTET STRING

}

where sourceAttribute is a UTF-8 string that specifies the LDAP display name of the attribute to

use to scope the search (for example, attribute A in the previous example).

When the server receives a search request with the LDAP_SERVER_ASQ_OID control attached to it,
it includes a response control in the search response. The controlType field of the returned Control
structure is set to the OID of the LDAP_SERVER_ASQ_OID control, and the controlValue is the BER
encoding of the following ASN.1 structure:

ASQResponseValue ::= SEQUENCE {

 searchResults ENUMERATED {

 success (0),

 invalidAttributeSyntax (21),

 unwillingToPerform (53),

 affectsMultipleDSAs (71)

 },

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=94450
http://go.microsoft.com/fwlink/?LinkId=94450

222 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

}

where the meaning of searchResults is as indicated in the following table.

searchResult name

searchResult

value Description

success 0 Search results are returned for all objects referenced by

sourceAttribute.

invalidAttributeSyntax 21 sourceAttribute is not of Object(DS-DN) syntax.

unwillingToPerform 53 The search scope was not set to base object scope.

affectsMultipleDSAs 71 Partial results were returned, but not all the objects were

available on the DC.

The search results consist of each object that is specified by the sourceAttribute attribute, and
that matches the search filter returned as a SearchResultEntry (defined in [RFC2251] section 4.5.2)
containing the attributes specified in the attribute list of the search request. If any of the objects

specified by sourceAttribute are not available on the DC, the search results include all of the
objects that are available on the DC, and the searchResults return value is set to the
affectsMultipleDSAs error code to indicate that some data that might be otherwise available is not
present in the results.

3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID

This control is used with an LDAP search operation to retrieve the quota of a user. When used with

an LDAP search operation that queries the constructed attributes msDS-QuotaEffective and msDS-
QuotaUsed on the msDS-QuotaContainer object, the server will return the quota of the user who is
specified by the control, rather than the quota of the user whom the connection is authenticated as.

If the caller attempts to retrieve the quota of a user other than the user whom the caller is
authenticated as, and the caller does not have the RIGHT_DS_READ_PROPERTY right on the Quotas
container (described in section 6.1.1.4.3), the server returns an empty result set.

If the caller attempts to retrieve the quota of the user whom the caller is authenticated as, and the
caller has neither the RIGHT_DS_READ_PROPERTY right on the Quotas container (described in
section 6.1.1.4.3) nor the DS-Query-Self-Quota control access right on the Quotas container, the
server returns an empty result set.

These access checks are also specified in section 3.1.1.4.4.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

QuotaRequestValue ::= SEQUENCE {

 querySID OCTET STRING

}

Where querySID is the SID, in binary form, of the user whose quota is to be retrieved (the binary

form of SIDs is documented in [MS-DTYP] section 2.4.2). Sending this control to the DC does not
cause the server to include any controls in its response.

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf

223 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID

This control is used with an LDAP Search request. The Search request has base object scope. The
base DN of the search is the DN of the DC's nTDSDSA object, and the search filter is

"(objectClass=*)". If the application sending the search request is not running on the same
computer as the DC, the result is the error unwillingToPerform / <unrestricted>.

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

This control is only supported on the Small Business Server version of the Windows operating
system.

Because this control only has an effect for applications running on the same machine as the DC, the

effects of this control are not observable on the network. This control causes the DC to notify the
client when the DC is shutting down. When the DC receives a search request with this control
attached, it does not immediately send a response to the request. Instead, it sends the
SearchResultDone response (see [RFC2251] section 4.5.2) to the request when the DC is shutting

down.

3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID

A DC does not perform originating updates that do not affect the state of the DC. For example,
given an LDAP Modify operation that sets the value of an attribute A to a value V, if the value of A is
already V prior to the Modify operation, the DC skips the update and returns success. The stamp
associated with A is not changed, and the Modify operation does not cause replication traffic.

When the LDAP_SERVER_FORCE_UPDATE_OID control is attached to an update operation, the DC
does not perform the optimization described in the previous paragraph. The update always

generates a new stamp for the attribute or link value and always replicates.

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending
this control to a DC does not cause the DC to include any controls in its response.

3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID

This control is used to modify the behavior of a range retrieval operation (see section 3.1.1.3.1.3.3).
When this control is not specified, if range retrieval is being performed on an attribute whose values

are forward link values or back link values, and the value of low is greater than or equal to the
number of values in the attribute, the DC will return the error operationsError / <unrestricted>. If
this control is specified, no error is returned in this case (and no values are returned). For example,
if an object has a member attribute with 500 values, performing the range retrieval
"member;range=500-*" will return operationsError / <unrestricted> without this control, and
success with this control.

When sending this control to a DC, the controlValue field of the Control structure is omitted. Sending

this control to a DC does not cause the DC to include any controls in its response.

3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID

If this control is specified and the caller does not have the DS-Install-Replica control access right on
the root of the default NC, the result is the error insufficientAccessRights /
ERROR_ACCESS_DENIED.

If the request is an Add of an object of class user or a subclass of user, the presence of this control
has the following effects:

%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

224 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The DC generates a value in the range [1 .. 65535] that is not used as a value of the msDS-

SecondaryKrbTgtNumber attribute on an object in this domain, and assigns the generated value

to the msDS-SecondaryKrbTgtNumber attribute of the created object. If no such value exists, the

result is the error other / ERROR_NO_SYSTEM_RESOURCES.

The generated value for msDS-SecondaryKrbTgtNumber is appended (in decimal form) to the

string "krbtgt", and the resulting string is assigned to the sAMAccountName attribute on the
created object.

The userAccountControl bits ADS_UF_ACCOUNT_DISABLE and ADS_UF_DONT_EXPIRE_PASSWD

(section 2.2.16) are set on the object's userAccountControl attribute.

The object's account password is set to a randomly generated value that satisfies all criteria in

[MS-SAMR] section 3.1.1.7.2 and is processed as described in [MS-SAMR] section 3.1.1.8.5.

Note In Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, and Windows Server 2012 R2 operating system, the DC
servicing the request need not be the PDC FSMO role owner.

If the request is an Add of an object of class nTDSDSA, the presence of this control has the following

effects:

The DC creates the nTDSDSA object using the information provided in the Add request. The only

special effect of the control is to perform the checking of the DS-Install-Replica control access
right (specified previously in this section) to authorize the nTDSDSA object creation. Without this
control, an Add that attempts to create an nTDSDSA object will fail because the class is system-
only (section 3.1.1.2.4.8).

When sending this control to a DC, the controlValue field of the Control structure is omitted.
Sending this control to a DC does not cause the DC to include any controls in its response.

3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID

This control is used to specify the DN of an object during certain LDAP operations.

When used with an LDAP search operation that queries the constructed attribute msDS-
IsUserCachableAtRodc on a computer object that represents an RODC, the server will return the

administrative policy regarding whether the secret attributes of the security principal represented by
the DN specified in the control can be cached on the RODC. If the caller does not have the Read-
Only-Replication-Secret-Synchronization control access right on the root of the default NC, the error
operationsError / ERROR_DS_CANT_RETRIEVE_ATTRS is returned. This access check is also
specified in section 3.1.1.4.4.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

DNInputRequestValue ::= SEQUENCE {

 InputDN OCTET STRING

}

Where InputDN is a UTF-8 encoding of the DN of a security principal. The DN may be either an RFC

2253–style DN or one of the alternative DN formats described in section 3.1.1.3.1.2.4.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

225 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

The LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID control is used with an LDAP search operation
to specify that link attributes that refer to deleted-objects are visible to the search operation. If used

in conjunction with LDAP_SERVER_SHOW_DELETED_OID or LDAP_SERVER_SHOW_RECYCLED_OID,
link attributes that are stored on deleted-objects are also visible to the search operation. This
applies to both the search filter and the set of attributes returned by the search operation. When
this control is not used, linked attribute values referring to deleted-objects and link valued attributes
stored on deleted-objects are not visible to search operation filters, and are not returned as
requested attributes for the search operation.

Extended control names

Link

values

neither

stored on

nor

referring

to

deleted-

objects

Link

values

not

stored on

but

referring

to

deleted-

objects

Link

values

stored on

deleted-

objects

but not

referring

to

deleted-

objects

Link

values

stored on

and

referring

to

deleted-

objects

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID Visible Visible Not Visible Not

Visible

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

in conjunction with

LDAP_SERVER_SHOW_DELETED_OID or

LDAP_SERVER_SHOW_RECYCLED_OID

Visible Visible Visible Visible

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

3.1.1.3.4.1.26 LDAP_SERVER_SHOW_RECYCLED_OID

The LDAP_SERVER_SHOW_RECYCLED_OID control is used with an LDAP operation to specify that
tombstones, deleted-objects, and recycled-objects should be visible to the operation. For example,
when the control is used with an LDAP search operation, the search results include any tombstones,
deleted-objects, or recycled-objects that match the search filter.

The following table compares the behavior of the two similar controls
LDAP_SERVER_SHOW_DELETED_OID (section 3.1.1.3.4.1.14) and
LDAP_SERVER_SHOW_RECYCLED_OID.

Extended control name Deleted-objects Tombstones Recycled-objects

LDAP_SERVER_SHOW_DELETED_OID Visible Visible Not Visible

LDAP_SERVER_SHOW_RECYCLED_OID Visible Visible Visible

When sending this control to the DC, the controlValue field of the Control structure is omitted.
Sending this control to the DC does not cause the server to include any controls in its response.

226 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID

The LDAP_SERVER_POLICY_HINTS_OID control is used with an LDAP operation to enforce the
password history length constraint ([MS-SAMR] section 3.1.1.7.1) during password set. The

password history policy sets how frequently old passwords can be reused.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

PolicyHintsRequestValue ::= SEQUENCE {

 Flags INTEGER

}

where Flags tells the server whether to apply the password history length constraint on password-

set operations. If it is 0x1, then that constraint will be enforced. Otherwise, the constraint is not
enforced.

3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID

The LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID control has the exact semantics and
behaviors as LDAP_SERVER_POLICY_HINTS_OID (section 3.1.1.3.4.1.27); this control MAY be used
by clients when the server does not support LDAP_SERVER_POLICY_HINTS_OID. Clients SHOULD
use LDAP_SERVER_POLICY_HINTS_OID when it is supported by the server.

3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID

The LDAP_SERVER_DIRSYNC_EX_OID control is used with an LDAP search operation in exactly the
same way as the LDAP_SERVER_DIRSYNC_OID control, except for differences specified in this
section. All ASN.1 structures and the meaning of the fields of those structures are the same.

As with the LDAP_SERVER_DIRSYNC_OID control, any attributes can be requested in the search.

Only those objects for which these attributes have been created or modified since the time
represented by Cookie will be considered for inclusion in the search. However, where the

LDAP_SERVER_DIRSYNC_OID control returns only those attributes that have changed, the
LDAP_SERVER_DIRSYNC_EX_OID control also returns unchanged attributes when the attribute
name in the request is appended with the string ";dirSyncAlwaysReturn".

3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID

The LDAP_SERVER_UPDATE_STATS_OID control can be used with any LDAP operation. When
sending this control to the DC, the controlValue field of the Control structure is omitted.

When the server receives a request with the LDAP_SERVER_UPDATE_STATS_OID control attached
to it, the server includes a response control in the response that contains statistics. The
controlType field of the returned Control structure is set to the OID of the
LDAP_SERVER_UPDATE_STATS_OID control. The controlValue field is included in the returned
Control structure.

The returned controlValue field is the BER encoding of the following ASN.1 structure:

UpdateStatsResponseValue ::= SEQUENCE OF SEQUENCE {

 statID LDAPOID

 statValue OCTET STRING

%5bMS-SAMR%5d.pdf

227 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

}

where statID is an OID that corresponds to a specific statistic name, and statValue is a value

related to that statistic. Each statistic specifies an encoding for its value.

The following table specifies the statistics that a DC MUST return. A DC MAY return other
implementation-defined statistics. No other statistics are returned by DCs in any Windows Server
operating system.

Statistic name OID (specified by statID)

Highest USN Allocated 1.2.840.113556.1.4.2208

Invocation ID Of Server 1.2.840.113556.1.4.2209

3.1.1.3.4.1.30.1 Highest USN Allocated

The statValue for this statID contains the highest USN that the DC allocated during the LDAP
operation. USNs allocated by an LDAP operation make up a set of USNs such that no LDAP operation
other than the current operation can write the USN into the DC's state. Note that while no other
LDAP operation can write these USNs, it is not required that the current operation actually write any
or all of these USNs. If the USNs allocated by this LDAP operation make up the empty set, a value of
0 is returned in the statValue.

The value in the statValue field is a 64-bit integer, in little-endian byte order.

3.1.1.3.4.1.30.2 Invocation ID Of Server

The statValue for this statID contains dc.invocationId (section 3.1.1.1.9). This value is returned in
little-endian byte order.

3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID

The LDAP_SERVER_TREE_DELETE_EX_OID control is used with an LDAP delete operation to cause
the server to recursively delete the entire subtree of objects located underneath the object specified
in the delete operation. The object specified in the delete operation is also deleted.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

TreeDeleteExRequestValue ::= SEQUENCE {

 countOfObjectsToDelete INTEGER

}

where countOfObjectsToDelete is a limit on the number of objects that will be deleted while

processing this control. If the value of countOfObjectsToDelete is less than 2, then the value 2 is

used rather than the value specified. If the value of countOfObjectsToDelete is greater than
16,384, then the value 16,384 is used.

The server deletes between 1 and countOfObjectsToDelete objects, inclusive. If the server does
not delete the entire tree in a single LDAP delete request, it MUST NOT delete the root of the tree
(the object specified in the delete operation), and MUST return the error code adminLimitExceeded /

ERROR_DS_TREE_DELETE_NOT_FINISHED.

228 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID

The LDAP_SERVER_SEARCH_HINTS_OID control is used with an LDAP search operation. This control
supplies hints to the search operation on how to satisfy the search. When sending this control to the

DC, the controlValue field is set to the BER encoding of the following ASN.1 structure.

SearchHintsRequestValue ::= SEQUENCE OF SEQUENCE{

 hintId LDAPOID

 hintValue OCTET STRING

}

where hintId is an OID that corresponds to a specific hint name, and hintValue is a value related

to that hint. Each hint specifies an encoding for its value.

The following table specifies the hints that a DC MUST honor. A DC MAY honor other
implementation-defined search hints. No other search hints are honored by DCs in any
Windows Server operating system.

Statistic name OID (as specified by hintId)

Require Sort Index 1.2.840.113556.1.4.2207

Soft Size Limit 1.2.840.113556.1.4.2210

Multiple instances of the LDAP_SERVER_SEARCH_HINTS_OID control can be included with a single
LDAP search operation. The hints are applied in the order in which the controls are encoded in the
LDAP request; that is, a later hint can override an earlier hint, overriding both hintValue and
control criticality. This behavior allows the application of different criticality to individual hints.

If the control is critical and an unrecognized search hint is specified, the DC returns the error
unwillingToPerform / <unrestricted>. If the control is not critical, unrecognized hints are ignored.

3.1.1.3.4.1.32.1 Require Sort Index

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure:

RequireSortIndexHintValue ::= SEQUENCE {

 IndexOnly BOOLEAN

}

If the value of IndexOnly is false, or if no LDAP_SERVER_SORT_OID control accompanies the
LDAP_SERVER_SEARCH_HINTS_OID control, then the hint is ignored.

This hint suggests to the DC that it use an index (as specified by the search flags IX and PI in
section 2.2.9) over the attribute specified in the LDAP_SERVER_SORT_OID control to satisfy the
search.

If the sort control is critical and no index is available, the search will fail with the error
DB_ERR_CANT_SORT / <unrestricted>.

If the sort control is not critical and no index is available, the hint is ignored.

Exactly what an index is in relationship to a DC is implementation-specific. Therefore, the

determination that an index is not available is not constrained by the protocol, but rather is

229 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

implementation-specific. This hint is provided only as a facility to make suggestions to a DC that it
favor search-operation execution that is based on information specified in the sort control rather

than information that is specifically derived from the scope of the search, the filter, or any other
parameters of the search.

3.1.1.3.4.1.32.2 Soft Size Limit

The hintValue for this hint is a BER encoding specified by the following ASN.1 structure:

SoftSizeLimitHintValue ::= SEQUENCE {

 limitValue INTEGER

}

If an LDAP_SERVER_SORT_OID control does not accompany this hint, this hint is ignored.

Given that the value of LimitValue is X, given an imposed LDAP size limit of Y (whether specified in

the LDAP search operation or imposed by an implementation-specific default value), and given that

a sort order is specified in an LDAP_SERVER_SORT_OID control, when these values are all applied
to an LDAP search operation, the LDAP search operation conceptually results in a list of objects to
return as a response to the request. Due to the size limit, the cardinality of the list is less than or
equal to Y. The elements in the list are ordered by the attribute specified in the
LDAP_SERVER_SORT_OID control. If the list of objects contains fewer than X objects, or exactly X
objects, then the Soft Size Limit hint has no affect. If the LDAP search operation identifies more

than X objects, then any objects in the list subsequent to the Xth object that do not have a value of
the sort attribute that is equal to the sort value of the Xth object (as defined by the equality
comparison rules for that attribute) are removed from the list before the response is returned to the
client.

If the search operation would otherwise have returned success and if one or more objects are
removed from the list according to the earlier algorithm, the search operation will return

sizeLimitExceeded / <unrestricted>.

3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID

The LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID is used with an LDAP search operation to
potentially modify the return code of the operation.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

ExpectedEntryCountRequestValue ::= SEQUENCE {

 searchEntriesMin INTEGER

 searchEntriesMax INTEGER

}

When the search operation would normally return success / <unrestricted> and the number of

searchEntries returned by the search is less than searchEntriesMin or greater than

searchEntriesMax, the return code of the search operation is modified to be constraintViolation /
<unrestricted>. Note that this control affects only the return value of the search operation. It does
not affect any other part of the returned data from the search operation.

230 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID

The LDAP_SERVER_SET_OWNER_OID is used with an LDAP add operation to specify the owner of
the object to be created. The owner is to be set into the owner portion of the security descriptor

stored in the ntSecurityDescriptor attribute of the object to be created.

When sending this control to the DC, the controlValue field is set to the BER encoding of the
following ASN.1 structure.

SID octetString

The supplied SID value is a valid SDDL string representation of a SID ([MS-DTYP] section 2.4.2.1).

If an owner is specified both via this control and via a value for the nTSecurityDescriptor attribute,
the value specified by this control takes precedence.

3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID

The LDAP_SERVER_BYPASS_QUOTA_OID is used with an LDAP add operation to specify that
exceeding quota limitations MUST NOT cause the add to fail. When sending this control to the DC,

the controlValue field of the Control structure is omitted. Sending this control to the DC does not
cause the server to include any controls in its response.

3.1.1.3.4.2 LDAP Extended Operations

LDAP extended operations are an extensibility mechanism in version 3 of LDAP, as discussed in
[RFC2251] section 4.12. The following sections describe the LDAP extended operations that are
implemented by DCs in Windows Server 2003 operating system, Active Directory Application Mode

(ADAM), Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, and Windows Server 2012 R2 operating system.

The LDAP extended operations supported by a DC are exposed as OIDs in the supportedExtension

attribute of the rootDSE. Each OID is mapped to a human-readable name as shown in the following
table.

Extended operation name OID

LDAP_SERVER_FAST_BIND_OID 1.2.840.113556.1.4.1781

LDAP_SERVER_START_TLS_OID 1.3.6.1.4.1.1466.20037

LDAP_TTL_REFRESH_OID 1.3.6.1.4.1.1466.101.119.1

LDAP_SERVER_WHO_AM_I_OID 1.3.6.1.4.1.4203.1.11.3

LDAP_SERVER_BATCH_REQUEST_OID 1.2.840.113556.1.4.2212

Only Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

and Windows Server 2012 R2 DCs support extended operations. The following table specifies the set
of LDAP extended operations supported in each Windows Server operating system or ADAM version
that supports extended operations.

%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325

231 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Extended operation name

Windows

Server 20

03

ADA

M

Windows

Server 20

08

Windows

Server 2008

R2

Windo

ws

Server

2012

Windo

ws

Server

2012

R2

LDAP_SERVER_FAST_BIND_OI

D

X X X X X X

LDAP_SERVER_START_TLS_OI

D

X X X X X X

LDAP_TTL_REFRESH_OID X X X X X X

LDAP_SERVER_WHO_AM_I_OI

D

 X X X X X

LDAP_SERVER_BATCH_REQUE

ST_OID

 X X

Each of these operations is executed by performing an LDAP ExtendedRequest operation, specifying
the OID of the extended operation as the requestName field in the ExtendedRequest (see [RFC2251]
section 4.12). The server responds to an ExtendedRequest by returning an ExtendedResponse, the
fields of which are also documented in section 4.12 of the RFC.

3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for fast bind mode. In fast bind mode, the server validates (authenticates) the credentials of LDAP
bind requests that are sent on the connection. However, unlike a regular (non–fast bind mode) bind,
the DC performs authentication only. The DC does not perform authorization steps, such as
computing the group memberships of the authenticated security principal.

The LDAP_SERVER_FAST_BIND_OID operation puts the LDAP connection on which it was sent into

fast bind mode on the DC. The server will reject this operation with the error unwillingToPerform /
ERROR_DS_UNWILLING_TO_PERFORM if a successful bind has already been performed on the
connection.

Note that a client can retrieve the supportedExtension attribute from the root DSE without having
first performed a bind (since the supportedExtension attribute is anonymously accessible, and
LDAPv3 does not require a bind to be performed for anonymous access). A client MUST NOT specify

any control other than LDAP_SERVER_EXTENDED_DN_OID when querying the root DSE
anonymously. Thus, a client can determine if the server supports fast bind mode without first having
to bind to the server.

Only simple binds are accepted on a connection in this mode. All other types of bind operations are
rejected with the error unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH. The connection is
always treated as if no bind had occurred for the purposes of all other LDAP operations; that is, the
connection is treated as the anonymous user (in other words, an anonymous bind).

To send this extended operation to the DC, the client sends an LDAP ExtendedRequest with the
requestName field containing the operation's OID. The requestValue field is omitted. The server
will return an ExtendedResponse with the responseName field containing the operation's OID and
the response field omitted.

The following shows a typical sequence of operations in fast bind:

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-GLOS%5d.pdf

232 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1. The client establishes an LDAP connection with the DC.

2. (Optional) The client checks the supportedExtension attribute on the root DSE to confirm that the
DC supports fast bind mode.

3. The client sends the LDAP_SERVER_FAST_BIND_OID extended operation to the DC to put the

LDAP connection into fast bind mode.

4. The client performs one or more simple binds on the connection.

3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID

This presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the LDAP StartStopTLS protocol as described in [RFC2830].

A connection cannot be put into TLS mode if it is using an integrity validation or encryption

mechanism that was negotiated as part of a bind request (for example, a SASL-layer encryption
mechanism). Such an attempt will be rejected with the error operationsError / ERROR_SUCCESS.

3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for dynamic objects as defined in [RFC2589]. This extended operation is sent to the DC to refresh a

specific dynamic object that has already been created. The extended operation is documented in
[RFC2589]. The refresh operation is treated as a modify operation (section 3.1.1.5.3) of the
entryTTL attribute (section 3.1.1.4.5.12).

If the modify is successful, the responseTtl field ([RFC2589] section 4.2) is populated from the
dynamic object's entryTTL constructed attribute according to section 3.1.1.4.5.12, using the msDS-
Entry-Time-To-Die (section 3.1.1.5.3.3) and DynamicObjectMinTTL (section 3.1.1.3.4.7) attributes,
and honoring the dynamic object's requirements, as specified in section 6.1.7.

3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the "Who Am I?" LDAP extended operation described in [RFC4532]. Active Directory implements
this operation in conformance with that RFC.

If the client is authenticated as a Windows security principal, the authzId returned in the response
will contain the string "u:" followed by either (1) the NetBIOS domain name, followed by a backslash

("\"), followed by the sAMAccountName of the security principal, or (2) the SID of the security
principal, in SDDL SID string format ([MS-DTYP] section 2.4.2.1). If the client is authenticated as an
AD LDS security principal, the returned authzId will contain the string "dn:" followed by the DN of
the security principal. If the client has not authenticated, the returned authzId will be the empty
string.

Active Directory does not implement Proxied Authentication Control of [RFC4370], so section 4.1 of
[RFC4532] is not applicable to Active Directory.

3.1.1.3.4.2.5 LDAP_SERVER_BATCH_REQUEST_OID

The presence of this OID in the supportedExtension attribute indicates that the DC provides support
for the batched LDAP extended operation. In a batched LDAP extended operation, the DC accepts an
extended operation that contains a sequence of LDAP messages (that is, LDAP operations) encoded
and packed into the operation data and then operates on the individual messages sequentially.

http://go.microsoft.com/fwlink/?LinkId=91359
http://go.microsoft.com/fwlink/?LinkId=90370
http://go.microsoft.com/fwlink/?LinkId=90370
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90370
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90480
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90475
http://go.microsoft.com/fwlink/?LinkId=90480

233 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

When sending this extended operation to the DC, the data field is set to the BER encoding of the
following ASN.1 structure.

BatchRequestRequestValue ::= SEQUENCE of OCTET STRING

Each OCTET STRING contains a BER encoded ([ITUX690]) LDAPMessage as defined in [RFC2251].

The DC MUST support the following values of the protocolOp field of an LDAP message.

searchRequest

modifyRequest

addRequest

deleteRequest

The DC MAY support any of the other legal values of the protocolOp field of an LDAP message. No
version of Windows Server operating system supports any of these other values.

The DC MUST accept the following controls (defined in section 3.1.1.3.4.1) as part of the encoded
LDAPMessage:

LDAP_SERVER_DOMAIN_SCOPE_OID

LDAP_SERVER_EXTENDED_DN_OID

LDAP_SERVER_GET_STATS_OID

LDAP_SERVER_PERMISSIVE_MODIFY_OID

LDAP_SERVER_SD_FLAGS_OID

LDAP_SERVER_SEARCH_OPTIONS_OID

LDAP_SERVER_SHOW_DELETED_OID

LDAP_SERVER_DN_INPUT_OID

LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID

LDAP_SERVER_SHOW_RECYCLED_OID

The DC MAY support other controls. No version of Windows Server supports any other controls.

If the DC returns any return code for the batched LDAP extended operation other than success /
<unrestricted>, then the DC returns no data for the batched LDAP extended operation.

If the DC returns any data for the batched LDAP extended operation, the data is set to the BER
encoding of the following ASN.1 structure.

BatchRequestResponseValue ::= SEQUENCE of LDAPMessage

If the DC receives an LDAPMessage containing unsupported protocolOp values or controls, or if

the data for the batched LDAP extended operation is not a legal BER encoding as required, the DC
must return the error protocolError / <unrestricted>.

http://go.microsoft.com/fwlink/?LinkId=89924
http://go.microsoft.com/fwlink/?LinkId=90325

234 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the number of individual messages in the return data exceeds the DC's limit, the overall batched
LDAP extended operation returns the error sizeLimitExceeded / <unrestricted>. This limit is

controlled by the MaxBatchReturnMessages LDAP policy (see section 3.1.1.3.4.6).

If the amount of time spent processing the batched LDAP extended operation exceeds the DC's limit,

the overall batched LDAP extended operation returns the error timeLimitExceeded /
ERROR_INVALID_PARAMETER. This limit is implementation-defined. In Windows Server 2012
operating system and Windows Server 2012 R2 operating system, this limit is controlled by the
MaxQueryDuration LDAP policy (see section 3.1.1.3.4.6).

If any operation in a batched LDAP extended operation results in an LDAP return code other than
success / <unrestricted>, then all subsequent operations in that batched LDAP operation are not
performed and all prior operations are "rolled back"; that is, no changes that would have been

caused by the operations are committed to the DC's state. Note that, other than where explicitly
stated, the return codes of these individual operations do not affect the return code of the batched
LDAP extended operation.

If an individual operation in the batched LDAP extended operation returns busy / <unrestricted>,

then the batched LDAP extended operation returns the return code generated by that individual
operation.

If no other error conditions are present, the DC returns the error code success / <unrestricted>.

If the DC returns any return code for the batched LDAP extended operation other than success /
<unrestricted>, then all operations in that batched LDAP operation are "rolled back"; that is, no
changes caused by the operations are committed to the DC's state.

The returned data for the batched LDAP extended operation is the sequence containing the return
messages generated by performing the individual operations encoded in the incoming data. Note
especially that if an individual operation fails, causing the whole sequence to be interrupted and

"rolled back", the return sequence of messages includes all messages generated up to and including
the message returning the individual operation's failure code. In this case, the returned data can
show successful modifications to DC state, but since the final message in the incoming sequence of
operations was not completed with a successful return code, these messages indicate only that the

operations that modify the DC state would have succeeded and been committed if they had been
the last operation in the sequence of messages; that is, these messages indicate that the operations
up to the operation that failed would have succeeded.

3.1.1.3.4.3 LDAP Capabilities

The following sections specify the capabilities exposed by DCs on the supportedCapabilities attribute
of the rootDSE. Capabilities are exposed in that attribute as OIDs, each of which is mapped to a
human-readable name, as shown in the following table.

Capability name OID

LDAP_CAP_ACTIVE_DIRECTORY_OID 1.2.840.113556.1.4.800

LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID 1.2.840.113556.1.4.1791

LDAP_CAP_ACTIVE_DIRECTORY_V51_OID 1.2.840.113556.1.4.1670

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST 1.2.840.113556.1.4.1880

LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID 1.2.840.113556.1.4.1851

235 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Capability name OID

LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID 1.2.840.113556.1.4.1920

LDAP_CAP_ACTIVE_DIRECTORY_V60_OID 1.2.840.113556.1.4.1935

LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID 1.2.840.113556.1.4.2080

LDAP_CAP_ACTIVE_DIRECTORY_W8_OID 1.2.840.113556.1.4.2237

Not all versions of Windows Server operating system and Active Directory Application Mode (ADAM)

support all the LDAP capabilities. The following table indicates which capabilities are supported in
which version.

Capability

name

Win

dow

s 20

00

ope

rati

ng

syst

em

Win

dow

s 20

00

Ser

ver

ope

rati

ng

syst

em

SP3

Wi

nd

ow

s

Ser

ver

 20

03

ope

rati

ng

sys

te

m

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

ope

rati

ng

sys

te

m

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

oper

atin

g

syst

em

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

ws

Se

rv

er

20

12

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

ws

Se

rv

er

20

12

R2

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

LDAP_CAP_ACTI

VE_DIRECTORY_

OID

X X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

LDAP_INTEG_OI

D

 X X X X X X X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

V51_OID

 X X X X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

ADAM_DIGEST

 X

*

 X* X* X* X*

LDAP_CAP_ACTI

VE_DIRECTORY_

ADAM_OID

 X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

PARTIAL_SECRE

 X* X* X* X*

236 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Capability

name

Win

dow

s 20

00

ope

rati

ng

syst

em

Win

dow

s 20

00

Ser

ver

ope

rati

ng

syst

em

SP3

Wi

nd

ow

s

Ser

ver

 20

03

ope

rati

ng

sys

te

m

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

nd

ow

s

Ser

ver

 20

08

ope

rati

ng

sys

te

m

AD

DS

Wi

nd

ow

s

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

oper

atin

g

syst

em

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

o

ws

Se

rv

er

20

12

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

w

s

Se

rv

er

20

12

A

D

LD

S

Wi

nd

o

ws

Se

rv

er

20

12

R2

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

w

s

Se

rv

er

20

12

R2

A

D

LD

S

TS_OID

LDAP_CAP_ACTI

VE_DIRECTORY_

V60_OID

 X X X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

V61_R2_OID

 X X X X X X

LDAP_CAP_ACTI

VE_DIRECTORY_

W8_OID

 X X X X

* These capabilities are only exposed by the server in certain conditions. For each of these
conditional capabilities, the section describing the capability describes the conditions that apply.

3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID

The presence of this capability indicates that the LDAP server is running Active Directory and is

running as AD DS.

3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID

The presence of this capability indicates that the LDAP server on the DC is capable of signing and
sealing on an NTLM authenticated connection, and that the server is capable of performing
subsequent binds on a signed or sealed connection.

3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID

On an Active Directory DC operating as AD DS, the presence of this capability indicates that the
LDAP server is running at least the Windows Server 2003 operating system version of Active
Directory.

237 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

On an Active Directory DC operating as AD LDS, the presence of this capability indicates that the
LDAP server is running at least the Windows Server 2008 operating system version of Active

Directory.

3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST

On a DC operating as AD LDS, the presence of this capability indicates that the DC accepts DIGEST-
MD5 binds for AD LDS security principals (section 5.1.1.5). An AD LDS DC's DIGEST-MD5 bind
functionality depends upon the value of the ADAMDisableSSI configurable setting as specified in
section 3.1.1.3.4.7.

3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID

The presence of this capability indicates that the LDAP server is running Active Directory as AD LDS.

3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID

On an Active Directory DC operating as AD DS, the presence of this capability indicates that the DC
is an RODC.

3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID

The presence of this capability indicates that the LDAP server is running at least the Windows
Server 2008 operating system version of Active Directory.

3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID

The presence of this capability indicates that the LDAP server is running at least the Windows
Server 2008 R2 operating system version of Active Directory.

3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID

The presence of this capability indicates that the LDAP server is running at least the Windows Server
2012 operating system version of Active Directory.

3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch)

The following sections describe the matching rules supported by DCs when performing LDAP search
requests. Unlike, for example, extended controls and extended operations, there is no attribute

exposed by the DC that specifies which matching rules it supports. The identifiers for these
matching rules are used in an extensibleMatch clause in the Filter portion of a SearchRequest, as
described in [RFC2251] section 4.5.1. Matching rules are identified by an OID that corresponds to a
human-readable name, as shown in the following table.

Capability name OID

LDAP_MATCHING_RULE_BIT_AND 1.2.840.113556.1.4.803

LDAP_MATCHING_RULE_BIT_OR 1.2.840.113556.1.4.804

LDAP_MATCHING_RULE_TRANSITIVE_EVAL 1.2.840.113556.1.4.1941

LDAP_MATCHING_RULE_DN_WITH_DATA 1.2.840.113556.1.4.2253

http://go.microsoft.com/fwlink/?LinkId=90325

238 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Windows 2000 operating system, Windows Server 2003 operating system, and Active Directory
Application Mode (ADAM) support the LDAP_MATCHING_RULE_BIT_AND and

LDAP_MATCHING_RULE_BIT_OR matching rules. Windows Server 2008 operating system, Windows
Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows Server

2012 R2 operating system support those two rules and the
LDAP_MATCHING_RULE_TRANSITIVE_EVAL rule, in both AD DS and AD LDS. Windows Server 2012
R2 supports those three rules and the LDAP_MATCHING_RULE_DN_WITH_DATA rule, in both AD DS
and AD LDS.

3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND

This rule is equivalent to a bitwise "AND" operation. When this matching rule is used as a clause in a

query filter, the clause is satisfied only if all the bits set to '1' in the value included in the clause
correspond to bits set to '1' in the value stored in the directory.

3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR

This rule is equivalent to a bitwise "OR" operation. When this matching rule is used as a clause in a
query filter, the clause is satisfied only if at least one of the bits set to '1' in the value included in

the clause corresponds to a bit set to '1' in the value stored in the directory.

3.1.1.3.4.4.3 LDAP_MATCHING_RULE_TRANSITIVE_EVAL

This rule provides recursive search of a link attribute. A filter F of the form "(A:
1.2.840.113556.1.4.1941:=V)", where A is a link attribute and V is a value, evaluates to True for an
object whose DN is D if the following method EvalTransitiveFilter(A, V, D) returns true, and False if
the method returns false. If A is not a link attribute, the filter F evaluates to Undefined.

EvalTransitiveFilter(A: attribute, V: value, D: DN)

If A is of Object(DN-String), Object(DN-Binary), Object(OR-Name), or Object(Access-Point)

syntax, let V' equal the object_DN portion of V. Otherwise, let V' equal V.

Return the value of EvalTransitiveFilterHelper(A, V', D, {})

EvalTransitiveFilterHelper(A: attribute, V': value, ToVisit: DN, Visited: SET OF DN)

If A is of Object(DN-String), Object(DN-Binary), Object(OR-Name), or Object(Access-Point)

syntax, let C be the set of the object_DN components of the values of ToVisit.A. Otherwise, let
C be the set of the values of ToVisit.A. Note that C is a set of DNs.

If V' is in C, return true.

Let Visited' equal the Visited set plus {ToVisit}.

For each DN NextToVisit in C

If NextToVisit is in Visited, do nothing.

Let Result = EvalTransitiveFilterHelper(A, V', NextToVisit, Visited')

If Result is true, return true.

Return false.

239 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.4.4 LDAP_MATCHING_RULE_DN_WITH_DATA

This rule provides a way to match on portions of values of syntax Object(DN-String) and Object(DN-
Binary).

Let F be a filter of the form "(A: 1.2.840.113556.1.4.2253:=V)", where A is a link attribute and V is
a value of syntax Object(DN-String) (section 3.1.1.2.2.2.1) or Object(DN-Binary) (section
3.1.1.2.2.2.3). This filter evaluates to True for an object whose DN is D if the method defined below,
EvalDNWithDataFilter(A,V,D), returns true, and False if the method returns false. If A is not of
syntax Object(DN-String) or Object(DN-Binary), the filter F evaluates to Undefined.

EvalDNWithDataFilter(A: attribute, V: value, D: DN)

For either syntax, let O be the DN portion of the value V and B be the string or binary portion of

the value V. If the attribute is of syntax Object(DN-String), B is the value of the string considered
strictly as the sequence of bytes of the string. Note that O can be the rootDSE. Note also that B
can have 0 length.

For every V' where V' is a value of attribute A on object D:

Let O' be the DN portion of value V' and let B' be the string or binary portion of the value V'.

If O is not equal to O' and O is not equal to the rootDSE, continue processing other values of

V'.

If B is not equal to the initial bytes of B', continue processing other values of V'. Note

especially that only byte values are used in this comparison. No special handling of B as a
string is performed (for example, no case-insensitivity, locale specific comparisons, etc.).

Return true.

If this method does not return true, it returns false.

3.1.1.3.4.5 LDAP SASL Mechanisms

The following sections describe the SASL mechanisms that are implemented by DCs in
Windows 2000 operating system, Windows Server 2003 operating system, Windows Server 2008

operating system, Windows Server 2008 R2 operating system, Windows Server 2012 operating
system, and Windows Server 2012 R2 operating system. SASL is described in [RFC2222], and the
usage of SASL and other authentication methods in LDAP is described in [RFC2829]. The SASL
mechanisms supported by a DC are exposed as strings in the supportedSASLMechanisms attribute
of the rootDSE.

Not all versions of Windows Server operating system and Active Directory Application Mode (ADAM)
support all the LDAP SASL mechanisms. The following table indicates which SASL mechanisms are

supported in which version.

Mechanism

name Windows 2000

Windows Server 2003, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows

Server 2012 R2

AD

LDS

GSSAPI X X X

GSS-SPNEGO X X X

EXTERNAL X X

http://go.microsoft.com/fwlink/?LinkId=90322
http://go.microsoft.com/fwlink/?LinkId=90386

240 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Mechanism

name Windows 2000

Windows Server 2003, Windows Server 2008, Windows

Server 2008 R2, Windows Server 2012, and Windows

Server 2012 R2

AD

LDS

DIGEST-MD5 X X

Additional details of LDAP authentication in Active Directory are in section 5.1.

3.1.1.3.4.5.1 GSSAPI

The presence of the "GSSAPI" string value in the supportedSASLMechanisms attribute indicates that
the DC accepts the GSSAPI security mechanism for LDAP bind requests. The GSSAPI mechanism for
SASL is described in [RFC2222] section 7.2, and GSSAPI is described in more detail in [RFC2078].
Active Directory supports Kerberos when using GSSAPI; see [MS-KILE] and [RFC1964] for details of
Kerberos.

3.1.1.3.4.5.2 GSS-SPNEGO

The presence of the "GSS-SPNEGO" string value in the supportedSASLMechanisms attribute
indicates that the DC accepts the GSS-SPNEGO security mechanism for LDAP bind requests. This
mechanism is documented in [RFC4178]. Active Directory supports Kerberos (see [MS-KILE]) and
NTLM (see [MS-NLMP]) when using GSS-SPNEGO.

3.1.1.3.4.5.3 EXTERNAL

The presence of the "EXTERNAL" string value in the supportedSASLMechanisms attribute

indicates that the DC accepts external security mechanisms for LDAP bind requests. The EXTERNAL
SASL mechanism is described in [RFC2222] section 7.4, and [RFC2829]. In the case of DCs, the
external authentication information that is used to validate the identity of the client making the bind
request comes from the client certificate presented by the client during the SSL/TLS handshake
that occurs in response to the client sending an LDAP_SERVER_START_TLS_OID extended
operation. When the server receives an EXTERNAL SASL bind following a successful

LDAP_SERVER_START_TLS_OID extended operation in which a valid certificate was presented by
the client, the server causes the connection to be bound as the identity represented by that
certificate.

3.1.1.3.4.5.4 DIGEST-MD5

The presence of the "DIGEST-MD5" string value in the supportedSASLMechanisms attribute
indicates that the DC accepts the digest security mechanism for LDAP bind requests. The usage of

digest authentication with LDAP is documented in [RFC2829] section 6.1, and in [RFC2831].

3.1.1.3.4.6 LDAP Policies

The DC's LDAP interface supports various policies that can be configured by an administrator. The
names of these policies are listed on the supportedLDAPPolicies attribute on the rootDSE. These
policies are listed in the following table, which also lists which versions of Windows and Active

Directory Application Mode (ADAM) support which policies.

http://go.microsoft.com/fwlink/?LinkId=90322
http://go.microsoft.com/fwlink/?LinkId=90312
%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90304
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-KILE%5d.pdf
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90322
http://go.microsoft.com/fwlink/?LinkId=90386
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90387

241 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Policy name

Windows 2000

operating

system

Windows

Server 2003

operating

system, ADAM,

and Windows

Server 2008

operating

system

Windows

Server 2008 R2

operating

system

Windows

Server 2012

operating

system and

Windows

Server 2012

R2 operating

system

MaxActiveQueries X*

InitRecvTimeout X X X X

MaxConnections X X X X

MaxConnIdleTime X X X X

MaxDatagramRecv X X X X

MaxNotificationPerConn X X X X

MaxPoolThreads X X X X

MaxReceiveBuffer X X X X

MaxPageSize X X X X

MaxQueryDuration X X X X

MaxResultSetSize X X X X

MaxTempTableSize X X X X

MaxValRange X X X

MaxResultSetsPerConn X X

MinResultSets X X

MaxBatchReturnMessages X

* Support for this policy was removed in Windows Server 2003.

LDAP policies are specified using the lDAPAdminLimits attribute. The lDAPAdminLimits attribute of a
queryPolicy object is a multivalued string where each string value encodes a name-value pair. In the
encoding, the name and value are separated by an "=". For example, the encoding of the name
"MaxActiveQueries" with value "0" is "MaxActiveQueries=0". Each name is the name of an LDAP

policy, and the value is a value of that policy.

There can be multiple queryPolicy objects in a forest. A DC determines the queryPolicy object that
contains its policies according to the following logic:

If the queryPolicyObject attribute is present on the DC's nTDSDSA object, the DC uses the

queryPolicy object referenced by it.

Otherwise, if the queryPolicyObject attribute is present on the nTDSSiteSettings object for the

site to which the DC belongs, the DC uses the queryPolicy object referenced by it.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

242 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Otherwise, the DC uses the queryPolicy object whose DN is "CN=Default Query Policy,CN=Query-

Policies" relative to the nTDSService object (for example, "CN=Default Query Policy, CN=Query-

Policies, CN=Directory Service, CN=Windows NT, CN=Services" relative to the root of the config

NC).

The effect of setting an LDAP policy is outside the state model. The effect of each policy, as well as
the default value used if the policy's value is not specified in an lDAPAdminLimits attribute, is shown
in the following table.

Policy name

Default

value Description

MaxActiveQueries 20 The maximum number of concurrent LDAP search operations

that are permitted to run at the same time on a DC. When this

limit is reached, the DC returns a busy /

ERROR_DS_ADMIN_LIMIT_EXCEEDED error.

InitRecvTimeout 120 The maximum time, in seconds, that a DC waits for the client

to send the first request after the DC receives a new

connection. If the client does not send the first request in this

amount of time, the server disconnects the client.

MaxConnections 5000 The maximum number of simultaneous LDAP connections that

a DC will accept. If a connection comes in after the DC reaches

this limit, the DC will drop another connection. The connection

that is selected to drop is not constrained by the protocol and

is determined based on the implementation.

MaxConnIdleTime 900 The maximum time, in seconds, that the client can be idle

before the DC closes the connection. If a connection is idle for

more than this time, the DC disconnects the client.

MaxDatagramRecv 4096 The maximum size, in bytes, of a UDP datagram request that

a DC will process. Requests that are larger than this value are

ignored by the DC.

MaxNotificationPerConn 5 The maximum number of outstanding notification search

requests (using the LDAP_SERVER_NOTIFICATION_OID

control) that the DC permits on a single connection. When this

limit is reached, the server returns an adminLimitExceeded /

ERROR_DS_ADMIN_LIMIT_EXCEEDED error to any new

notification searches that are requested on that connection.

MaxPoolThreads 4 The maximum number of threads per processor that a DC

dedicates to listening for network input or output. This value

also determines the maximum number of threads per

processor that can work on LDAP requests at the same time.

MaxReceiveBuffer 10,485,760 The maximum size, in bytes, of a request that the server will

accept. If the server receives a request that is larger than this,

it will drop the connection.

MaxPageSize 1000 The maximum number of objects that are returned in a single

search result, independent of how large each returned object

is. To perform a search where the result might exceed this

number of objects, the client must specify the paged search

control.

MaxQueryDuration 120 The maximum time, in seconds, that a DC will spend on a

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

243 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Policy name

Default

value Description

single search or batched LDAP extended operation (in

Windows Server 2012 and Windows Server 2012 R2). When

this limit is reached, the DC returns a timeLimitExceeded /

ERROR_INVALID_PARAMETER error.

MaxResultSetSize 262,144 The maximum number of bytes that a DC stores to optimize

the individual searches that make up a paged search. The data

that is stored is outside the state model and is

implementation-specific.

MaxTempTableSize 10,000 The maximum number of rows that a DC will create in a

temporary database table to hold intermediate results during

query processing.

MaxValRange 1500 The maximum number of values that can be retrieved from a

multivalued attribute in a single search request.

Windows 2000 DCs do not support this policy and instead

always use a setting of 1000 values.

MaxResultSetsPerConn 10 The maximum number of individual paged searches per LDAP

connection for which a DC will store optimization data. The

data that is stored is outside the state model and is

implementation-specific.

MinResultSets 3 The minimum number of individual paged searches for which a

DC will store optimization data. The data that is stored is

outside the state model and is implementation-specific.

MaxBatchReturnMessages 1100 The maximum number of messages that can be returned when

processing an LDAP_SERVER_BATCH_REQUEST_OID extended

operation (section 3.1.1.3.4.2.5).

3.1.1.3.4.7 LDAP Configurable Settings

A forest supports several administrator-controlled settings that affect LDAP. The name of each
setting is included in the supportedConfigurableSettings attribute on the rootDSE. These settings are
listed in the following table. The table also lists which versions of Windows Server operating system

and Active Directory Application Mode (ADAM) support which settings. The settings are stored on
the msDS-Other-Settings attribute of the directory service object, as specified in section
6.1.1.2.4.1.1. For more information, see [ADDLG].

%5bMS-ADA2%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89792

244 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Setting name

Win

dow

s 20

00

oper

atin

g

syst

em

Wi

ndo

ws

Ser

ver

 20

03

ope

rati

ng

sys

te

m

Wi

ndo

ws

Ser

ver

 20

03

ope

rati

ng

sys

te

m

wit

h

Ser

vic

e

Pac

k 1

(SP

1)

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

ndo

ws

Ser

ver

 20

08

ope

rati

ng

sys

te

m

AD

DS

Wi

ndo

ws

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

oper

atin

g

syst

em

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

ow

s

Se

rv

er

20

12

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

ws

Se

rv

er

20

12

A

D

LD

S

Wi

nd

ow

s

Se

rv

er

20

12

R2

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

ws

Se

rv

er

20

12

R2

A

D

LD

S

DynamicObject

DefaultTTL

 X X X X X X X X X X X X

DynamicObject

MinTTL

 X X X X X X X X X X X X

DisableVLVSup

port

 X X X X X X X X X X

ADAMAllowADA

MSecurityPrinci

palsInConfigPar

tition

 X X X X X

ADAMDisableLo

gonAuditing

 X X X X X X

ADAMDisablePa

sswordPolicies

 X X X X X X

ADAMDisableSP

NRegistration

 X X X X X

ADAMDisableSS

I

 X X X X X

ADAMLastLogon

TimestampWin

dow

 X X X X X X

MaxReferrals X X X X X X X X X X

ReferralRefresh

Interval

 X X X X X X X X X X

RequireSecureP X X X X X X

245 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Setting name

Win

dow

s 20

00

oper

atin

g

syst

em

Wi

ndo

ws

Ser

ver

 20

03

ope

rati

ng

sys

te

m

Wi

ndo

ws

Ser

ver

 20

03

ope

rati

ng

sys

te

m

wit

h

Ser

vic

e

Pac

k 1

(SP

1)

A

D

A

M

R

T

W

A

D

A

M

S

P

1

Wi

ndo

ws

Ser

ver

 20

08

ope

rati

ng

sys

te

m

AD

DS

Wi

ndo

ws

Ser

ver

 20

08

AD

LD

S

Win

dow

s

Serv

er 2

008

R2

oper

atin

g

syst

em

AD

DS

Win

dow

s

Serv

er 2

008

R2

AD

LDS

Wi

nd

ow

s

Se

rv

er

20

12

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

ws

Se

rv

er

20

12

A

D

LD

S

Wi

nd

ow

s

Se

rv

er

20

12

R2

op

er

ati

ng

sy

st

e

m

AD

DS

Wi

nd

o

ws

Se

rv

er

20

12

R2

A

D

LD

S

roxyBind

RequireSecureS

impleBind

 X X X X X X

SelfReferralsOn

ly

 X X X X X X X X X X

The DynamicObjectDefaultTTL is the default entryTTL value for a new dynamic object. The value is

in seconds and defaults to 86400. The minimum value is 1 and the maximum value is 31557600
(one year).

The DynamicObjectMinTTL is the minimum valid entryTTL value for a new dynamic object. The value
is in seconds and defaults to 900. The minimum value is 1 and the maximum value is 31557600
(one year).

When the DisableVLVSupport setting is set to 1, the DC excludes the OIDs for the

LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE controls from the
supportedControl attribute of the rootDSE. Additionally, if the LDAP_CONTROL_VLVREQUEST control
is attached to an incoming LDAP request and is not marked as critical, the DC ignores the control. If
the control is attached to an incoming LDAP request and is marked critical, the DC fails the request
with the error unavailableCriticalExtension / ERROR_INVALID_PARAMETER. If the
DisableVLVSupport setting is not specified, it defaults to 0.

When ADAMAllowADAMSecurityPrincipalsInConfigPartition equals 1, security principals (that is,

objects that have an objectSid attribute) may be created in the Config NC. When equal to 0,
attempts to create a security principal in the Config NC are rejected with the error
unwillingToPerform / ERROR_DS_CANT_CREATE_IN_NONDOMAIN_NC. If

ADAMAllowADAMSecurityPrincipalsInConfigPartition is not specified, it defaults to 0.

The effect of ADAMDisableLogonAuditing is outside the state model. When
ADAMDisableLogonAuditing equals 1, the DC does not generate audit events when an AD LDS
security principal (section 5.1.1.5) authenticates to the server. If set to 0, the DC attempts to

generate audit events when an AD LDS security principal authenticates to the server; policy on the

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

246 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

computer running the DC determines whether audit events are actually generated. If
ADAMDisableLogonAuditing is not specified, it defaults to 0.

When ADAMDisablePasswordPolicies does not equal 1 and an LDAP bind is performed or a password
is changed on an AD LDS security principal, the DC enforces the current password policy in effect on

the AD LDS server as reported by SamrValidatePassword ([MS-SAMR] section 3.1.5.13.7). When
ADAMDisablePasswordPolicies is set to 1, the DC does not enforce any such policies. If
ADAMDisablePasswordPolicies is not explicitly specified, it defaults to 0.

When ADAMDisableSPNRegistration equals 1, a DC running as AD LDS does not register its SPNs on
the servicePrincipalName of the computer object as described in [MS-DRSR] section 2.2.2. When
ADAMDisableSPNRegistration equals 0, a DC running as AD LDS performs SPN registration as
described in that document. If ADAMDisableSPNRegistration is not explicitly specified, it defaults to

0.

When ADAMDisableSSI equals 1, a DC running as AD LDS does not support DIGEST-MD5
authentication for AD LDS security principals. If ADAMDisableSSI equals 0, a DC running as AD LDS
supports DIGEST-MD5 for AD LDS security principals. ADAMDisableSSI has no effect on a DC

running as AD DS. If ADAMDisableSSI is not explicitly specified, it defaults to 0.

ADAMLastLogonTimestampWindow specifies how frequently, in days, AD LDS updates the

lastLogonTimestamp attribute when an AD LDS security principal (see section 5.1.1.5) authenticates
to the server. For an AD LDS security principal O, if a successful LDAP bind as that security principal
is performed at time T, and the difference between O!lastLogonTimestamp and T is greater than
ADAMLastLogonTimestampWindow days, then the AD LDS DC sets O!lastLogonTimestamp to T.
Otherwise, the AD LDS DC leaves O!lastLogonTimestamp unchanged. If
ADAMLastLogonTimestampWindow is not explicitly specified, it defaults to 7.

MaxReferrals specifies the maximum number of LDAP URLs that the DC will include in a referral or

continuation reference. The default value is 3.

The effect of ReferralRefreshInterval is outside the state model. A Windows DC maintains an in-
memory cache of referral information so that it can return referrals and continuation references
without consulting the directory state. ReferralRefreshInterval specifies how frequently, in minutes,

a DC refreshes the in-memory cache from the directory state. The default value is 5.

When RequireSecureProxyBind is set to 1, AD LDS will reject (with the error confidentialityRequired
/ <unrestricted>) an LDAP simple bind request that requests authentication as an AD LDS bind

proxy (section 5.1.1.5) if that request is not performed on an SSL/TLS-encrypted or SASL-protected
connection with a cipher strength of at least 128 bits. If RequireSecureProxyBind is set to 0, no such
restriction is imposed. If RequireSecureProxyBind is not explicitly specified, it defaults to 1.

When RequireSecureSimpleBind is set to 1, AD LDS will reject (with the error confidentialityRequired
/ <unrestricted>) an LDAP simple bind request that requests authentication as an AD LDS security
principal (section 5.1.1.5) if that request is not performed on an SSL/TLS-encrypted or SASL-

protected connection with a cipher strength of at least 128 bits. If RequireSecureSimpleBind is set to
0, no such restriction is imposed. If RequireSecureSimpleBind is not explicitly specified, it defaults to
0.

If SelfReferralsOnly is set to 1, then the DC will only return referrals and continuation references
that refer to itself. It will not return referrals and continuation references to NCs of which it does not
have an NC replica. Referrals and continuation references to NCs of which it does have an NC replica
will name itself as the referred-to server.

%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

247 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.3.4.8 LDAP IP-Deny List

The IP Deny list specifies a set of IP addresses from which the DC will reject incoming LDAP
connection requests. The IP Deny list is stored in the lDAPIPDenyList attribute on the queryPolicy

object. The DC retrieves the lDAPIPDenyList attribute from the same queryPolicy object that it
retrieves the lDAPAdminLimits attribute from in section 3.1.1.3.4.6

The lDAPIPDenyList attribute is a multivalued attribute. Each value of the attribute is a string in the
following form:

X.X.X.X M.M.M.M

where X.X.X.X is an IP address and M.M.M.M is a network mask. A connection from an IP address
Y.Y.Y.Y will be rejected if the bitwise AND of Y.Y.Y.Y and M.M.M.M equals X.X.X.X.

For example, the value "157.59.132.0 255.255.255.0" would cause requests from IP addresses
157.59.132.0 through 157.59.132.255 to be rejected. The value "157.59.132.245 255.255.255.255"
would reject only IP address 157.59.132.245.

The IP Deny list is only supported on IPv4 connections. Active Directory does not support this
mechanism on IPv6 connections.

3.1.1.4 Reads

References:

[RFC2251]

Special Objects and Forest Requirements: section 6.1

[MS-DRSR]

[XMLSCHEMA2/2]

Quota Calculation: section 3.1.1.5

Range Retrieval of Attribute Values: section 3.1.1.3

Referrals in LDAPv2 and LDAPv3: section 3.1.1.3

[MS-ADSC]

[MS-ADA1]

[MS-ADA2]

[MS-ADA3]

Function GetWellknownObject: section 3.1.1.1

3.1.1.4.1 Introduction

LDAP reads are specified in [RFC2251] section 4.5. Generally and imprecisely, reads are searches
starting at some object in Active Directory and restricted by the requester to either the object, the
object's children, or the tree of objects rooted by object. After applying that restriction, the search is
then restricted to the objects and the values for attributes on those objects to which the requester
has access. The search is finally restricted to the objects that match the search filter. The requested

attributes and their values for those matching objects are then returned to the requester. The RFC

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90609
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325

248 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

specifies the details for LDAP reads. This section covers access checks for LDAP reads, extended
access checks for reading the specified attributes, the attributes used to construct the specified

constructed attributes, and the effect of defunct attributes and classes on reads.

This section does not provide details on the classes and attributes mentioned here. For details, see

[MS-ADSC], [MS-ADA1], [MS-ADA2], and [MS-ADA3].

3.1.1.4.2 Definitions

The following functions are used to specify the behavior of several of the constructed attributes.
They are collected together here because of the dependencies they have on each other.

Let SUPCLASSES (top) be the empty set. For other classes O, let SUPCLASSES(O) be the union of
O!subClassOf and SUPCLASSES(O!subClassOf).

Let AUXCLASSES(O) be the union of

O!systemAuxiliaryClass

and O!auxiliaryClass

and AUXCLASSES(O!systemAuxiliaryClass)

and AUXCLASSES(O!auxiliaryClass)

and AUXCLASSES(C) for all C in SUPCLASSES(O)

Let SUBCLASSES(O) be the set of all C such that O is in SUPCLASSES(C).

Let POSSSUP_NOSUBCLASSES(O) be the union of

O!systemPossSuperiors

and O!possSuperiors

and POSSSUP_NOSUBCLASSES(C) for all C in SUPCLASSES(O)

Let POSSSUPERIORS(O) be the union of

POSSSUP_NOSUBCLASSES(O)

and SUBCLASSES(C) for all C in POSSSUP_NOSUBCLASSES(O)

Let CLASSATTS(O) be the union of

O!mustContain

and O!systemMustContain

and O!mayContain

and O!systemMayContain

and CLASSATTS(C) for all C in SUPCLASSES(O)

and CLASSATTS(C) for all C in AUXCLASSES(O)

Let SPC(O) be true when O or any SUPCLASSES(O) is one of builtinDomain, samServer,
samDomain, group, or user; and false, otherwise.

%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

249 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.4.3 Access Checks

An object is not visible to a requester if the requester is not granted the necessary rights. But even
if an object is visible to a requester, the requester may lack the necessary rights to see individual

attributes. The values for attributes that are not visible to the requester are treated as "does not
exist" in the returned attributes and the LDAP filter. For example, if the requester requests the value
for displayName but that attribute is not visible, then the returned value will be the same as it would
have been if the attribute displayName did not exist on that Object. Likewise, if displayName were
part of the LDAP filter, then, similarly, the filter would behave just as if displayName did not exist on
that Object.

Let O be the Object being considered during search.

Let ON be the root object of the NC containing O.

Let OP be O!parent.

Let OA be the Attribute, or the property set containing the Attribute, that is being considered for O

during search.

Generally, the security context of the requester must be granted rights RIGHT_DS_LIST_CONTENTS
(defined in section 5.1.3.2) on OP by OP!nTSecurityDescriptor.

Generally, the security context of the requester must be granted rights RIGHT_DS_READ_PROPERTY
on OA by O!nTSecurityDescriptor. Otherwise, the value is treated as "does not exist" in the returned
attributes and the LDAP filter. This behavior changes for special attributes, for attributes with special
search flags in their definition, and for some attributes because of dSHeuristics (section
6.1.1.2.4.1.2), as specified in section 3.1.1.4.4.

3.1.1.4.4 Extended Access Checks

Some attributes require different access than that specified in the previous section.

The security context of the requester must be granted the indicated rights on OA by

O!nTSecurityDescriptor unless otherwise specified. If not granted, then the value is treated as "does
not exist" in the returned attributes and the LDAP filter.

OA Requires right(s)

nTSecurityDescriptor (ACCESS_SYSTEM_SECURITY)

and (RIGHT_READ_CONTROL)

msDS-QuotaEffective (RIGHT_DS_READ_PROPERTY on the Quotas container,

described in section 6.1.1.4.3)

or ((the client is querying the quota for the security principal it

is authenticated as)

and (DS-Query-Self-Quota control access right on the Quotas

container))

msDS-QuotaUsed (RIGHT_DS_READ_PROPERTY on the Quotas container,

described in section 6.1.1.4.3)

or ((the client is querying the quota for the security principal it

is authenticated as)

and (DS-Query-Self-Quota control access right on the Quotas

container))

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

250 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

OA Requires right(s)

userPassword When the fUserPwdSupport heuristic in the dSHeuristics

attribute (see section 6.1.1.2.4.1.2) is false, the requester

must be granted RIGHT_DS_READ_PROPERTY. When

fUserPwdSupport is true, access is never granted.

pekList Access is never granted

currentValue Access is never granted

dBCSPwd Access is never granted

unicodePwd Access is never granted

ntPwdHistory Access is never granted

priorValue Access is never granted

supplementalCredentials Access is never granted

trustAuthIncoming Access is never granted

trustAuthOutgoing Access is never granted

lmPwdHistory Access is never granted

initialAuthIncoming Access is never granted

initialAuthOutgoing Access is never granted

msDS-ExecuteScriptPassword Access is never granted

Attribute whose attributeSchema has

CF (fCONFIDENTIAL, 0x0x00000080)

set in searchFlags.

(RIGHT_DS_READ_PROPERTY)

and (RIGHT_DS_CONTROL_ACCESS)

sDRightsEffective See section 3.1.1.4.5.4

allowedChildClassesEffective See section 3.1.1.4.5.5

allowedAttributesEffective See section 3.1.1.4.5.7

msDS-Approx-Immed-Subordinates See section 3.1.1.4.5.15

msDS-QuotaEffective See section 3.1.1.4.5.22

msDS-ReplAttributeMetaData

msDS-ReplValueMetaData

The security context of the requester must be granted the

following rights on the replPropertyMetaData attribute:

(RIGHT_DS_READ_PROPERTY)

or (DS-Replication-Manage-Topology by

ON!nTSecurityDescriptor)

msDS-NCReplInboundNeighbors The security context of the requester must be granted the

following rights on repsFrom:

(RIGHT_DS_READ_PROPERTY)

or (DS-Replication-Manage-Topology)

or (DS-Replication-Monitor-Topology)

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf

251 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

OA Requires right(s)

msDS-NCReplOutboundNeighbors The security context of the requester must be granted the

following rights on repsTo:

(RIGHT_DS_READ_PROPERTY)

or (DS-Replication-Manage-Topology)

or (DS-Replication-Monitor-Topology)

msDS-NCReplCursors The security context of the requester must be granted the

following rights on replUpToDateVector:

(RIGHT_DS_READ_PROPERTY)

or (DS-Replication-Manage-Topology)

or (DS-Replication-Monitor-Topology)

msDS-IsUserCachableAtRodc The security context of the requester must be granted the

Read-Only-Replication-Secret-Synchronization control access

right on the root of the default NC.

msDS-ManagedPassword The security context of the requester must be granted the

RIGHT_DS_READ_PROPERTY control access right on the

security descriptor in the msDS-GroupMSAMembership

attribute.

Attribute whose attributeSchema has

SE (fPARTITIONSECRET,

0x0x00001000) set in searchFlags.

(RIGHT_DS_READ_PROPERTY) must be granted on the object,

and the DS-Read-Partition-Secrets control access right must be

granted on the object that is the root of the naming context to

which the object belongs.

3.1.1.4.5 Constructed Attributes

Individual constructed attributes, other than rootDSE Attributes (section 3.1.1.3.2), are specified in
[MS-ADA1], [MS-ADA2], and [MS-ADA3]. But briefly, constructed attributes have the property that
they are attributes for which the attribute value is computed by using other attributes, sometimes

from other objects. Regardless of this property, constructed attributes are defined to be those
attributes that meet one of the following three criteria:

The attributeSchema object's systemFlags attribute has the ATTR_IS_CONSTRUCTED bit (section

2.2.10) set to one.

The attribute is a rootDSE attribute (section 3.1.1.3.2).

The attribute is a back link attribute.

The objects and attributes for specified constructed attributes are covered in this section.

Except as otherwise noted, these constructed attributes are applicable to both AD DS and AD LDS.

3.1.1.4.5.1 subSchemaSubEntry

The value is the DN equal to the schema NC's DN appended to "CN=Aggregate,".

3.1.1.4.5.2 canonicalName

The value is the canonical name of the object (section 3.1.1.1.7).

%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

252 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.4.5.3 allowedChildClasses

Let TO be the object from which the allowedChildClasses attribute is being read.

The value of TO!allowedChildClasses the set of lDAPDisplayNames read from each Object O where

(O.distinguishedName is in the schema NC)

and (O!objectClass is classSchema)

and (not O!systemOnly)

and (not O!objectClassCategory is 2)

and (not O!objectClassCategory is 3)

and (there exists C in TO!objectClass such that C is in POSSSUPERIORS(O))

3.1.1.4.5.4 sDRightsEffective

Let TO be the object from which the sDRightsEffective attribute is being read.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0 S

S

I

D

S

I

G

S

I

O

S

I

Note Bits are presented in big-endian byte order.

The value of TO!sDRightsEffective is derived as follows from the bits shown in the preceding table:

OSI (OWNER_SECURITY_INFORMATION, 0x00000001) and GSI

(GROUP_SECURITY_INFORMATION, 0x00000002) are both set if TO!nTSecurityDescriptor grants
RIGHT_WRITE_OWNER to the requester.

DSI (DACL_SECURITY_INFORMATION, 0x00000004) is set if TO!nTSecurityDescriptor grants

RIGHT_WRITE_DAC to the requester.

SSI (SACL_SECURITY_INFORMATION, 0x00000008) is set if TO!nTSecurityDescriptor grants

RIGHT_ACCESS_SYSTEM_SECURITY to the requester.

3.1.1.4.5.5 allowedChildClassesEffective

The allowedChildClassesEffective attribute has different behavior on AD DS and AD LDS.

If the DC is running as AD LDS, then let fAllowPrincipals equal true if the value of the
ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration setting (section 3.1.1.3.4.7) is 1,
false otherwise. If the ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration setting is
not supported, then let fAllowPrincipals = false.

Let TO be the object from which the allowedChildClassesEffective attribute is being read.

TO!allowedChildClassesEffective contains each object class O in TO!allowedChildClasses such that:

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

253 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

(

(TO!nTSecurityDescriptor grants RIGHT_DS_CREATE_CHILD via a simple access control entry
(ACE) to the client for instantiating an object beneath TO)

or

(TO.nTSecurityDescriptor grants RIGHT_DS_CREATE_CHILD via an object-specific ACE to the
client for instantiating an object of class O beneath TO)

)

and (fAllowPrincipals or (not TO!distinguishedName in config NC) or (not SPC(O)))

and (fAllowPrincipals or (not TO!distinguishedName in schema NC) or (not SPC(O)))

Simple ACEs and object-specific ACEs are discussed in section 5.1.3.

3.1.1.4.5.6 allowedAttributes

Let TO be the object from which the allowedAttributes attribute is being read.

The value of TO!allowedAttributes is the set of lDAPDisplayNames read from each Object O where:

(O.dn is in the schema NC)

and (O!objectClass is attributeSchema)

and (there exists C in TO!objectClass such that O is in CLASSATTS(C))

3.1.1.4.5.7 allowedAttributesEffective

Let TO be the object from which the allowedAttributesEffective attribute is being read.

The value of TO!allowedAttributesEffective is the subset of values returned by allowedAttributes for

which values (O) conform to the following:

TO!nTSecurityDescriptor grants RIGHT_DS_WRITE_PROPERTY on O to the requester

and (O!linkID is even or O!linkID is not present)

(and (not bit 0x4 is set in O!systemFlags) or O!lDAPDisplayName is entryTTL)

3.1.1.4.5.8 fromEntry

Let TO be the object from which the fromEntry attribute is being read.

The value of TO!fromEntry is true if TO!instanceType has bit 0x4 set, otherwise false.

3.1.1.4.5.9 createTimeStamp

Let TO be the object from which the createTimeStamp attribute is being read.

The value of TO!createTimeStamp is TO!whenCreated.

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

254 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.4.5.10 modifyTimeStamp

Let TO be the object from which the modifyTimeStamp attribute is being read.

The value of TO!modifyTimeStamp is TO!whenChanged.

3.1.1.4.5.11 primaryGroupToken

Let TO be the object from which the primaryGroupToken attribute is being read.

The value of TO!primaryGroupToken is the RID from TO!objectSid when there exists C in
TO!objectClass such that C is the group class. Otherwise, no value is returned. That is, if TO is a
group, then the value of this attribute is the RID from the group's SID. If TO is not a group, no
value is returned when this attribute is read from TO.

3.1.1.4.5.12 entryTTL

Let TO be the object from which the entryTTL attribute is being read.

The value of TO!entryTTL is the number of seconds in TO!msDS-Entry-Time-To-Die minus the
current system time, and is constrained to the range 0..0xFFFFFFFF by returning 0 if the difference
is less than 0, and 0xFFFFFFFF if the difference is greater than 0xFFFFFFFF.

3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-

ReplAttributeMetaData, msDS-ReplValueMetaData

If the object from which msDS-NCReplInboundNeighbors or msDS-NCReplCursors is being read is
not the root object of an NC, the result of the read is no value.

Otherwise, reading any of these four attributes on an object returns an alternate representation of
the structures returned by IDL_DRSGetReplInfo() applied to that object. The result is either a binary

data structure or XML (IDL_DRSGetReplInfo and its associated structures are documented in [MS-
DRSR] section 4.1.13). The relationship between these constructed attributes and the

IDL_DRSGetReplInfo data is shown in the following table.

Constructed

attribute

Equivalent DS_REPL_INFO

code* XML structure** Binary structure***

msDS-

NCReplInboundN

eighbors

DS_REPL_INFO_NEIGHBORS DS_REPL_NEIGHBOR

W

DS_REPL_NEIGHBORW_

BLOB

msDS-

NCReplCursors

DS_REPL_INFO_CURSORS_3_FOR

_NC

DS_REPL_CURSORS_3

W

DS_REPL_CURSOR_BLOB

msDS-

ReplAttributeMet

aData

DS_REPL_INFO_METADATA_2_FO

R_OBJ

DS_REPL_ATTR_META

_DATA_2

DS_REPL_ATTR_META_D

ATA_BLOB

msDS-

ReplValueMetaDa

ta

DS_REPL_INFO_METADATA_2_FO

R_ATTR_VALUE

DS_REPL_VALUE_MET

A_DATA_2

DS_REPL_VALUE_META_

DATA_BLOB

* See [MS-DRSR] section 4.1.13.1.4.

** See [MS-DRSR] section 4.1.13.1.

%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

255 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

*** See section 2.2.

The information returned is exactly the same information as is returned by a call to
IDL_DRSGetReplInfo when specifying the value in the second column as the value for
DRS_MSG_GETREPLINFO_REQ_V1.InfoType or DRS_MSG_GETREPLINFO_REQ_V2.InfoType.

Without any attribute qualifier, the data is returned as XML. The parent element of the XML is the
name of the structure contained in the "XML structure" column in the table, and the child element
names and order in the XML exactly follow the names of the fields in that structure as well. The
meaning of each child element is the same as the meaning of the corresponding field in the
structure. Values of integer types are represented as decimal strings. Values of FILETIME type are
represented as XML dateTime values in UTC, for example, "04-07T18:39:09Z", as specified in
[XMLSCHEMA2/2]. Values of GUID fields are represented as GUIDStrings.

If the ";binary" attribute qualifier is specified when the attribute is requested, the value of this
attribute is returned as binary data; specifically, the structure contained in the "Binary Structure"
column. In this representation, fields that would contain strings are represented as integer offsets
(relative to the beginning of the binary data) to a null-terminated UTF-16 encoded string embedded

in the returned binary data.

3.1.1.4.5.14 msDS-NCReplOutboundNeighbors

The msDS-NCReplOutboundNeighbors attribute is equivalent to msDS-NCReplInboundNeighbors,
except that it retrieves representations of each repsTo value for the requested Object (that is,
information related to replication notifications for event-driven replication), while msDS-
NCReplInboundNeighbors retrieves representations of each repsFrom value (that is, information
related to inbound replication). Like msDS-NCReplInboundNeighbors, it can return the data in either
XML or binary form, depending on the presence of the ";binary" attribute qualifier, and uses the

DS_REPL_NEIGHBOR and DS_REPL_NEIGHBORW_BLOB structures for its XML and binary
representations, respectively.

3.1.1.4.5.15 msDS-Approx-Immed-Subordinates

Let TO be the object from which the msDS-Approx-Immed-Subordinates attribute is being read.

The value of TO!msDS-Approx-Immed-Subordinates is the approximate number of direct
descendants of this object if TO!nTSecurityDescriptor grants RIGHT_DS_LIST_CONTENTS to the

client. This estimate has no guarantee or requirement of accuracy. If the client does not have the
RIGHT_DS_LIST_CONTENTS access right, the value 0 is returned as the estimate.

3.1.1.4.5.16 msDS-KeyVersionNumber

The msDS-KeyVersionNumber attribute exists on AD DS but not on AD LDS.

Let TO be the object from which the msDS-KeyVersionNumber attribute is being read.

If the fKVNOEmuW2k heuristic of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) is true,

TO!msDS-KeyVersionNumber equals 1. Otherwise, TO!msDS-KeyVersionNumber equals the
dwVersion field of the AttributeStamp associated with TO's unicodePwd attribute. See section

3.1.1.1.9 for more information about AttributeStamp and dwVersion.

3.1.1.4.5.17 msDS-User-Account-Control-Computed

The msDS-User-Account-Control-Computed attribute has different behavior on AD DS and AD LDS.

Let TO be the object from which the msDS-User-Account-Control-Computed attribute is being read.

http://go.microsoft.com/fwlink/?LinkId=90609
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

256 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For AD DS, the following description applies.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0 0 0 0 0 0 0 0 P

E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L

O

0 0 0 0

Note Bits are presented in big-endian byte order.

If the object TO is not in a domain NC, TO!msDS-User-Account-Control-Computed = 0.

If the object TO is in a domain NC, let D be the root of that NC, and let ST be the current time, read
from the system clock. Then the value of TO!msDS-User-Account-Control-Computed is the

preceding bit pattern, where:

LO (ADS_UF_LOCKOUT, 0x00000010) is set if:

(none of bits ADS_UF_WORKSTATION_TRUST_ACCOUNT,

ADS_UF_SERVER_TRUST_ACCOUNT, ADS_UF_INTERDOMAIN_TRUST_ACCOUNT are set in
TO!userAccountControl)

and (TO!lockoutTime is nonzero and either (1) Effective-LockoutDuration (regarded as an

unsigned quantity) < 0x8000000000000000, or (2) ST + Effective-LockoutDuration (regarded
as a signed quantity) ≤ TO!lockoutTime), where Effective-LockoutDuration is defined in [MS-
SAMR] section 3.1.1.5.

PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000) is set if:

(none of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD,

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT,
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT are set in TO!userAccountControl)

and (TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (Effective-MaximumPasswordAge ≠

0x8000000000000000 and (ST - TO!pwdLastSet) > Effective-MaximumPasswordAge)), where
Effective-MaximumPasswordAge is defined in [MS-SAMR] section 3.1.1.5.

For AD LDS, the following description applies.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0 0 0 0 0 0 0 0 P

E

0 0 0 0 0 0 D

E

P

0 0 0 0 0 0 0 0 0 0 P

N

R

L

O

0 0 A

D

0

Note Bits are presented in big-endian byte order.

The value of TO!msDS-User-Account-Control-Computed attribute is the preceding bit pattern,
where:

AD (ADS_UF_ACCOUNT_DISABLE, 0x00000002) is set if:

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA2%5d.pdf

257 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TO!msDS-UserAccountDisabled is true

LO (ADS_UF_LOCKOUT, 0x00000010) is set if:

TO!ms-DS-UserAccountAutoLocked is true

PNR (ADS_UF_PASSWD_NOTREQD, 0x00000020) is set if:

TO!ms-DS-UserPasswordNotRequired is true

DEP (ADS_UF_DONT_EXPIRE_PASSWD, 0x00010000) is set if:

TO!msDS-UserDontExpirePassword is true

PE (ADS_UF_PASSWORD_EXPIRED, 0x00800000) is set if:

TO!msDS-UserPasswordExpired is true

3.1.1.4.5.18 msDS-Auxiliary-Classes

Let TO be the object from which the msDS-Auxiliary-Classes attribute is being read.

The value of TO!msDS-Auxiliary-Classes is the set of lDAPDisplayNames from each Object O such

that (O is in TO!objectClass) and (O is not in SUPCLASSES(Most Specific class of TO)).

3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable

The tokenGroups attribute exists on both AD DS and AD LDS. The tokenGroupsNoGCAcceptable
attribute exists on AD DS but not on AD LDS.

These two computed attributes return the set of SIDs from a transitive group membership
expansion operation on a given object.

For AD DS, the tokenGroups attribute is not present if no GC server is available to evaluate the

transitive reverse memberships. The tokenGroupsNoGCAcceptable attribute can always be retrieved,
but if no GC server is available, the set of SIDs may be incomplete.

Let U be the object from which the tokenGroups or tokenGroupsNoGCAcceptable attribute is being
read.

If U!objectSid does not exist, U!tokenGroups and U!tokenGroupsNoGCAcceptable are not present.

Otherwise, U!tokenGroups and U!tokenGroupsNoGCAcceptable are the result of the algorithm in

[MS-DRSR] section 4.1.8.3 (IDL_DRSGetMemberships) using
DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetGroupsForUser,
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC.

3.1.1.4.5.20 tokenGroupsGlobalAndUniversal

The tokenGroupsGlobalAndUniversal attribute exists on AD DS but not on AD LDS.

This computed attribute returns the set of SIDs of global and universal groups resulting from a
transitive group membership expansion operation on a given object. This attribute is not present if
no GC server is available to evaluate the transitive reverse memberships.

Let U be the object from which the tokenGroupsGlobalAndUniversal attribute is being read.

%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

258 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If U!objectSid does not exist, U!tokenGroupsGlobalAndUniversal is not present.

Otherwise let S be the set of SIDs returned by invoking the algorithm in [MS-DRSR] section

4.1.8.3 (IDL_DRSGetMemberships) using

DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetAccountGroups,
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC.

Let accumulator set T be the Null set.

For each SID s in S:

Let X be the set of SIDs returned by invoking the algorithm in [MS-DRSR] section 4.1.8.3

(IDL_DRSGetMemberships) using
DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetUniversalGroups,
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=s, and
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = NULL.

T = T union X.

U!tokenGroupsGlobalAndUniversal is the union of T and S.

3.1.1.4.5.21 possibleInferiors

Let TO be the object from which the possibleInferiors attribute is being read.

Let C be the classSchema object corresponding to TO!governsID.

The value of TO!possibleInferiors is the set of O!governsID for each Object O where

(O is in the schema NC)

and (O!objectClass is classSchema)

and (not O!systemOnly)

and (not O!objectClassCategory is 2)

and (not O!objectClassCategory is 3)

and ((C is contained in POSSSUPERIORS(O))

3.1.1.4.5.22 msDS-QuotaEffective

Let TO be the object from which the msDS-QuotaEffective attribute is being read.

Let R be the root object of the NC containing TO.

Let SID be the sid specified by the LDAP extended control LDAP_SERVER_QUOTA_CONTROL_OID or,

if none is specified, the requester's SID.

Let SIDS be the set of SIDs including SID and the set of SIDs returned by tokenGroups.

The value of TO!msDS-QuotaEffective is the maximum of all O!msDS-QuotaAmount for each object
O where:

(TO is the object:

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

259 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W))

and (O is a child of TO)

and (the client has access to O as specified in section 3.1.1.4.3)

and (the client has access to O!msDS-QuotaAmount as specified in section 3.1.1.4.3)

and (the client has access to O!msDS-QuotaTrustee as specified in section 3.1.1.4.3)

and (there exists S in SIDS such that S is equal to O!msDS-QuotaTrustee)

3.1.1.4.5.23 msDS-QuotaUsed

Let TO be the object from which the msDS-QuotaUsed attribute is being read.

Let C be the Most Specific Class from TO!objectClass.

Let R be the root object of the NC containing TO.

Let SID be the SID specified by the LDAP extended control LDAP_SERVER_QUOTA_CONTROL_OID
or, if none is specified, the requester's SID.

The value of TO!msDS-QuotaUsed is:

(cLive + ((cTombstoned * TO!msDS-TombstoneQuotaFactor)+99)/100)

where:

cLive is the number of non-tombstoned objects associated with SID, and cTombstoned is the

number of tombstoned objects associated with SID, as detailed in section 3.1.1.5.2.5, Quota
Calculation.

when:

(TO is the object:

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W))

3.1.1.4.5.24 msDS-TopQuotaUsage

Let TO be the object from which the msDS-TopQuotaUsage attribute is being read.

Let R be the root object of the NC containing TO.

TO!msDS-TopQuotaUsage equals a set of XML-encoded strings sorted by the element quotaUsed

when:

TO is the object:

GetWellknownObject(n: R, guid: GUID_NTDS_QUOTAS_CONTAINER_W)

Each string represents the quota information for a SID as specified in section 3.1.1.5.2.5, Quota
Calculation. The format of the XML-encoded string is:

<MS_DS_TOP_QUOTA_USAGE>

<partitionDN>DN of the NC containing TO </partitionDN>

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

260 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<ownerSID>SID of quota user </ownerSID>

<quotaUsed>rounded up value of quota used (computed) </quotaUsed>

<tombstoneCount>value in the TombstoneCount column </tombstoneCount>

<totalCount>value in the TotalCount column </totalCount>

</MS_DS_TOP_QUOTA_USAGE>

where quotaUsed is computed as specified in msDS-QuotaUsed with cLive set to (totalCount -
tombstoneCount).

The number of values returned can be controlled with the ";range" syntax as detailed in Range
Retrieval of Attribute Values in section 3.1.1.3.1.3.3. The default range is 10 for this attribute.

3.1.1.4.5.25 ms-DS-UserAccountAutoLocked

The ms-DS-UserAccountAutoLocked attribute exists on AD LDS but not on AD DS.

Let TO be the object from which the ms-DS-UserAccountAutoLocked attribute is being read. Let ST
be the current time, read from the system clock.

If the machine running AD LDS is joined to a domain D, TO!ms-DS-UserAccountAutoLocked is true if
both of the following are true:

The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1.

TO!lockoutTime ≠ 0 and either (1) D!lockoutDuration (regarded as an unsigned quantity) <

0x8000000000000000, or (2) ST + D!lockoutDuration (regarded as a signed quantity) ≤
TO!lockoutTime.

If the machine running AD LDS is not joined to a domain, TO!ms-DS-UserAccountAutoLocked is true
if both of the following are true:

The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1.

TO!lockoutTime ≠ 0 and (current time - TO!lockoutTime) ≤ X, where X is determined by the

policy of the machine on which AD LDS is running.

3.1.1.4.5.26 msDS-UserPasswordExpired

The msDS-UserPasswordExpired attribute exists on AD LDS but not on AD DS.

Let TO be the object from which the msDS-UserPasswordExpired attribute is being read. Let ST be

the current time, read from the system clock.

If the machine running AD LDS is joined to a domain, let D be the root of the domain NC of the
joined domain. Then TO!msDS-UserPasswordExpired is true if all of the following are true:

The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1.

None of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD,

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT,

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT is set in TO!userAccountControl.

TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (D!maxPwdAge ≠ 0x8000000000000000 and

(ST - TO!pwdLastSet) > D!maxPwdAge)).

%5bMS-ADA2%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

261 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the machine running AD LDS is not joined to a domain, then TO!msDS-UserPasswordExpired is
true if all of the following are true:

The LDAP configurable setting ADAMDisablePasswordPolicies ≠ 1.

None of bits ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD,

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT,
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT is set in TO!userAccountControl.

TO!pwdLastSet = null, or TO!pwdLastSet = 0, or (ST - TO!pwdLastSet) > X, where X is

determined by the policy of the machine on which AD LDS is running.

3.1.1.4.5.27 msDS-PrincipalName

The msDS-PrincipalName attribute has different behavior on AD DS and AD LDS.

Let TO be the object from which the msDS-PrincipalName attribute is being read.

For AD DS, the value of TO!msDS-PrincipalName is either (1) the NetBIOS domain name, followed
by a backslash ("\"), followed by TO!sAMAccountName, or (2) the value of TO!objectSid in SDDL
SID string format ([MS-DTYP] section 2.4.2.1).

For AD LDS, let OBJSID be the value of TO!objectSid. If OBJSID is the SID of a security principal of

the computer on which Active Directory is running, then TO!msDS-PrincipalName is the NetBIOS
computer name, followed by a backslash ("\"), followed by the name of the security principal. If the
computer on which Active Directory is running is a member of a domain, and OBJSID is a SID for a
security principal S in that domain, then TO!msDS-PrincipalName is the NetBIOS domain name,
followed by a backslash ("\"), followed by S!sAMAccountName. Otherwise, the value of TO!msDS-
PrincipalName is the value of TO!objectSid in SDDL SID string format ([MS-DTYP] section 2.4.2.1).

3.1.1.4.5.28 parentGUID

This attribute is not present on an object that is the root of an NC. For all other objects, let TO be
the object from which the parentGUID attribute is being read and let TP be TO!parent.

TO!parentGUID is equal to TP!objectGUID.

3.1.1.4.5.29 msDS-SiteName

The msDS-SiteName attribute exists on AD DS but not on AD LDS.

Let TO be the object on which msDS-SiteName is being read. If TO is an nTDSDSA object or a
server object, then TO!msDS-SiteName is equal to the value of the RDN of the site object under
which TO is located. For example, given a TO that is an nTDSDSA object with the DN "CN=NTDS
Settings, CN=TESTDC-01, CN=Servers, CN=Default-First-Site-Name, CN=Sites, CN=Configuration,
DC=fabrikam, DC=com", the value of TO!msDS-SiteName is "Default-First-Site-Name".

If TO is a computer object, then let TS be the server object named by TO!serverReferenceBL.

TO!msDS-SiteName equals TS!msDS-SiteName.

If TO is neither a computer, server, nor nTDSDSA object, then TO!msDS-SiteName is not present.

3.1.1.4.5.30 msDS-isRODC

The msDS-isRODC attribute exists on AD DS but not on AD LDS.

%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

262 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

This attribute indicates whether a specified DC is an RODC. Let TO be the object on which msDS-
isRODC is being read. If TO is not an nTDSDSA, computer, or server object, then TO!msDS-isRODC

is not present.

If TO is an nTDSDSA object:

If TO!objectCategory equals the DN of the classSchema object for the nTDSDSA object class,

then TO!msDS-isRODC is false. Otherwise, TO!msDS-isRODC is true.

If TO is a server object:

Let TN be the nTDSDSA object whose DN is "CN=NTDS Settings," prepended to the DN of TO.

Apply the previous rule for the "TO is an nTDSDSA object" case, substituting TN for TO.

If TO is a computer object:

Let TS be the server object named by TO!serverReferenceBL. Apply the previous rule for the

"TO is a server object" case, substituting TS for TO.

3.1.1.4.5.31 msDS-isGC

The msDS-isGC attribute exists on AD DS but not on AD LDS.

This attribute indicates whether a specified DC is a GC server. Let TO be the object on which msDS-
isGC is being read. If TO is not an nTDSDSA, computer, or server object, then TO.msDS-isGC is not
present.

If TO is an nTDSDSA object:

TO!msDS-isGC iff TO!options has the NTDSDSA_OPT_IS_GC bit set (section

6.1.1.2.2.1.2.1.1).

If TO is a server object:

Let TN be the nTDSDSA object whose DN is "CN=NTDS Settings," prepended to the DN of TO.

Apply the previous rule for the "TO is an nTDSDSA object" case, substituting TN for TO.

If TO is a computer object:

Let TS be the server object named by TO!serverReferenceBL. Apply the previous rule for the

"TO is a server object" case, substituting TS for TO.

3.1.1.4.5.32 msDS-isUserCachableAtRodc

The msDS-IsUserCachableAtRodc attribute exists on AD DS but not on AD LDS.

This attribute indicates whether a specified RODC is permitted by administrator policy to cache the
secret attributes of a specified security principal. The DN of the security principal is specified using

the LDAP Control LDAP_SERVER_DN_INPUT_OID. The DN specified may be either an RFC 2253–
style DN or one of the alternate DN formats specified in section 3.1.1.3.1.2.4.

Let TO be the object on which msDS-IsUserCachableAtRodc is being read. If TO is not an nTDSDSA,
computer, or server object, then TO!msDS-IsUserCachableAtRodc is not present.

If TO is a computer object:

If TO!userAccountControl does not have the ADS_UF_PARTIAL_SECRETS_ACCOUNT bit set,

TO!msDS-IsUserCachableAtRodc is not present.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

263 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If TO!userAccountControl has the ADS_UF_PARTIAL_SECRETS_ACCOUNT bit set, the value of

TO!msDS-IsUserCachableAtRodc is calculated as follows:

Let D be the DN of the user principal specified using LDAP Control

LDAP_SERVER_DN_INPUT_OID. If the DN of a security principal is not explicitly specified,
D is the DN of the current requester.

TO!msDS-IsUserCachableAtRodc = GetRevealSecretsPolicyForUser(TO!distinguishedName,

D) (procedure GetRevealSecretsPolicyForUser is defined in [MS-DRSR] section
4.1.10.5.14).

If TO is a server object:

Let TC be the computer object named by TO!serverReference. Apply the previous rule for the

"TO is a computer object" case, substituting TC for TO.

If TO is an nTDSDSA object:

Let TS be the server object that is the parent of TO. Apply the previous rule for the "TO is a

server object" case, substituting TS for TO.

3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed

The msDS-UserPasswordExpiryTimeComputed attribute exists on AD DS but not on AD LDS.

This attribute indicates the time when the password of the object will expire. Let TO be the object on
which the attribute msDS-UserPasswordExpiryTimeComputed is read. If TO is not in a domain NC,
then TO!msDS-UserPasswordExpiryTimeComputed = null. Otherwise let D be the root of the domain
NC containing TO. The DC applies the following rules, in the order specified below, to determine the

value of TO!msDS-UserPasswordExpiryTimeComputed:

If any of the ADS_UF_SMARTCARD_REQUIRED, ADS_UF_DONT_EXPIRE_PASSWD,

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_SERVER_TRUST_ACCOUNT,
ADS_UF_INTERDOMAIN_TRUST_ACCOUNT bits is set in TO!userAccountControl, then TO!msDS-

UserPasswordExpiryTimeComputed = 0x7FFFFFFFFFFFFFFF.

Else, if TO!pwdLastSet = null, or TO!pwdLastSet = 0, then TO!msDS-

UserPasswordExpiryTimeComputed = 0.

Else, if Effective-MaximumPasswordAge = 0x8000000000000000, then TO!msDS-

UserPasswordExpiryTimeComputed = 0x7FFFFFFFFFFFFFFF (where Effective-
MaximumPasswordAge is defined in [MS-SAMR] section 3.1.1.5).

Else, TO!msDS-UserPasswordExpiryTimeComputed = TO!pwdLastSet + Effective-

MaximumPasswordAge (where Effective-MaximumPasswordAge is defined in [MS-SAMR] section
3.1.1.5).

3.1.1.4.5.34 msDS-RevealedList

The msDS-RevealedList attribute exists on AD DS (starting with Windows Server 2008 operating

system) but not on AD LDS.

The msDS-RevealedList attribute exists only on the computer object of an RODC. The value of

msDS-RevealedList is a multivalued DN-String. The string portion of each value is the
lDAPDisplayName of a secret attribute, and the DN portion of each value names an object. Each
value represents the presence of a value for the named attribute on the named object on the RODC;
in other words, the value has been "revealed" to the RODC.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf

264 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The msDS-RevealedList attribute is constructed from the msDS-RevealedUsers attribute as follows.

Let O be the object from which the msDS-RevealedList attribute is being read.

Let RESULT be a set of DN-String, initially empty.

For each V (a DN-Binary) in O!msDS-RevealedUsers do the following:

Let USER be the object with DN V.object_DN.

Let P (a PROPERTY_META_DATA, see [MS-DRSR] section 4.1.10.2.19) equal V.binary_value.

Let SCH equal SchemaObj(P.attrType) ([MS-DRSR] section 5.179).

Let RV be a DN-String with RV.string_value equal SCH!lDAPDisplayName and RV.object_DN equal

V.object_DN.

Let A be SCH!lDAPDisplayName.

If AttributeStampCompare(P.propMetadataExt, AttrStamp(USER, P.attrType)) = 0, set RESULT =

RESULT + {RV }. (See [MS-DRSR] section 4.1.10.3.5 for procedure AttributeStampCompare, and
[MS-DRSR] section 5.13 for procedure AttrStamp.)

Return the set RESULT (if empty, the msDS-RevealedList attribute is not present).

3.1.1.4.5.35 msDS-RevealedListBL

The msDS-RevealedListBL attribute exists on AD DS (starting with Windows Server 2008 operating
system) but not on AD LDS.

This attribute behaves precisely like a back link attribute for the msDS-RevealedList constructed
attributes described in the previous section.

Therefore, the msDS-RevealedList attribute exists only on a user object, one or more of whose

secret attributes have been "revealed" to an RODC. The value is the set of RODCs (represented by

their computer objects) to which one or more of the given user object's secret attributes have been
revealed.

3.1.1.4.5.36 msDS-ResultantPSO

The msDS-ResultantPSO attribute exists on AD DS beginning with Windows Server 2008 operating
system. This attribute does not exist on AD LDS. This attribute specifies the effective password

policy applied on this object.

The value of msDS-ResultantPSO is a single value of Object (DS-DN) syntax. This attribute is
constructed as follows:

Let RESULTSET be a set of DS-DN, initially empty.

Let U be the object from which the msDS-ResultantPSO attribute is being read.

If the domain functional level is less than DS_BEHAVIOR_WIN2008, then there is no value in this

attribute.

If U!objectClass does not contain the value "user", then there is no value in this attribute.

If the bit for ADS_UF_NORMAL_ACCOUNT (see section 2.2.16) is not set in

U!userAccountControl, then there is no value in this attribute.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

265 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the RID in U!objectSid is equal to DOMAIN_USER_RID_KRBTGT, then there is no value in this

attribute.

If the U!msDS-SecondaryKrbTgtNumber attribute has a value, then there is no value in this

attribute.

Let RESULTSET be the values of U!msDS-PSOApplied that are of object class msDS-

PasswordSettings and are under the Password Settings container (see section 6.1.1.4.11.1)

If RESULTSET is empty:

Let S be the set of objects returned by invoking the algorithm in [MS-DRSR] section 4.1.8.3

(IDL_DRSGetMemberships) using
DRS_MSG_REVMEMB_REQ_V1.OperationType=RevMembGetAccountGroups,
DRS_MSG_REVMEMB_REQ_V1.ppDsNames=U, and
DRS_MSG_REVMEMB_REQ_V1.pLimitingDomain = the domain for which the server is a DC.

For each O (an object) in S do the following:

RESULTSET = RESULTSET union O!msDS-PSOApplied

Sort objects in set RESULTSET according to msDS-PasswordSettingsPrecedence values, breaking

ties with objectGUID values, with smaller values coming first.

Return the first element in the sorted RESULTSET (if empty, the msDS-ResultantPSO attribute is

not present).

3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime

The msDS-LocalEffectiveDeletionTime attribute exists on AD DS and AD LDS, beginning with
Windows Server 2008 R2 operating system.

This attribute contains the value that a replica maintains as the time when the object was
transformed into a tombstone or deleted-object.

Each DC is permitted to modify this value locally for implementation-specific reasons outside the
state model. Therefore, this value does not necessarily accurately reflect when the object was

actually transformed. However, no replica is permitted to modify this value to be earlier than the
actual time that the object was transformed. This value is not replicated. Therefore, for a specific
object, each DC may have a different value for this attribute.

When the Recycle Bin optional feature is enabled, each replica will transform the deleted-object into
a recycled-object some time after the difference that exists between the current time and the value
of msDS-LocalEffectiveDeletionTime is greater than the value of the deleted-object lifetime.

When the Recycle Bin optional feature is not enabled, the DC makes no use of this value. When this

attribute exists on a tombstone, it is not used by the replica.

3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime

The msDS-LocalEffectiveRecycleTime attribute exists on AD DS and AD LDS, beginning with
Windows Server 2008 R2 operating system.

This attribute contains the value that a replica maintains as the time when the object was
transformed into a tombstone or recycled-object.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

266 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Each DC is permitted to modify this value locally for implementation-specific reasons outside the
state model. Therefore, this value does not necessarily accurately reflect when the object was

actually transformed. However, no replica is permitted to modify this value to be earlier than the
actual time that the object was transformed. This value is not replicated. Therefore, for a specific

object, each replica may have a different value for this attribute.

Each replica will remove the tombstone or recycled-object some time after the difference that exists
between the current time and the value of msDS-LocalEffectiveRecycleTime is greater than the
value of the tombstone lifetime.

3.1.1.4.5.39 msDS-ManagedPassword

The msDS-ManagedPassword attribute exists in AD DS, beginning with Windows Server 2012

operating system. This attribute contains a BLOB with password information for group-managed
service accounts.

Let TO be the object on which msDS-ManagedPassword is being read. If TO is not an msDS-
GroupManagedServiceAccount object, then TO!msDS-ManagedPassword is not present. If the DC is

not writable, then TO!msDS-ManagedPassword cannot be constructed and the request is forwarded
to a writable DC by the RODC.

The value of TO!msDS-ManagedPassword is obtained by calling GetgMSAPasswordBlob(TO) (defined
later in this section), which uses the functions defined next.

Define function PostProcessPasswordBuffer(Password: OCTET STRING), which returns an octet
string [ITUX680] as follows:

1. Let RESULT be set to Password, which is a BLOB.

2. Take RESULT and convert each wide (2-byte) NULL character into a wide value of 1 (0x00 0x01)
to guarantee that the resulting string is a Unicode string with no intervening NULL characters that

would limit its length.

3. Set the last wide character in RESULT to NULL to terminate the string.

4. Return RESULT.

Define function MaxClockSkew(), which returns the integer 3,000,000,000. This is a quantity of
10^(-7) second units of time; that is, five minutes in 100ns units.

Define function GmsaSD(), which returns the security descriptor corresponding to the policy on all
msDS-GroupManagedServiceAccount object keys:

static const BYTE gmsaSecurityDescriptor[] = {/* O:SYD:(A;;FRFW;;;S-1-5-9) */

 0x01, 0x00, 0x04, 0x80, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x14, 0x00, 0x00, 0x00, 0x02, 0x00, 0x1c, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x14, 0x00, 0x9f, 0x01, 0x12, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x09,

 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x05, 0x12, 0x00, 0x00, 0x00

 };

Define function GenerateGmsaPassword(Key: L1 or L2 key ([MS-GKDI] section 2.2.4), HashAlg:
null-terminated Unicode string , AccountSID: SID), which returns a password and a key identifier,

KeyID, as follows:

1. Use the same processing rules as defined for KDF ([MS-GKDI] section 3.1.4.1.2) where:

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GKDI%5d.pdf
%5bMS-GKDI%5d.pdf

267 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

HashAlg (for KDF) contains HashAlg.

KI contains Key.

Label contains the Unicode (wide-character) NULL-terminated string "GMSA PASSWORD"

(without the quotes).

Context contains the binary representation of the AccountSID parameter.

L contains the password length, in bytes, including the terminating NULL.

2. Return KeyID and the password to the caller.

Define function MarshalPassword(Current_Password: OCTET STRING, Previous_Password: OCTET

STRING (optional), QueryPasswordInterval: FILETIME, UnchangedPasswordInterval: FILETIME). This
function returns an msDS-ManagedPassword BLOB using the MSDS-MANAGEDPASSWORD_BLOB
structure from section 2.2.19, which is constructed as follows:

The Version field is set to 0x0001.

The Reserved field is set to 0x0000.

The Length field is set to the length, in bytes, of the msDS-ManagedPassword BLOB.

The CurrentPasswordOffset field is set to the offset, in bytes, from the beginning of this

structure to the CurrentPassword field.

The PreviousPasswordOffset field is set to the offset, in bytes, from the beginning of this

structure to the PreviousPassword field. If the Previous_Password parameter is not included,
this field is set to 0x0000.

The QueryPasswordIntervalOffset field is set to the offset, in bytes, from the beginning of this

structure to the QueryPasswordInterval field.

The UnchangedPasswordIntervalOffset field is set to the offset, in bytes, from the beginning

of this structure to the UnchangedPasswordInterval field.

The CurrentPassword field is set to Current_Password.

The PreviousPassword field is set to Previous_Password. If the Previous_Password parameter

is not included, then this field MUST be absent.

The AlignmentPadding field is constructed with enough bytes of padding to align the

QueryPasswordInterval field to a 64-bit boundary.

The QueryPasswordInterval field is set to QueryPasswordInterval.

The UnchangedPasswordInterval field is set to UnchangedPasswordInterval.

Define function GetIntervalId(TimeStamp: FILETIME), which returns L0KeyID: INTEGER, L1KeyID:
INTEGER, and L2KeyID: INTEGER as follows:

1. Let KeyCycleDuration be the integer 360,000,000,000. This is a quantity of 10^(-7) second units
of time; that is, 10 hours in 100ns units.

2. Let TimeStamp be the number of 100ns intervals since January 1,1601, UTC.

3. Let L1_KEY_ITERATION be 32.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

268 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4. Let L2_KEY_ITERATION be 32.

5. L0KeyID = (ULONG)(TimeStamp / KeyCycleDuration / L2_KEY_ITERATION / L1_KEY_ITERATION)

6. L1KeyID = (TimeStamp / KeyCycleDuration / L2_KEY_ITERATION) & (L1_KEY_ITERATION - 1)

7. L2KeyID = (TimeStamp / KeyCycleDuration) & (L2_KEY_ITERATION - 1)

8. Return L0KeyID, L1KeyID, and L2KeyID.

Define function GKDIGetKeyStartTime(KeyID: GUID), which returns a FILETIME structure as follows:

1. Extract the variables L0, L1, and L2 from the Group Key Envelope structure ([MS-GKDI] section
2.2.4) identified by KeyID. The Group Key Envelope fields of relevance are L0 index, L1 index,
and L2 index, respectively.

2. Let KeyCycleDuration be the integer 360,000,000,000. This is a quantity of 10^(-7) second units
of time; that is, 10 hours in 100ns units.

3. Let L1_KEY_ITERATION be 32.

4. Let L2_KEY_ITERATION be 32.

5. Return ((L0 * L1_KEY_ITERATION * L2_KEY_ITERATION) + (L1 * L2_KEY_ITERATION) + L2) *
KeyCycleDuration

Define function GetPasswordBasedOnTimeStamp(TimeStamp: FILETIME, AccountSID: SID), which
returns an msDS-ManagedPassword BLOB (section 2.2.19) and KeyID: GUID as follows:

1. Call GetIntervalID() with the supplied TimeStamp to compute variables L0, L1, and L2.

2. Call GetKey() ([MS-GKDI] section 3.1.4.1) to compute the output key where:

hBinding contains an RPC binding handle ([C706] and [MS-RPCE]) to a GKDI server.

cbTargetSD contains the length, in bytes, of the security descriptor supplied in pbTargetSD.

pbTargetSD contains a pointer to the security descriptor returned by GmsaSD().

pRootKeyID is set to NULL.

L0KeyID contains L0 returned in step 1.

L1KeyID contains L1 returned in step 1.

L2KeyID contains L2 returned in step 1.

3. Compute the group key using the output key from step 2 and the same processing rules as

defined in step 2 of [MS-GKDI] section 3.2.4.3.

4. Call GenerateGmsaPassword() to obtain the password BLOB and KeyID where:

Key contains the group key from step 3.

HashAlg contains Hash algorithm name from the KDF parameters ([MS-GKDI] section 2.2.1)

of the output key from step 2.

AccountSID contains the AccountSID parameter passed to this function.

%5bMS-GKDI%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-GKDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-GKDI%5d.pdf
%5bMS-GKDI%5d.pdf

269 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5. Call PostProcessPasswordBuffer() with the returned password BLOB to make it into a properly
NULL-terminated Unicode string.

6. Return the password BLOB and KeyID to the caller.

Define function GetPasswordBasedOnKeyID(Key-ID: GUID, Account-SID: SID), which returns an

msDS-ManagedPassword BLOB (section 2.2.19) as follows:

1. Extract the variables L0, L1, and L2 and the root key ID from the Group Key Envelope data
structure ([MS-GKDI] section 2.2.4) identified by Key-ID. The Group Key Envelope fields of
relevance are L0 index, L1 index, L2 index, and Root key identifier, respectively.

2. Call GetKey() ([MS-GKDI] section 3.1.4.1) to compute the output key where:

hBinding contains an RPC binding handle ([C706] and [MS-RPCE]) to a GKDI server.

cbTargetSD contains the length, in bytes, of the security descriptor supplied in pbTargetSD.

pbTargetSD contains a pointer to the security descriptor returned by GmsaSD().

pRootKeyID is set to the root key ID returned in step 1.

L0KeyID contains L0 returned in step 1.

L1KeyID contains L1 returned in step 1.

L2KeyID contains L2 returned in step 1.

3. Compute the group key using the output key from step 2 and the same processing rules as
defined in step 3 of [MS-GKDI] section 3.2.4.3.

4. Call GenerateGmsaPassword() where:

Key contains the group key from step 3.

HashAlg contains Hash algorithm name from the KDF parameters ([MS-GKDI] section 2.2.1)

of the output key from step 2.

AccountSID contains the Account-SID parameter passed to this function.

5. Call PostProcessPasswordBuffer() to convert the returned BLOB into a properly NULL-terminated
Unicode string.

6. Return the password BLOB to the caller.

Define function GetgMSAPasswordBlob(TO: OBJECT), which returns an msDS-ManagedPassword
BLOB structure (section 2.2.19) as follows using integer arithmetic where divisions are rounded
down without a remainder.

1. If the connection is not encrypted, ERROR_DS_CONFIDENTIALITY_REQUIRED is returned.

2. If the caller does not have the RIGHT_DS_READ_PROPERTY control access right on the security

descriptor in the TO!msDS-GroupMSAMembership attribute ([MS-ADA2] section 2.313), the error

operationsError / ERROR_DS_CANT_RETRIEVE_ATTRS is returned. This access check is also
specified in section 3.1.1.4.4.

3. Convert the TO!msDS-ManagedPasswordInterval attribute ([MS-ADA2] section 2.351) into the
rollover interval as follows:

%5bMS-ADA2%5d.pdf
%5bMS-GKDI%5d.pdf
%5bMS-GKDI%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-GKDI%5d.pdf
%5bMS-GKDI%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

270 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1. Let KeyCycleDuration be the integer 360,000,000,000. This is a quantity of 10^(-7) second
units of time; that is, 10 hours in 100ns units.

2. Let GKDIRolloverInterval = (TO!msDS-ManagedPasswordInterval * 24 / KeyCycleDuration) *
KeyCycleDuration.

4. Let a variable called CurrentKeyExpirationTime be computed as follows:

1. If the TO!msDS-ManagedPasswordId attribute ([MS-ADA2] section 2.350) exists, call
GKDIGetKeyStartTime() where:

KeyID contains TO!msDS-ManagedPasswordId.

Set CurrentKeyExpirationTime = the time returned by GKDIGetKeyStartTime() +
GKDIRolloverInterval.

2. Otherwise, set CurrentKeyExpirationTime = the TO!creationTime attribute ([MS-ADA1] section
2.131).

5. If TO!msDS-ManagedPasswordId does not exist or CurrentKeyExpirationTime is less than the
current time, then:

1. Let StaleCount be zero.

2. Let NewKeyStartTime = CurrentKeyExpirationTime.

3. Let NewKeyStartTime = NewKeyStartTime + GDKIRolloverInterval and StaleCount =

StaleCount +1 until NewKeyStartTime is greater than the current time.

4. Call GetPasswordBasedOnTimestamp() where:

Timestamp contains NewKeyStartTime.

AccountSID contains the TO!objectSid attribute ([MS-ADA3] section 2.45).

Let NewKeyID be the returned KeyID. Let NewPassword be the returned password.

5. Let a variable called OldKeyID be computed as follows:

1. If StaleCount is zero AND TO!msDS-ManagedPasswordId exists and is not NULL:

1. Call GetPasswordBasedOnKeyID() where:

Key-ID contains TO!msDS-ManagedPasswordId.

Account-SID contains TO!objectSid ([MS-ADA3] section 2.45).

2. Let OldPassword be the returned password and set OldKeyID to the value of TO!msDS-

ManagedPasswordId.

2. Otherwise, if the current time - TO!creationTime >= GDKIRolloverInterval, the current key
cannot be reused as the previous key. Call GetPasswordBasedOnTimeStamp() where:

Timestamp contains NewKeyStartTime – GDKIRolloverInterval.

AccountSID contains TO!objectSid.

Set OldKeyID to the returned KeyID. Let OldPassword be the returned password.

%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

271 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3. Otherwise, the account is not old enough to have a previous password and neither the
OldKeyID nor the OldPassword will be returned.

6. Let variables called QueryPasswordInterval and UnchangedPasswordInterval be computed as
follows:

1. Let NewKeyExpirationTime = NewKeyStartTime + GKDIRolloverInterval.

2. Call MaxClockSkew() and let MaxClockSkew be the returned value.

3. If NewKeyExpirationTime - the current time <= MaxClockSkew:

Let QueryPasswordInterval be NewKeyExpirationTime - the current time.

Let UnchangedPasswordInterval be 0.

4. Otherwise:

Let QueryPasswordInterval be NewKeyExpirationTime - the current time.

Let UnchangedPasswordInterval be NewKeyExpirationTime - the current time -

MaxClockSkew.

7. Call MarshalPassword() where:

Current_Password contains NewPassword.

Previous_Password contains OldPassword.

QueryPasswordInterval contains QueryPasswordInterval.

UnchangedPasswordInterval contains UnchangedPasswordInterval.

Return the resulting msDS-ManagedPassword BLOB.

6. If CurrentKeyExpirationTime - the current time <= MaxClockSkew(), create a new key that will

be valid in the next epoch:

1. Call GetPasswordBasedOnTimeStamp() where:

Timestamp contains CurrentKeyExpirationTime.

AccountSID contains TO!objectSid.

Let NewKeyID be the returned KeyID. Let NewPassword be the returned password.

2. Call GetPasswordBasedOnKeyID() where:

Key-ID contains TO!msDS-ManagedPasswordId.

Account-SID contains TO!objectSid.

Let OldPassword be the returned password and do not return OldKeyID.

3. Let QueryPasswordInterval = CurrentKeyExpirationTime - the current time.

4. Let UnchangedPasswordInterval = CurrentKeyExpirationTime + GKDIRolloverInterval -

MaxClockSkew - the current time.

%5bMS-ADA2%5d.pdf

272 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5. Call MarshalPassword() where:

Current_Password contains NewPassword.

Previous_Password contains OldPassword.

QueryPasswordInterval contains QueryPasswordInterval.

UnchangedPasswordInterval contains UnchangedPasswordInterval.

Return the resulting msDS-ManagedPassword BLOB.

7. Otherwise, create a current key:

1. Call GetPasswordBasedOnKeyID() where:

Key-ID contains TO!msDS-ManagedPasswordId.

Account-SID contains TO!objectSid.

Let NewPassword be the returned password.

2. If the TO!msDS-ManagedPasswordPreviousId attribute ([MS-ADA2] section 2.352) exists, call
GetPasswordBasedOnKeyID() where:

Key-ID contains TO!msDS-ManagedPasswordPreviousId.

Account-SID contains TO!objectSid.

Let OldPassword be the returned password.

3. Let QueryPasswordInterval = CurrentKeyExpirationTime - the current time.

4. Let UnchangedPasswordInterval = CurrentKeyExpirationTime - MaxClockSkew - the current
time.

5. Call MarshalPassword() where:

Current_Password contains NewPassword.

Previous_Password contains OldPassword.

QueryPasswordInterval contains QueryPasswordInterval.

UnchangedPasswordInterval contains UnchangedPasswordInterval.

Return the resulting msDS-ManagedPassword BLOB.

3.1.1.4.6 Referrals

When the server returns a referral as documented in section 3.1.1.3.1.4, it must determine which
server(s) to refer the client to. The set of servers to which the client will be referred is the set of

values returned by the following algorithm.

Let N be the DSNAME of the base of the LDAP search.

Let NSID be the sid portion of N.

Let NGUID be the guid portion of N.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

273 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Let NSTR be the dn portion of N.

The value is:

(the values of O!dnsRoot for the object O where:

(NSTR is not present)

and (NGUID is not present)

and (NSID is present)

and ((O!nCName)!objectSid matches the domain sid from NSID)

and (O!parent is the Partitions container)

and (O!objectClass's most specific class is crossRef)

and (O!Enabled is true))

and (the value for Root-Domain-NC!dnsRoot after prepending "gc._msdcs." and either replacing

the first matching ":*" with ":3268" or, if there are no matches of ":*", then by appending
":3268" when:

(NSTR is not present)

and (NGUID is present))

and (the values of O!dnsRoot for the object O where:

(NSTR is present)

and (O!nCName is a prefix for NSTR and is the longest prefix among all O satisfying these

conditions)

and (O!parent is the Partitions container)

and (O!objectClass's most specific object class is crossRef)

and (O!Enabled is true))

and (the value is Root-Domain-NC!superiorDNSRoot when:

(NSTR is present)

and (Root-Domain-NC!superiorDNSRoot is present)

and (there exists no object O such that

((O!nCName is a prefix for NSTR)

and (O!parent is the Partitions container)

and (O!objectClass's most specific class is crossRef)

and (O!Enabled is true)))

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

274 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

and (the value is the transform of TO.dn into a dotted string by concatenating the value for the

first dc component with values for subsequent components separated by "." (for example,

CN=bob,DC=One,DC=Two is transformed into One.Two) when:

((NSTR is present)

and (Root-Domain-NC!superiorDNSRoot is not present)

and (there exists no object O such that

((O!nCName is a prefix for NSTR)

and (O!parent is the Partitions container)

and (O!objectClass's most specific class is crossRef)

and (O!Enabled is true)))))

3.1.1.4.7 Continuations

When the server returns a continuation reference as documented in section 3.1.1.3.1.4, it must

determine which server(s) to refer the client to. The set of servers to which the client will be
referred is the set of values returned by the following algorithm.

Let TO be the base object of an LDAP Search.

Let NC be the NC replica containing TO.

The values are made up of:

The values from O!dnsRoot for all objects O where

(O.dn is listed in NC!subRefs)

and (O!Enabled is true)

and (O!objectClass's most specific class is crossRef)

and

(((O!nCName is a prefix of TO.dn for all but the first component)

and (the scope of the search is LDAP_SCOPE_ONELEVEL))

or

((O!nCName is a prefix of TO.dn)

and (the scope of the search is LDAP_SCOPE_SUBTREE)))

and the value for Root-Domain-NC!dnsRoot after prepending "gc._msdcs." and either replacing

the first matching ":*" with ":3268" or, if there are no matches of ":*", then by appending

":3268" if and only if:

(TO!objectClass's most specific object class is addressBookContainer)

and (the scope of the search is LDAP_SCOPE_ONELEVEL)

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

275 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.4.8 Effects of Defunct Attributes and Classes

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a search that mentions a defunct
class or attribute succeeds just as if the class or attribute were not defunct.

If the forest functional level is DS_BEHAVIOR_WIN2003 or greater:

Instances of a defunct attribute cannot be read.

Instances of a defunct class can be read using the filter term (objectClass=*).

When reading any OID-valued attribute that contains identifiers for schema objects, if the

attribute identifies a defunct schema object, the read returns an OID (the attributeID if an

attribute, the governsID if a class) not a name (the lDAPDisplayName of an attribute or class).
This behavior applies to the mustContain, systemMustContain, mayContain, systemMayContain,
subClassOf, auxiliaryClass, and possSuperiors attributes of schema objects (that is,
attributeSchema or classSchema objects that are located in the schema NC). This behavior also
applies to the objectClass attribute of all other objects.

3.1.1.5 Updates

3.1.1.5.1 General

References

LDAP attributes: fSMORoleOwner, invocationId, objectGUID.

State model attributes: rdnType.

LDAP classes: classSchema, crossRef, nTDSDSA, rIDManager.

Glossary: config NC, default NC, dsname, NC replica, replicated attribute, schema NC.

Abstract attribute repsTo: see [MS-DRSR] section 5.170.

IDL_DRSReplicaSync method: see [MS-DRSR] section 4.1.23.

DRS_MSG_REPSYNC message: see [MS-DRSR] section 4.1.23.1.1.

DRS_MSG_REPSYNC_V1 message: see [MS-DRSR] section 4.1.23.1.2.

Urgent replication specified by SAM: see [MS-SAMR] section 3.1.1.8.

This section specifies operations that are common for all originating update and replicated update
operations. An update could be an Add, Modify, Modify DN, or Delete operation.

3.1.1.5.1.1 Enforce Schema Constraints

The originating update is validated for schema constraints as explained in Restrictions on Schema
Extensions in section 3.1.1.2. Schema constraints are not enforced for replicated updates.

During an originating update of the Add and Modify operations, the server validates that the object
being added or modified is consistent with the schema definition of the object of the objectClass
values that are assigned to the object (see section 3.1.1.2 for more information):

The mayContain/mustContain constraints that are applicable based on the selected objectClass

values are enforced. The computation of the mayContain/mustContain set takes into

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-GLOS%5d.pdf

276 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

consideration the complete inheritance chain of the structural objectClass and the 88 object class
as well as any auxiliary classes supplied. If any attributes in the mustContain set are not

provided, the Add fails with objectClassViolation / <unrestricted>. If any attributes provided are
not present in either the mayContain or mustContain sets, the Add fails with objectClassViolation

/ <unrestricted>. Exception: In AD LDS, the objectSid attribute is present on all application NC
roots, even if this violates the schema mayContain/mustContain constraints.

All attribute values are formed correctly according to the attribute syntax and satisfy schema

constraints, such as single-valuedness, rangeLower/rangeUpper, and so on. See sections
3.1.1.2.3 through 3.1.1.2.5 for more information.

All attribute values must be compliant with the rangeUpper and rangeLower constraints of the

schema (see section 3.1.1.2.3). If a supplied value violates a rangeUpper or rangeLower
constraint, then the Add fails with constraintViolation / <unrestricted>.

All attribute values must be compliant with the isSingleValued constraint of the schema (see

section 3.1.1.2.3). If multiple values are provided for an attribute that is single-valued, then the
Add fails with constraintViolation / <unrestricted>.

The attributeType of the first label of the object DN matches the rDNAttID of the structural object

class or the 88 object class. Otherwise, namingViolation /
ERROR_DS_RDN_DOESNT_MATCH_SCHEMA is returned. For example, it is not allowed to create
an organizationalUnit with CN=test RDN; the correct RDN for an organizationalUnit object is
OU=test. If there is no class C for which the attributeType is equal to C!rDNAttID,
namingViolation / <unrestricted> is returned.

3.1.1.5.1.2 Naming Constraints

During an originating update of the Add, Modify, and Modify DN operations, the server validates the
following naming constraints. Unless otherwise specified, the server returns the error
namingViolation / <unrestricted> if a naming constraint is not met.

The RDN must not contain a character with value 0xA.

The RDN must not contain a character with value 0x0; otherwise, the server SHOULD return the

error invalidDNSyntax / <unrestricted>. However, if the DC functional level is
DS_BEHAVIOR_WIN2000, the server will not return an error.

The DN must be compliant with [RFC2253].

The RDN size must be less than 255 characters.

Naming constraints are not enforced for replicated updates.

3.1.1.5.1.3 Uniqueness Constraints

During an originating update of the Add, Modify, and Undelete operations on a DC with functional
level of DS_BEHAVIOR_WIN2012R2 or greater, the server enforces the following constraint for the
servicePrincipalName and userPrincipalName attributes if present on the object.

In AD DS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new

attribute value must be unique within the entire forest. If the DC is not a GC, then the DC should

issue an LDAP search against a GC to determine uniqueness.

In AD LDS, if the DC functional level is DS_BEHAVIOR_WIN2012R2 or greater, then the new

attribute value must be unique within its own partition.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90327
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

277 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If another object exists with a duplicate userPrincipalName value, the operation fails with an
extended error of ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST. If another object exists with

a duplicate servicePrincipalName value, the operation fails with an extended error of
ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST.

Uniqueness constraints are not enforced for replicated updates.

3.1.1.5.1.4 Transactional Semantics

The effects of an originating update are captured in the state model by committing a transaction.
When the originating update is initiated by a protocol request, such as an LDAP Modify, the
transaction is committed before sending the appropriate protocol response. The transaction has the
ACID properties [GRAY] and provides at least degree 2 isolation of concurrent read and update

requests [GRAY].

Transactions that are used to implement Active Directory provide degree 2 isolation of concurrent
read and update requests.

Each Search request or Update request is performed as a transaction. When multiple Search
requests are used to retrieve a large set of results, each request is its own transaction. An
originating update is processed as one or more transactions. In some cases a request will cause

transactions to occur after the response has been sent. Section 3.1.1.1.16 and the remainder of
section 3.1.1.5 specify the transaction boundaries used for all originating updates and describes all
cases where processing continues after the response.

3.1.1.5.1.5 Stamp Construction

Stamps for replicated attributes and link values will be updated for each originating update as
defined in section 3.1.1.1. When applying replicated updates, stamps are constructed as described

in [MS-DRSR] section 4.1.10.6.

3.1.1.5.1.6 Replication Notification

Each NC replica on the server has an associated abstract attribute repsTo. When an originating or
replicated update occurs in the NC replica on the server, the server notifies each destination DC that
has an entry in repsTo. The server notifies the destination DC by calling method
IDL_DRSReplicaSync. The destination DC contacts the server and requests it to provide updates—

this is event-driven replication as described in section 3.1.1.1.14.

The server sends replication notifications as follows:

Let N be the NC replica where the originating or replicated update has occurred on the server.

For each i in [0 .. (N!repsTo).length-1] do the following:

Let E be N!repsTo[i].

Let C be the crossRef object corresponding to N.

Let pmsgIn be a reference to a structure of type DRS_MSG_REPSYNC.

Set pmsgIn->V1.pNC to dsname of N.

Let O be the nTDSDSA object of the server.

Set pmsgIn->V1.uuidDsaSrc to O!objectGUID.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

278 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Set pmsgIn->V1.ulOptions to (DRS_ASYNC_OP | DRS_UPDATE_NOTIFICATION).

If (E.replicaFlags & DRS_WRITE_REP ≠ 0) then set pmsgIn->V1.ulOptions to (pmsgIn-

>V1.ulOptions | DRS_WRIT_REP).

If the originating/replicated update satisfies the condition for urgent replication then set pmsgIn-

>V1.ulOptions to (pmsgIn->V1.ulOptions | DRS_SYNC_URGENT).

Let H be the handle obtained by calling IDL_DRSBind against E.uuidDsa. If (E.replicaFlags &

DRS_REF_GCSPN ≠ 0), then, for mutual authentication of the IDL_DRSBind client, use the
service principal name associated with E.uuidDsa that begins with "GC" ([MS-DRSR] section
2.2.3.2).

If (pmsgIn->V1.ulOptions & DRS_SYNC_URGENT = 0), then wait for an implementation-specific

time T. If i = 0 the default time T is 15 seconds; if i > 0 the default time T is 3 seconds.

Let R be the result of calling IDL_DRSReplicaSync(H, 1, pmsgIn).

Let Z be the current time.

If E.timeLastAttempt > Z or Z.timeLastAttempt - Z > an implementation-specific duration U,

update N!repsTo[i] as follows:

Set E.timeLastAttempt to Z.

Set E.ulResultLastAttempt to R.

If R = 0, set E.timeLastSuccess to Z and set E.cConsecutiveFailures to 0.

If R ≠ 0, increment E.cConsecutiveFailures by 1.

Set N!repsTo[i] to E.

The default duration U is one hour.

3.1.1.5.1.7 Urgent Replication

Let N be the NC replica on the server. There are few originating/replicated updates in N that need to

be replicated immediately to each destination DC that has an entry in N!repsTo. Updates that need
to be replicated immediately are listed below:

Creation of nTDSDSA object.

Creation of crossRef object.

Updates to schema object (attributeSchema or classSchema).

Deletion of nTDSDSA object.

Deletion of crossRef object.

Update to secret object.

Update to rIDManager object.

Update to pwdLastSet and userAccountControl attributes as specified in [MS-SAMR] section

3.1.1.8.

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf

279 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Unless the DC is running as ADAM or AD LDS, update to lockoutTime attribute as specified in

[MS-SAMR] section 3.1.1.8.

The server behavior for urgent replication is specified in section 3.1.1.5.1.6.

3.1.1.5.1.8 Updates Performed Only on FSMOs

Certain originating update operations in Active Directory must be performed on a single master. For
example, all schema updates must happen on the schema master FSMO DC; creation and deletion
of crossRef objects representing naming contexts must happen on the domain naming FSMO DC. If
the operation is attempted on a DC that does not hold the FSMO role, then it issues a referral to the
current FSMO role owner. The following section describes how such updates are handled. The

processing is not performed when applying replicated updates.

The following types and functions are used in specifying the FSMO-related processing of originating
update.

The function IsEffectiveRoleOwner(roleObject:object) verifies that the current DC is the valid owner

of the given FSMO role. The FSMO ownership is considered valid if a successful replication of the
corresponding NC occurred with some replication partner. This function is defined later in this
section.

For a given FSMO role, the function RoleUpdateScope(roleObject:Object) returns the set of objects
and their attributes that can only be updated on the FSMO role owner DC. For example, for Schema
Master FSMO Role (section 6.1.5.1), the set contains all objects residing within schema NC, with all
of their attributes. The function is defined later in this section.

Define variable timeLastReboot equal to the time when the server last rebooted.

Define function IsEffectiveRoleOwner(roleObject: object), which returns a Boolean as follows:

Let S be the nTDSDSA object of the server.

If S ≠ roleObject!fSMORoleOwner, then return false.

Let N be the NC containing roleObject.

If there exists at least one entry E in N!repsFrom such that E.timeLastSuccess > timeLastReboot,

then return true.

Otherwise return false.

Let RoleType be the enumeration (SchemaMasterRole, DomainNamingMasterRole,
InfrastructureMasterRole, RidAllocationMasterRole, PdcEmulationMasterRole).

Define function RoleObject(n: NC, roleType: RoleType), which returns an object as follows:

If roleType = SchemaMasterRole,

if n = Schema NC, return n, otherwise return null.

If roleType = DomainNamingMasterRole,

if n = Config NC, return Partition container of n, otherwise return null.

If roleType = InfrastructureMasterRole,

if n = Default NC (AD DS), return Infrastructure container of n, otherwise return null.

%5bMS-ADA1%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

280 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If roleType = RidAllocationMasterRole,

if n = Default NC (AD DS), return RID Manager container of n, otherwise return null.

If roleType = PdcEmulationMasterRole,

if n = Default NC (AD DS), return n, otherwise return null.

Otherwise return null.

Define function RoleUpdateScope(roleObject: object), which returns the set S as follows. S is a set
such that each element is an object and a list of attributes associated with the object.

Let n be the NC containing roleObject.

Let roleType be the role corresponding to the roleObject; that is, RoleObject(n, roleType) =

roleObject.

If roleType = SchemaMasterRole, the union of:

The set of all objects and all attributes in the roleObject's NC.

The RoleObject(Config NC, DomainNamingMasterRoll) with the msDS-Behavior-Version

attribute.

If roleType = DomainNamingMasterRole, the union of

roleObject and all attributes except msDS-Behavior-Version.

The objects that are children of roleObject and all attributes.

If roleType = InfrastructureMasterRole, the union of

roleObject and all attributes.

The Updates container u of roleObject's NC and all attributes.

The objects that are children u and all attributes.

If roleType = RidAllocationMasterRole, the union of

roleObject and all attributes.

Let I = GetWellKnownObject(n, GUID_INFRASTRUCTURE_CONTAINER).

All children C of I and all attributes, such that C!objectClass contains infrastructureUpdate and

C!proxiedObjectName is present.

If C is the computer object for the DC requesting the FSMO operation, C and all attributes.

The DC's rIDSet object.

If roleType = PdcEmulationMasterRole,

roleObject and all attributes.

n with attributes wellKnownObjects and msDS-Behavior-Version.

Otherwise return NULL.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

281 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Given those preliminaries, the following processing is performed on each object O on which an
originating update is being made.

Let O.A be the attribute that is being updated.

Let N be the NC containing O.

For each RoleType T do the following:

Let R = RoleObject(N, T)

If R exists, then

Let S = RoleUpdateScope(R).

If O is not an element of {S} or O.A is not an element of {S}, then proceed with the

originating update operation.

If R!fSMORoleOwner ≠ distinguished name of the nTDSDSA object of the server, then let K =

(R!fSMORoleOwner)!parent. Return the error referral / <unrestricted> to K!dNSHostName.

If IsEffectiveRoleOwner(R) = true, proceed with the originating update operation.

Otherwise, return the error busy / <unrestricted>.

3.1.1.5.1.9 Allow Updates Only When They Are Enabled

Originating and replicated updates are only allowed when dc.fEnableUpdates is TRUE. When
dc.fEnableUpdates is FALSE, the server returns the error unavailable /
ERROR_DS_SHUTTING_DOWN.

3.1.1.5.1.10 Originating Updates Attempted on an RODC

In addition to the constraints described in section 3.1.1.5.1.9, an RODC does not perform originating

updates. When an originating update is requested on an RODC, the RODC generates an LDAP
referral ([RFC2251] sections 3.2 and 4.1.11) to a DC holding a writable NC replica, as specified in
this section. By following the referral, the client can perform the desired update.

Define O as follows:

If the originating update is an add, let O be the parent of the object to be added.

If the originating update is a modify, modify DN, or delete, let O be the object to be updated.

If O does not exist, return the error noSuchObject / ERROR_DS_OBJ_NOT_FOUND. Otherwise, let N
be the NC containing O. Using techniques described in section 6.3.6, find a DC D that has a writable
NC replica for N. Generate an LDAP referral to D as specified in [RFC2251] section 4.1.11.

3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere

In addition to the constraints and processing specifics defined in the remainder of section 3.1.1.5,
update operations MUST conform to the constraints and processing details defined in [MS-SAMR]
and [MS-DRSR]. The constraints specified in [MS-SAMR] are enforced only for originating updates.

3.1.1.5.2 Add Operation

References

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-SAMR%5d.pdf
%5bMS-DRSR%5d.pdf

282 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

LDAP attributes: objectClass, nTSecurityDescriptor, instanceType, distinguishedName, objectGUID,
objectSid, entryTTL, msDS-Entry-Time-To-Die, systemFlags, msDS-AllowedToDelegateTo,

objectCategory, defaultObjectCategory, defaultHidingValue, showInAdvancedViewOnly, msDS-
DefaultQuota, msDS-QuotaTrustee, msDS-TombstoneQuotaFactor, subRefs, nCName, Enabled,

uSNLastObjRem, uSNDSALastObjRemoved, whenCreated, uSNCreated, replPropertyMetaData,
isDeleted, instanceType, proxiedObjectName, msDS-LockoutObservationWindow, msDS-
LockoutDuration, msDS-MaximumPasswordAge, msDS-MinimumPasswordAge, msDS-
MinimumPasswordLength, msDS-PasswordHistoryLength.

LDAP classes: dynamicObject, crossRef, trustedDomain, secret, classSchema, attributeSchema,
msDS-QuotaControl, foreignSecurityPrincipal.

Constants

Win32/status error codes: ERROR_DS_OBJ_CLASS_NOT_DEFINED,

ERROR_DS_ILLEGAL_MOD_OPERATION, ERROR_DS_OBJECT_CLASS_REQUIRED,
ERROR_DS_OBJ_CLASS_NOT_SUBCLASS, ERROR_DS_BAD_INSTANCE_TYPE,
ERROR_DS_ADD_REPLICA_INHIBITED, ERROR_DS_CANT_ADD_SYSTEM_ONLY,

ERROR_DS_CLASS_MUST_BE_CONCRETE, ERROR_DS_BAD_NAME_SYNTAX,
ERROR_DS_ATT_NOT_DEF_IN_SCHEMA, ERROR_DS_NOT_SUPPORTED,

ERROR_DS_RDN_DOESNT_MATCH_SCHEMA, STATUS_QUOTA_EXCEEDED,
ERROR_DS_REFERRAL, ERROR_DS_CROSS_REF_EXISTS, ERROR_DS_RANGE_CONSTRAINT,
ERROR_DS_ROLE_NOT_VERIFIED, ERROR_DS_NO_CROSSREF_FOR_NC,
ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST,
ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST

Access mask bits, control access rights: RIGHT_DS_CREATE_CHILD, Add-GUID

Security privileges: SE_ENABLE_DELEGATION_PRIVILEGE

instanceType flags: IT_NC_HEAD, IT_WRITE, IT_NC_ABOVE

Generic systemFlags bits: FLAG_CONFIG_ALLOW_RENAME, FLAG_CONFIG_ALLOW_MOVE,

FLAG_CONFIG_ALLOW_LIMITED_MOVE

Schema systemFlags bits: FLAG_ATTR_IS_RDN

crossRef systemFlags bits: FLAG_CR_NTDS_NC, FLAG_CR_NTDS_DOMAIN,

FLAG_CR_NTDS_NOT_GC_REPLICATED

The add operation results in addition of a new object to the directory tree. The requester supplies
the following data:

The DN of the new object.

The set of attributes defining the new object.

3.1.1.5.2.1 Security Considerations

For regular object creation, the requester must have RIGHT_DS_CREATE_CHILD on the parent

object for the objectClass of the object being added.

In the case of Windows Server 2008 R2 operating system, Windows Server 2012 operating system,
and Windows Server 2012 R2 operating system, in the absence of RIGHT_DS_CREATE_CHILD,

computer object creation requires that the RpcImpersonationAccessToken.Privileges[] field
MUST have the SE_MACHINE_ACCOUNT_NAME privilege (defined in [MS-LSAD] section 3.1.1.2.1).

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-LSAD%5d.pdf

283 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For application NC creation (see section 3.1.1.5.2.6), the requester must have sufficient permissions
to create the crossRef object in the Partitions container on the domain naming FSMO, or to take

over an existing crossRef object (in case of pre-created crossRef). See section 3.1.1.5.2.6 for more
details.

If the msDS-AllowedToDelegateTo attribute is specified as a part of the add operation, then the
requester must possess SE_ENABLE_DELEGATION_PRIVILEGE.

If any attributes being added are marked in the schema as partition secrets (see the SE flag in
section 2.2.9), the requester must have the control access right DS-Write-Partition-Secrets on the
root object of the naming context to which the modified object belongs.

Access checks are not performed for replicated updates.

3.1.1.5.2.2 Constraints

The following constraints are enforced for originating update Add operations. If any of these
constraints are not satisfied, the server returns an error.

These constraints are not enforced for replicated updates.

The object DN value is a syntactically valid DN (see LDAP, section 3.1.1.3). If it is not, Add

returns namingViolation / ERROR_DS_NAME_UNPARSEABLE.

If instanceType attribute value is specified, then the following constraints MUST be satisfied:

If the DC functional level is DS_BEHAVIOR_WIN2000, then multiple integer values are

permitted. However, if the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then
there must be exactly one integer value; otherwise Add returns unwillingToPerform /
ERROR_DS_BAD_INSTANCE_TYPE.

If the instanceType value has IT_NC_HEAD bit set, then IT_WRITE MUST be set. If this is the

case, then this operation is considered to be an NC-Add operation, and additional constraints
and processing specifics apply (see NC-Add Operation (section 3.1.1.5.2.8) for details).

If IT_NC_HEAD is set, but IT_WRITE is not set, Add returns unwillingToPerform /

ERROR_DS_ADD_REPLICA_INHIBITED.

If IT_NC_HEAD is not set in the value, and the DC functional level is DS_BEHAVIOR_WIN2003

or greater, then the only allowed values are zero and IT_WRITE; otherwise Add returns
unwillingToPerform / ERROR_DS_BAD_INSTANCE_TYPE.

If the operation is not NC-Add, then the parent object MUST be in an NC whose full replica is

hosted at this DC; otherwise referral / ERROR_DS_REFERRAL is returned.

If the operation is not NC-Add, then the parent object MUST be present in the directory. The

parent DN is computed from the passed-in DN value by removing the first RDN label. If the
parent object is not found in the directory, then noSuchObject / ERROR_DS_OBJ_NOT_FOUND is
returned.

At least one objectClass value MUST be specified. Otherwise, Add returns objectClassViolation /

ERROR_DS_OBJECT_CLASS_REQUIRED.

The objectClass attribute MUST be specified only once in the input attribute list. Otherwise, Add

returns attributeOrValueExists / ERROR_DS_ATT_ALREADY_EXISTS if the DC functional level is
DS_BEHAVIOR_WIN2000, and objectClassViolation / ERROR_DS_ILLEGAL_MOD_OPERATION if
the DC functional level is DS_BEHAVIOR_2003 or greater.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

284 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

All objectClass values correspond to classes that are defined and active in the schema.

If a defunct class is referenced, then Add returns objectClassViolation /

ERROR_DS_OBJ_CLASS_NOT_DEFINED if the DC functional level is DS_BEHAVIOR_2003 or

lower, and noSuchAttribute / ERROR_INVALID_PARAMETER if the DC functional level is
DS_BEHAVIOR_WIN2008 or greater.

If the objectClass does not exist in the schema, Add returns noSuchAttribute /

ERROR_INVALID_PARAMETER.

The set of non-auxiliary objectClass values defines a (possibly incomplete) inheritance chain with

a single, most specific structural objectClass or a single 88 object class. If this is not true, Add

returns objectClassViolation / ERROR_DS_OBJ_CLASS_NOT_SUBCLASS.

If the forest functional level is DS_BEHAVIOR_WIN2003 or higher, then auxiliary classes can be

included while setting the value for the objectClass attribute. If the forest functional level is lower
than DS_BEHAVIOR_WIN2003, then including auxiliary classes while setting the value of the
objectClass attribute results in unwillingToPerform / ERROR_DS_NOT_SUPPORTED being returned

by the server.

If the fschemaUpgradeInProgress field is false on the LDAPConnection instance in

dc.ldapConnections ([MS-DRSR] section 5.115) corresponding to the LDAP connection on which
the operation is being performed and the structural objectClass or the 88 object class is not
marked as systemOnly, then Add returns unwillingToPerform /
ERROR_DS_CANT_ADD_SYSTEM_ONLY.

The objectClass's objectClassCategory is either 0 (88 object class) or 1 (structural object class).

If it is not, Add returns unwillingToPerform / ERROR_DS_CLASS_MUST_BE_CONCRETE.

The structural objectClass is not a Local Security Authority (LSA)–specific object class (section

3.1.1.5.2.3). If it is, Add returns unwillingToPerform / ERROR_DS_CANT_ADD_SYSTEM_ONLY.

If the structural objectClass is crossRef, then crossRef requirements (section 3.1.1.5.2.7), as well

as NC naming requirements (section 3.1.1.5.2.6), are enforced.

It is disallowed to create objects with duplicate RDN values under the same parent container. See

section 3.1.1.3.1.2.1 for more information.

All attribute names/OIDs refer to attributes that are defined and active in the schema. If an

unknown or defunct attribute is referenced, Add returns noSuchAttribute /
ERROR_INVALID_PARAMETER.

Object quota requirements are satisfied for the requester in the NC where the object is being

added (see section 3.1.1.5.2.5).

The objectClass being created satisfies the possSuperiors schema constraint (section 3.1.1.2) for

the objectClass of the parent object. Otherwise, objectClassViolation /
ERROR_DS_ILLEGAL_SUPERIOR is returned if the DC functional level is
DS_BEHAVIOR_WIN2000, and namingViolation / ERROR_DS_ILLEGAL_SUPERIOR is returned if
the DC functional level is DS_BEHAVIOR_WIN2003 or greater.

The set of attributes provided for object creation is consistent with the schema as described in

section 3.1.1.5.1.1.

If the requester has supplied a value for the RDN attribute, then it matches the first label of the

supplied DN value in both attribute type and attribute value, according to the LDAP Unicode
string comparison rules in section 3.1.1.3.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

285 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The RDN value satisfies schema constraints (rangeLower/rangeUpper, single-valuedness, syntax,

and so on).

If a site object is being created, then the RDN value is a valid DNS name label (according to the

DNS RFC [RFC1035]). Otherwise, invalidDNSyntax / ERROR_DS_BAD_NAME_SYNTAX is returned.

If a subnet object is being created, then the RDN value MUST be a valid subnet object name,

according to the algorithm described in section 6.1.1.2.2.2.1. Otherwise, invalidDNSyntax /
ERROR_DS_BAD_NAME_SYNTAX is returned.

In the following two cases, the requester specifies the objectGUID or the objectSid during Add:

The requester is allowed to specify the objectGUID if the following five conditions are all

satisfied:

The fSpecifyGUIDOnAdd heuristic is true in the dSHeuristics attribute (see section

6.1.1.2.4.1.2).

The requester has the Add-GUID control access right (section 5.1.3.2.1) on the NC root of

the NC where the object is being added.

The requester-specified objectGUID is not currently in use in the forest.

Active Directory is operating as AD DS.

The requester-specified objectGUID is not the NULL GUID.

The requester is required to specify the objectSid when creating a bind proxy object (section

3.1.1.8.2) in an AD LDS NC. The objectSid value specified for a bind proxy object must be
resolvable by the machine running the AD LDS DC to an active Windows user. If the SID
cannot be resolved to an active Windows user, Add returns unwillingToPerform /
ERROR_DS_SECURITY_ILLEGAL_MODIFY. If the requester-specified objectSid value is present
on an existing object in the same NC, Add returns unwillingToPerform /
ERROR_DS_SECURITY_ILLEGAL_MODIFY.

In all other cases, it is an error (unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY)

for the requester to specify the objectGUID or objectSid during Add; these values are
automatically generated (as specified in section 3.1.1.5.2.4, "Processing Specifics") by the
system as required.

If the requester has specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP control

and has specified a value for the nTSecurityDescriptor, the owner in the security descriptor is set
to the owner supplied by the control. Any other portions of the security descriptor are

unchanged. The resultant value is a valid security descriptor value in self-relative format, and it
satisfies the security descriptor constraints (see "Security Descriptor Requirements" in section
6.1.3).

If the requester has specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP control

but has not specified a value for nTSecurityDescriptor, a new value for nTSecurityDescriptor is
created: a security descriptor with the owner set to the owner supplied by the control. No other

portions of the security descriptor are valid. The resultant value is a valid security descriptor

value in self-relative format, and it satisfies the security descriptor constraints (see "Security
Descriptor Requirements" in section 6.1.3).

If the requester has not specified an owner using the LDAP_SERVER_SET_OWNER_OID LDAP

control but has specified a value for nTSecurityDescriptor, the value is a valid security descriptor

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

286 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

value in self-relative format, and it satisfies the security descriptor constraints (see "Security
Descriptor Requirements" in section 6.1.3).

If the requester has specified a value for the objectCategory attribute, then it points to an

existing classSchema object in the schema container.

If the requester has specified a value for the servicePrincipalName attribute, then it is a

syntactically valid SPN value (see section 5.1.1.4, "Mutual Authentication").

If the requester has specified values for the servicePrincipalName or userPrincipalName

attributes, those values must meet the constraints specified in section 3.1.1.5.1.3.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the msDS-Entry-Time-To-

Die attribute is set, then the objectClass value includes the dynamicObject auxiliary class.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then it is disallowed for a non-

dynamicObject child to be created under a dynamicObject parent (see section 6.1.7). If this
constraint is violated, then unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM is

returned.

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, the following constraints are

enforced on objects of class msDS-PasswordSettings:

The msDS-PasswordHistoryLength attribute is less than or equal to 1024.

The msDS-MinimumPasswordAge attribute is less than or equal to 0.

The msDS-MaximumPasswordAge attribute is less than or equal to 0.

The msDS-MaximumPasswordAge attribute is less than the value of the msDS-

MinimumPasswordAge attribute on the same object after the Add would have completed.

The msDS-MinimumPasswordLength attribute is less than or equal to 256.

The msDS-LockoutDuration attribute is less than or equal to 0.

The msDS-LockoutObservationWindow attribute is less than or equal to 0.

The msDS-LockoutDuration attribute is less than or equal to the value of the msDS-

LockoutObservationWindow attribute on the same object after the Add would have completed.

Otherwise, unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY is returned.

An AD LDS security principal object (section 5.1.1.5) can be created in an application NC. In

addition, if the ADAMAllowADAMSecurityPrincipalsInConfigPartition configurable setting (section
3.1.1.3.4.7) is supported and equals 1, an AD LDS security principal object can also be created in

the config NC. An AD LDS security principal object can never be created in the schema NC.

In AD LDS, if the LDAP policy ADAMDisablePasswordPolicies does not equal 1, and a password

value (either unicodePwd or userPassword) is specified in an Add, the password must satisfy the
current password policy in effect on the AD LDS server as reported by SamrValidatePassword

([MS-SAMR] section 3.1.5.13.7). If the provided password value does not satisfy the password
policy, the Add returns constraintViolation / ERROR_PASSWORD_RESTRICTION.

In AD LDS, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the

dSHeuristics attribute (see section 6.1.1.2.4.1.2) is not true, and a password value (either
unicodePwd or userPassword) is specified in an Add, the LDAP connection must be encrypted with

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

287 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

cipher strength of at least 128 bits. If the connection does not pass the test, the Add returns
operationsError / ERROR_DS_ILLEGAL_MOD_OPERATION.

In AD LDS, if the userPrincipalName value is specified in an Add, then the value must be unique

within all NCs on this DC. If another object exists with the same userPrincipalName value, the
Add returns attributeOrValueExists / ERROR_DS_NAME_NOT_UNIQUE.

In AD LDS, the following attributes are disallowed in an Add: badPwdCount, badPasswordTime,

lastLogonTimestamp, pwdLastSet. If one of these attributes is specified in an add, the Add
returns constraintViolation / ERROR_DS_ATTRIBUTE_OWNED_BY_SAM.

In AD DS, the following attributes are disallowed in an Add for objects of class user:

badPasswordTime, badPwdCount, dBCSPwd, isCriticalSystemObject, lastLogoff, lastLogon,
lastLogonTimestamp, lmPwdHistory, logonCount, memberOf, msDS-User-Account-Control-
Computed, ntPwdHistory, objectSid, rid, sAMAccountType, and supplementalCredentials. If one of
these attributes is specified in an Add, the Add returns unwillingToPerform /
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM.

In AD DS, the following attributes are disallowed in an Add for objects of class group:

isCriticalSystemObject, memberOf, objectSid, rid, sAMAccountType, and userPassword. If one of
these attributes is specified in an Add, the Add returns unwillingToPerform /
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM.

In AD DS, the following attributes are disallowed in an Add for an object whose class is not a

SAM-specific object class (see 3.1.1.5.2.3): isCriticalSystemObject, lmPwdHistory, ntPwdHistory,
objectSid, samAccountName, sAMAccountType, supplementalCredentials, and unicodePwd. If one

of these attributes is specified in an Add, the Add returns unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION.

Additional constraints are enforced if the object being created is a SAM-specific object (section

3.1.1.5.2.3); [MS-SAMR] section 3.1.1.6 specifies these constraints.

Additional constraints are enforced if the object being created is a schema object (section

3.1.1.5.2.3). See section 3.1.1.2, "Active Directory Schema", for more details.

In the case of Windows Server 2008 R2 operating system, Windows Server 2012 operating

system, and Windows Server 2012 R2 operating system, if the object being created is a
computer object and all of the following conditions hold true:

The requester does not have RIGHT_DS_CREATE_CHILD access on the Container-Object

object.

The RpcImpersonationAccessToken.Privileges[] field has the

SE_MACHINE_ACCOUNT_NAME privilege (defined in [MS-LSAD] section 3.1.1.2.1).

Then these constraints apply:

Following is the list of allowed and required attributes that must be specified:

dNSHostName

servicePrincipalName

userAccountControl

unicodePwd*

objectClass

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

288 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

sAMAccountName

*If the account is created with UF_ACCOUNTDISABLE set in userAccountControl, unicodePwd
is not required.

Iterate over the list of attributes specified in the request:

If the attribute is not in the preceding list of required attributes, the Add returns

ERROR_DS_MISSING_REQUIRED_ATT.

If the attribute is userAccountControl and the UF_WORKSTATION_TRUST_ACCOUNT bit is

not set or any bit other than UF_WORKSTATION_TRUST_ACCOUNT |
UF_ACCOUNTDISABLE is set, Add returns ERROR_DS_SECURITY_ILLEGAL_MODIFY.

If the attribute is unicodePwd and the value is of zero length and userAccountControl is

either not in the list of attributes in the request or is present but the bit
UF_ACCOUNTDISABLE is not set, Add returns ERROR_DS_SECURITY_ILLEGAL_MODIFY.

If the attribute unicodePwd is not found in the request and the UF_ACCOUNTDISABLE bit is

not set in userAccountControl, the Add returns ERROR_DS_MISSING_REQUIRED_ATT.

If the attribute is dNSHostName and its value does not conform to the requirements stated

in section 3.1.1.5.3.1.1.2, the Add returns ERROR_DS_INVALID_ATTRIBUTE_SYNTAX.

If the attribute is servicePrincipalName and its value does not conform to the requirements

stated in section 3.1.1.5.3.1.1.4, the Add returns
ERROR_DS_INVALID_ATTRIBUTE_SYNTAX.

3.1.1.5.2.3 Special Classes and Attributes

This section defines three sets of object classes: LSA-specific object classes, SAM-specific object
classes, and schema object classes. These sets are mentioned elsewhere in the specification,
because special processing is applied to instances of these classes.

Each set includes both the specific object classes mentioned here and any subclasses of these object
classes.

LSA-specific object classes: secret, trustedDomain (originating updates only, in AD DS only).

SAM-specific object classes: group, samDomain, samServer, user (originating updates only, in

AD DS only).

Schema object classes: attributeSchema, classSchema (originating and replicated updates).

This section also defines one set of attributes: foreign principal object (FPO)-enabled attributes.
This set is mentioned elsewhere in the specification, because special processing is applied to

instances of these attributes.

FPO-enabled attributes: member, msDS-MembersForAzRole, msDS-NeverRevealGroup, msDS-

NonMembers, msDS-RevealOnDemandGroup, msDS-ServiceAccount.

3.1.1.5.2.4 Processing Specifics

For originating updates, a new objectGUID value is generated and set on the object. This value

MUST NOT be the NULL GUID. For replicated updates, the received objectGUID is set on the
object.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

289 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

In AD DS, if the object is a security principal (according to its objectClass values), then for

originating updates the objectSid value is generated and set on the object (see [MS-SAMR]

sections 3.1.1.6 and 3.1.1.9). For replicated updates, the received objectSid is set on the object.

In AD LDS, if the object being added is an NC root and not the schema NC root, then it is given

an objectSid value, ignoring schema constraints. The objectSid value ([MS-DTYP] section 2.4.2),
with one SubAuthority value, is generated using the following algorithm:

The IdentifierAuthority value (6 bytes) is generated as follows: the first 2 bytes are zero, the

high 4 bits of the third byte are 0001, and the remaining 3.5 bytes (the lower 4 bits of the
third byte, and bytes 4, 5 and 6) are randomly generated.

The first SubAuthority value (DWORD) is randomly generated.

In AD LDS, if the object being added is an AD LDS security principal object (an object that is not

an NC root and contains the objectSid attribute), then the objectSid value is generated using the
following algorithm, which produces a SID with 5 SubAuthority values:

The Revision byte is 1.

The SubAuthorityCount is 5.

The IdentifierAuthority is set to the same value as the IdentifierAuthority of the SID of the NC

root.

The first SubAuthority is set to the same value as the first SubAuthority of the SID of the NC

root.

A randomly generated GUID value (16 bytes or 4 DWORDs) is taken as second, third, fourth,

and fifth SubAuthority values of the new SID value. This GUID value is unrelated to the
objectGUID value that is also generated randomly for the object being added. This GUID
MUST NOT be the NULL GUID.

In AD LDS, if a group object is being created (that is, an object containing the value group in its

objectClass), and the groupType attribute is not specified, then the following value is assigned to

groupType: GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED.

In AD LDS, if an AD LDS user is being created, and the password value (either unicodePwd or

userPassword) was not supplied, then the password value is defaulted to an empty string.

In AD LDS, if an AD LDS user is being created, and the password value is defaulted and does not

satisfy the password policy in effect on the AD LDS server (as reported by
SamrValidatePassword, [MS-SAMR] section 3.1.5.13.7), then the user is created in the disabled

state; that is, msDS-UserAccountDisabled = true. However, if the Add operation specifies the
msDS-UserAccountDisabled attribute with the value of false, the add returns constraintViolation /
ERROR_PASSWORD_RESTRICTION. This processing rule is not effective if the LDAP policy
ADAMDisablePasswordPolicies is equal to 1.

In AD LDS, if an AD LDS user is being created, then badPwdCount and badPasswordTime values

are set to zero.

The nTSecurityDescriptor value is computed and set on the object (see section 6.1.3 for more

details).

Any values specified for attributes that are marked as constructed in the schema are ignored,

with one exception: the entryTTL attribute.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

290 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the value of the entryTTL attribute is specified in the Add request, it is processed as follows:

If the value of the entryTTL attribute is less than the DynamicObjectMinTTL LDAP setting, then

the entryTTL attribute is set to the value of the DynamicObjectMinTTL setting.

The current system time, plus the entryTTL attribute interpreted as seconds, is written into

the msDS-Entry-Time-To-Die attribute.

If dynamicObject is present among objectClass values, but neither entryTTL nor msDS-Entry-

Time-To-Die were specified in an originating update, then Add proceeds as if the value of the
DynamicObjectDefaultTTL LDAP policy had been specified as the value of the entryTTL attribute.

Any values specified by the requester for the following attributes are ignored:

distinguishedName, subRefs, uSNLastObjRem, uSNDSALastObjRemoved, uSNCreated,
replPropertyMetaData, isDeleted, proxiedObjectName.

For an originating update, any value specified for the whenCreated attribute is ignored and its

value is set to the current time according to the system clock on this DC.

If a value of the systemFlags attribute is specified by the requester, the DC removes any flags

not listed below from the systemFlags value before storing it on the new object:

FLAG_CONFIG_ALLOW_RENAME

FLAG_CONFIG_ALLOW_MOVE

FLAG_CONFIG_ALLOW_LIMITED_MOVE

FLAG_ATTR_IS_RDN (removed unless the object is an attributeSchema object)

For the following scenarios, the DC sets additional bits in the systemFlags value of the object

created:

server objects: FLAG_DISALLOW_MOVE_ON_DELETE, FLAG_CONFIG_ALLOW_RENAME, and

FLAG_CONFIG_ALLOW_LIMITED_MOVE.

serversContainer and nTDSDSA objects: FLAG_DISALLOW_MOVE_ON_DELETE.

site object: FLAG_DISALLOW_MOVE_ON_DELETE and FLAG_CONFIG_ALLOW_RENAME.

siteLink, siteLinkBridge, and nTDSConnection objects: FLAG_CONFIG_ALLOW_RENAME.

Any object that is not mentioned above and whose parent is the Subnets Container (section

6.1.1.2.2.2): FLAG_CONFIG_ALLOW_RENAME.

Any object that is not mentioned above and whose parent is the Sites Container (section

6.1.1.2.2) except the Subnets Container (section 6.1.1.2.2.2) and the Inter-Site-Transports
Container (section 6.1.1.2.2.3): FLAG_CONFIG_ALLOW_RENAME.

If a value for the objectCategory attribute was not specified by the requester, then it is defaulted

to the current value of the defaultObjectCategory attribute on the classSchema object

corresponding to the 88 object class or the most specific structural object class of the object
being added.

The complete inheritance chain of object classes (starting from the most specific structural object

class or 88 object class as well as from all dynamic auxiliary classes specified by the user) is
computed and set. The correct ordering of objectClass values is performed (see section
3.1.1.2.4.3 for more details).

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

291 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The value of instanceType attribute is written. For originating updates of regular objects, it is

IT_WRITE. For NC root object specifics, see NC-Add Operation (section 3.1.1.5.2.8). For

replicated updates, the instanceType value computed by the IDL_DRSGetNCChanges client is

written.

distinguishedName attribute is written, matching the DN value of the supplied object.

The RDN attribute of the correct attribute type is written, as computed from the DN value of the

supplied object.

If the showInAdvancedViewOnly value was not provided by the requester and the

defaultHidingValue of the objectClass is true, then the showInAdvancedViewOnly attribute value

is set to true.

If the Add assigns a value to an FPO-enabled attribute (section 3.1.1.5.2.3) of the new object,

and the DN value in the add request has <SID=stringizedSid> format (section 3.1.1.3.1.2.4),
then the DC creates a corresponding foreignSecurityPrincipal object in the
ForeignSecurityPrincipals container (section 6.1.1.4.10) and assigns a reference to the new

foreignSecurityPrincipal object as the FPO-enabled attribute value. [MS-SAMR] section 3.1.1.8.9

specifies the creation of the foreignSecurityPrincipal object.

If attributeSchema or classSchema object is created in schema NC, then apply special processing

as described in section 3.1.1.2.5.

If an infrastructureUpdate object is created, then let O be the object that is created. If

(O!dNReferenceUpdate has a value), then for each object P in each NC replica on the server, do

the following:

Let S be the set of all attributes of P with attribute syntax Object(DS-DN), Object(DN-String),

Object(DN-Binary), Object(OR-Name), or Object(Access-Point).

For each attribute A in set S and for each value V of A, do the following:

If the attribute syntax of A is Object(DS-DN), then let G be P.A.guid_value.

Otherwise, let G be P.A.V.object_DN.guid_value.

Let RG be O!dNReferenceUpdate.guid_value.

Let RD be O!dNReferenceUpdate.dn.

If (RG = G), then delete V from P.A.

If (RG = G) and A is not a link value attribute, then add attribute value of

O!dNReferenceUpdate to P.A

If (RG = G) and A is a link value attribute and RDN of RD is not a delete-mangled RDN (see

section 3.1.1.5.5), then add value of O!dNReferenceUpdate to P.A.

If (RG = G) and A is a link value attribute and RDN of RD is a delete-mangled RDN (see

section 3.1.1.5.5) and the Recycle Bin optional feature is enabled (see section 3.1.1.9.1),

then add the value of O!dNReferenceUpdate to P.A. However, this value is to be treated as

a linked value to or from a deleted-object. That is, the value is not generally visible to LDAP
clients unless the LDAP_SHOW_DEACTIVATED_LINK_OID control is used.

If a crossRef object is being created, the server MUST return ERROR_DS_ROLE_NOT_VERIFIED if

the IsEffectiveRoleOwner(RoleObject(Config NC, DomainNamingMasterRole)) function specified in
section 3.1.1.5.1.8 returns FALSE.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

292 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.2.5 Quota Calculation

Quotas control the number of objects (including tombstones, deleted-objects, and recycled-
objects) that a security principal may own within an NC. A security principal is considered the

"owner" of an object if the OWNER field in the object's nTSecurityDescriptor value equals the
security principal’s SID. In the event the object owner changes, the quota (USAGE) for the existing
and potential new owner is recalculated.

The quota is not enforced in two cases:

When the requester of an operation is not the same as the potential owner.

When the requester has specified the LDAP_SERVER_BYPASS_QUOTA_OID control and has been

granted the control access right DS-Bypass-Quota on the object that is the root of the NC in
which the operation is to be performed.

When a quota is enforced, the USAGE value for the requester is computed. When the USAGE value
computed for a requester exceeds their MAX-USAGE value (see below), add, undelete

(reanimation), delete, and change-of-owner operations are prevented for the requester and the
server returns the adminLimitExceeded / STATUS_QUOTA_EXCEEDED error.

The USAGE value is computed as follows:

USAGE = owned_existing_objects + ceil(tombstone-factor/100 * owned_deleted_objects)

In the preceding formula, owned_existing_objects is the total number of existing-objects that the
requester owns. owned_deleted_objects is the total number of tombstones, deleted-objects, or
recycled-objects (see the Delete operation in section 3.1.1.5.5) that the requester owns. tombstone-
factor is the integer value stored in the msDS-TombstoneQuotaFactor attribute on the Quotas
container in the NC. Ceil() is the "ceiling" mathematical function.

The MAX-USAGE value is computed as follows:

1. A set of applicable msDS-QuotaControl objects in the Quotas container is obtained. An msDS-

QuotaControl object is applicable for the requester if its msDS-QuotaTrustee attribute contains a
SID that is present in the requester's authorization information.

2. If the set of applicable msDS-QuotaControl objects is non-empty, then the maximum value of the
msDS-QuotaAmount attribute is chosen as the MAX-USAGE value.

3. If the set of applicable msDS-QuotaControl objects is empty, then the value of the msDS-

DefaultQuota attribute on the Quotas container is chosen as the MAX-USAGE value.

3.1.1.5.2.6 NC Requirements

The following requirements apply to DN s of AD DS NCs (the set of NCs that are parts of the Active
Directory forest) other than the config NC and schema NC:

Each RDN label within the DN has the DC= type.

Each RDN label within the DN has a value, which is a valid DNS name label.

The following requirements apply to DN s of all Active Directory NCs:

The full DN of the NC does not match the DN of another existing object in an Active Directory NC.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

293 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the immediate parent of the NC is not an Active Directory NC, then none of the ancestors

(grandparent, grand-grandparent, and so on) are an Active Directory NC. In other words, the set

of Active Directory NCs is a set of nonintersecting trees, and each tree does not have "holes".

The following requirements apply to the data stored in NC roots:

IT_NC_HEAD bit is set in the instanceType attribute.

If the NC has an immediate parent (which must be an NC root per the preceding rules), then

IT_NC_ABOVE bit is be set in its instanceType attribute.

If the NC has child NCs, then their DNs are listed in its subRefs attribute.

If any server has a replica of the NC and of an NC C, which is a child of the NC, then the NC root of

C is the subordinate reference object of C. If the server does not have a replica of C, then an
object o is present in the server and satisfies the following requirements, and o is the subordinate
reference object of C.

The IT_NC_HEAD bit is set in the instanceType attribute.

The IT_NC_ABOVE bit is set in the instanceType attribute.

The IT_UNINSTANT bit is set in the instanceType attribute.

Object o has the same distinguishedName and objectGUID as the child NC root object.

Object o is not exposed through the LDAP protocol. For information about the replication of
subordinate reference objects, see [MS-DRSR] sections 4.1.1.2.2, 4.1.20.2, 5.6, and 5.32.

The default structure of data in NCs is covered in Naming Contexts in section 6.1.1.1.

3.1.1.5.2.7 crossRef Requirements

crossRef objects represent NCs within the Active Directory forest, as well as "external" (foreign)

NCs. The relationship between the crossRef and the NC is represented by the nCName attribute on
the crossRef. The value of this attribute is the DN of the corresponding NC. Each Active Directory NC
has a corresponding crossRef object. A crossRef object can also represent an intention to create a
new Active Directory NC with the specified DN.

The following requirements apply to crossRef objects:

The FLAG_CR_NTDS_NC bit is set in systemFlags if and only if the nCName represents an Active

Directory NC.

The FLAG_CR_NTDS_DOMAIN bit is set in systemFlags if and only if the nCName represents a

domain Active Directory NC.

The FLAG_CR_NTDS_NOT_GC_REPLICATED bit is set in systemFlags if and only if the nCName

represents an Application Active Directory NC.

If the FLAG_CR_NTDS_NC bit is set in systemFlags and the Enabled attribute value is false, then

the crossRef represents an intention to create an Active Directory NC. Otherwise, it represents an
Active Directory NC that is actually present.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf

294 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.2.8 NC-Add Operation

For originating updates, the NC-Add operation is distinguished by the presence of instanceType
attribute with (IT_NC_HEAD | IT_WRITE) value in the input attribute set. For replicated updates, the

NC-Add operation is distinguished by the presence of instanceType attribute with IT_NC_HEAD value
in the input attribute set. The DN of the object represents the new NC DN, and the DC enforces the
constraints on NC naming described previously.

For originating updates, the NC-Add operation is only supported for application NCs. If a new
domain NC needs to be created, then IDL_DRSAddEntry RPC MUST be used to create the crossRef
(see [MS-DRSR] section 4.1.1).

3.1.1.5.2.8.1 Constraints

Regular Add operation constraints apply to the NC-Add operation (as defined in previous sections),
with the exception of constraints pertaining to the parent object (for example, the possSuperiors
schema constraint).

There are two distinct NC-Add scenarios that are supported with regard to maintaining crossRef
requirements:

1. The crossRef corresponding to the new NC does not exist. In this case, a new crossRef object is
created. If the DC is the domain naming FSMO, then the crossRef is created locally. Otherwise,
the crossRef is created on the domain naming FSMO DC using the IDL_DRSAddEntry call with
appropriate parameters (see [MS-DRSR] section 4.1.1 for details).

2. The crossRef corresponding to the new NC has been pre-created (that is, it was created
previously). The crossRef object is located finding the object where the value of nCName matches
the DN of the NC being created. Once located, the following constraints on the crossRef are

validated:

1. If Enabled is true, the server MUST return ERROR_DS_CROSS_REF_EXISTS.

2. If the dnsRoot attribute value does not match the dnsName of the DC processing the NC-Add

operation, the server MUST return ERROR_DS_MASTERDSA_REQUIRED.

3.1.1.5.2.8.2 Security Considerations

Regular Add access checks do not apply to the NC-Add operation, because the parent object may

not even exist in the directory. Instead, the requester must have sufficient permissions to either
create a new crossRef or modify the pre-created crossRef object. Regular Add and modify
permission checks apply for these operations.

No access check is performed for replicated updates.

3.1.1.5.2.8.3 Processing Specifics

The following operations are performed during an NC-Add operation performed as an originating

update:

The matching crossRef object is obtained (see details in section 3.1.1.5.2.8.1).

The NC root object is created per the Add request. Regular Add processing applies (as defined in

sections 3.1.1.5.2.1 through 3.1.1.5.2.3).

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

295 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The default NC tree structure is generated (see Naming Contexts in section 6.1.1.1), and the

appropriate wellKnownObjects references are written on the NC root.

The matching crossRef object is updated as follows: the Enabled attribute is removed, and the

dnsRoot is updated to contain the full DNS name of the NC, as computed from the NC DN.

If the NC being created is child of an NC P, and the server in which the NC is being created has a

replica of P, then the new NC root will be the subordinate reference object to the new NC and
must be listed in the subRefs attribute of P's NC root. For more information about subordinate
reference objects, see section 3.1.1.5.2.6.

These steps are not performed for replicated updates.

3.1.1.5.3 Modify Operation

References

LDAP attributes: objectClass, nTSecurityDescriptor, instanceType, distinguishedName, objectGUID,

objectSid, entryTTL, msDS-Entry-Time-To-Die, systemFlags, objectCategory, msDS-
AllowedToDelegateTo, member, sAMAccountName, msDS-AdditionalSamAccountName,
dNSHostName, msDS-AdditionalDnsHostName, servicePrincipalName, uSNCreated, subRefs,

uSNLastObjRem, uSNDSALastObjRemoved, name, isDeleted, isRecycled, hasMasterNCs, msDS-
hasMasterNCs, hasPartialReplicaNCs, msDS-hasFullReplicaNCs, whenCreated, managedBy, msDS-
LockoutObservationWindow, msDS-LockoutDuration, msDS-MaximumPasswordAge, msDS-
MinimumPasswordAge, msDS-MinimumPasswordLength, msDS-PasswordHistoryLength.

LDAP classes: dynamicObject, crossRef, server, computer, foreignSecurityPrincipal.

Well-known object GUIDs: GUID_USERS_CONTAINER_W, GUID_COMPUTERS_CONTAINER_W.

Constants

Win32/status error codes: ERROR_DS_REFERRAL,

ERROR_DS_WKO_CONTAINER_CANNOT_BE_SPECIAL,

ERROR_DS_CONFIDENTIALITY_REQUIRED, ERROR_DS_ILLEGAL_MOD_OPERATION,
ERROR_DS_RANGE_CONSTRAINT, ERROR_DS_HIGH_DSA_VERSION,
ERROR_DS_SPN_VALUE_NOT_UNIQUE_IN_FOREST,
ERROR_DS_UPN_VALUE_NOT_UNIQUE_IN_FOREST.

Access mask bits, control access rights: RIGHT_DS_WRITE_PROPERTY,

RIGHT_DS_WRITE_PROPERTY_EXTENDED, Change-Infrastructure-Master, Change-Schema-
Master, Change-Rid-Master, Change-PDC, Change-Domain-Master, Reanimate-Tombstones.

Security privileges: SE_ENABLE_DELEGATION_PRIVILEGE

systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME,

FLAG_DOMAIN_DISALLOW_MOVE, FLAG_ATTR_IS_RDN.

LDAP: LDAP_SERVER_PERMISSIVE_MODIFY_OID

The modify operation results in modification of a single existing object in the directory tree. The
requester supplies the following data:

The DN of the object.

The set of attributes defining the modifications that should be performed.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

296 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.3.1 Security Considerations

For originating updates, the following access checks are performed. No access checks are performed
for replicated updates.

The requester needs to have RIGHT_DS_WRITE_PROPERTY access to all attributes being directly
affected by the modify operation. Note that some attributes may be modified indirectly as a result of
triggers and processing rules. The requester is not required to have write access to those attributes.

If any attributes being directly modified are marked in the schema as partition secrets (see the SE
flag in section 2.2.9), the requester must have the control access right DS-Write-Partition-Secrets
on the root object of the naming context to which the modified object belongs.

Additional access checks may apply if the nTSecurityDescriptor value is being modified. See

"Security Descriptor Requirements", section 6.1.3, for more details.

If the modify operation represents an Undelete operation, then additional security checks apply (see
the Undelete operation in section 3.1.1.5.3.7).

If the msDS-AllowedToDelegateTo attribute is modified, then the requester must possess
SE_ENABLE_DELEGATION_PRIVILEGE.

In AD LDS, if a password value is being modified as a password change operation, then the

requester needs to have the User-Change-Password control access right on the object being
modified. A password change operation is defined as removing the old password value and adding
the new password value, where the old password value matches the current password on the object.

In AD LDS, if a password value is being modified as a password reset operation, then the requester
needs to have the User-Force-Change-Password control access right on the object being modified. A
password reset operation is defined as a replace operation on the password attribute.

In AD LDS, if a password unexpire operation is being performed, then the requester needs to have

the Unexpire-Password control access right on the object being modified. A password unexpire
operation is defined as setting the pwdLastSet attribute to the value -1.

3.1.1.5.3.1.1 Validated Writes

In some cases, when the requester does not have RIGHT_DS_WRITE_PROPERTY access on an
attribute, but has RIGHT_DS_WRITE_PROPERTY_EXTENDED access (also called "validated write"),
then the write is allowed, subject to additional constraints for the attribute value. The following

subsections specify the additional checks that are performed for validated writes of the specified
attributes.

See section 5.1.3.2.2 for the validated write rights GUIDs.

3.1.1.5.3.1.1.1 Member

The operation is either add value or remove value, and the value is the DN of the user object
representing the requester. In other words, it is allowed that one can add/remove oneself to and

from a group.

The requester must have the Self-Membership validated write right.

3.1.1.5.3.1.1.2 dNSHostName

The object has class computer or server (or a subclass of computer or server).

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

297 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

In AD DS, the value of the dNSHostName attribute being written is in the following format:
computerName.fullDomainDnsName, where computerName is the current sAMAccountName of the

object (without the final "$" character), and the fullDomainDnsName is the DNS name of the domain
NC or one of the values of msDS-AllowedDNSSuffixes on the domain NC (if any) where the object

that is being modified is located.

The requester must have the Validated-DNS-Host-Name validated write right.

3.1.1.5.3.1.1.3 msDS-AdditionalDnsHostName

The functional level of the DC on which the modification is taking place is at least
DS_BEHAVIOR_WIN2012.

The object has class computer or server (or a subclass of computer or server).

In AD DS, the value of the msDS-AdditionalDnsHostName attribute being written is in the following
format: anyDnsLabel.suffix, where anyDnsLabel is a valid DNS name label, and suffix matches one
of the values of msDS-AllowedDNSSuffixes on the domain NC root (if any).

The requester must have the Validated-MS-DS-Additional-DNS-Host-Name validated write right.

3.1.1.5.3.1.1.4 servicePrincipalName

The object has class computer (or a subclass of computer).

In AD DS, the servicePrincipalName value satisfies the following constraints:

The SPN is a syntactically correct two-part SPN, or it is a syntactically correct three-part SPN (see

Mutual Authentication (section 5.1.1.4)) and the object is a DC's domain controller object (see
sections 6.1.1.3.1 and 6.1.1.3.2).

One of the following constraints:

The instance name matches one of the following: the dNSHostName of the machine, the

sAMAccountName of the machine (without the terminating "$"), one of the msDS-
AdditionalDnsHostName, or one of the msDS-AdditionalSamAccountName (without the
terminating "$").

The object has class msDS-ManagedServiceAccount (or a subclass of msDS-

ManagedServiceAccount), the domain behavior version is at least DS_BEHAVIOR_WIN2008R2,

and the instance name matches one of the following: the dNSHostName, the
sAMAccountName (without the terminating "$"), one of the msDS-AdditionalDnsHostName, or
one of the msDS-AdditionalSamAccountName (without the terminating "$"), of an object that
is referenced by the msDS-HostServiceAccountBL attribute on the object.

The SPN is a two-part SPN, and the service name is of the form <guid>._msdcs.<fqdn>,

where <guid> is the objectGUID of the domain controller, and <fqdn> matches the msDS-

DnsRootAlias of a crossRef object representing the forest.

The SPN is a three-part SPN and the service name matches one of the following constraints:

The service class is "GC" and the service name matches one of the following: the dnsRoot, or

the msDS-DnsRootAlias of the crossRef object representing the forest root domain NC.

The service class is "ldap" and the service name matches one of the following: the

NetBIOSName, the dnsRoot, or the msDS-DnsRootAlias of a crossRef object representing the
domain NCor one of the application NCs hosted by the DC.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

298 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The requester must have the Validated-SPN validated write right.

3.1.1.5.3.1.1.5 msDS-Behavior-Version

The functional level of the DC on which the modification is taking place is at least

DS_BEHAVIOR_WIN2012.

The object is an nTDSDSA object.

The DC that the object represents is an RODC.

The object's parent is a server object.

The computer object specified by the serverReference attribute of the server object that is the
parent of the object being modified represents the requester. In other words, it is allowed that an
RODC itself can update the msDS-Behavior-Version attribute of its nTDSDSA object on a writable

DC.

The requester must have the Validated-MS-DS-Behavior-Version validated write right.

3.1.1.5.3.1.2 FSMO Changes

If a write to the fSMORoleOwner attribute is performed, and the objectClass of the object being
modified is one of the following classes, then the requester is required to have an additional control

access right on the object. The following control access rights are checked, depending on the
objectClass of the object being modified:

infrastructureUpdate (domain infrastructure master FSMO, in AD DS only): Change-

Infrastructure-Master

dMD (schema FSMO): Change-Schema-Master

rIDManager (domain RID FSMO, in AD DS only): Change-Rid-Master

domainDNS (PDC emulator FSMO, in AD DS only): Change-PDC

crossRefContainer (domain naming FSMO): Change-Domain-Master

3.1.1.5.3.2 Constraints

The following constraints are enforced for a modify operation performed as an originating update.
These constraints are not enforced for replicated updates.

The object resides in a writable NC replica; otherwise the modify returns referral /

ERROR_DS_REFERRAL.

In AD DS, if the object being modified is in the config NC or schema NC, and the RM control

([MS-DTYP] section 2.4.6) of the SD is present and contains the SECURITY_PRIVATE_OBJECT bit
(section 6.1.3), the DC requires one of the following two conditions to be true:

The DC is a member of the root domain in the forest.

The DC is a member of the same domain to which the current object owner belongs.

If neither condition is true, the modify returns referral / ERROR_DS_REFERRAL.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf

299 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If a LostAndFound container is being modified, the modify returns unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION.

If the fschemaUpgradeInProgress field is false on the LDAPConnection instance in

dc.ldapConnections ([MS-DRSR] section 5.115) corresponding to the LDAP connection on which
the operation is being performed and the object being modified has class subSchema, then only
nTSecurityDescriptor modifications are allowed; otherwise, unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

Modifying an object with isDeleted = true is allowed only if one of the following conditions is true:

The Recycle Bin optional feature is not enabled and the operation is an undelete operation.

Note that the undelete operation is a special case of the modify operation. See section
3.1.1.9.1 for more details on the Recycle Bin optional feature. See section 3.1.1.5.3.7 for
more details on the undelete operation.

The Recycle Bin optional feature is enabled, the object does not have isRecycled = true, and

the operation is an undelete operation. Note that the undelete operation is a special case of

the modify operation. See section 3.1.1.9.1 for more details on the Recycle Bin optional

feature. See section 3.1.1.5.3.7 for more details on the undelete operation.

The object being modified is the Deleted Objects container (section 6.1.1.4.2).

The DC functional level is DS_BEHAVIOR_WIN2008R2 or higher, the modification only affects

the nTSecurityDescriptor attribute, and the requester has the Reanimate-Tombstones control
access right on the NC root of the object's NC.

Any other modifications of these objects fail with unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION.

In AD DS, modifications to objects of LSA-specific object classes (section 3.1.1.5.2.3) fail with

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

It is disallowed to modify constructed attributes, with the exception of the entryTTL attribute.

Such modifications fail with undefinedAttributeType / ERROR_DS_ATT_NOT_DEF_IN_SCHEMA if

the DC functional level is DS_BEHAVIOR_WIN2000, and constraintViolation /
ERROR_DS_CONSTRUCTED_ATT_MOD if the DC functional level is DS_BEHAVIOR_WIN2003 or
greater.

Updates to the name attribute, as well as updates to the object's naming attribute (the attribute

named by the rdnTypeattribute), are disallowed and modification will return notAllowedOnRDN /
ERROR_DS_CANT_MOD_SYSTEM_ONLY. Modify DN performs these updates.

A modify of an object whose objectClass is defunct fails with objectClassViolation /

ERROR_DS_OBJECT_CLASS_REQUIRED.

If the forest functional level is less than DS_BEHAVIOR_WIN2003, a modify is allowed to remove

all values of a defunct attribute. Any other modification that references a defunct attribute fails
with undefinedAttributeType / ERROR_DS_ATT_NOT_DEF_IN_SCHEMA.

If the forest functional level is greater than or equal to DS_BEHAVIOR_WIN2003, a modify that

references a defunct attribute fails with noSuchAttribute / ERROR_INVALID_PARAMETER.

If the fschemaUpgradeInProgress field is false on the LDAPConnection instance in

dc.ldapConnections ([MS-DRSR] section 5.115) corresponding to the LDAP connection on which
the operation is being performed, objectCategory modifications on classSchema objects that

%5bMS-GLOS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

300 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

have FLAG_SCHEMA_BASE_OBJECT present in systemFlags fail with unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION.

If the domain functional level is less than DS_BEHAVIOR_WIN2003, then modifications of msDS-

AdditionalDnsHostName fail with unwillingToPerform / ERROR_DS_NOT_SUPPORTED.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the msDS-UpdateScript

attribute is being modified:

IsEffectiveRoleOwner(RoleObject(default NC, RidAllocationMaster)) = true. Otherwise, the

server returns error unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

The connection is encrypted with at least 128-bit cipher. If the connection is not encrypted

with at least 128-bit cipher, then unwillingToPerform /
ERROR_DS_CONFIDENTIALITY_REQUIRED is returned.

The msDS-UpdateScript attribute is for server-to-server replication implementation only; the
client does not interpret it. This attribute MAY have meaning to Windows Server operating

system implementations, but the meaning is not significant to Windows clients.

If the dSHeuristics attribute is being modified, the new value must satisfy the following

constraints:

If the length of the value is 10 or more characters, then the tenth character must be "1";

If the length of the value is 20 or more characters, then the twentieth character must be "2";

If the length of the value is 30 or more characters, then the thirtieth character must be "3";

The same for "4" through "9".

When this constraint is violated, the error returned depends on the DC functional level. If the DC
functional level is DS_BEHAVIOR_WIN2000, no error is returned. If the DC functional level is
DS_BEHAVIOR_WIN2003 or greater, then constraintViolation /

ERROR_DS_CONSTRAINT_VIOLATION is returned.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and the nTMixedDomain

attribute is modified, then the object being modified is the domain NC root. Modification of

nTMixedDomain on any other object fails with unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION.

If the servicePrincipalName attribute is modified, then the values must be syntactically valid SPN

values (note that additional constraints may apply if the requester did not have
WRITE_PROPERTY access to the attribute; see the preceding Validated Writes section
3.1.1.5.3.1.1). Otherwise, constraintViolation / ERROR_DS_NAME_REFERENCE_INVALID is

returned. See section 5.1.1.4, Mutual Authentication, for SPN syntax.

If the servicePrincipalName or userPrincipalName attribute is modified, the values must meet the

constraints specified in section 3.1.1.5.1.3.

If the fSMORoleOwner attribute is modified, then the only allowed attribute value is the DN of the

DSA object of the current DC; for all other values, unwillingToPerform /
ERROR_DS_INVALID_ROLE_OWNER is returned. In other words, the FSMO role can only be

"taken" or transferred to the current DC. It cannot be given away.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

301 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

System-only attribute modifications (including the case of adding an auxiliary class with a must-

have system-only attribute) are disallowed, as well as modifications of all back link attributes;

with the following exceptions:

If the fschemaUpgradeInProgress field is true on the LDAPConnection instance in

dc.ldapConnections ([MS-DRSR] section 5.115) corresponding to the LDAP connection on
which the operation is being performed.

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then modifications of the

objectClass attribute are permitted, subject to additional constraints (section 3.1.1.5.3.5).

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then modifications of msDS-

Behavior-Version are permitted, subject to additional constraints (section 3.1.1.5.3.4).

Modifications of msDS-AdditionalDnsHostName are permitted.

Modifications of systemFlags are permitted only in the following case: the modify is on an

attributeSchema object in the schema container, and the change is to set (but not reset) the

FLAG_ATTR_IS_RDN bit.

Modifications of wellKnownObjects are permitted, subject to additional constraints. See section

3.1.1.5.3.6, wellKnownObjects Updates, for more details.

Modifications of isDeleted and distinguishedName are permitted only when the modify

operation is Undelete (section 3.1.1.5.3.7).

Modifications of mAPIID are permitted, subject to the constraints described in section

3.1.1.2.3.

Otherwise constraintViolation / ERROR_DS_CANT_MOD_SYSTEM_ONLY is returned.

The following constraints are enforced if the DC functional level is DS_BEHAVIOR_WIN2003 or

greater and the requester is not passing the LDAP_SERVER_PERMISSIVE_MODIFY_OID control:

Inserting duplicate values into an attribute fails with attributeOrValueExists /

ERROR_DS_ATT_VAL_ALREADY_EXISTS.

A modification that removes values that are not present from an attribute fails with

noSuchAttribute / ERROR_DS_CANT_REM_MISSING_ATT_VAL.

Removing an attribute that is not currently present on the object by virtue of the attribute not

having any value set on it fails with noSuchAttribute / ERROR_DS_ATT_IS_NOT_ON_OBJ.

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, the following constraints are

enforced on objects of class msDS-PasswordSettings:

The msDS-PasswordHistoryLength attribute is less than or equal to 1024.

The msDS-MinimumPasswordAge attribute is less than or equal to 0.

The msDS-MaximumPasswordAge attribute is less than or equal to 0.

The msDS-MaximumPasswordAge attribute is less than the value of the msDS-

MinimumPasswordAge attribute on the same object after the modify would have completed.

The msDS-MinimumPasswordLength attribute is less than or equal to 256.

The msDS-LockoutDuration attribute is less than or equal to 0.

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

302 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The msDS-LockoutObservationWindow attribute is less than or equal to 0.

The msDS-LockoutDuration attribute is less than or equal to the value of the msDS-

LockoutObservationWindow attribute on the same object after the modify would have

completed.

Otherwise, unwillingToPerform / ERROR_DS_SECURITY_ILLEGAL_MODIFY is returned.

In AD LDS, if the LDAP policy ADAMDisablePasswordPolicies does not equal 1, and a password

value (either unicodePwd or userPassword) is specified in a modify, the password must satisfy
the current password policy in effect on the AD LDS server as reported by SamrValidatePassword
([MS-SAMR] section 3.1.5.13.7). If the provided password value does not satisfy the password

policy, the modify returns constraintViolation / ERROR_PASSWORD_RESTRICTION.

In AD LDS, if the fAllowPasswordOperationsOverNonSecureConnection heuristic of the

dSHeuristics attribute (see section 6.1.1.2.4.1.2) is not true, and a password value (either
unicodePwd or userPassword) is specified in a modify, the LDAP connection must be encrypted
with cipher strength of at least 128 bits. If the connection does not pass the test, the modify

returns operationsError / ERROR_DS_ILLEGAL_MOD_OPERATION.

In AD LDS, if the userPrincipalName value is modified, then the new value must be unique within

all NCs on this DC. If another object exists with the same userPrincipalName value, the modify
returns constraintViolation / ERROR_DS_NAME_NOT_UNIQUE.

In AD LDS, if the pwdLastSet attribute is modified, then the operation MUST replace the existing

value with a new value of 0 or -1. Otherwise, constraintViolation / ERROR_INVALID_PARAMETER
is returned.

In AD LDS, if the lockoutTime attribute is modified, then the operation MUST replace the existing

value with a new value of 0. Otherwise, constraintViolation / ERROR_INVALID_PARAMETER is
returned.

In AD LDS, if the msDS-UserAccountDisabled attribute is being set to false, then the operation

succeeds if one of the following is true:

The LDAP policy ADAMDisablePasswordPolicies equals 1.

The ms-DS-UserPasswordNotRequired attribute equals true.

The current password value on the object satisfies the current password policy, as reported by

SamrValidatePassword ([MS-SAMR] section 3.1.5.13.7).

If this check fails, the modify returns constraintViolation / ERROR_PASSWORD_RESTRICTION.

After the modify operation, the object must remain compliant with the schema as described in

section 3.1.1.5.1.1.

If the object being modified is a SAM-specific object (section 3.1.1.5.2.3), then additional

constraints apply (specified in [MS-SAMR] section 3.1.1.6).

If the modify operation affects the nTSecurityDescriptor attribute, then additional constraints

apply (see section 6.1.3, "Security Descriptor Requirements", for more details).

If the modify operation would require delayed link processing (section 3.1.1.1.16), and such

processing is already underway for the object being modified due to a previous update, then the
modify returns busy / ERROR_DS_DATABASE_ERROR.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf

303 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the modify operation adds or replaces values of the description attribute on a SAM-specific

object (section 3.1.1.5.2.3), and results in more than one value in the attribute, then the

modification fails with attributeOrValueExists / ERROR_DS_SINGLE_VALUE_CONSTRAINT.

In AD DS, the following attributes are disallowed in a Modify for an object of class user:

badPasswordTime, badPwdCount, dBCSPwd, isCriticalSystemObject, lastLogoff, lastLogon,
lastLogonTimestamp, lmPwdHistory, logonCount, memberOf, msDS-User-Account-Control-
Computed, ntPwdHistory, objectSid, rid, sAMAccountType, and supplementalCredentials. If one of
these attributes is specified in a Modify, the Modify returns unwillingToPerform /
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM.

In AD DS, the following attributes are disallowed in a Modify for an object of class group:

isCriticalSystemObject, memberOf, objectSid, rid, sAMAccountType, and userPassword. If one of
these attributes is specified in a Modify, the Modify returns unwillingToPerform /
ERROR_DS_ATTRIBUTE_OWNED_BY_SAM.

In AD DS, the following attributes are disallowed in a Modify for an object whose class is not a

SAM-specific object class (see 3.1.1.5.2.3): isCriticalSystemObject, lmPwdHistory, ntPwdHistory,

objectSid, samAccountName, sAMAccountType, supplementalCredentials, and unicodePwd. If one
of these attributes is specified in a Modify, the Modify returns unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION.

3.1.1.5.3.3 Processing Specifics

The following processing rules apply to the modify operation:

If a value of the entryTTL attribute is specified in the modify request, it is processed as follows:

If the value of the entryTTL attribute is less than the DynamicObjectMinTTL LDAP setting, then

the entryTTL attribute is set to the value of the DynamicObjectMinTTL setting.

The current system time, plus the entryTTL attribute interpreted as seconds, is written into

the msDS-Entry-Time-To-Die attribute.

If the modify assigns a value to an FPO-enabled attribute (section 3.1.1.5.2.3) of the existing

object, and the DN value in the modify request has <SID=stringizedSid> format (section
3.1.1.3.1.2.4), then the DC creates a corresponding foreignSecurityPrincipal object in the Foreign
Security Principals Container (section 6.1.1.4.10) and assigns a reference to the new
foreignSecurityPrincipal object as the FPO-enabled attribute value. [MS-SAMR] section 3.1.1.8.9
specifies the creation of the foreignSecurityPrincipal object.

If the msDS-UpdateScript attribute is changed in an originating update of the Partitions

container, then the msDS-ExecuteScriptPassword value is removed from the Partitions container.
The msDS-UpdateScript and msDS-ExecuteScriptPassword attributes are for server-to-server
replication implementation only; the client does not interpret them. These attributes MAY have
meaning to Windows Server operating system implementations, but the meaning is not
significant to Windows clients.

If the objectClass value is updated, then additional operations are performed (see ObjectClass

Updates (section 3.1.1.5.3.5) for more details).

In AD DS, if the wellKnownObjects value is updated, then additional operations are performed

(see wellKnownObjects Updates (section 3.1.1.5.3.6) for more details).

In AD LDS, if a password value (unicodePwd or userPassword) is modified on a bind proxy, then

the password operation is "forwarded" to Windows as follows:

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

304 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The objectSid on the bind proxy object is resolved to a Windows user object.

A DC hosting the Windows user's domain is discovered.

The currently bound user is impersonated.

For a change password operation, the NetUserChangePassword API is invoked with the new

and old password values.

For a reset password operation, then NetUserSetInfo(level=1003) API is invoked with the new

password value.

The currently bound user is unimpersonated.

If any of the operations above fail, then the modify returns unwillingToPerform. This processing
rule is not supported by Active Directory Application Mode (ADAM) RTW DCs.

In AD LDS, if the pwdLastSet attribute is set to -1 (that is, an unexpire-password operation is

performed), then the current time is written as the value of the pwdLastSet attribute.

For originating updates, additional operations may be performed if the object being modified is a

SAM-specific object (section 3.1.1.5.2.3); [MS-SAMR] section 3.1.1.8 specifies these additional
operations.

Additional operations may be performed if the object being modified is a schema object (section

3.1.1.5.2.3); the additional operations are specified in section 3.1.1.2.5.

If link attribute values that refer to deleted-objects are not visible to the update operation

(section 3.1.1.3.4.1.25), and the update operation is a complete removal of a link attribute, all

existing values of the attribute are removed, including values that refer to deleted-objects. Note
that if the update operation is an explicit list of attributes to be removed rather than a directive
to completely remove the attribute, then no values that refer to deleted-objects are removed.

If link attribute values that refer to deleted-objects are not visible to the update operation

(section 3.1.1.3.4.1.25), and the update operation is a complete replacement of a link attribute,
all existing values of the attribute including values that refer to deleted-objects are removed

before any new values specified by the replacement are added.

If link attribute values that refer to deleted-objects are not visible to the update operation

(section 3.1.1.3.4.1.25), and the update operation is the addition of a value to a single-valued
attribute, and all existing values of the attribute refer to deleted-objects, then all existing values
of the attribute (including values that refer to deleted-objects) are removed before the new value
is added.

In AD LDS, if an originating update is made to the unicodePwd or userPassword attribute on a

bind proxy (section 3.1.1.8.2):

Let V be the value of the objectSid attribute from the bind proxy.

If the modify request specified a password reset (section 3.1.1.3.1.5), pass the password

update operation to the host operating system as a request to update the password of a
principal whose SID is V with the new password supplied in the modify request.

If the modify request specified a password change (section 3.1.1.3.1.5), pass the password

update request operation to the host operating system as a request to update the password of
a principal whose SID is V and whose current password is the old password specified in the

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

305 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

modify request. That principal's password is to be changed to the new password specified in
the modify request.

3.1.1.5.3.4 BehaviorVersion Updates

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater and less than
DS_BEHAVIOR_WIN2008R2, then originating updates of the msDS-Behavior-Version attribute are
permitted, subject to the following additional constraints:

The object being modified is the NC root of the domain NC (domain functional level) or the

CN=Partitions child of the config NC (forest functional level); otherwise, unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

The new value is greater than the current value; otherwise, unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

The operation is performed on the FSMO (PDC for domain functional level updates, Schema

Master FSMO for forest functional level updates); otherwise referral / ERROR_DS_REFERRAL is

returned.

If the domain functional level is being raised, then the domain MUST NOT contain a DC whose

functional level is lower than the new value. This is determined by searching the config NC for
objects with objectCategory nTDSDSA whose msDS-Behavior-Version attribute value is below the
new value and whose hasMasterNCs attribute contains the DN of the domain NC root. If the
search returns one or more results, then unwillingToPerform / ERROR_DS_LOW_DSA_VERSION is
returned.

If the forest functional level is being raised, then the forest MUST NOT contain a DC whose

functional level is lower than the new value. This is determined by searching the config NC for
objects with objectCategory nTDSDSA whose msDS-Behavior-Version attribute value is below the
new value. If the search returns one or more results, then unwillingToPerform /
ERROR_DS_LOW_DSA_VERSION is returned.

If the domain functional level is being raised from a value below DS_BEHAVIOR_WIN2003 to a

value of DS_BEHAVIOR_WIN2003 or greater, then the domain is not a mixed-mode domain. If

the domain is a mixed-mode domain, then unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

If the forest functional level is raised from a value below DS_BEHAVIOR_WIN2003 to a value of

DS_BEHAVIOR_WIN2003 or greater, then the forest does not contain mixed-mode domains. If
the forest does contain mixed-mode domains, then unwillingToPerform /
ERROR_DS_NO_BEHAVIOR_VERSION_IN_MIXED_DOMAIN is returned.

If the DC functional level is DS_BEHAVIOR_WIN2008R2 or greater, then originating updates of the
msDS-Behavior-Version attribute are permitted, subject to the following additional constraints:

The object being modified is the nTDSDSA object of an RODC (DC functional level of an RODC),

or NC root of the domain NC (domain functional level) or the CN=Partitions child of the config NC
(forest functional level); otherwise, unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION

is returned.

If the DC functional level of an RODC is being modified, the operation is performed on a writable

DC that is a member of the same domain the RODC is a member of; otherwise,
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

306 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the DC functional level of an RODC is being modified, the new value is greater than or equal to

the domain functional level of the domain the RODC is a member of; otherwise,

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

If the domain functional level is being modified, the operation is performed on the PDC FSMO;

otherwise referral / ERROR_DS_REFERRAL is returned.

If the domain functional level is being modified, the new value is greater than the current value

or is greater than the forest functional level; otherwise, unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

If the domain functional level is being modified, then the domain MUST NOT contain a DC whose

functional level is lower than the new value. This is determined by searching the config NC for
objects with objectCategory nTDSDSA or nTDSDSARO, whose msDS-Behavior-Version attribute
value is below the new value and whose hasMasterNCs attribute contains the DN of the domain
NC root. If the search returns one or more results, then unwillingToPerform /
ERROR_DS_LOW_DSA_VERSION is returned.

If the domain functional level is being raised from a value below DS_BEHAVIOR_WIN2003 to a

value of DS_BEHAVIOR_WIN2003 or greater, then the domain is not a mixed-mode domain. If
the domain is a mixed-mode domain, then unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

If the forest functional level is being modified, the operation is performed on the Schema Master

FSMO; otherwise referral / ERROR_DS_REFERRAL is returned.

If the forest functional level is being modified, then the forest MUST NOT contain a DC whose

functional level is lower than the new value. This is determined by searching the config NC for
objects with objectCategory nTDSDSA or nTDSDSARO and whose msDS-Behavior-Version
attribute value is below the new value. If the search returns one or more results, then
unwillingToPerform / ERROR_DS_LOW_DSA_VERSION is returned.

If the forest functional level is raised from a value below DS_BEHAVIOR_WIN2003 to a value of

DS_BEHAVIOR_WIN2003 or greater, then the forest does not contain mixed-mode domains. If

the forest does contain mixed-mode domains, then unwillingToPerform /
ERROR_DS_NO_BEHAVIOR_VERSION_IN_MIXED_DOMAIN is returned.

If the new value is less than or equal to the existing value, the new value is greater than or equal

to DS_BEHAVIOR_WIN2008; otherwise, unwillingToPerform / ERROR_DS_HIGH_DSA_VERSION is
returned.

Note In Windows versions prior to Windows Server 2012 operating system, unwillingToPerform

/ ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

3.1.1.5.3.5 ObjectClass Updates

If the DC functional level is DS_BEHAVIOR_WIN2003 or greater, then originating updates of the
objectClass attribute are permitted, subject to the following additional constraints:

If the forest functional level is less than DS_BEHAVIOR_WIN2003, objectClass updates can be

performed only on objects in application NCs; otherwise unwillingToPerform /
ERROR_DS_NOT_SUPPORTED is returned.

The specified objectClass value(s) contains a single most specific structural object class;

otherwise objectClassViolation / ERROR_DS_OBJ_CLASS_NOT_SUBCLASS is returned. If the set
of object classes specified by an update contains "holes" (that is, classes are missing on the

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

307 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

inheritance chain from the most specific structural object class to the distinguished class top), the
server fills the "holes" during the update.

The structural object class is not modified, with two exceptions:

It is permitted to convert a user object to an inetOrgPerson by the addition of inetOrgPerson

to the objectClass attribute.

It is permitted to convert an inetOrgPerson object to a user by the removal of inetOrgPerson

from the objectClass attribute.

Otherwise, the error returned depends on the DC functional level. If the DC functional level is
DS_BEHAVIOR_WIN2000, constraintViolation / ERROR_DS_CONSTRAINT_VIOLATION is

returned. If the DC functional level is DS_BEHAVIOR_WIN2003, unwillingToPerform /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned. If the DC functional level is
DS_BEHAVIOR_WIN2008 or greater, objectClassViolation /
ERROR_DS_ILLEGAL_MOD_OPERATION is returned.

Processing specifics:

The set of values is updated to include the full inheritance chains of the structural object class as

well as all auxiliary classes present in the value.

The set of values is sorted according to the objectClass requirements (see section 3.1.1.2.4.3 for

more information).

A new value of nTSecurityDescriptor is computed and written based on the new objectClass

values, according to the security descriptor requirements (see section 6.1.3).

3.1.1.5.3.6 wellKnownObjects Updates

In AD DS, when a wellKnownObjects value is modified by an originating update, the following
additional constraints apply. These constraints are not enforced for replicated updates.

The update is performed on the PDC FSMO; otherwise referral / ERROR_DS_REFERRAL is

returned.

The update is on the domain NC root object; otherwise, unwillingToPerform /

ERROR_DS_UNWILLING_TO_PERFORM is returned.

The domain functional level is at least DS_BEHAVIOR_WIN2003; otherwise unwillingToPerform /

ERROR_DS_NOT_SUPPORTED is returned.

Only the Users and Computers container wellKnownObjects references may be updated. This

corresponds to the GUID_USERS_CONTAINER_W and GUID_COMPUTERS_CONTAINER_W well-

known object (WKO) GUIDs, respectively; otherwise, unwillingToPerform /
ERROR_DS_UNWILLING_TO_PERFORM is returned.

Only add-value and remove-value LDAP verbs are supported; otherwise, unwillingToPerform /

ERROR_DS_UNWILLING_TO_PERFORM is returned.

If the DC functional level is DS_BEHAVIOR_WIN2008 or greater, then the object named by the

new value must satisfy the possSuperiors schema constraint for the objectClass corresponding to

the WKO reference being updated. For example, if the wellKnownObjects reference corresponding
to the GUID_USERS_CONTAINER_W WKO GUID is updated, then it must be possible to create
user objects as children of the object named by the new value. If this constraint is not satisfied,
the server returns unwillingToPerform / ERROR_DS_ILLEGAL_SUPERIOR.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

308 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The added value does not reside in the container identified by the DN of "CN=System,<domain

NC DN>"; otherwise, unwillingToPerform / ERROR_DS_DISALLOWED_IN_SYSTEM_CONTAINER is

returned.

The object named by the new value MUST NOT have the following bits set in its systemFlags

value: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME or
FLAG_DOMAIN_DISALLOW_MOVE; otherwise unwillingToPerform /
ERROR_DS_WKO_CONTAINER_CANNOT_BE_SPECIAL must be returned.

The removed value matches the corresponding existing value of the WKO reference. If not, then

unwillingToPerform / ERROR_DS_UNWILLING_TO_PERFORM is returned.

Processing specifics:

The following bits MUST be set in the systemFlags of the new container:

FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME and
FLAG_DOMAIN_DISALLOW_MOVE.

The following bits MUST be reset in the systemFlags of the old container:

FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME and

FLAG_DOMAIN_DISALLOW_MOVE.

isCriticalSystemObject MUST be set to true on the new container.

isCriticalSystemObject MUST be set to false on the old container.

3.1.1.5.3.7 Undelete Operation

The undelete operation is used to revert the effects of a delete operation; that is, to turn a

tombstone or deleted-object into a regular object (see section 3.1.1.5.5 for more details). The
undelete operation is represented by a regular LDAP modify operation, which contains special
instructions that are used to distinguish it from a modify operation. These instructions (attribute
modifications) are disallowed for regular modify operations.

The undelete operation is identified by the presence of the following attribute LDAPMods (both MUST
be present):

REMOVE isDeleted attribute

REPLACE distinguishedName attribute with a new value

The undelete operation combines characteristics of both Modify and Modify DN operations. It
modifies the object's attributes and moves it in the same transaction.

3.1.1.5.3.7.1 Undelete Security Considerations

In order to be able to perform the undelete operation as an originating update, the requester must
have the following permissions. No permissions are required for replicated updates.

The Reanimate-Tombstones control access right on the NC root of the NC where the operation is

being performed.

All the permissions required to rename an object (section 3.1.1.5.4).

CREATE_CHILD on the new parent container for the objectClass of the object being undeleted.

Note Unlike with the Modify DN operation, the Delete/DeleteChild permission is not required.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

309 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.3.7.2 Undelete Constraints

For originating updates, the following constraints are enforced for the Undelete operation; otherwise
unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION is returned (unless specified

otherwise). These constraints do not apply to replicated updates.

All the modify constraints as they apply to the attributes being modified within the undelete

processing (described in previous sections).

All the Modify DN constraints as they apply to the "move" portion of the undelete operation, with

the exception of the "disallowed to move in or out of the System container" constraint.

If the Recycle Bin optional feature is not enabled, the target object is a tombstone; that is, the

isDeleted attribute must be true. If the DC functional level is DS_BEHAVIOR_WIN2008R2 or
higher, the error returned is noSuchAttribute / ERROR_DS_ATT_IS_NOT_ON_OBJ.

If the Recycle Bin optional feature is enabled, the target object is a deleted-object; that is, the

isDeleted attribute is true and the isRecycled attribute is not present on the object. If the DC

functional level is DS_BEHAVIOR_WIN2008R2 or higher, the error returned is noSuchAttribute /

ERROR_DS_ATT_IS_NOT_ON_OBJ.

The target object is not the Deleted Objects container in its NC.

The target object is not the user object of the currently connected user (that is, the user may not

undelete his own object).

After the modify attribute updates are applied, the object is checked for full schema compliance

with regard to both mayContain and mustContain constraints.

The new object DN is specified in string format (as opposed to <GUID=stringized-guid> or

<SID=stringized-sid> format).

The new parent container is in the same NC as the target tombstone object (that is, cross-NC

undelete is not allowed).

If the undelete operation would require delayed link processing (section 3.1.1.1.16), and such

processing is already underway for the object being undeleted due to a previous update, then the
undelete returns busy / ERROR_DS_DATABASE_ERROR.

If the target object contains userPrincipalName or servicePrincipalName attribute values, those

values must meet the uniqueness constraints specified in section 3.1.1.5.1.3.

3.1.1.5.3.7.3 Undelete Processing Specifics

The undelete operation comprises two suboperations: modifying the object and moving it to a new
location. The destination of the move operation is obtained from the DN specified in the request.

All the Modify operation processing specifics apply.

All the Modify DN operation processing specifics apply.

If the user did not specify the value for objectCategory attribute, and the target object did not

have this value retained at the time of deletion, then the default objectCategory attribute is
written, as obtained from the objectClass's defaultObjectCategory value (section 3.1.1.2.4.8).

On originating updates, additional processing may apply if the object being reanimated is a SAM-

related object (see [MS-SAMR] section 3.1.1.8).

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-SAMR%5d.pdf

310 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.4 Modify DN

References

LDAP control LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID: see section 3.1.1.3.

LDAP Modify DN operation: see [RFC2251] section 4.9.

Concrete structure DRS_MSG_MOVEREQ: see [MS-DRSR] section 4.1.15.1.1.

Concrete structure DRS_MSG_MOVEREQ_V2: see [MS-DRSR] section 4.1.15.1.3.

Concrete structure DRS_SecBufferDesc: see [MS-DRSR] section 5.44.

Concrete structure DRS_MSG_MOVEREPLY: see [MS-DRSR] section 4.1.15.1.4.

Concrete structure DRS_MSG_MOVEREPLY_V2: see [MS-DRSR] section 4.1.15.1.6.

Concrete method IDL_DRSInterDomainMove: see [MS-DRSR] section 4.1.15.

Concrete method IDL_DRSBind: see [MS-DRSR] section 4.1.3.

Function RoleObject: section 3.1.1.5.1.

Function GetWellknownObject: section 3.1.1.1.6.

Kerberos delegation: [MS-KILE].

Glossary: global group, config NC, default NC, dsname, NC replica, prefix table, primary group,

RID, schema NC, SID, structural class.

Access control rights RIGHT_DELETE, RIGHT_DS_DELETE_CHILD.

LDAP attributes: distinguishedName, groupType, instanceType, isCriticalSystemObject, isDeleted,

lDAPDisplayName, member, msDS-NonMembers, name, nCName, objectSid, proxiedObjectName,

systemFlags, systemOnly, userAccountControl, wellKnownObjects.

State model attribues: parent, rdnType.

LDAP classes: classSchema, crossRef, infrastructureUpdate.

Constants

Access mask bits: RIGHT_DELETE, RIGHT_DS_DELETE_CHILD: see section 5.1.

GROUP_TYPE_BUILTIN_LOCAL_GROUP, GROUP_TYPE_ACCOUNT_GROUP,

GROUP_TYPE_RESOURCE_GROUP, GROUP_TYPE_SECURITY_ENABLED: see section 2.2.12.

ADS_UF_WORKSTATION_TRUST_ACCOUNT, ADS_UF_INTERDOMAIN_TRUST_ACCOUNT: see

[MS-DRSR] section 5.202, userAccountControl Bits.

GUID_INFRASTRUCTURE_CONTAINER_W, GUID_SYSTEMS_CONTAINER_W: see section 6.1.1.4.

The Modify DN originating update operation modifies the DN of the object.

The requester supplies the following data:

OldDN: DN of the object that is being modified by the Modify DN operation.

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf

311 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NewRDN: RDN that will form the leftmost component of the new name of the object.

NewParentDN: DN of the object that becomes the immediate superior of the object.

DeleteOldRDN: Boolean value that says whether the old RDN value should be retained. True

means that the old RDN value should NOT be retained.

Let NewDN be the DN of the renamed object. The value NewDN is NewParentDN preceded by
NewRDN.

Definitions

Let O be the object such that O!distinguishedName = OldDN.

Let P be O!parent.

If NewParentDN = NULL then NP is O!parent.

Otherwise, let NP be an object such that NP!distinguishedName = NewParentDN.

The originating update is a rename operation if O!name ≠ NewRDN.

The originating update is a move operation if P ≠ NP.

3.1.1.5.4.1 Intra Domain Modify DN

For originating updates, if the requester does not specify

LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID LDAP control in the Modify DN request, then the
server interprets the update as an intradomain Modify DN operation. Replicated updates are always
interpreted as intradomain Modify DN operations. The request must have the
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control (see section 3.1.1.3.4.1.2) if the requester
intends to perform a cross-domain move operation. Cross-domain move is not supported by AD
LDS.

3.1.1.5.4.1.1 Security Considerations

For originating updates, the requester must have all the following permissions to perform a Modify
DN operation. If the security check does not succeed, the server returns the error
insufficientAccessRights / ERROR_DS_INSUFF_ACCESS_RIGHTS.

The security context of the requester must be granted rights RIGHT_DS_WRITE_PROPERTY
permission on O!name to perform move or rename operation.

For a move operation, the requester must be granted right RIGHT_DS_CREATE_CHILD on NP for the
objectClass of the object being added.

For a move operation, the requester must be granted rights RIGHT_DELETE on O, or must be
granted right RIGHT_DS_DELETE_CHILD on P.

In AD DS, if O is within the config NC or schema NC and the RM control field of the security

descriptor of the object has the SECURITY_PRIVATE_OBJECT bit set, the requester must be the
owner of the object to perform this operation.

No access check is performed for replicated updates.

%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

312 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.4.1.2 Constraints

For originating updates, the following constraints must be satisfied for the Modify DN operation.
These constraints are not enforced for replicated updates.

DeleteOldRDN = true. Otherwise, the server returns the error unwillingToPerform /

ERROR_INVALID_PARAMETER.

OldDN ≠ NULL. Otherwise, the server returns the error noSuchObject /

ERROR_DS_OBJ_NOT_FOUND.

NewRDN ≠ NULL. Otherwise, the server returns the error protocolError /

ERROR_INVALID_PARAMETER.

All naming constraints on NewRDN must be satisfied. This is explained in section 3.1.1.3.1.2.

O is present. Otherwise, the server returns the error noSuchObject /

ERROR_DS_OBJ_NOT_FOUND.

NP is present. Otherwise, the server returns the error other / ERROR_DS_NO_PARENT_OBJECT.

Both O and NP must be within the same NC Replica. Otherwise, the server returns the error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

NP is not equal to O or a descendant of O. If it is, then the server returns unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION.

(O is in the System container) if and only if (NP is the System container or an object inside the

System container). Otherwise, the server returns the error other /

ERROR_DS_UNWILLING_TO_PERFORM if the DC functional level is DS_BEHAVIOR_WIN2000, and
the error other / ERROR_DS_DISALLOWED_IN_SYSTEM_CONTAINER if the DC functional level is
DS_BEHAVIOR_WIN2003 or greater.

O is not an LSA-specific object (section 3.1.1.5.2.3). Otherwise, the server returns the error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

O!isDeleted ≠ true. Otherwise, the server returns the error unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION.

O must not be NC root. Otherwise, the server returns the error unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2000,
and unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_INSTANCE_TYPE if the DC
functional level is DS_BEHAVIOR_WIN2003 or greater.

If (O is in config NC) and (operation is rename), then (O!systemFlags &

FLAG_CONFIG_ALLOW_RENAME ≠ 0). Otherwise, the server returns the error unwillingToPerform
/ ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2000,
and unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG if the DC functional
level is DS_BEHAVIOR_WIN2003 or greater.

If (O is in config NC) and (operation is move), then either (O!systemFlags &

FLAG_CONFIG_ALLOW_MOVE ≠ 0) or ((((O!parent)!parent)!parent before and after move is the
same) and (O!systemFlags & FLAG_CONFIG_ALLOW_LIMITED_MOVE ≠ 0)). Otherwise, the
server returns the error unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG.
The FLAG_CONFIG_ALLOW_LIMITED_MOVE flag is used to move server objects between site
containers.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

313 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If (operation is move) and (O is in schema NC), then the server returns the error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is

DS_BEHAVIOR_WIN2000, and unwillingToPerform /

ERROR_DS_NO_OBJECT_MOVE_IN_SCHEMA_NC if the DC functional level is
DS_BEHAVIOR_WIN2003 or greater.

If (O is a classSchema object) or (O is an attributeSchema object), then (O!systemFlags &

FLAG_SCHEMA_BASE_OBJECT = 0). Otherwise, if the fschemaUpgradeInProgress field is false
on the LDAPConnection instance in dc.ldapConnections ([MS-DRSR] section 5.115) corresponding
to the LDAP connection on which the operation is being performed then the server returns the
error unwillingToPerform / ERROR_DS_ILLEGAL_BASE_SCHEMA_MOD.

If (O is in domain or schema NCs) and (operation is rename) and (attribute O!systemFlags is

present), then (O!systemFlags & FLAG_DOMAIN_DISALLOW_RENAME = 0). Otherwise, the
server returns the error unwillingToPerform / ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG.

If (O is in domain NC) and (operation is move) and (attribute O!systemFlags is present), then

(O!systemFlags & FLAG_DOMAIN_DISALLOW_MOVE = 0). Otherwise, the server returns the error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is
DS_BEHAVIOR_WIN2000, and unwillingToPerform /
ERROR_DS_MODIFYDN_DISALLOWED_BY_FLAG if the DC functional level is
DS_BEHAVIOR_WIN2003 or greater.

The object class of O must satisfy the possSuperiors schema constraint for the objectClass of NP.

Schema constraints are explained in Restrictions on schema extensions in section 3.1.1.2.

There exists no object CC such that CC!parent = NP, CC!name = O!name, and CC ≠ O.

Otherwise, the server returns the error entryAlreadyExists /
ERROR_DS_OBJ_STRING_NAME_EXISTS.

3.1.1.5.4.1.3 Processing Specifics

If the operation is move, set O!parent to the objectGUID of the new parent object NP.

Let A be the attribute on O equal to O!rdnType. Set O!A to newRDN.

Set O!name to newRDN.

3.1.1.5.4.2 Cross Domain Move

The Modify DN LDAP request must have LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control to
indicate that the requester intends to perform a cross-domain move operation. Cross-domain move

is not supported by AD LDS.

The controlValue field of LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID control has the DNS
hostname of the target DC that must be used as a helper to perform cross-domain move. If the DNS
hostname is not specified in the controlValue field of the LDAP control, then the server will only
perform constraint check as explained in section 3.1.1.3.

3.1.1.5.4.2.1 Security Considerations

The requester must have all the following permissions to perform a cross-domain move operation. If
the security check does not succeed, the server returns the error insufficientAccessRights /
ERROR_DS_INSUFF_ACCESS_RIGHTS.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

314 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For a move operation, the requester must be granted right RIGHT_DELETE on O or must be granted
right RIGHT_DS_DELETE_CHILD on P.

The requester must have performed a Kerberos LDAP bind with delegation enabled (see [RFC4120]
section 2.8). Delegation should be enabled because the server impersonates the requester when it

contacts the target DC to perform cross-domain move. If Kerberos delegation is not enabled on the
LDAP connection, the server returns the error inappropriateAuthentication /
ERROR_DS_INAPPROPRIATE_AUTH.

3.1.1.5.4.2.2 Constraints

The following constraints must be satisfied for the Modify DN operation.

DeleteOldRDN = true. Otherwise, the server returns error unwillingToPerform /

ERROR_INVALID_PARAMETER.

OldDN ≠ NULL and NewParentDN ≠ NULL. Otherwise, the server returns error unwillingToPerform

/ ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

NewRDN ≠ NULL. Otherwise, the server returns error protocolError /

ERROR_INVALID_PARAMETER.

(O!systemFlags & FLAG_DISALLOW_DELETE = 0). Otherwise, the server returns error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is
DS_BEHAVIOR_WIN2000, and unwillingToPerform / ERROR_DS_CANT_DELETE if the DC
functional level is DS_BEHAVIOR_WIN2003 or greater.

IsEffectiveRoleOwner(RoleObject(default NC, RidAllocationMaster)) = true. Otherwise, the server

returns error unwillingToPerform / ERROR_DS_INCORRECT_ROLE_OWNER. This constraint is

enforced to avoid conflicting cross-domain move operations.

Let C be the classSchema object of the most-specific structural class of O. C!systemOnly = false.

Otherwise, the server returns error unwillingToPerform / ERROR_DS_CANT_MOD_SYSTEM_ONLY.

C!lDAPDisplayName must not be any of the following. Otherwise, the server returns error

unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

addressBookContainer

attributeSchema

builtinDomain

certificationAuthority

classSchema

configuration

cRLDistributionPoint

crossRef

crossRefContainer

dMD

domain

http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

315 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

dSA

foreignSecurityPrincipal

infrastructureUpdate

linkTrackObjectMoveTable

linkTrackOMTEntry

linkTrackVolEntry

linkTrackVolumeTable

lostAndFound

nTDSConnection

nTDSDSA

nTDSSiteSettings

rIDManager

rIDSet

samDomain

samDomainBase

samServer

site

siteLink

siteLinkBridge

sitesContainer

subnet

subnetContainer

trustedDomain

(O!systemFlags & FLAG_DOMAIN_DISALLOW_MOVE = 0). Otherwise, the server returns error

unwillingToPerform / ERROR_DS_ILLEGAL_MOD_OPERATION.

(O!isCriticalSystemObject ≠ true). Otherwise, the server returns error unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION.

(O!userAccountControl & ADS_UF_SERVER_TRUST_ACCOUNT = 0) and (O!userAccountControl &

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT = 0). Otherwise, the server returns error
unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

Let K be the RID of SID O!objectSid. (K > 1000). Otherwise, the server returns error

unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

316 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

(O!instanceType & IT_WRITE ≠ 0). Otherwise, the server returns error unwillingToPerform /

ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

(O!instanceType & IT_NC_HEAD = 0). Otherwise, the server returns error unwillingToPerform /

ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

(O!isDeleted ≠ true). Otherwise, the server returns error unwillingToPerform /

ERROR_DS_CANT_MOVE_DELETED_OBJECT.

If (O is a group object), then (O!groupType & GROUP_TYPE_BUILTIN_LOCAL_GROUP = 0).

Otherwise, the server returns error unwillingToPerform /
ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers

is present)), then (O!groupType & GROUP_TYPE_ACCOUNT_GROUP = 0). Otherwise, the server
returns error unwillingToPerform / ERROR_DS_CANT_MOVE_ACCOUNT_GROUP.

If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers

is present)), then (O!groupType & GROUP_TYPE_RESOURCE_GROUP = 0). Otherwise, the server

returns error unwillingToPerform / ERROR_DS_CANT_MOVE_RESOURCE_GROUP.

If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers

is present)), then (O!groupType & GROUP_TYPE_APP_BASIC_GROUP = 0). Otherwise, the server
returns error unwillingToPerform / ERROR_DS_CANT_MOVE_APP_BASIC_GROUP. This constraint
is enforced only if the DC functional level is DS_BEHAVIOR_WIN2003 or greater.

If (O is a group object) and ((attribute O!member is present) or (attribute O!msDS-NonMembers

is present)), then (O!groupType = 0). Otherwise, the server returns error unwillingToPerform /
ERROR_DS_CANT_MOVE_APP_QUERY_GROUP. This constraint is enforced only if the DC
functional level is DS_BEHAVIOR_WIN2003 or greater.

If ((O is a user object) or (O is a group object)) and (O is a member of any global group), then

(O is a member of only one global group and that group is its primary group). Otherwise, the
server returns error unwillingToPerform / ERROR_DS_CANT_WITH_ACCT_GROUP_MEMBERSHPS.

Let N be the root of NC replica where OldDN exists. Let R be a crossRef object such that

R!nCName = N. R must exist and (R!systemFlags & FLAG_CR_NTDS_NC ≠ 0) and (R!systemFlags
& FLAG_CR_NTDS_DOMAIN ≠ 0). Otherwise, the server returns error noSuchObject /
ERROR_DS_CANT_FIND_EXPECTED_NC.

Let NN be the root of NC replica where NP exists. Let NR be a crossRef object such that

NR!nCName = NN!distinguishedName. NR must exist and (NR!systemFlags & FLAG_CR_NTDS_NC

≠ 0) and (NR!systemFlags & FLAG_CR_NTDS_DOMAIN ≠ 0). Otherwise, the server returns error
noSuchObject / ERROR_DS_CANT_FIND_EXPECTED_NC.

R ≠ NR. Otherwise, the server returns error invalidDNSyntax /

ERROR_DS_SRC_AND_DST_NC_IDENTICAL.

Let WKS be a set of all attribute values for N!wellKnownObjects. There is no attribute value V in

WKS such that V.object_DN = O!distinguishedName. Otherwise, the server returns error

unwillingToPerform / ERROR_DS_ILLEGAL_XDOM_MOVE_OPERATION.

O has no child objects. Otherwise, the server returns error notAllowedOnNonLeaf /

ERROR_DS_CHILDREN_EXIST.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

317 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.4.2.3 Processing Specifics

Once the previously described constraint checking is done, the server performs the move operation
on the target DC as specified below. The server then performs the cleanup operation as specified

below. Constraint checking and cleanup operation are performed in two separate local transactions.

The caller specifies the DNS hostname of the target DC in the controlValue field of
LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID LDAP control.

If the controlValue field is empty, then the server performs only constraints checking as mentioned
previously. It returns success if it passes all the constraints.

Invoke move operation on target DC:

Let S be the nTDSDSA object of the server.

Let NN be the root of NC replica where NP exists.

Let pmsgIn be a reference to a structure of type DRS_MSG_MOVEREQ.

Set pmsgIn->V2.pSrcDSA to dsname of S.

pmsgIn->V2.pSrcObject is a reference to a structure of type ENTINF. Define ENTINF for O as
described later in this section.

Set pmsgIn->V2.pDstName to dsname of NewDN.

Set pmsgIn->V2.pExpectedTargetNC to dsname of NN.

pmsgIn->V2.pClientCreds is a reference to DRS_SecBuffer structure. It is set to the GSS Kerberos
authentication token (see [RFC1964]) derived from the security context of the caller.

Set pmsgIn->V2.PrefixTable to dc.prefixTable, as specified in section 3.1.1.1.9.

Set pmsgIn->V2.ulFlags to 0.

Let H be the bind handle derived by calling IDL_DRSBind method against target DC.

Let pdwOutVersion be a reference to dwOutversion of type integer.

Let pmsgOut be a reference to DRS_MSG_MOVEREPLY structure.

Call IDL_DRSInterDomainMove(H, 2, pmsgIn, pdwOutVersion, pmsgOut). If the method returns an
error, then the server returns LDAP error unavailable.

If (dwOutVersion ≠ 2), then the server returns LDAP error operationsError.

If (pmsgOut->v2.win32Error ≠ 0), then the server returns LDAP error unwillingToPerform.

Create proxy object and perform cleanup

The proxiedObjectName attribute is present on the infrastructureUpdate object that is used to

communicate the cross-domain move from the originating NC replica to other replicas of the NC.
The proxiedObjectName attribute is also present on an object that has been moved across domain,
as specified in [MS-DRSR] section 4.1.15.3.

The proxiedObjectName attribute has syntax Object(DN-Binary); see section 3.1.1.2.2.2.3 for the
specification of this syntax, which contains the fields char_count, binary_value, and object_DN. The
binary_value part of a proxiedObjectName value is 16 characters. Bytes 0 to 7 contain the character

%5bMS-ADSC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90304
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

318 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

string "00000001" for a cross-domain move. Bytes 8 to 15 contain the hexadecimal representation
of a number called the cross-domain move epoch.

The cross-domain move epoch E of the proxiedObjectName attribute on an infrastructureUpdate
object is determined as follows:

If O!proxiedObjectName is present, then let B be the binary_value of O!proxiedObjectName. Let

E be value given by the least significant 32 bits of B.

Otherwise, let E be 0.

Create an attribute value K of type Object (DN-Binary). Set K.char_count to 16. Let J be a string of
eight characters that is the hexadecimal representation of value E. Set K.binary_value to the
concatenation of the strings "00000001" and J. Set object_DN part of K to NewDN.

Expunge object O from NC replica.

Let I = GetWellknownObject(default NC, GUID_INFRASTRUCTURE_CONTAINER_W).

Create an infrastructureUpdate object L such that L!parent = I and L!name is any name unique
among the children of I and L!proxiedObjectName = K and L!systemFlags =
(FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DISALLOW_MOVE_ON_DELETE |
FLAG_DOMAIN_DISALLOW_MOVE).

Delete L and turn it into a tombstone object.

Defining ENTINF structure for object O

Let t be the prefix table dc.prefixTable specified in section 3.1.1.1.9.

Let AttsSet be the set of all attributes (represented as ATTRTYP) of object O.

Let Atts be a sequence of ATTRTYP whose elements are elements of AttsSet.

Let EntInf be a structure of type ENTINF.

Set EntInf.pName to the dsname of O.

Set EntInf.ulFlags to 0.

Let AttrBlock be a structure of type ATTRBLOCK of length Atts.length.

Give AttrBlock.pAttr[i] a value determined by Atts[i] as follows, for all i in [0...Atts.length) (in any
order)

Let K be the attributeSchema object SchemaObj(Atts[i]). SchemaObj is specified in [MS-DRSR]

section 5.179.

Let syntax be K!attributeSyntax.

Let AttrBlock.pAttr[i].AttribTyp be the value returned by MakeAttid(t, oid).

Let Vals be the sequence of values O.Atts[i].

Let AttrBlock.pAttr[i].AttrVal be a structure of type ATTRVALBLOCK of length Vals.length.

Set AttrBlock.pAttr[i].AttrVal.valCount = Vals.length.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf

319 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Give AttrBlock.pAttr[i].AttrVal.pAVal[j] a value determined by Vals[j] as follows, for all j in

[0..Vals.length) (in any order).

Set AttrBlock.pAttr[i].AttrVal.pAVal[j] = ATTRVALFromValue(Vals[j], syntax, t)

3.1.1.5.5 Delete Operation

References

LDAP attributes: distinguishedName, isDeleted, isRecycled, entryTTL, msDS-Entry-Time-To-Die,
nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, flatName,
governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN, mS-DS-CreatorSID,
msDS-LastKnownRDN, mSMQOwnerID, nCName, objectClass, objectGUID, objectSid, oMSyntax,

proxiedObjectName, name, replPropertyMetaData, sAMAccountName, securityIdentifier, sIDHistory,
subClassOf, systemFlags, trustPartner, trustDirection, trustType, trustAttributes,
userAccountControl, uSNChanged, uSNCreated, whenCreated, searchFlags, isCriticalSystemObject,
objectCategory, sAMAccountType, isDeleted, lastKnownParent.

State model attributes: rdnType

LDAP classes: dynamicObject, crossRef.

Constants

Win32/status error codes: ERROR_DS_REFERRAL, ERROR_DS_ILLEGAL_MOD_OPERATION,

ERROR_DS_CHILDREN_EXIST, ERROR_DS_TREE_DELETE_NOT_FINISHED

Access mask bits, control access rights: SECURITY_PRIVATE_OBJECT, RIGHT_DELETE,

RIGHT_DS_DELETE_CHILD, RIGHT_DS_DELETE_TREE

Security privileges:

systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DISALLOW_MOVE_ON_DELETE

Schema bits: fPRESERVEONDELETE

LDAP:

The delete operation results in the transformation of an existing-object in the directory tree into
some form of deleted object. There are several modes of transformation, depending on whether the

Recycle Bin optional feature is enabled or not. In all modes of transformation, the requester supplies
the DN of the object to be transformed.

If the Recycle Bin optional feature is not enabled, the delete operation results in the transformation
of an existing-object in the directory tree into a tombstone. If the Recycle Bin optional feature is
enabled and the requester has specified an existing-object as the object to be transformed, the
deletion operation results in transformation of the existing-object in the directory tree into a

deleted-object.

If the Recycle Bin optional feature is enabled and the requester has specified a deleted-object as the

object to be transformed, the operation results in transformation of a deleted-object in the directory
tree into a recycled-object. Recycled-objects are created only by the transformation of a deleted-
object, never directly from a normal object.

Tombstones, deleted-objects, and recycled-objects (collectively referred to in this section as deleted
objects) are special placeholder objects that replicate around, signaling replica partners that the

original object was deleted. Tombstones, deleted-objects, and recycled-objects are invisible to LDAP

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

320 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

searches by default, so for an LDAP application, it appears that the object was physically removed
from the directory after a delete operation has taken place.

Tombstones are a type of deleted object distinguished from existing-objects by the presence of the
isDeleted attribute with the value true. The value of the isRecycled attribute may be true, or the

isRecycled attribute may be absent. Tombstones exist only when the Recycle Bin optional feature is
not enabled. After a time period at least as large as a tombstone lifetime, the tombstone is removed
from the directory.

Deleted-objects are a type of deleted object distinguished from existing-objects by the presence of
the isDeleted attribute with the value true and the absence of the isRecycled attribute. Deleted-
objects exist only when the Recycle Bin optional feature is enabled. After a time period at least as
large as a deleted-object lifetime, the deleted-object is transformed into a recycled-object.

Recycled-objects are a type of deleted object distinguished from existing-objects by the presence of
the isRecycled attribute with the value true. Recycled-objects exist only when the Recycle Bin
optional feature is enabled. After a time period at least as large as a tombstone lifetime, the
recycled-object is removed from the directory.

Normally, only leaf objects (objects without descendants in the directory tree) may be deleted.
There is also a special tree-delete operation, with which whole trees of objects are removed (see

Tree-delete operation in section 3.1.1.5.5.7).

In most cases, upon deletion, a tombstone, deleted-object, or recycled-object is moved into the
Deleted Objects container of its NC; for exceptions see section 3.1.1.5.5.6. The RDN of the object is
changed to a "delete-mangled RDN"-an RDN that is guaranteed to be unique within the Deleted
Objects container. If O is the object that is deleted, the delete-mangled RDN is the concatenation of
O!name, the character with value 0x0A, the string "DEL:", and the dashed string representation
([RFC4122] section 3) of O!objectGUID. During this concatenation, if required, the O!name part is

truncated to ensure that the length of the delete-mangled RDN does not violate the RDN size
constraint in section 3.1.1.5.1.2. The RDN attribute of this object is also set to this delete-mangled
RDN value. The illegal character constraint regarding a character with the value 0xA, as specified in
section 3.1.1.5.1.2, is not enforced for this delete-mangled RDN. Also, the rangeUpper constraint for

the RDN attribute of this object is not enforced. A "delete-mangled DN" is a DN such that the leaf
RDN is a delete-mangled RDN.

An object whose class is defunct, or whose class is active but some of whose attributes are defunct,

can still be deleted.

Linked attributes store references to other objects in the forest (see referential integrity in section
3.1.1.1.6). They are pairs of attributes for which the system calculates the values of one attribute
(the back link) based on the values set on the other attribute (the forward link) throughout the
forest. A back-link value on any object instance consists of the DNs of all the objects that have that
object's DN set in the corresponding forward link. In addition to storing object references using

linked attributes, objects can also store references to other objects in attributes that have an object
reference syntax (see referential integrity in section 3.1.1.1.6). Such attributes are not considered
to be linked attributes.

The direction of a linked attribute is determined by the directional flow of a forward link and the

object from which this link is viewed. If this object has a forward link attribute containing a
reference to another object, then its linked attribute is called an outgoing linked attribute. The link,
as viewed from the referenced object, is called an incoming link. For example, if Object A has a

forward link storing a reference to Object B (this implies that Object B has a backward link storing a
reference to Object A), then the linked attribute on Object A is an outgoing linked attribute and
accordingly, an incoming linked attribute on Object B.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ADA3%5d.pdf

321 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.5.5.1 Resultant Object Requirements

3.1.1.5.5.1.1 Tombstone Requirements

The following requirements apply to all tombstones except the Deleted Objects container (which is
considered a tombstone and never an existing-object if the Recycle Bin optional feature is not
enabled):

The isDeleted attribute is set to true on tombstones.

The tombstone does not have descendant objects.

The tombstone remains in the database and is available for outbound replication for at least the

tombstone lifetime time interval (see section 6.1.1) after its transformation into a tombstone.

A tombstone does not retain the attribute values of the original existing-object for any attributes

except for the following:

The attribute that is the RDN, plus the objectGUID and objectSid attributes.

Attributes marked as being preserved on deletion (see section 2.2.9).

Attributes on the following list:

attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName, flatName, governsID,

groupType, instanceType, lDAPDisplayName, legacyExchangeDN, isDeleted, isRecycled,
lastKnownParent, msDS-LastKnownRDN, mS-DS-CreatorSID, mSMQOwnerID, nCName,
objectClass, distinguishedName, objectGUID, objectSid, oMSyntax, proxiedObjectName,

name, nTSecurityDescriptor, replPropertyMetaData, sAMAccountName, securityIdentifier,
sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection, trustType,
trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated, msDS-
PortLDAP

A tombstone does not retain the attribute values of the original object for the attributes

objectCategory and sAMAccountType or for any linked attributes even if these attributes would

otherwise be retained according to the preceding bullet point. In other words, when an object is
deleted and transformed into a tombstone, objectCategory values, sAMAccountType values, and
any linked attribute values on it are always removed.

NC replicas do not contain objects with linked attribute values referencing tombstones. In other

words, when an object is deleted and transformed into a tombstone, any linked attribute values
on other objects referencing it are also removed.

If any NC replicas contain other objects with nonlinked attribute values referencing a tombstone,

then those attribute values on those objects are retained. In other words, when an object is
deleted and transformed into a tombstone, any nonlinked attribute values on other objects
referencing it are not removed.

Except as described in section 3.1.1.5.5.6, tombstones exist only in the Deleted Objects

container of an NC.

Except as described in section 3.1.1.5.5.6, tombstones have "delete-mangled RDNs".

A protected object may not be deleted and transformed into a tombstone (see Protected Objects

(section 3.1.1.5.5.3)).

The following requirements apply to the Deleted Objects container when it is a tombstone:

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

322 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The isDeleted attribute is set to true.

The Deleted Objects container always remains in the database and is available for outbound

replication.

The Deleted Objects container does not have a "delete-mangled RDN".

Note especially that many of the restrictions specified in this section on other tombstones pertaining
to attribute values do not apply to the Deleted Objects container.

3.1.1.5.5.1.2 Deleted-Object Requirements

The following requirements apply to deleted-objects except the Deleted Objects container (which is

considered a deleted-object and never an existing-object or a recycled-object if the Recycle Bin
optional feature is enabled):

The isDeleted attribute is set to true on deleted-objects.

The isRecycled attribute is not present.

The deleted-object retains all of the attributes of the original object except for the attributes

objectCategory and sAMAccountType.

The deleted-object does not have descendant objects.

The deleted-object remains in the database and is available for outbound replication for at least

the deleted-object lifetime interval (see section 6.1.1) after its deletion.

If a deleted-object has linked attribute values, then those attribute values are retained. For

details, see LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID (section 3.1.1.3.4.1.25).

If any NC replicas contain other objects with linked attribute values referencing deleted-objects,

then those attribute values on those objects are retained. In other words, when an object is
deleted and transformed into a deleted-object, any linked attribute values on other objects

referencing it are not removed. For details, see LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID
(section 3.1.1.3.4.1.25).

If any NC replicas contain other objects with nonlinked attribute values referencing a deleted-

object, then those attribute values on those objects are retained. In other words, when an object
is deleted and transformed into a deleted-object, any nonlinked attribute values on other objects
referencing it are not removed.

Except as described in section 3.1.1.5.5.6, deleted-objects exist only in the Deleted Objects

container of an NC.

Except as described in section 3.1.1.5.5.6, deleted-objects have "delete-mangled RDNs".

A protected object may not be deleted and transformed into a deleted-object (see Protected

Objects in section 3.1.1.5.5.3).

The following requirements apply to the Deleted Objects container when it is a deleted-object:

The isDeleted attribute is set to true.

The isRecycled attribute is not present.

The Deleted Objects container always remains in the database and is available for outbound

replication.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

323 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The Deleted Objects container does not have a "delete-mangled RDN".

Note especially that many of the restrictions specified in this section on other deleted-objects
pertaining to attribute values do not apply to the Deleted Objects container.

3.1.1.5.5.1.3 Recycled-Object Requirements

The following requirements apply to recycled-objects:

The Deleted Objects container is never a recycled-object. It cannot be transformed into a

recycled-object.

The isDeleted attribute is set to true on recycled-objects.

The isRecycled attribute is set to true on recycled-objects.

The recycled-object does not have descendant objects.

The recycled-object remains in the database and is available for outbound replication for at least

the tombstone lifetime time interval (see section 6.1.1) after its transformation into a recycled-
object.

A recycled-object does not retain the attribute values of the deleted object for any attributes

except for the following:

The attribute that is the RDN, plus the objectGUID and objectSid attributes

Attributes marked as being preserved on deletion (see section 2.2.9)

Attributes on the following list:

nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName,

flatName, governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN,
isDeleted, isRecycled, lastKnownParent, msDS-LastKnownRDN, mS-DS-CreatorSID,

mSMQOwnerID, nCName, objectClass, distinguishedName, objectGUID, objectSid,
oMSyntax, proxiedObjectName, name, replPropertyMetaData, sAMAccountName,
securityIdentifier, sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection,

trustType, trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated,
msDS-PortLDAP

A recycled-object does not retain the attribute values of the original object for the attributes

objectCategory, sAMAccountType, or for any linked attributes even if these attribute would
otherwise be retained according to the preceding bullet point. In other words, when a deleted-
object is transformed into a recycled-object, objectCategory values, sAMAccountType values, and

any linked attribute values on it are always removed.

NC replicas do not contain objects with linked attribute values referencing recycled-objects. In

other words, when a deleted-object is transformed into a recycled-object, any linked attribute
values on other objects referencing it are also removed.

If any NC replicas contain other objects with nonlinked attribute values referencing a recycled-

object, then those attribute values on those objects are retained. In other words, when a

deleted-object is transformed into a recycled-object, any non-linked attribute values on other
objects referencing it are not removed.

Except as described in section 3.1.1.5.5.6, recycled-objects exist only in the Deleted Objects

container of an NC.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

324 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Except as described in section 3.1.1.5.5.6, recycled-objects have "delete-mangled RDNs".

3.1.1.5.5.2 dynamicObject Requirements

See section 6.1.7.

3.1.1.5.5.3 Protected Objects

The following objects are considered protected and may not be deleted:

The DC's nTDSDSA object and all of its ancestors.

The DC's rIDSet object and all of its ancestors. A DC's rIDSet object is the referent of the

rIDSetReferences attribute of the DC's Domain Controller object (section 6.1.1.3.1).

The crossRef objects corresponding to the DC's config, schema, and default domain NCs.

3.1.1.5.5.4 Security Considerations

No permissions are required for replicated updates.

For originating updates, the requester must have the following permissions.

To delete a regular object, at least one of the following permissions must be granted to the

requester:

RIGHT_DELETE on the object being deleted, or

RIGHT_DS_DELETE_CHILD on the parent of the object being deleted, when the object is not an

NC root.

For originating updates of transformations of deleted-objects to recycled-objects, all the same

security requirements as those listed for a normal deletion must be met. In addition, the requester
must have the permission RIGHT_DS_REANIMATE_TOMBSTONES on the NC root of the NC where

the operation is being performed.

3.1.1.5.5.5 Constraints

For originating updates, the following constraints are enforced for the delete operation. These
constraints are not enforced for replicated updates.

The object being deleted resides in a writable NC replica; otherwise, the delete returns referral /

ERROR_DS_REFERRAL.

If the object being deleted is in the config NC or schema NC, and the RM control ([MS-DTYP]

section 2.4.6) of the SD is present and contains the SECURITY_PRIVATE_OBJECT bit (section
6.1.3), additional requirements on the DC performing the operation are enforced (if neither is
true, referral / ERROR_DS_REFERRAL must be returned):

The DC must be a member of the root domain in the forest, or

The DC must be a member of the same domain where the current object owner belongs.

If the FLAG_DISALLOW_DELETE bit is set in the systemFlags attribute, unwillingToPerform /

ERROR_DS_CANT_DELETE is returned.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf

325 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Deletions of tombstone objects fail with unwillingToPerform /

ERROR_DS_ILLEGAL_MOD_OPERATION if the DC functional level is DS_BEHAVIOR_WIN2008 or

lower, and with unwillingToPerform / ERROR_DS_CANT_DELETE if the DC functional level is

DS_BEHAVIOR_WIN2008R2 or higher. However, if the object being deleted is a tombstone of a
SAM-specific object (section 3.1.1.5.2.3), noSuchObject / ERROR_DS_OBJ_NOT_FOUND is
returned instead.

If the object being deleted is a recycled-object, unwillingToPerform / ERROR_DS_CANT_DELETE

is returned.

If the object being deleted has descendants, the delete operation fails with notAllowedOnNonleaf

/ ERROR_DS_CHILDREN_EXIST. This constraint is not effective if the requester is passing the
LDAP_SERVER_TREE_DELETE_OID control (see section 3.1.1.5.5.7).

If the fschemaUpgradeInProgress field is false on the LDAPConnection instance in

dc.ldapConnections ([MS-DRSR] section 5.115) corresponding to the LDAP connection on which
the operation is being performed and the object being deleted is in the schema NC,
unwillingToPerform / ERROR_DS_CANT_DELETE is returned.

If the object being deleted is a SAM-specific object (section 3.1.1.5.2.3), additional constraints

apply (see [MS-SAMR] section 3.1.5.7).

If the delete operation would require delayed link processing (section 3.1.1.1.16), and such

processing is already underway for the object being deleted due to a previous update, then the
delete returns busy / ERROR_DS_DATABASE_ERROR.

If the object being deleted is the DC's nTDSDSA object or any of its ancestors,

unwillingToPerform / ERROR_DS_CANT_DELETE_DSA_OBJ is returned.

If the object being deleted is a crossRef object corresponding to the DC's config, schema, or

default domain NCs, the returned error code depends on the following conditions:

If the crossRef object is a child of the CN=Partitions child of the config NC and the

nCName attribute of the crossRef object is set to the value DN1 and there exists another

crossRef object with the same parent where the nCName attribute of the second crossRef
object is set to the value DN2, and the object referred to by DN1 is an ancestor of the
object referred to by DN2, then notAllowedOnNonLeaf / ERROR_DS_CANT_ON_NON_LEAF is
returned.

Else if the crossRef object is a child of the CN=Partitions child of the config NC, and the

crossRef object’s NC is hosted by some domain controller, unwillingToPerform /

ERROR_DS_NC_STILL_HAS_DSAS is returned.

Otherwise, unwillingToPerform / ERROR_DS_CANT_DEL_MASTER_CROSSREF is returned.

If the object being deleted is protected (see section 3.1.1.5.5.3) and does not fall into the two

categories above, unwillingToPerform / ERROR_DS_CANT_DELETE is returned.

3.1.1.5.5.6 Processing Specifics

3.1.1.5.5.6.1 Transformation into a Tombstone

When the delete operation results in the transformation of an object into a tombstone, the following
processing rules apply to the delete operation:

For originating updates:

%5bMS-DRSR%5d.pdf
%5bMS-SAMR%5d.pdf

326 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The RDN for the tombstone is the object's delete-mangled RDN, as specified in Delete

Operation in section 3.1.1.5. For replicated updates, the received RDN for the tombstone is

set on the object.

The lastKnownParent attribute value is set to the DN of the current parent object.

Additional operations may be performed if the object being modified is a SAM-specific object

(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8).

All attribute values are removed from the object, with the following exceptions:

nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName,

flatName, governsID, groupType, instanceType, lDAPDisplayName, legacyExchangeDN, mS-
DS-CreatorSID, mSMQOwnerID, nCName, objectClass, distinguishedName, objectGUID,
objectSid, oMSyntax, proxiedObjectName, name, replPropertyMetaData, sAMAccountName,
securityIdentifier, sIDHistory, subClassOf, systemFlags, trustPartner, trustDirection, trustType,
trustAttributes, userAccountControl, uSNChanged, uSNCreated, whenCreated attribute values
are retained.

In AD LDS, the msDS-PortLDAP attribute is also retained.

The attribute that equals the rdnType of the object (for example, cn for a user object) is

retained.

Any attribute that has fPRESERVEONDELETE flag set in its searchFlags is retained, except

objectCategory and sAMAccountType, which are always removed, regardless of the value of
their searchFlags.

All outgoing linked attribute values are removed, but not as an originating update. These values

are simply removed from the directory.

All incoming linked attribute values are removed, but not as an originating update. These values

are simply removed from the directory.

The isDeleted attribute is set to true.

The object is moved into the Deleted Objects container in its NC, except in the following

scenarios, when it must remain in its current place:

The object is an NC root.

The object's systemFlags value has FLAG_DISALLOW_MOVE_ON_DELETE bit set.

3.1.1.5.5.6.2 Transformation into a Deleted-Object

When the delete operation results in the transformation of an object into a deleted-object, the
following processing rules apply to the delete operation:

For originating updates:

The RDN for the deleted-object is the object's delete-mangled RDN, as specified in Delete

Operation in section 3.1.1.5. For replicated updates, the received RDN for the deleted-object

is set on the object.

The lastKnownParent attribute value is set to the DN of the object's parent at the time of its

deletion.

%5bMS-ADA1%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

327 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The msDS-LastKnownRDN attribute value is set to the RDN of the object before the deletion

transformation.

Additional operations may be performed if the object being modified is a SAM-specific object

(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8).

The attributes objectCategory and sAMAccountType are removed.

The isDeleted attribute is set to true.

The object is moved into the Deleted Objects container in its NC, except in the following

scenarios, when it MUST remain in its current place:

The object is an NC root.

The object's systemFlags value has FLAG_DISALLOW_MOVE_ON_DELETE bit set.

3.1.1.5.5.6.3 Transformation into a Recycled-Object

When the delete operation results in the transformation of an object into a recycled-object, the
following processing rules apply to the delete operation:

For originating updates:

Additional operations may be performed if the object being modified is a SAM-specific object

(section 3.1.1.5.2.3); see [MS-SAMR] section 3.1.1.8).

All attribute values are removed from the object, with the following exceptions:

nTSecurityDescriptor, attributeID, attributeSyntax, dNReferenceUpdate, dNSHostName,

flatName, governsID, groupType, instanceType, lDAPDisplayName, lastKnownParent, ms-DS-
lastKnownRDN, legacyExchangeDN, mS-DS-CreatorSID, mSMQOwnerID, nCName,
objectClass, distinguishedName, objectGUID, objectSid, oMSyntax, proxiedObjectName,
name, replPropertyMetaData, sAMAccountName, securityIdentifier, sIDHistory, subClassOf,

systemFlags, trustPartner, trustDirection, trustType, trustAttributes, userAccountControl,
uSNChanged, uSNCreated, whenCreated attribute values are retained.

In AD LDS, the msDS-PortLDAP attribute is also retained.

The attribute that equals the rdnType of the object (for example, cn for a user object) is

retained.

Any attribute that has the fPRESERVEONDELETE flag set in its searchFlags is retained, except

objectCategory and sAMAccountType, which are always removed, regardless of the value of

their searchFlags.

All outgoing linked attribute values are removed, but not as an originating update. These values

are simply removed.

All incoming linked attribute values are removed, but not as an originating update. These values

are simply removed.

The isDeleted attribute is set to true.

The isRecycled attribute is set to true.

The object is moved into the Deleted Objects container in its NC, except in the following

scenarios, when it MUST remain in its current place:

%5bMS-ADA2%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

328 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The object is an NC root.

The object's systemFlags value has the FLAG_DISALLOW_MOVE_ON_DELETE bit set.

3.1.1.5.5.7 Tree-delete Operation

The tree-delete operation is a special mode of delete operation that simplifies the deletion of trees of
objects. The regular delete operation can only delete leaf objects. The tree-delete operation
processes a tree of objects one-by-one, deleting objects starting from the leaf objects and
continuing up until the root can be deleted. The tree-delete operation is represented by a regular
LDAP delete operation with the requester passing the LDAP_SERVER_TREE_DELETE_OID control.

A tree-delete operation is never performed as a replicated update.

3.1.1.5.5.7.1 Tree-delete Security Considerations

The requester must have the RIGHT_DS_DELETE_TREE on the object being deleted. Note that no

additional permissions are required on the descendants of the object.

3.1.1.5.5.7.2 Tree-delete Constraints

All regular delete operation constraints apply on each object being deleted.

The tree-delete operation cannot be applied to an NC root.

Objects with the isCriticalSystemObject attribute equal to true and which are not SAM-specific

objects (as defined by section 3.1.1.5.2.3) cannot be deleted by the tree-delete operation. This
constraint is checked object-by-object, and deletion stops at the first deletion attempt that
violates the constraint. If deletion stops, the resultant tree might not be the same as the original

tree because some objects might have been deleted prior to the failure.

3.1.1.5.5.7.3 Tree-delete Processing Specifics

The tree-delete operation proceeds by removing the tree, starting from the leaf objects and

making its way to the root of the tree. The order of processing is not important, as long as each
node is only deleted after all of its descendants have been deleted and moved into a Deleted

Objects container (section 6.1.1.4.2).

Regular delete processing specifics apply to each object being deleted.

The tree-delete operation is implemented using multiple transactions.

It is allowed for the tree-delete operation not to delete the complete subtree. If the server failed

to complete the tree-delete operation and the error is recoverable (that is, no user intervention is

required), it returns a special error code adminLimitExceeded /
ERROR_DS_TREE_DELETE_NOT_FINISHED to the user. However, it is required that at least one
object in the subtree was deleted (that is, some progress was made). The clients continue
repeating the tree-delete request until they either receive a success (indicating that the tree was
successfully removed) or receive an error code other than

ERROR_DS_TREE_DELETE_NOT_FINISHED (as specified in section 3.1.1.5.5.5).

3.1.1.6 Background Tasks

In AD DS, the server runs background tasks periodically to:

Protect security principals that have elevated administrative privilege.

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

329 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Maintain referential integrity (see Referential integrity in section 3.1.1.1) on object references.

Maintain security descriptor requirements (see Security Descriptor Requirements in section

6.1.3).

These tasks are specified in the following sections.

3.1.1.6.1 AdminSDHolder

References

Special Objects in section 6.1: Windows NT operating system

Glossary Terms: Active Directory, security principal, privileges, PDC, FSMO, SD, transitive

membership, RID

LDAP attributes: nTSecurityDescriptor, groupType, objectClass, member, objectSid, dSHeuristics

LDAP classes: container, user, group

Constants

Access mask bits, CARs:

groupType bits: GROUP_TYPE_SECURITY_ENABLED

Constant RIDs: DOMAIN_ALIAS_RID_ADMINS, DOMAIN_ALIAS_RID_ACCOUNT_OPS,

DOMAIN_ALIAS_RID_SYSTEM_OPS, DOMAIN_ALIAS_RID_PRINT_OPS,
DOMAIN_ALIAS_RID_BACKUP_OPS, DOMAIN_ALIAS_RID_REPLICATOR,
DOMAIN_GROUP_RID_SCHEMA_ADMINS, DOMAIN_GROUP_RID_ADMINS,
DOMAIN_GROUP_RID_CONTROLLERS, DOMAIN_USER_RID_KRBTGT,
DOMAIN_USER_RID_ADMIN

If a security principal object with elevated administrative privileges in Active Directory has a weak

SD, Active Directory is vulnerable to straightforward attack. Therefore Active Directory protects the
SDs of such objects from updates that might give them weak SDs.

Each security principal is represented as an object o in Active Directory. For every o there is an
attribute o!nTSecurityDescriptor. The value is the SD that defines ownership, permissions, and
audited operations for o.

Active Directory protects the SD on certain objects by periodically overwriting any changes. This

mechanism loosely establishes an upper bound on the length of time that a protected object may
have a weak SD.

3.1.1.6.1.1 Authoritative Security Descriptor

The security descriptor that is written to protected objects is stored in the nTSecurityDescriptor
attribute on the AdminSDHolder object in Active Directory. The AdminSDHolder object is of class
container and has a DN of "CN=AdminSDHolder,CN=System,<Domain NC DN>".

3.1.1.6.1.2 Protected Objects

In domain d, the set S of all security principal objects o that are protected is defined as follows:

(o!objectClass = group AND attribute o!groupType & GROUP_TYPE_SECURITY_ENABLED ≠ 0) OR

(o!objectClass = user)

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

330 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

AND (o!objectSid = d!objectSid + RID)

AND either

o is a member, directly or transitively, of any group in the set:

built-in well-known group with RID = DOMAIN_ALIAS_RID_ADMINS

built-in well-known group with RID = DOMAIN_ALIAS_RID_ACCOUNT_OPS

built-in well-known group with RID = DOMAIN_ALIAS_RID_SYSTEM_OPS

built-in well-known group with RID = DOMAIN_ALIAS_RID_PRINT_OPS

built-in well-known group with RID = DOMAIN_ALIAS_RID_BACKUP_OPS

built-in well-known group with RID = DOMAIN_ALIAS_RID_REPLICATOR

account domain well-known group with RID = DOMAIN_GROUP_RID_ADMINS

account domain well-known group with RID = DOMAIN_GROUP_RID_SCHEMA_ADMINS

account domain well-known group with RID = DOMAIN_GROUP_RID_ENTERPRISE_ADMINS

OR, is one of the following well-known security principals:

of class user with RID = DOMAIN_USER_RID_ADMIN

of class user with RID = DOMAIN_USER_RID_KRBTGT

of class group with RID = DOMAIN_GROUP_RID_CONTROLLERS

of class group with RID = DOMAIN_GROUP_RID_READONLY_CONTROLLERS

3.1.1.6.1.3 Protection Operation

Every object in the protected set is examined at least once every 120 minutes, every 60 minutes by
default, at domain d's PDC FSMO role owner. For any object o where o!nTSecurityDescriptor ≠
AdminSDHolder!nTSecurityDescriptor an originating update is performed replacing

o!nTSecurityDescriptor with the value of AdminSDHolder!nTSecurityDescriptor. Other replicas of
domain d see the effects of this operation after a delay due to replication.

3.1.1.6.1.4 Configurable State

Let C be the object in the config NC identified by the DN of "CN=Windows
NT,CN=Services,CN=Configuration,<forest root DN>". C!dSHeuristics (section 6.1.1.2.4.1.2) is a
Unicode string attribute, in which the 16th character, dwAdminSDExMask, can optionally be set to

cause the protection operation to exclude one or more protected objects.

The valid values of dwAdminSDExMask are the characters "0"–"9" and "a"–"f". The value is
interpreted as a hex digit, of which each bit represents a specific set of security principals that is to

be excluded from the AdminSDHolder protection operation.

The set of security principal objects that are excluded are a member, directly or transitively, of any
group in the set defined by bits set in the list below:

C!dSHeuristics[15] & 0x1 ≠ 0 then DOMAIN_ALIAS_RID_ACCOUNT_OPS

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

331 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

C!dSHeuristics[15] & 0x2 ≠ 0 then DOMAIN_ALIAS_RID_SYSTEM_OPS

C!dSHeuristics[15] & 0x4 ≠ 0 then DOMAIN_ALIAS_RID_PRINT_OPS

C!dSHeuristics[15] & 0x8 ≠ 0 then DOMAIN_ALIAS_RID_BACKUP_OPS

3.1.1.6.2 Reference Update

References

Variable: dsname

LDAP attributes: dNReferenceUpdate.

LDAP classes: infrastructureUpdate.

Glossary: dsname, Infrastructure FSMO master, NC replica, tombstone, GC.

IDL_DRSVerifyNames method: see [MS-DRSR] section 4.1.27.

Well-known Objects

In AD DS, attributes of attribute syntax Object (DS-DN), Object(DN-String), Object(DN-Binary),

Object(Access-Point) and Object(OR-Name) can have attribute values that reference objects in an
NC for which no NC replica is present on the server. The server does not get a replicated update
when an object in the NC replica not present on the server is modified or deleted. In such a case,
references to such objects will remain to an old dsname on the server. In order to update these
kinds of references, a background task called reference update is run at regular intervals. By
default, each reference is examined every two days.

The reference update task is not run on a Global Catalog.

If the Recycle Bin optional feature is not enabled and the Infrastructure FSMO master is not a global
catalog, then the reference update task is run only on the Infrastructure FSMO master.

If the Recycle Bin optional feature is enabled, every DC that is not also a global catalog runs the
reference update task.

The reference update task does processing as follows:

For each object P in each NC replica on the server do the following:

Let S be the set of all attributes of P with attribute syntax Object(DS-DN), Object(DN-String),

Object(DN-Binary), Object(OR-Name) and Object(Access-Point).

For each attribute A in set S and for each value V of A do the following:

If there exists an object with dsname V in any NC replica on this DC, then skip this value V.

If attribute syntax of A is Object(DS-DN) then let G be P.A.V.guid_value. Let D be P.A.V.dn.

Otherwise, let G be P.A.V.object_DN.guid_value. Let D be P.A.object_DN.dn.

If the Recycle Bin optional feature is not enabled:

Retrieve the dsname N of object with objectGUID G from a GC by calling method

IDL_DRSVerifyNames. IDL_DRSVerifyNames is explained in [MS-DRSR] section 4.1.27.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf

332 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If N!name ≠ D then create an infrastructureUpdate object I in the well-known

infrastructure update container (see section 6.1.1.4). Set I!dNReferenceUpdate to N.

Delete I immediately to turn it to a tombstone.

Creation of an infrastructureUpdate object K with attribute dNReferenceUpdate will trigger
an update of all references to dsnames corresponding to K!dNReferenceUpdate, as
explained in section 3.1.1.5.2.4.

If the Recycle Bin optional feature is enabled:

Retrieve the dsname N and the value Vgc of the isRecycled attribute of object with

objectGUID G from a GC by calling method IDL_DRSVerifyNames. IDL_DRSVerifyNames is

explained in [MS-DRSR] section 4.1.27.

If Vgc is true and attribute A is a linked attribute, remove value V from attribute A. This

removal is not replicated to any other DCs.

If N!name ≠ D then replace value V of attribute A with N!name. This replacement is not

replicated to any other DCs.

If attribute A is a link value and the RDN of N!name is a delete-mangled RDN (see section

3.1.1.5.5), the value V is to be treated as a linked value to or from a deleted-object. That
is, the value is not generally visible to LDAP clients unless the
LDAP_SHOW_DEACTIVATED_LINK_OID control is used.

If attribute A is a link value and the RDN of N!name is not a delete-mangled RDN (see

section 3.1.1.5.5), the value V is to be treated as a normal linked value. That is, the value

is generally visible to LDAP clients.

3.1.1.6.3 Security Descriptor Propagator Update

References

LDAP attributes: nTSecurityDescriptor

Glossary: ACE, naming context (NC), security descriptor (SD)

In Active Directory, SDs can contain ACEs that are inheritable. Thus, modifying the SD on an object
can imply a change in the SDs of descendant objects (either by adding or by removing such an
inheritable ACE). In order to propagate the changes of inheritable ACEs to descendant objects, each
DC runs a background task called the Security Descriptor Propagator Update task. By default, this
task is triggered by the following conditions:

Any modification (originating or replicated) of the nTSecurityDescriptor attribute of any object,

except for those modifications done by the Security Descriptor Propagator Update task. Such an
object is said to have caused a propagation event.

Any modification of the DN of an object that results in the object having a different parent,

except for those cases where the new parent is a Deleted Objects container. Such an object is
said to have caused a propagation event.

The Security Descriptor Propagator Update task performs the following processing.

For each object P that has caused a propagation event, the server does the following:

Initialize a set S with the single element P.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

333 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

While the set S is not empty, do the following:

Let T be an element of set S.

Enforce all SD requirements from section 6.1.3 on the SD of the object T. This might require

that a new SD be written to the nTSecurityDescriptor attribute of object T. If this is the case,
such a modification is not replicated to any other instances of Active Directory. Note that this
modification of nTSecurityDescriptor is not a new propagation event; it is considered to be
part of the original event that was triggered by the modification of the nTSecurityDescriptor
attribute of object P.

If T is not a Deleted Objects container, as described in section 6.1.1.4.2, let U be the set of all

children of T that are in the same naming context as T. Add all elements of U to the set S. The
set U is said to contain qualifying children of object T. All objects that are ever elements of set
S are said to be qualifying descendants of object P.

Remove T from set S.

The replication metadata values (see AttributeStamp and LinkValueStamp in section 3.1.1.1.9)
MUST NOT be modified for any attributes that are updated during the processing shown in the

preceding list.

There is no constraint on the number of transactions that the Security Descriptor Propagator Update
task uses during processing. Therefore, there is no requirement that at any given time all of the
objects that are qualifying descendants of an object whose SD has an inheritable ACE actually have
the inheritable ACE. It is possible that there is a period of time during which an object that should
contain an inheritable ACE from one of its ancestors will not have that inheritable ACE, pending

completion of the Security Descriptor Propagator Update task. Likewise, it is possible there is a
period of time during which an inheritable ACE that was removed from one of the object's ancestors
is still present on the object. Although the protocol places no boundary or requirements on the
length of this period of time, it is recommended that implementations minimize the length of this
period of time to improve usability of the directory for clients.

The server MUST guarantee that all inheritable ACEs are eventually propagated to all qualifying

descendants of an object that causes a propagation event.

3.1.1.7 NT4 Replication Support

AD DS supports the NT4 replication protocol as specified in [MS-NRPC] section 3.6 by maintaining
two variables: nt4ReplicationState and pdcChangeLog. These variables are referenced by [MS-
DRSR] section 4.1.11.3 in order to specify the IDL_DRSGetNT4ChangeLog method. This section
normatively specifies the format of these variables and how they are maintained during state
changes in AD DS.

This section also normatively specifies the format of the referent of the pmsgOut.V1.pLog field of
the DRS_MSG_NT4_CHGLOG_REPLY_V1 response message of the IDL_DRSGetNT4ChangeLog
method [MS-DRSR] section 4.1.11.3.

3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog

3.1.1.7.1.1 nt4ReplicationState

nt4ReplicationState is a tuple containing the following fields:

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

334 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

SamNT4ReplicationUSN: this field, a signed 64-bit value, is an update sequence number for
updates that occur in AD DS that are relevant to the NT4 replication protocol. Relevant updates are

described in section 3.1.1.7.2.2.

SamCreationTime: this field, a FILETIME, records the timestamp when SamNT4ReplicationUSN is

set to one.

BuiltinNT4ReplicationUSN: this field, a signed 64-bit value, is an update sequence number for
updates that occur in AD DS that are relevant to the NT4 replication protocol. It is different from
SamNT4ReplicationUSN in that this value is used only to identify changes to objects whose objectSid
has the domain prefix of the built-in domain SID.

BuiltinCreationTime: this field, a FILETIME, is used to record the timestamp when
BuiltinNT4ReplicationUSN is set to one.

3.1.1.7.1.2 pdcChangeLog

The variable pdcChangeLog maintains a sequence of elements, each representing a unique update

to Active Directory that is exposed through the NT4 replication protocol ([MS-NRPC] section 3.5).

Though pdcChangeLog is an internal variable, its contents are sent over the network.

The pdcChangeLog variable is a sequence of CHANGELOG_ENTRY elements. These

CHANGELOG_ENTRY elements are defined in [MS-NRPC] section 3.5.4.6.4.

3.1.1.7.2 State Changes

This section describes state changes in AD DS that cause the nt4ReplicationState and pdcChangeLog
variables to change values.

3.1.1.7.2.1 Initialization

nt4ReplicationState and pdcChangeLog are reset on Active Domain domain creation (for example,

when the first DC in an AD DS domain is installed). See section 3.1.1.7.2.4 for information on
resetting the pdcChangeLog for the specific values of the variables in this condition.

3.1.1.7.2.2 Directory Updates

Entries are added to the pdcChangeLog on select directory updates, specified here. The
pdcChangeLog is maintained as a circular buffer—once an implementation-specific size limit (64K

bytes) is exceeded, the least-recently-added entries are removed to make room for new entries.

If the following condition is true during a directory update, then the following action occurs:

1. Condition

1. The update, create, or delete occurs within the domain NC (both for an originating and
replicated update).

2. The AD DS domain is in mixed mode.

3. A condition listed in the Trigger Condition Tables (below) matches the update.

2. Action

An entry is added to pdcChangeLog with the associated fields in the Trigger Condition Tables

that satisfied condition (1.3). The remaining fields in the pdcChangeLog entry are as follows:

%5bMS-ADA3%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf

335 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1. If the objectSid attribute value of the object being updated has a domain prefix of the built-
in domain SID, then DbIndex is 0x1; otherwise, DbIndex is 0x0.

2. The SerialNumber field is set as follows:

1. If DbIndex is 0x0, SamNT4ReplicationUSN is incremented by one and the resulting value

is used for the SerialNumber field.

2. If DbIndex is 0x1, BuiltinNT4ReplicationUSN is incremented by one and the resulting
value is used for the SerialNumber field.

3. The SID field is not specified.

Trigger Condition Tables: Database triggers for pdcChangeLog update.

Trigger Condition: An update occurs to one or more of the attributes specified in Table A on a

domain object or built-in domain object.

pdcChangeLog entry

Field Value

RelativeId 0x0

Flags CHANGELOG_SID

DeltaType AddOrChangeDomain

Trigger Condition: A group object creation or update to one or more of the attributes specified

in Table B occurs when the groupType attribute is GROUP_TYPE_ACCOUNT_GROUP.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags CHANGELOG_SID

DeltaType AddOrChangeGroup

Name sAMAccountName attribute value

Trigger Condition: A group object creation or update to one or more of the attributes specified

in Table B occurs when the groupType attribute is GROUP_TYPE_RESOURCE_GROUP.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags CHANGELOG_SID

DeltaType AddOrChangeAlias

Name sAMAccountName attribute value

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

336 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Trigger Condition: A user object creation or update to one of more of the attribute specified in

Table C occurs.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags CHANGELOG_SID

DeltaType AddOrChangeUser

Name sAMAccountName attribute value

Trigger Condition: A group object deletion whose groupType attribute value is

GROUP_TYPE_ACCOUNT_GROUP occurs.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags 0x8

DbType DeleteGroup

Name sAMAccountName attribute value

Trigger Condition: A group object deletion whose groupType attribute value is

GROUP_TYPE_RESOURCE_GROUP occurs.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags CHANGELOG_SID

DeltaType DeleteAlias

Name sAMAccountName attribute value

Trigger Condition: A user object deletion occurs.

pdcChangeLog entry

Field Value

RelativeId RelativeId of the objectSid attribute value

Flags CHANGELOG_SID

DeltaType DeleteUser

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

337 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pdcChangeLog entry

Name sAMAccountName attribute value

Table A: Domain Attributes for NT4 Replication

Attributes

nTSecurityDescriptor

oEMInformation

minPwdLength

pwdHistoryLength

pwdProperties

maxPwdAge

minPwdAge

lockoutDuration

lockOutObservationWindow

lockoutThreshold

Table B: Group Attributes for NT4 Replication

Attributes

nTSecurityDescriptor

sAMAccountName

description

member

Table C: User Attributes for NT4 Replication

Attributes

sAMAccountName

displayName

primaryGroupID

description

comment

homeDirectory

homeDrive

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

338 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attributes

scriptPath

profilePath

userWorkstations

logonHours

accountExpires

userAccountControl

userParameters

countryCode

codePage

pwdLastSet

unicodePwd

dBCSPwd

nTSecurityDescriptor

groupType

3.1.1.7.2.3 Acquiring the PDC Role

When the PDC role is acquired through a FSMO role transfer, one of the following two predicates is

true following the transfer:

1. The new PDC's pdcChangeLog is in the reset state described in section 3.1.1.7.2.4

2. All of the following are true:

1. The new PDC's pdcChangeLog has the same ordering of entries for all entries that existed in
the pdcChangeLog on the old PDC during the PDC role transfer.

2. All updates to the state of objects in the domain NC replica of the old PDC are reflected in the
state of objects in the domain NC replica of the new PDC when the transfer is complete.

3. All updates to the state of objects in domain NC replica on the new PDC that are not present
on the old PDC have a corresponding entry in the pdcChangeLog on the new PDC, as
described in section 3.1.1.7.2.2.

4. The SamNT4ReplicationUSN and BuiltNT4ReplicationUSN variables were increased by adding
0x1000000000 during the transfer.

When predicate (2) above is satisfied after a transfer, the transfer does not cause NT4 BDCs to

perform a full synchronization (described in [MS-NRPC] section 3.6). The implementation satisfies
predicate (2) above when possible.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-NRPC%5d.pdf

339 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Once the PDC role is acquired, the following two entries are added to the pdcChangeLog. This
notifies NT4 BDCs that the PDC has changed. SamNT4ReplicationUSN and BuiltinNT4ReplicationUSN

are updated prior to use in creating these entries.

pdcChangeLog entry Field Value

Entry 1 RelativeId

Flags

DbDelta

DbIndex

SerialNumber

0x0

CHANGELOG_SID

AddOrChangeDomain

0x0

SamNT4ReplicationUSN

Entry 2 RelativeId

Flags

DbDelta

DbIndex

SerialNumber

0x0

CHANGELOG_SID

AddOrChangeDomain

0x1

BuiltinNT4ReplicationUSN

3.1.1.7.2.4 Resetting the pdcChangeLog

To reset the pdcChangeLog, set the array to have 0 elements, set SamCreationTime and
BuiltinCreationTime to the current time and SamNT4ReplicationUSN and BuiltinNT4ReplicationUSN
to one.

Resetting the pdcChangeLog has the effect of causing NT4 BDCs to perform a full sync.

3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog

The DRS_MSG_NT4_CHGLOG_REPLY_V1 ([MS-DRSR] section 4.1.11.1.4) response message to an

IDL_DRSGetNT4ChangeLog request ([MS-DRSR] section 4.1.11) contains a BYTE *pLog field. The
format of the referent of this field is not specified in [MS-DRSR] section 4.1.11; it is specified here.

The referent of this field is a CHANGE_LOG_ENTRIES structure:

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Version

SequenceNumber

Flags

ChangeLogEntries (variable)

...

Size (4 bytes): The size, in bytes, of the part of the buffer preceding the ChangeLogEntries
field. Equals 0x00000010.

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

340 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Version (4 bytes): The version of the message. Equals 0x00000001.

SequenceNumber (4 bytes): The sequence number for the buffer. Is set to 0x00000001 in a
response to a IDL_DRSGetNT4ChangeLog request with pmsgIn.V1.pRestart = NULL. The value
of pmsgOut.V1.pRestart in any IDL_DRSGetNT4ChangeLog response encapsulates

SequenceNumber. In a response to an IDL_DRSGetNT4ChangeLog request with
pmsgIn.V1.pRestart ≠ NULL, SequenceNumber is the value encapsulated in
pmsgIn.V1.pRestart, plus one.

Flags (4 bytes): Equals 0x00000000. Ignored upon receipt.

ChangeLogEntries (variable): A sequence of CHANGELOG_ENTRY structures. Each
CHANGELOG_ENTRY is followed by padding bytes with value zero such that the number of
bytes in the CHANGELOG_ENTRY plus the padding is congruent to zero mod 8.

The server stores the total number of bytes in the fixed-length and variable-length portions of the
CHANGE_LOG_ENTRIES structure in the DWORD cbLog field of the
DRS_MSG_NT4_CHGLOG_REPLY_V1 response message. This field allows the client to determine the

number of CHANGELOG_ENTRY structures contained in the CHANGE_LOG_ENTRIES structure.

3.1.1.8 AD LDS Special Objects

AD LDS NCs can contain the following special types of objects: AD LDS users and AD LDS bind
proxies. Special processing applies to these types of objects.

3.1.1.8.1 AD LDS Users

An AD LDS user object is a security principal object in AD LDS that contains a password.

If at least one of the following statements applies to an object class within an AD LDS schema, then
each instance of that object class functions as an AD LDS user:

1. The object class contains msDS-BindableObject as a static auxiliary class.

2. The object class contains a static auxiliary class that is a subclass of msDS-BindableObject.

3. The object class is a subclass of another object class that satisfies statement 1 or 2.

An AD LDS user object has these special properties and behavior:

Its objectSid is assigned during Add as specified in section 3.1.1.5.2.4.

It can be a member of group objects in its AD LDS forest, subject to the limitations on inter-NC

references specified in section 3.1.1.2.2.3, Referential Integrity.

It can be named in an LDAP bind; section 5.1.1.5 specifies the supported authentication

mechanisms and protocols. If the bind succeeds, it creates a security context for the LDAP
connection as specified in section 5.1.3.4.

Its password can both be assigned an initial value and updated. Special processing is performed

on both the initial assignment and on update. Sections 3.1.1.5.2.2, 3.1.1.5.2.4, 3.1.1.5.3.1,

3.1.1.5.3.2, and 3.1.1.5.3.3 specify this processing.

Its objectSid can be written into an AD LDS security descriptor, subject to restrictions specified in

section 6.1.3.3.

%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

341 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.8.2 Bind Proxies

An AD LDS bind proxy is an object that represents a security principal of the underlying operating
system; it is not a security principal itself. A bind proxy object does not contain a password.

If at least one of the following statements applies to an object class within an AD LDS schema, then
each instance of that object class functions as an AD LDS bind proxy:

1. The object class contains msDS-BindProxy as a static auxiliary class.

2. The object class contains a static auxiliary class that is a subclass of msDS-BindProxy.

3. The object class is a subclass of another object class that satisfies statement 1 or 2.

An AD LDS bind proxy object has these special properties and behavior:

Its objectSid is assigned during Add and is the SID of some Windows user in a security realm

trusted by the machine running the AD LDS DC that performed the Add. For instance, if an AD

LDS DC is running on a machine that is joined to an Active Directory domain D, then the
objectSid of a bind proxy created by that DC can be a user within D or within the forest that
contains D, or within any domain or forest trusted by D or the forest that contains D.

It can be a member of group objects in its AD LDS forest, subject to the limitations on inter-NC

references specified in section 3.1.1.2.2.3, Referential Integrity.

It can be named in an LDAP bind; section 5.1.1.5 specifies the supported authentication

mechanisms and protocols. If the bind succeeds, it creates a security context for the LDAP
connection as specified in section 5.1.3.4.

It does not contain a password. Special processing is performed on update to its password

attribute, as specified in section 3.1.1.5.3.3, except on Active Directory Application Mode (ADAM)

RTW DCs.

3.1.1.9 Optional Features

Beginning with Windows Server 2008 R2 operating system, Active Directory supports a set of
optional features. An optional feature is a set of modifications to the Active Directory state model
and the Directory Replication Service (DRS) Remote Protocol [MS-DRSR].

Optional features are enabled in some scope. A scope defines the set of DCs participating in the

state-model changes that make up the optional feature. Optional features may be forest-wide,
domain-wide, or server-wide in scope. A forest-wide optional feature affects the state model of all
DCs in the forest when the optional feature is enabled. A domain-wide optional feature affects the
state model of all DCs in the domain in which the optional feature is enabled. A server-wide optional
feature affects the state model of the DCs in which the optional feature is enabled. AD LDS supports
forest-wide and server-wide optional features. In AD LDS, a forest-wide optional feature affects the
state model of all AD LDS instances in a configuration set. Domain-wide optional features are not

supported in AD LDS.

Scopes are represented by objects in the directory information tree (DIT). The object that

represents the forest-wide scope is the Cross-Ref-Container container (see section 6.1.1.2.1). The
object that represents a domain-wide scope is the NC root object of the domain. The object that
represents a server-wide scope is the nTDSDSA object.

Optional features are represented by instances of the object class msDS-OptionalFeature. Objects

representing optional features are stored in the Optional Features container in the Config NC (see
section 6.1.1.2.4.1.3).

%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

342 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Optional features are disabled in a scope via the disableOptionalFeature rootDSE modify operation
(see section 3.1.1.3.3.27).

Optional features are enabled in a scope via the enableOptionalFeature rootDSE modify operation
(see section 3.1.1.3.3.28).

The list of optional features enabled for a scope is stored in the msDS-EnabledFeature attribute on
the object representing the scope. The value stored is a reference to the specific enabled optional
feature.

The list of scopes in which an optional feature is enabled is stored in the msDS-EnabledFeatureBL
attribute on the object representing the optional feature. The values stored are references to the
objects representing the scopes where the feature is enabled.

If an optional feature is enabled in some scope, then, depending on the feature, it might be

automatically enabled in another scope; for example, the Recycle Bin optional feature (section
3.1.1.9.1).

Optional features are uniquely identified by a GUID. The GUID is stored in the msDS-
OptionalFeatureGUID attribute of the object representing the optional feature.

The following procedure determines whether an optional feature is enabled in a scope by using the
msDS-EnabledFeature attribute:

procedure IsOptionalFeatureEnabled (

 scope: DSNAME, featureGuid: GUID): boolean

 Returns true if scope!msDS-EnabledFeature contains the DN of a

 msDS-optionalFeature object o such that o!msDS-optionalFeatureGUID

 equals featureGuid.

 Returns false otherwise.

Permissible scopes for optional features are specified in the msDS-OptionalFeatureFlags attribute on

the object representing the optional feature. If an optional feature is permissible for a forest-wide
scope, the attribute contains the bit flag FOREST_OPTIONAL_FEATURE (see section 2.2.17). If an
optional feature is permissible for a domain-wide scope, the attribute contains the bit flag

DOMAIN_OPTIONAL_FEATURE (see section 2.2.17). If an optional feature is permissible for a
server-wide scope, the attribute contains the bit flag SERVER_OPTIONAL_FEATURE (see section
2.2.17). More than one flag may be specified, meaning that the optional feature can be enabled in
more than one scope. If none of these flags is specified, an optional feature does not have a scope
and, therefore, will not be enabled anywhere.

Whether an optional feature can be disabled is specified in the msDS-OptionalFeatureFlags attribute

on the object representing the optional feature. If the feature can be disabled, the attribute contains
the bit flag DISABLABLE_OPTIONAL_FEATURE. Absence of this flag means that the feature cannot
be disabled once it has been enabled.

Optional features may require Active Directory to be at specific functional levels in order to be

enabled.

If an optional feature requires a specific forest functional level before it can be enabled, the forest
functional level required is stored in the msDS-RequiredForestBehaviorVersion attribute of the object

representing the optional feature.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

343 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If an optional feature requires a specific forest functional level before it can be enabled in a domain-
wide scope, the forest functional level required is stored in the msDS-

RequiredDomainBehaviorVersion attribute of the object representing the optional feature.

The following table shows the optional features that are available in specific versions of

Windows Server operating system.

Optional

feature

name

Windows

Server 2008 R2

AD DS

Windows

Server 2008 R2

AD LDS

Windows

Server

2012

operating

system

AD DS

Windows

Server

2012 AD

LDS

Windows

Server

2012 R2

operating

system

AD DS

Windows

Server

2012 R2

AD LDS

Recycle

Bin

X X X X X X

3.1.1.9.1 Recycle Bin Optional Feature

The Recycle Bin optional feature is represented by the Recycle Bin Feature Object (see section
6.1.1.2.4.1.3.1).

The Recycle Bin optional feature modifies the DRS Remote Protocol and modifies the way Active
Directory processes object deletion, object undeletion, and referential integrity. When the Recycle
Bin optional feature is enabled, deleted-objects maintain virtually all of their state, and therefore
may be undeleted without loss of information. When the Recycle Bin optional feature is enabled, link
valued attributes are maintained both to and from deleted-objects. This is not possible in the

unmodified state model. When the Recycle Bin optional feature is enabled, all tombstones are
transformed to be recycled-objects, and all the requirements for recycled-objects in section
3.1.1.5.5.1.3 are maintained.

The state model modifications that implement the Recycle Bin optional feature are specified
throughout this document, with specific details in sections 3.1.1.1.6, 3.1.1.4.5.37, 3.1.1.4.5.38,

3.1.1.5.3 (especially 3.1.1.5.3.7), 3.1.1.5.5, 3.1.1.6.2, and 6.1.5.5.

The Recycle Bin optional feature is identified by the feature GUID {766ddcd8-acd0-445e-f3b9-

a7f9b6744f2a}.

The Recycle Bin optional feature requires a Forest Functional Level of DS_BEHAVIOR_WIN2008R2 or
greater.

The Recycle Bin optional feature is forest-wide in scope; it cannot be enabled in only a domain-wide
scope or server-wide scope. When the rootDSE modify operation enableOptionalFeature (section
3.1.1.3.3.28) is executed on a given DC to enable the Recycle Bin optional feature, in addition to

being added to the list of forest-wide enabled features, the optional feature is also added to the list
of server-wide enabled features (see section 3.1.1.9).

The Recycle Bin optional feature cannot be disabled once it is enabled.

Any DC with a behavior version of DS_BEHAVIOR_WIN2008R2 or greater MUST be capable of
supporting the Recycle Bin optional feature.

3.1.1.10 Revisions

Sections 3.1.1.10.1, 3.1.1.10.2, and 3.1.1.10.3 apply only to AD DS, not to AD LDS.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

344 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.10.1 Forest Revision

The forest revision represents the default state of the set of objects that are stored in the directory
and required for the forest functionality.

The contents of a forest revision are established when the forest is created. Updates to the forest
revision, if necessary (see below), are performed by an implementation-specific upgrade process.

The version of the forest revision consists of two integer parts that are separated by a period:
major.minor. Assuming that a forest revision X has the version a.b, and forest revision Y has the
version c.d, X has a higher or equal version compared to Y if a>c, or if a=c and b>=d.

See section 6.1.1.2.8 for the way in which the version of the forest revision is stored.

Introducing DCs into a forest is possible only if the version of the forest revision is higher than or

equal to the minimum version of forest revision that is required for that DC functional level, as
shown in the following table.

DC functional level Minimum required forest revision

DS_BEHAVIOR_WIN2000 0.0

DS_BEHAVIOR_WIN2003 0.9

DS_BEHAVIOR_WIN2008 2.9

DS_BEHAVIOR_WIN2008R2 5.9

DS_BEHAVIOR_WIN2012 10.9

DS_BEHAVIOR_WIN2012R2 12.10

If the version of the forest revision is lower than the minimum version of forest revision for that DC,
the forest revision must be upgraded to a newer version by an implementation-specific forest

revision upgrade process before the DC can be added. The upgrade process updates the contents
and the version of the forest revision.

3.1.1.10.2 RODC Revision

The RODC revision represents the default state of the set of objects that are stored in the directory
and required for RODC functionality.

The contents of the RODC revision are established when the forest is created. Updates to the RODC
revision, if necessary (see below), are performed by an implementation-specific upgrade process.

The version of the RODC revision is an integer. See section 6.1.1.2.8 for the way in which the
version of the RODC revision is stored.

Introducing an RODC into a forest is possible only if the version of the RODC revision is higher than
or equal to the minimum version of RODC revision that is required for the DC functional level of the

RODC, as shown in the following table.

DC functional level of the RODC Minimum required RODC revision

DS_BEHAVIOR_WIN2008 2

DS_BEHAVIOR_WIN2008R2 2

345 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

DC functional level of the RODC Minimum required RODC revision

DS_BEHAVIOR_WIN2012 2

DS_BEHAVIOR_WIN2012R2 2

If the version of the RODC revision is lower than the minimum version of RODC revision for that
RODC, the RODC revision must be upgraded to a newer version by an RODC revision upgrade
process before the RODC can be added. The upgrade process updates the contents and version of

the RODC revision.

3.1.1.10.3 Domain Revision

The domain revision represents the default state of the set of objects that are stored in the domain
and required for its functionality.

The contents of a domain revision are established when the domain is created. Updates to the

domain revision, if necessary (see below), are performed by an implementation-specific upgrade

process.

The version of the domain revision consists of two integer parts that are separated by a period:
major.minor. Assuming that a domain revision X has the version a.b, and a domain revision Y has
the version c.d, X is said to have a higher or equal version compared to Y if a>c, or if a=c and
b>=d.

See section 6.1.1.5.4 for the way in which the version of the domain revision is stored.

Introducing DCs into a domain is possible only if the version of the domain revision is higher than or
equal to the minimum version of domain revision that is required for that DC functional level, as
shown in the following table.

DC functional level Minimum required domain revision

DS_BEHAVIOR_WIN2000 0.0

DS_BEHAVIOR_WIN2003 0.8

DS_BEHAVIOR_WIN2008 3.8

DS_BEHAVIOR_WIN2008R2 5.8

DS_BEHAVIOR_WIN2012 8.8

DS_BEHAVIOR_WIN2012R2 10.9

If the version of the domain revision is lower than the minimum version of domain revision for that
DC, the domain revision must be upgraded to a newer version by a domain revision upgrade process
before the DC can be added. The upgrade process updates the contents and the version of the
domain revision.

346 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.11 Claims

3.1.1.11.1 Informative Overview

This section contains an informative overview of claims issuance and claims transformation in Active
Directory. Refer to Claims Procedures (section 3.1.1.11.2) for the normative specification of claims
issuance and claims transformation.

Note Claims issuance and claims transformation in Active Directory were introduced in Windows
Server 2012 operating system. Constructed claims were introduced in Windows Server 2012 R2
operating system.

3.1.1.11.1.1 Claim

A claim is an assertion about a user's identity and is represented as the following n-tuple.

{Type, ValueType, m Values of type ValueType}

3.1.1.11.1.2 Claims Dictionary

The Claims Dictionary is a list of objects of type msDS-ClaimType placed in the "CN=Claim Types,
CN=Claims Configuration, CN=Services" container in the config NC of Active Directory. The Claims
Dictionary is configured by administrators in order to enable claims issuance.

3.1.1.11.1.3 Claim Source

Claims have two sources of values:

AD: Active Directory is the default claim source.

Certificate: Certificate sourced claims originate from the strings provided to the

GetClaimsForPrincipal procedure (section 3.1.1.11.2.1) and are single-valued Boolean claims.

Constructed claims are generated dynamically according to a claim-specific algorithm, but are still
considered to have AD as their source.

3.1.1.11.1.4 Claims Issuance

Active Directory generates claims for a principal using a configuration called the Claims Dictionary.
The following is a high-level overview of claims issuance in Active Directory:

1. The claim Type of the claim is the value of the name attribute of the msDS-ClaimType object.

2. The claim Value or Values are retrieved from the source specified in the msDS-
ClaimSourceType attribute of the msDS-ClaimType object (or computed dynamically in the case
of constructed claims). At least one value must be present for this claim to be issued.

3. The claim ValueType is generated based on the claim Values.

Refer to the GetClaimsForPrincipal claims procedure (section 3.1.1.11.2.1) for a normative
description of claims issuance.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

347 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.11.1.5 Claims Transformation Rules

Claims transformation rules are stored in the msDS-TransformationRules attribute in the msDS-
ClaimsTransformationPolicyType object. Refer to the GetTransformationRulesText claims procedure

(section 3.1.1.11.2.13) for the processing details that describe how to obtain the transformation
rules from the msDS-TransformationRules attribute.

For an msDS-ClaimsTransformationPolicyType object to be valid, it MUST be stored in the
"CN=Claims Transformation Policies, CN=Claims Configuration, CN=Services" container in the config
NC of Active Directory.

An msDS-ClaimsTransformationPolicyType object MUST be associated with a TDO for a given
claims-traversal direction in order to apply the claims transformation rules in the msDS-

ClaimsTransformationPolicyType object to sets of claims that traverse the TDO in the specified
direction.

Claims transformation rules are configured by administrators.

3.1.1.11.1.6 Claims Transformation

Claims need to be examined, filtered, possibly modified, and reissued when traversing trusts. This

process is known as claims transformation. Claims transformation is invoked only on certain types of
trusts. Refer to [MS-PAC] section 4.1.2.2 for details about when claims transformation is invoked.

Claims transformation uses the trust name and the direction of the traversal of the trust to look up
the corresponding msDS-ClaimsTransformationPolicyType object and obtain claims transformation
rules from it.

The claims to be transformed and the transformation rules are passed to the Claims Transformation
Algorithm [MS-CTA].

The output of the Claims Transformation Algorithm is further processed using the Claims Dictionary
to produce claims that are relevant to the new forest in which they are used.

Refer to the TransformClaimsOnTrustTraversal claims procedure (section 3.1.1.11.2.11) for a
normative description of claims transformation.

3.1.1.11.2 Claims Procedures

This section defines the logical processing for claim-related operations. The procedure definitions

use the pseudocode language defined in [MS-DRSR] section 3.4. This section uses the data
structures and types defined in section 2.2.18.

3.1.1.11.2.1 GetClaimsForPrincipal

procedure GetClaimsForPrincipal(

 pADPrincipal : ADDRESS OF DSNAME,

 pCertificateStringsArray : set of unicodestring,

 pClaimsBlob : ADDRESS OF CLAIMS_BLOB)

This procedure defines the process of generating claims for a principal in Active Directory and
returning these claims as a blob in the wire format.

pADPrincipal: The Active Directory principal whose claims need to be generated.

pCertificateStringsArray: A set of Unicode strings.

%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-CTA%5d.pdf
%5bMS-DRSR%5d.pdf

348 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pClaimsBlob: The output CLAIMS_BLOB structure that is filled with encoded claims.

Return Values: This procedure does not return a value.

Logical Processing:

principalClass: ObjectClass;

adSourcedClaims: CLAIMS_ARRAY;

certificateSourcedClaims: CLAIMS_ARRAY;

constructedClaims: CLAIMS_ARRAY

adSourcedAndConstructedClaims: CLAIMS_ARRAY

claimsSet : CLAIMS_SET;

principalClass := pADPrincipal^!ObjectClass.ClassId;

adSourcedClaims := null;

certificateSourcedClaims := null;

constructedClaims := null;

claimsSet := null;

GetADSourcedClaims (pADPrincipal, principalClass,

 ADDRESS OF adSourcedClaims);

GetCertificateSourcedClaims(

 principalClass,

 pCertificateStringsArray,

 ADDRESS OF certificateSourcedClaims);

GetConstructedClaims (pADPrincipal, ADDRESS OF constructedClaims);

/*

 Merge AD-sourced claims and constructed claims into one CLAIMS_ARRAY

*/

adSourcedAndConstructedClaims.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD;

if (adSourcedClaims.ulClaimsCount > 0)

 adSourcedAndConstructedClaims.ClaimsEntry :=

 adSourcedClaims.ClaimsEntry

 adSourcedAndConstructedClaims.ulClaimsCount :=

 adSourcedClaims.ulClaimsCount;

endif

if (constructedClaims.ulClaimsCount > 0)

 adSourcedAndConstructedClaims.ClaimsEntry[adSourcedAndConstructedClaims.ulClaimsCount]

 := constructedClaims.ClaimsEntry;

 adSourcedAndConstructedClaims.ulClaimsCount :=

 adSourcedAndConstructedClaims.ulClaimsCount + constructedClaims.ulClaimsCount;

endif

if (adSourcedAndConstructedClaims.ulClaimsCount > 0)

 claimsSet.ulClaimsArrayCount := claimsSet.ulClaimsArrayCount + 1;

 claimsSet.ClaimsArrays.add (adSourcedAndConstructedClaims);

endif

if (certificateSourcedClaims.ulClaimsCount > 0)

 claimsSet.ulClaimsArrayCount := claimsSet.ulClaimsArrayCount + 1;

 claimsSet.ClaimsArrays.add (certificateSourcedClaims);

endif

if (claimsSet.ulClaimsArrayCount = 0)

 pClaimsBlob^ := NULL;

 return;

endif

349 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

EncodeClaimsSet(ADDRESS OF claimsSet, pClaimsblob);

return;

3.1.1.11.2.2 GetADSourcedClaims

procedure GetADSourcedClaims (

 pADPrincipal : ADDRESS OF DSNAME,

 principalClass : ObjectClass,

 pAdSourcedClaims : ADDRESS OF CLAIMS_ARRAY)

This procedure is a helper routine that retrieves Active Directory-sourced claims (section

3.1.1.11.1.3) for a given principal from Active Directory using the Claims Dictionary (section
3.1.1.11.1.2).

pADPrincipal: The principal whose Active Directory claims are to be retrieved.

principalClass: The object class of the principal.

pAdSourcedClaims: The address of a CLAIMS_ARRAY structure used for the output Active
Directory-sourced claims.

Return Values: This procedure does not return a value.

Logical Processing:

bIssueClaim : boolean;

claim: CLAIM_ENTRY;

claimConfigContainer : DSName;

bIssueClaim := FALSE;

claim := null;

pAdSourcedClaims^ := null;

claimConfigContainer := DescendantObject(ConfigNC(),

 "CN=Claim Types, CN=Claims Configuration, CN=Services");

pAdSourcedClaims^.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD;

for (x in children claimConfigContainer)

 if (x!msDS-ClaimSourceType = "AD" &&

 x!msDS-ClaimTypeAppliesToClass in principalClass &&

 ValidateClaimDefinition(x))

 bIssueClaim := TRUE;

 endif

 if (bIssueClaim && pADPrincipal^!(x!msDS-ClaimAttributeSource) ≠ null)

 claim.Id := x!name;

 claim.Type := x!msDS-ClaimValueType;

 claim.ValueCount :=

 pADPrincipal^!(x!msDS-ClaimAttributeSource).count();

 if (x!msDs-ClaimAttributeSource.Syntax = 2.5.5.1)

 claim.Values :=

 pADPrincipal^!(x!msDS-ClaimAttributeSource)[].DN;

 else

 claim.Values := pADPrincipal^!(x!msDS-ClaimAttributeSource)[];

 endif

350 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 pAdSourcedClaims^.ClaimEntries.Add(claim);

 pAdSourcedClaims^. ulClaimsCount :=

 pAdSourcedClaims^. ulClaimsCount + 1;

 endif

 claim := null;

 bIssueClaim := FALSE;

endfor

return;

3.1.1.11.2.3 GetCertificateSourcedClaims

procedure GetCertificateSourcedClaims (

 principalClass : ObjectClass,

 pCertificateStringsArray : set of unicodestring,

 pCertificateSourcedClaims : ADDRESS of CLAIMS_ARRAY)

This procedure is a helper routine that generates certificate-sourced claims (section 3.1.1.11.1.3)

from given strings for a given principal type.

principalClass: The object class of the principal for whom the claims are being generated.

pCertificateStringsArray: A set of Unicode strings.

pCertificateSourcedClaims: The address of a CLAIMS_ARRAY structure used for the output
certificate-sourced claims.

Return Values: This procedure does not return a value.

Logical Processing:

bIssueClaim : boolean;

claim : CLAIM_ENTRY;

claimConfigContainer : DSName;

bIssueClaim := FALSE;

claim := null;

pCertificateSourcedClaims^ := null;

claimConfigContainer := DescendantObject(ConfigNC(),

 "CN=Claim Types, CN=Claims Configuration, CN=Services");

pCertificateSourcedClaims^.usClaimsSourceType :=

 CLAIMS_SOURCE_TYPE_CERTIFICATE;

for (x in children claimConfigContainer)

 if (x!msDS-ClaimSourceType = "Certificate" &&

 x!msDS-ClaimTypeAppliesToClass in principalClass &&

 ValidateClaimDefinition(x))

 bIssueClaim := TRUE;

 endif

 if (bIssueClaim && x!msDS-ClaimSource in pCertificateStringsArray)

 claim.Id := x!msDS-ClaimSource;

 claim.Type := x!msDS-ClaimValueType;

 claim.ValueCount := 1;

351 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 claim.Values := TRUE;

 pCertificateSourcedClaims^.ClaimEntries.Add(claim);

 pCertificateSourcedClaims^.ulClaimsCount :=

 pCertificateSourcedClaims^.ulClaimsCount + 1;

 endif

 claim := null;

 bIssueClaim := FALSE;

endfor

return;

3.1.1.11.2.4 GetConstructedClaims

procedure GetConstructedClaims (

 pADPrincipal : ADDRESS OF DSNAME,

 principalClass : ObjectClass,

 pConstructedClaims : ADDRESS OF CLAIMS_ARRAY)

This procedure is a helper routine that computes constructed claims (section 3.1.1.11.1.3) for a

given principal from Active Directory by using the Claims Dictionary (section 3.1.1.11.1.2).

pADPrincipal: The principal whose Active Directory claims are to be retrieved.

principalClass: The object class of the principal.

pConstructedClaims: The address of a CLAIMS_ARRAY (section 2.2.18.6) structure that is used
for the output constructed claims.

Return Values: This procedure does not return a value.

Logical Processing:

bIssueClaim : boolean;

claim: CLAIM_ENTRY;

claimConfigContainer : DSName;

bIssueClaim := FALSE;

claim := null;

pConstructedClaims^ := null;

claimConfigContainer := DescendantObject(ConfigNC(),

 "CN=Claim Types, CN=Claims Configuration, CN=Services");

/*

 Constructed claims use the CLAIMS_SOURCE_TYPE_AD source type.

*/

pConstructedClaims^.usClaimsSourceType := CLAIMS_SOURCE_TYPE_AD;

for (each x in children claimConfigContainer)

 if (x!msDS-ClaimSourceType = "Constructed" &&

 x!msDS-ClaimTypeAppliesToClass in principalClass &&

 ValidateClaimDefinition(x))

 bIssueClaim := TRUE;

 endif

 if (bIssueClaim)

352 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 /*

 Currently only the AuthenticationSilo claim is supported

 */

 if (x.Name = "ad://ext/AuthenticationSilo")

 claim := GetAuthSiloClaim(pADPrincipal)

 if (claim != null)

 pConstructedClaims^.ClaimEntries.Add(claim);

 pConstructedClaims^.ulClaimsCount :=

 pConstructedClaims^.ulClaimsCount + 1;

 endif

 endif

 endif

endfor

return;

3.1.1.11.2.5 EncodeClaimsSet

procedure EncodeClaimsSet (

 pClaimsSet : ADDRESS OF CLAIMS_SET,

 pClaimsBlob : ADDRESS OF CLAIMS_BLOB)

This procedure is a helper routine that encodes a given claims set into a claims blob.

pClaimsSet: The address of the input CLAIMS_SET structure that is to be encoded.

pClaimsBlob: The address of the output CLAIMS_BLOB structure that receives the encoded claims
set.

Return Values: This procedure does not return a value.

Logical Processing:

encodedClaimsSet: BYTE[];

encodedClaimsSetSize: ULONG;

claimsSetMetadata: CLAIMS_SET_METADATA;

encodedClaimsSet := null;

encodedClaimsSetSize := 0;

claimsSetMetadata := null;

pClaimsBlob^ := null;

NdrEncode (pClaimsSet, ADDRESS OF encodedClaimsSet,

 ADDRESS OF encodedClaimsSetSize);

FillClaimsSetMetadata(

 ADDRESS OF encodedClaimsSet,

 ADDRESS OF encodedClaimsSetSize,

 ADDRESS OF claimsSetMetadata);

NdrEncode (

 claimsSetMetadata,

 ADDRESS OF pClaimsBlob^.EncodedBlob,

 ADDRESS OF pClaimsBlob^.ulBlobSizeinBytes);

return;

353 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.11.2.6 FillClaimsSetMetadata

Procedure FillClaimsSetMetadata (

 pByteArray : BYTE ARRAY,

 ulBufferSizeinBytes : ULONG,

 pClaimsSetMetadata : ADDRESS OF CLAIMS_SET_METADATA)

This procedure is a helper routine that fills a CLAIMS_SET_METADATA structure using a given

byte buffer after compressing the buffer based on its size.

pByteArray: A byte array of size ulBufferSizeinBytes that is used to fill in the
CLAIMS_SET_METADATA structure.

ulBufferSizeinBytes: The size of the byte array.

pClaimsSetMetadata: The address of a CLAIMS_SET_METADATA structure, whose data is
generated from the pByteArray parameter.

Return Values: This procedure does not return a value.

Logical Processing:

CompressionFormat : CLAIMS_COMPRESSION_FORMAT;

CompressionFormat := COMPRESSION_FORMAT_LZNT1;

pClaimsSetMetadata^ := null;

if (ulBufferSizeinBytes = 0)

 return;

endif

pClaimsSetMetadata^.ulUncompressedClaimsSetSize := ulBufferSizeinBytes;

if (ulBufferSizeinBytes < 0x100)

 pClaimsSetMetadata^.ulClaimsSetSize := ulBufferSizeinBytes;

 pClaimsSetMetadata^.ClaimsSet := pByteArray;

 return;

endif

pClaimsSetMetadata^.usCompressionFormat := CompressionFormat;

RunCompressionAlgorithm(

 TRUE,

 CompressionFormat,

 pByteArray,

 ulBufferSizeinBytes,

 ADDRESS OF pClaimsSetMetadata^.ClaimsSet,

 ADDRESS OF pClaimsSetMetadata^.ulClaimsSetSize)

return;

3.1.1.11.2.7 RunCompressionAlgorithm

procedure RunCompressionAlgorithm (

 compressData : boolean,

 compressionFormat : CLAIMS_COMPRESSION_FORMAT,

 pInByteArray : BYTE ARRAY,

354 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ulBufferSizeinBytes : ULONG,

 pOutByteArray : ADDRESS OF BYTE ARRAY,

 pOutByteArraySizeinBytes : ADDRESS OF ULONG)

This is a helper method that implements the compression and decompression algorithms listed in
section 2.2.18.4. This method compresses or decompresses the given input data using the algorithm

identified by the input compressionFormat parameter. If the compression algorithm encounters an
error during its operation, the output byte array is cleared.

compressData: Specifies the compression direction. If set to TRUE, this method compresses the
input data; otherwise, the method decompresses the input data.

compressionFormat: Specifies the compression or decompression algorithm.

pInByteArray: The input byte array of size ulBufferSizeinBytes that is to be compressed or
decompressed.

ulBufferSizeinBytes: The size of the input byte array.

pOutByteArray: The address of the output byte array.

pOutByteArraySizeinBytes: The address of a ULONG that will contain the size of the output byte
array.

Return Values: This procedure does not return a value.

Logical Processing:

pOutByteArray^ := null;

pOutByteArraySizeinBytes^ := null;

if (compressionFormat = COMPRESSION_FORMAT_LZNT1)

 if compressData

 pOutByteArray^ := CompressUsing_LZNT1;

 else

 pOutByteArray^ := UncompressUsing_LZNT1;

 endif

else if (compressionFormat = COMPRESSION_FORMAT_XPRESS)

 if compressData

 pOutByteArray^ := CompressUsing_XPRESS;

 else

 pOutByteArray^ := UncompressUsing_XPRESS;

 endif

else if (compressionFormat = COMPRESSION_FORMAT_XPRESS_HUFF)

 if compressData

 pOutByteArray^ := CompressUsing_XPRESS_HUFF;

 else

 pOutByteArray^ := UncompressUsing_XPRESS_HUFF;

 endif

else

 pOutByteArray^ := ADDRESS OF pInByteArray;

 pOutByteArraySizeinBytes^ := ulBufferSizeinBytes;

endif

return;

%5bMS-DTYP%5d.pdf

355 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.11.2.8 NdrEncode

procedure NdrEncode (

 pStructX : ADDRESS of struct X,

 pSerializedData : BYTE ARRAY,

 pDataLengthInBytes : ADDRESS OF ULONG)

This is a per-structure helper function that serializes a structure into an array of bytes using the

NDR Type Serialization engine, as specified in [MS-RPCE] section 2.2.6. This function returns a null
output buffer in case of errors.

pStructX: The address of a structure of some type (represented by "X") that needs to be serialized.

pSerializedData: A byte array of length pDataLengthInBytes that contains the output serialized data.

pDataLengthInBytes: The address of a ULONG that will contain the size of the output byte array.

Return Values: This procedure does not return a value.

3.1.1.11.2.9 NdrDecode

procedure NdrDecode (

 pSerializedData : BYTE ARRAY,

 dataLengthInBytes : ULONG,

 pStructX : ADDRESS of struct X)

This is a per-structure helper function that deserializes a byte array into a structure using the NDR

type deserialization engine, as specified in [MS-RPCE] section 2.2.6. This function returns a null
structure as output in case of errors.

pSerializedData: A byte array of length dataLengthInBytes that contains the input serialized data.

dataLengthInBytes: The length of the pSerializedData byte array.

pStructX: The address of a structure of some type (represented by "X") that receives the
deserialized data.

Return Values: This procedure does not return a value.

3.1.1.11.2.10 DecodeClaimsSet

procedure DecodeClaimsSet (

 pClaimsBlob : ADDRESS OF CLAIMS_BLOB,

 pClaimsSet : ADDRESS OF CLAIMS_SET)

This method decodes the given CLAIMS_BLOB structure into a CLAIMS_SET structure and

performs various validations on it. Upon successful validation, the output CLAIMS_SET structure is
filled. In the case of errors, an empty output CLAIMS_SET structure is returned.

pClaimsBlob: The address of a CLAIMS_BLOB structure that is to be decoded.

pClaimsSet: The address of a CLAIMS_SET structure that receives the decoded output.

Return Values: This procedure does not return a value.

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

356 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Logical Processing:

claimsSetMetaData : CLAIMS_SET_METADATA;

pByteArray : BYTE[];

ulBufferSizeinBytes: ULONG;

claimsSetMetaData := null;

pByteArray := null;

ulBufferSizeinBytes := 0;

pClaimsSet^ := null;

if (pClaimsBlob^.ulBlobSizeinBytes = 0)

 return;

endif

NdrDecode (

 pClaimsBlob^.EncodedBlob,

 pClaimsBlob^.ulBlobSizeinBytes,

 ADDRESS OF claimsSetMetadata);

if (claimsSetMetadata.ulClaimsSetSize = 0)

 return;

endif

RunCompressionAlgorithm(

 FALSE,

 claimsSetMetadata.usCompressionFormat,

 claimsSetMetadata.ClaimsSet,

 claimsSetMetadata.ulClaimsSetSize,

 ADDRESS OF pByteArray,

 ADDRESS OF ulBufferSizeinBytes);

if (ulBufferSizeinBytes = 0 ||

 ulBufferSizeinBytes ≠ claimsSetMetadata.ulUncompressedClaimsSetSize)

 return;

endif

NdrDecode (pByteArray, ulBufferSizeinBytes, pClaimsSet);

return;

3.1.1.11.2.11 TransformClaimsOnTrustTraversal

procedure TransformClaimsOnTrustTraversal (

 pInputClaimsBlob : ADDRESS OF CLAIMS_BLOB,

 trustName : unicodestring,

 fIncomingDirection : boolean,

 pOutputClaimsBlob : ADDRESS OF CLAIMS_BLOB) : ULONG

This procedure defines the logical processing for transforming a set of claims on trust traversal. This

procedure uses the Claim data structure defined in [MS-CTA] section 2.1.2 and invokes the Claims
Transformation Algorithm ([MS-CTA] section 2.1) for intermediate processing.

pInputClaimsBlob: The address of the CLAIMS_BLOB structure that contains the set of claims that
are to be transformed.

trustName: The name of the trust that is being traversed.

%5bMS-CTA%5d.pdf
%5bMS-CTA%5d.pdf

357 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the claims
originated outside the trust boundary and are entering the trust boundary; otherwise, this

parameter MUST be set to FALSE.

pOutputClaimsBlob: The address of a CLAIMS_BLOB structure that receives the transformed claims

output.

Return Values: This procedure returns zero upon success or a nonzero result upon failure.

Logical Processing:

trustDsName : DSName;

claimsTransformRulesXml : string;

claimsTransformRulesText : string;

status : ULONG;

CTAInputClaims : Claim[];

CTAOutputClaims : Claim[];

outputClaimsUnfiltered : CLAIMS_ARRAY;

systemContainer : DSName;

trustDsName := null;

claimsTransformRulesXml := null;

claimsTransformRulesText := null;

status := 0;

CTAInputClaims := null;

CTAOutputClaims := null;

outputClaimsUnfiltered := null;

systemContainer := DescendantObject(DefaultNC(), "CN=System");

for (x in children systemContainer)

 if (x!name = trustName)

 trustDsName := x

 break;

 endif

endfor

if (trustDsName = null)

 return ERROR_INVALID_PARAMETER;

endif

status := GetClaimsTransformationRulesXml(trustDsName, fIncomingDirection,

 ADDRESS OF claimsTransformRulesXml)

if (status ≠ 0 and

 status ≠ ERROR_DS_OBJ_NOT_FOUND)

 pOutputClaimsBlob^ := 0;

 return 0;

endif

if (status = ERROR_DS_OBJ_NOT_FOUND)

 if (fIncomingDirection = FALSE)

 pOutputClaimsBlob^ := pInputClaimsBlob^;

 else

 pOutputClaimsBlob^ := 0;

 endif

endif

if (claimsTransformRulesXml ≠ null)

 status := GetTransformationRulesText (claimsTransformRulesXml,

 ADDRESS OF claimsTransformRulesText);

 if (status ≠ 0)

358 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 pOutputClaimsBlob^ := 0;

 endif

endif

GetCTAClaims (pInputClaimsBlob^, ADDRESS OF CTAInputClaims);

// Invoke the Claims Transformation Algorithm

// specified generally in [MS-CTA] section 2 and more specifically

// in [MS-CTA] section 2.1.3 with the following parameter mappings:

// CTAInputClaims --> InputClaims

// claimsTransformRulesText --> InputTransformationRulesText

// ADDRESS OF CTAOutputClaims --> OutputClaims

// status --> ReturnValue

if (status ≠ 0)

 pOutputClaimsBlob^ := 0;

 return 0;

endif

CollapseMultiValuedClaims (CTAOutputClaims, ADDRESS OF outputClaimsUnfiltered);

FilterAndPackOutputClaims(outputClaimsUnfiltered,

 fIncomingDirection, pOutputClaimsBlob);

return 0;

3.1.1.11.2.12 GetClaimsTransformationRulesXml

procedure GetClaimsTransformationRulesXml (

 trustDSName : DSNAME,

 fIncomingDirection : boolean,

 pClaimsTransformRulesXml : unicodestring) : ULONG

This is a helper procedure that retrieves the transformation rules (section 3.1.1.11.1.5) stored in the

directory for a given trust and claims-traversal direction.

trustDSName: The DSName of the trust.

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the caller
requires transformation rules for claims that are entering the trust boundary; otherwise, this
parameter MUST be set to FALSE.

pClaimsTransformRulesXML: The XML-encapsulated rules-text that is read directly from the
directory.

Return Values: This procedure returns zero when it successfully returns the claims transformation
rules. It returns ERROR_DS_OBJ_NOT_FOUND when no claims transformation rules are configured
for the given input. Other errors are returned for all other conditions including invalid input
parameters and the condition wherein the claims transformation is incorrectly configured.

Logical Processing:

claimsTransformObject : DSNAME;

status : ULONG;

allowedClaimsTransformPolicies : DSName;

359 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pClaimsTransformRulesXml^ := NULL;

claimsTransformationObject := NULL;

status := 0;

allowedClaimsTransformPolicies := DescendantObject(ConfigNC(),

 "CN=Claims Transformation Policies, CN=Claims Configuration, CN=Services");

if (trustDSName = null)

 return ERROR_INVALID_PARAMETER;

endif

if (fIncomingDirection)

 claimsTransformObject :=

 trustDSName!msDS-IngressClaimsTransformationPolicy;

else

 claimsTransformObject :=

 trustDSName!msDS-EgressClaimsTransformationPolicy;

endif

if (claimsTransformObject = NULL)

 return ERROR_DS_OBJ_NOT_FOUND;

endif

if (claimsTransformObject not in children allowedClaimsTransformPolicies)

 return ERROR_INVALID_PARAMETER;

endif

pClaimsTransformRulesXml^ :=

 ClaimsTransformationObject!msDS-TransformationRules;

return 0;

3.1.1.11.2.13 GetTransformationRulesText

procedure GetTransformationRulesText (

 claimsTransformRulesXML : unicodestring,

 claimsTransformRulesText : unicodestring) : ULONG

This procedure validates the given string for the expected XML encapsulation of claims

transformation rules stored in the directory and retrieves the plain-text claims transformation rules
from the XML. For explanatory purposes, this procedure uses an XPath 1.0 [XPATH] query to extract
the plain-text rules from the XML.

claimsTransformRulesXML: The XML-encapsulated rules text that was read from the directory.

claimsTransformRulesText: The rules text that is extracted from the given input.

Return Values: This procedure returns zero upon success along with the claims transformation
rules text; otherwise, this procedure returns an error.

Logical Processing:

1. Set claimsTransformRulesText to NULL

2. If claimsTransformRulesXML is NULL, return zero.

3. If claimsTransformRulesXML is not well-formed XML (see [XMLSCHEMA1])

 return an error.

4. Extract the rules from the first Rules node by executing the following

 XPath query over claimsTransformRulesXML:

http://go.microsoft.com/fwlink/?LinkId=90611

360 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 /ClaimsTransformationPolicy/Rules[@version="1"][1][text()]

5. If the XPATH query in step 4 cannot be executed, return an error.

6. Set claimsTransformRulesText equal to the results of the XPATH query in

 step 4 and return success.

3.1.1.11.2.14 GetCTAClaims

procedure GetCTAClaims (

 inputClaimsBlob : CLAIMS_BLOB,

 outputCTAClaims : set of Claim)

This is a helper procedure that converts a CLAIMS_BLOB into a set of Claim structures, which are

defined in [MS-CTA] section 2.1.2.

inputClaimsBlob: The input CLAIMS_BLOB structure.

outputCTAClaims: The set of output CTA Claim structures.

Return Values: This procedure does not return a value.

Logical Processing:

inputClaimsSet : CLAIMS_SET;

valueType : string;

inputClaimsSet := null;

outputCTAClaims := null;

DecodeClaimsSet(ADDRESS OF inputClaimsBlob, ADDRESS OF inputClaimsSet);

for each array in inputClaimsSet.ClaimsArrays

 for each claim in array.ClaimEntries

 if (claim.Type = CLAIM_TYPE_INT64)

 valueType := "int64";

 else if (claim.Type = CLAIM_TYPE_UINT64)

 valueType := "uint64";

 else if (claim.Type = CLAIM_TYPE_BOOLEAN)

 valueType := "boolean";

 else if (claim.Type = CLAIM_TYPE_STRING)

 valueType := "string";

 endif

 for each value in claim.Values

 outputCTAClaims.Add(TYPE = claim.Id, VALUE_TYPE = valueType,

 VALUE = value);

 endfor

 endfor

endfor

3.1.1.11.2.15 CollapseMultiValuedClaims

procedure CollapseMultiValuedClaims (

 cTAClaims : set of Claim,

 pOutputClaims : ADDRESS OF CLAIMS_ARRAY) : ULONG

%5bMS-CTA%5d.pdf

361 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

This is a helper procedure that converts a given set of Claim structures (defined in [MS-CTA] section

2.1.2) into a CLAIMS_ARRAY structure. This procedure also aggregates more than one single-

valued claim of the same type, removes any duplicates from each aggregate, and collapses the
remaining single-valued claims in that aggregate into one multi-valued claim.

cTAClaims: The input set of Claim structures.

pOutputClaims: The address of the output CLAIMS_ARRAY structure.

Return Values: This procedure returns zero upon success or an error otherwise.

Logical Processing:

tempClaim : CLAIM_ENTRY;

valueType : USHORT;

tempClaim := null;

valueType := 0;

for each claim1 in cTAClaims

 if (claim1.VALUE_TYPE = "int64")

 valueType := CLAIM_TYPE_INT64;

 else if (claim1.VALUE_TYPE = "uint64")

 valueType := CLAIM_TYPE_UINT64;

 else if (claim1.VALUE_TYPE = "boolean")

 valueType := CLAIM_TYPE_BOOLEAN;

 else if (claim1.VALUE_TYPE = "string")

 valueType := CLAIM_TYPE_STRING;

 endif

 tempClaim := (Id = claim1.TYPE, Type = valueType,

 ValueCount = count of claim1.VALUE, Values = claim1.VALUE);

 for each claim2 in (cTAClaims – claim1)

 if (claim1.TYPE = claim2.TYPE and

 claim1.VALUE_TYPE = claim2.VALUE_TYPE and

 (claim2.VALUE_TYPE NOT in tempClaim.Values))

 tempClaim.Values := tempClaim.Values + Claim2.VALUE;

 endif

 endfor

 pOutputClaims^.claims := pOutputClaims^.claims + tempClaim;

endfor

return 0;

3.1.1.11.2.16 FilterAndPackOutputClaims

procedure FilterAndPackOutputClaims (

 inputClaims : CLAIMS_ARRAY,

 fIncomingDirection : boolean,

 pOutputClaimsBlob : ADDRESS OF CLAIMS_BLOB) : ULONG

This is a helper procedure that filters and packs the given CLAIMS_ARRAY structure using the

Claims Dictionary (3.1.1.11.1.2) in the forest. Filtering is done only for claims in the incoming
direction as indicated by the fIncomingDirection parameter, and involves the removal of any claims
whose types are not defined in the dictionary. Packing of claims involves sorting them into

%5bMS-CTA%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

362 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

CLAIMS_ARRAY structures based on the claims source type as listed in the Claims Dictionary, and
packing them into a PCLAIMS_BLOB structure.

inputClaims: The input CLAIMS_ARRAY structure that is to be filtered.

fIncomingDirection: The direction of traversal. This parameter MUST be set to TRUE if the claims

originated outside the trust boundary and are entering the trust boundary; otherwise, this
parameter MUST be set to FALSE.

pOutputClaimsBlob: The address of a CLAIMS_BLOB structure for the output.

Return Values: This procedure returns zero upon success or an error otherwise.

Logical Processing:

status : ULONG;

claimConfigContainer : DSName

outputClaimsSet : CLAIMS_SET;

fMatchFound : boolean;

claimType : CLAIMS_SOURCE_TYPE;

status := 0;

claimConfigContainer := DescendantObject(ConfigNC(),

 "CN=Claim Types, CN=Claims Configuration, CN=Services");

fMatchFound := FALSE;

claimType := null;

pOutputClaimsBlob^ := null;

outputClaimsSet := null;

if (status ≠ 0)

 return status;

endif

outputClaimsSet.ClaimsArrays[0].ClaimsSourceType := CLAIMS_SOURCE_TYPE_AD;

outputClaimsSet.ClaimsArrays[1].ClaimsSourceType :=

 CLAIMS_SOURCE_TYPE_CERTIFICATE;

for each claim in inputClaims.ClaimEntries

 fMatchFound := FALSE;

 for (each claimdef in children claimConfigContainer &&

 NOT fMatchFound && ValidateClaimDefinition(claimdef))

 if (claimdef!msDS-ClaimSourceType = "Certificate")

 claimType := CLAIMS_SOURCE_TYPE_CERTIFICATE;

 else if (claimdef!msDS-ClaimSourceType = "AD")

 claimType := CLAIMS_SOURCE_TYPE_AD;

 else if (claimdef!msDS-ClaimSourceType = "TransformPolicy")

 claimType := CLAIMS_SOURCE_TYPE_AD;

 endif

 if (claimdef!Enabled AND

 claim.Id = claimdef!name AND

 claim.Type = claimdef!msDS-ClaimValueType)

 // Filter and sort claims in the incoming direction

 if (fIncomingDirection)

 if (claimType = CLAIMS_SOURCE_TYPE_CERTIFICATE)

 outputClaimsSet.ClaimsArrays[1].ClaimEntries =

363 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 outputClaimsSet.ClaimsArrays[1].ClaimEntries +

 claim;

 else if (claimType = CLAIMS_SOURCE_TYPE_AD)

 outputClaimsSet.ClaimsArrays[0].ClaimEntries =

 outputClaimsSet.ClaimsArrays[0].ClaimEntries +

 claim;

 endif

 endif

 fMatchFound := TRUE;

 endif

 endfor

 // Sort claims on the outgoing direction

 if (!fIncomingDirection)

 if (claimType = CLAIMS_SOURCE_TYPE_CERTIFICATE)

 outputClaimsSet.ClaimsArrays[1].ClaimEntries =

 outputClaimsSet.ClaimsArrays[1].ClaimEntries + claim;

 else

 outputClaimsSet.ClaimsArrays[0].ClaimEntries =

 outputClaimsSet.ClaimsArrays[0].ClaimEntries + claim;

 endif

 endif

endfor

EncodeClaimsSet(ADDRESS OF outputClaimsSet, pOutputClaimsBlob);

return 0;

3.1.1.11.2.17 ValidateClaimDefinition

procedure ValidateClaimDefinition (

 claimDefinition : DSNAME) : Boolean

This is a helper procedure that validates a claim definition defined in the Claims Dictionary (section

3.1.1.11.1.2) in the forest. The validation ensures that the correct attribute values are populated in
the claim definition.

claimDefinition: The DSNAME of the claim definition in the Claims Dictionary that needs to be
validated.

Return Values: This procedure returns TRUE if the claim definition is valid and FALSE otherwise.

Logical Processing:

status : Boolean;

status := FALSE;

if (claimDefinition = null ||

 claimDefinition!name = null ||

 NOT claimDefinition!Enabled ||

 claimDefinition!msDS-ClaimValueType = null)

 return status;

endif

if (claimDefinition!msDS-ClaimSourceType = "Certificate" &&

 claimDefinition!msDS-ClaimAttributeSource = null &&

364 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 claimDefinition!msDS-ClaimSource ≠ null &&

 claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_BOOLEAN)

 status := TRUE;

else if (claimDefinition!msDS-ClaimSourceType = "AD" &&

 claimDefinition!msDS-ClaimAttributeSource ≠ null &&

 claimDefinition!msDs-ClaimAttributeSource.Syntax in

 {2.5.5.1, 2.5.5.2, 2.2.5.8, 2.5.5.9, 2.5.5.12, 2.5.5.15, 2.5.5.16} &&

 claimDefinition!msDS-ClaimValueType ≠ null)

 if (claimDefinition!msDs-ClaimAttributeSource.Syntax in

 {2.5.5.1, 2.5.5.12, 2.5.5.15} &&

 claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_STRING)

 status := TRUE;

 endif

 if (claimDefinition!msDs-ClaimAttributeSource.Syntax = 2.5.5.2 &&

 claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_UINT64)

 status := TRUE;

 endif

 if (claimDefinition!msDs-ClaimAttributeSource.Syntax in {2.5.5.9, 2.5.5.16} &&

 claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_INT64)

 status := TRUE;

 endif

 if (claimDefinition!msDs-ClaimAttributeSource.Syntax = 2.5.5.8 &&

 claimDefinition!msDS-ClaimValueType = CLAIM_TYPE_BOOLEAN)

 status := TRUE;

 endif

else if (claimDefinition!msDS-ClaimSourceType = "TransformPolicy" &&

 claimDefinition!msDS-ClaimAttributeSource = null &&

 claimDefinition!msDS-ClaimSource = null)

 status := TRUE;

else if (claimDefinition!msDS-ClaimSourceType = "Constructed" &&

 claimDefinition!msDS-ClaimAttributeSource = null &&

 claimDefinition!msDS-ClaimSource = null)

 status := TRUE;

endif

return status;

3.1.1.11.2.18 GetAuthSiloClaim

procedure GetAuthSiloClaim (

 pADPrincipal : ADDRESS OF DSNAME) : CLAIM_ENTRY

This is a helper procedure that computes the value of the ad://ext/AuthenticationSilo constructed

claim type for the specified principal.

pADPrincipal: The Active Directory principal to return an AuthenticationSilo claim for, if applicable.

365 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: This procedure returns a CLAIM_ENTRY (section 2.2.18.5) if the specified
principal is a member of an authentication silo; otherwise NULL.

Logical Processing:

claim : CLAIM_ENTRY;

parentNC : DSName

siloMember : DSName

memberOfSilo : Boolean;

assignedSilo : DSName

/*

 AuthSiloClaim is not issued until the domain

 functional level is at DS_BEHAVIOR_WIN2012R2

 or higher.

*/

parentNC := GetObjectNC(pADPrincipal)

if (parentNC!msDS-BehaviorVersion < DS_BEHAVIOR_WIN2012R2)

 return NULL

endif

/*

 Check if user is assigned to an enforced silo.

*/

assignedSilo := pADPrincipal!msDS-AssignedAuthNPolicySilo

if (assignedSilo = NULL ||

 assignedSilo!msDS-AuthNPolicySiloEnforced = FALSE)

 return NULL

endif

/*

 Check if silo is configured with the user as a member.

*/

memberOfSilo := FALSE

foreach (siloMember in assignedSilo!msDS-AuthNPolicySiloMembers)

 if (siloMember = pADPrincipal)

 memberOfSilo := TRUE

 break

 endif

endfor

if (memberOfSilo = FALSE)

 return NULL

endif

/*

 Fill in the claim details and return the claim.

*/

claim.Id := "ad://ext/AuthenticationSilo";

claim.Type := CLAIM_TYPE_STRING

claim.ValueCount := 1

claim.Values := assignedSilo.name

return claim;

366 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.12 NC Rename

NC Rename is an operation that runs on a single domain controller (DC) and changes the identity
and identity-related information of NC replicas hosted on the DC. Except where noted, these

changes are strictly local to the abstract data of the DC (that is, the changes are not replicated).
Because of this fact, NC Rename can result in multiple DCs wherein each DC hosts an NC replica of
the same NC, but each DC has different values for the abstract data relating to that NC. If such
diverging changes are performed, the protocol places no restriction on the behavior of the DCs that
hold the divergent abstract data. No mechanism in the protocol prevents such diverging changes. It
is recommended to users of the NC Rename operation that great care be taken to make such
possibly diverging changes on every DC that is affected by the operation, thereby avoiding such

divergence.

To accomplish an NC Rename, three general classes of change need to be made. First, attributes
directly associated with the name of the NC need to be modified. These attributes include such
things as the NetBIOS name and the fully qualified domain name (FQDN) of the NC. Second, objects
and attributes associated with the interdomain trusts that a domain NC is a part of need to be

modified. These objects and attributes include such things as trusted domain objects (TDOs) and

interdomain trust accounts. Third, the crossRef objects associated with the NCs need to be
modified. Additionally, some changes are made to reflect the fact that the preceding types of
changes have been completed.

NC Rename can be used to rename both domain NCs and application NCs. In the case of application
NCs, there are no interdomain trusts to update.

3.1.1.12.1 Abstract Data Types

An NC Rename operation is specified by an instance of the NCRenameDescription tuple. This section
describes that tuple, including the tuple types that are included directly or indirectly in the
NCRenameDescription tuple.

3.1.1.12.1.1 FlatName

type FlatName = A string composed of any alphanumeric characters except the quote character

(") and characters ',' and '<'.

Instances of the FlatName type exist as fields of tuples of types InterdomainTrustAccountDescription
(section 3.1.1.12.1.4), TrustedDomainObjectDescription (section 3.1.1.12.1.5), NCDescription

(section 3.1.1.12.1.6), DomainDescriptionElements (section 3.1.1.12.1.7), and
NewTrustParentElements (section 3.1.1.12.1.9).

3.1.1.12.1.2 SPNValue

type SPNValue = A string that does not contain the quote character (").

Instances of the SPNValue type exist as members of the SPNs field of the ServerDescription

(section 3.1.1.12.1.3) tuple.

3.1.1.12.1.3 ServerDescription

type ServerDescription = [

 serverGuid: GUID,

 ExistingDN: DN,

 SPNs: A set containing 1 or more SPNValue elements

367 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

]

An instance of a ServerDescription is a description of a specific object of class computer in the

directory. Instances of ServerDescription exist as members of the Servers field of a
DomainDescriptionElements tuple (section 3.1.1.12.1.7).

serverGuid: Holds the value of the objectGUID attribute on the object. The value of this field is
unique across all instances of ServerDescription.

ExistingDN: Holds the DN of the object. The value of this field is unique across all instances of
ServerDescription.

SPNs: A set of SPNValue elements (section 3.1.1.12.1.2) to be used in pre-process verification.
Successful verification requires that values in the SPNs field also exist as values of the
attribute SPN on the object. For more information, see section 3.1.1.12.1.4.

3.1.1.12.1.4 InterdomainTrustAccountDescription

type InterdomainTrustAccountDescription = [

 Guid: GUID,

 ParentDNFromDomainDN: DN,

 ExistingFlatName: FlatName

 NewFlatName: FlatName

]

An InterdomainTrustAccountDescription is a description of a specific interdomain trust account

object (see section 6.1.6.8) stored in the directory and the changes to be performed as part of the
NC Rename operation. Instances of InterdomainTrustAccountDescription exist as members of the

InterdomainTrustAccounts field of the DomainDescription tuple (section 3.1.1.12.1.8).

GUID: Holds the value of the objectGUID attribute of the object. The value of this field is unique
across all instances of InterdomainTrustAccountDescription.

ParentDNFromDomainDN: Holds the DN that, when prepended to the ExistingDN field of the
instance of the DomainDescription tuple that contains this instance of an
InterdomainTrustAccountDescription as an element of the InterdomainTrustAccounts field
(section 3.1.1.12.1.7), results in the DN of the object that is the parent of the interdomain

trust account object.

ExistingFlatName: Holds the value of the sAMAccountName attribute of the object. The value of
this field is unique across all instances of InterdomainTrustAccountDescription.

NewFlatName: Holds the value to which the sAMAccountName attribute on the object is to be
set as part of the NC Rename operation. The value of this field is unique across all instances of
InterdomainTrustAccountDescription. This value is a valid SAM account name.

3.1.1.12.1.5 TrustedDomainObjectDescription

type TrustedDomainObjectDescription = [

 Guid: GUID,

 SID: SecurityIdentifier,

 ExistingTrustPartnerDNSName: DNSAddress,

 NewTrustPartnerDNSName: DNSAddress,

 NewTrustPartnerFlatName: FlatName

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

368 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

]

A TrustedDomainObjectDescription is a description of a specific interdomain trust account object

that is stored in the directory and the changes to be performed as part of the NC Rename operation.
Instances of TrustedDomainObjectDescription exist as members of the TrustedDomainObjects
field of a DomainDescriptionElements tuple (section 3.1.1.12.1.7).

Guid: Holds the value of the objectGUID attribute on the object. The value of this field is unique
across all instances of TrustedDomainObjectDescription.

SID: Holds the value of the objectSid attribute of the object. The value of this field is unique

across all instances of TrustedDomainObjectDescription.

ExistingTrustPartnerDNSName: Holds the value of the trustPartner attribute on the object.
The value of this field is unique across all instances of TrustedDomainObjectDescription.

NewTrustPartnerDNSName: Holds the value that the trustPartner attribute of the object is to

be set to as part of the NC Rename operation. The value of this field is unique across all
instances of TrustedDomainObjectDescription.

NewTrustPartnerFlatName: Holds the value that the flatName attribute of the object is to be

set to as part of the NC Rename operation. The value of this field is unique across all
instances of TrustedDomainObjectDescription. This value is a valid value for the flatName
attribute.

3.1.1.12.1.6 NCDescription

type NCDescription = [

 Guid: GUID,

 ExistingDN: DN,

 NewDN: DN,

 CrossRefGuid: GUID,

 NewDNSName: DNSAddress,

 ExistingFlatName: FlatName

]

An NCDescription is a description of a specific NC replica and the changes to be performed as part of

the NC Rename operation. Instances of NCDescription exist as members of the AppNCs field of an
NCRenameDescription tuple (section 3.1.1.12.1.11), indirectly as the RootDomain field of an
NCRenameDescription tuple, and indirectly as members of the TrustTreeRootDomains and
TrustTreeNonRootDomains fields of an NCRenameDescription tuple.

Two objects in the directory are referenced by this tuple: the NCRoot and the NCCrossRef, as

defined below.

Guid: Holds the value of the objectGUID attribute of the object that is the root of the NC replica.
The value of this field is unique across all instances of NCDescription. This object is referred to

here as the "NCRoot object".

ExistingDN: Holds the DN of the NCRoot object. The value of this field is unique across all
instances of NCDescription.

NewDN: Holds the value that the DN of the NCRoot object should be set to as part of the NC

Rename operation. The value of this field is unique across all instances of NCDescription.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

369 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

CrossRefGuid: Holds the value of the objectGUID attribute on the object of class crossRef in the
Partitions container whose nCName attribute holds the value of the ExistingDN field. The

value of this field is unique across all instances of NCDescription. This object is referred to
here as the "NCCrossRef object".

NewDNSName: Holds the value that the dnsRoot attribute of the NCCrossRef object is to be
set to as part of the NC Rename operation. The value of this field is unique across all
instances of NCDescription.

ExistingFlatName: Holds the value that the nETBIOSName attribute of the NCCrossRef object
is to be set to as part of the NC Rename operation. The value of this field is unique across all
instances of NCDescription. This field is a valid NetBIOS name.

3.1.1.12.1.7 DomainDescriptionElements

type DomainDescriptionElements = [

 ExistingDNSName: DNSAddress,

 NewFlatName: FlatName,

 TrustedDomainObjects: a set containing 1 or more

 TrustedDomainObjectDescription tuples,

 InterdomainTrustAccounts: A set containing 1 or more

 InterdomainTrustAccountDescription tuples,

 CountTrusts: A 32-bit integer that contains the number of elements in

 TrustedDomainObjects,

 Servers: a set containing 1 or more ServerDescription tuples

]

A DomainDescriptionElements tuple is a partial description of a specific domain NC and the changes

to be performed as part of the NC Rename operation. Tuples of this type are never encountered.
This type exists as a partial definition of the DomainDescription tuple (section 3.1.1.12.1.8). Since a
DomainDescriptionElements tuple is always part of a DomainDescription tuple, and since a
DomainDescription tuple implies an NCDescription tuple, an NCRoot and an NCCrossRef object are

used in the following description.

ExistingDNSName: Holds the value of the dnsRoot attribute of the crossRef object. The value of
this field is unique across all instances of DomainDescription.

NewFlatName: Holds the value to which the nETBIOSName attribute of the NCCrossRef object
is to be set. The value of this field is unique across all instances of DomainDescription.

TrustedDomainObjects: Holds a set of TrustedDomainObjectDescription tuples (section
3.1.1.12.1.5). The value of this field is unique across all instances of DomainDescription. The

TrustedDomainObjectDescription tuples are also unique across all instances of
TrustedDomainObjectDescription. Each element of this field is a
TrustedDomainObjectDescription tuple describing an object that exists in the domain NC
replica described by the DomainDescription tuple. This field contains one
TrustedDomainObjectDescription for each trusted domain object (TDO) that is present in the
NC replica.

InterDomainTrustAccounts: Holds a set of InterDomainTrustAccountDescription tuples
(section 3.1.1.12.1.4). The value of this field is unique across all instances of
DomainDescription. The InterDomainTrustAccountDescription tuples are also unique across all
instances of InterDomainTrustAccountDescription. Each element of this field is an
InterDomainTrustAccountDescription tuple describing an object that exists in the domain NC
replica described by the DomainDescription tuple. This field contains one

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

370 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

InterDomainTrustAccountDescription for each interdomain trust account object that is present
in the NC replica.

CountTrusts: Contains the number of elements in the set for the TrustedDomainObjects field.

Servers: Holds a set of ServerDescription tuples (section 3.1.1.12.1.3). The value of this field is

unique across all instances of DomainDescription. The ServerDescription tuples are also
unique across all instances of ServerDescription. Each element of this field is a
ServerDescription tuple describing an object that exists in the domain NC replica described by
the DomainDescription tuple. This field contains one ServerDescription for each DC that holds
a full replica of the domain NC.

3.1.1.12.1.8 DomainDescription

A DomainDescription is a tuple containing the union of all elements of an NCDescription tuple
(section 3.1.1.12.1.6) and a DomainDescriptionElements tuple (section 3.1.1.12.1.7). It describes a
domain NC in the forest and the changes to be performed as part of the NC Rename operation.
Because a DomainDescription is a superset of an NCDescription, wherever a tuple of type

NCDescription is specified in a production rule (see 3.1.1.12.2.1), a tuple of type DomainDescription
can be used. A similar statement can be made for a tuple of type DomainDescriptionElements.

When used as an NCDescription, the elements from DomainDescriptionElements are ignored, and
vice versa.

3.1.1.12.1.9 NewTrustParentElements

type NewTrustParentFlatName = [

 NewTrustParentFlatName: FlatName

]

A NewTrustParentElements tuple is a partial description of a specific domain NC that is to have a

new trust parent as the result of an NC Rename operation, in addition to the changes to be
performed as part of the NC Rename operation. Tuples of this type are never encountered. This type

exists as a partial definition of the DomainWithNewTrustParentDescription tuple (section
3.1.1.12.1.10).

NewTrustParentFlatName: Holds the value that the trustParent attribute of the crossRef object
is to be set to as part of the NC Rename operation.

3.1.1.12.1.10 DomainWithNewTrustParentDescription

A DomainWithNewTrustParentDescription is a tuple containing the union of all elements of a
DomainDescription tuple (section 3.1.1.12.1.8) and a NewTrustParentElements tuple (section
3.1.1.12.1.9). It describes a domain NC replica that is to have a new trust parent as a result of an
NC Rename operation, in addition to the changes to be performed as part of the NC Rename
operation. Because a DomainWithNewTrustParentDescription tuple is a superset of a
DomainDescription tuple, wherever a tuple of type DomainDescription is specified in a production

rule, a tuple of type DomainWithNewTrustParentDescription can be used. When used as a

DomainDescription, the elements from NewTrustParentElements are ignored. Similarly, because a
DomainWithNewTrustParentDescription tuple is a superset of an NCDescription tuple (section
3.1.1.12.1.6), wherever a tuple of type NCDescription is specified in a production rule, a tuple of
type DomainWithNewTrustParentDescription can be used. When used as an NCDescription, the
elements from NewTrustParentElements and DomainDescriptionElements (section 3.1.1.12.1.7) are
ignored.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

371 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.12.1.11 NCRenameDescription

type NCRenameDescription = [

 NewReplicationEpoch: 32-bit integer,

 ConfigurationNCGuid: GUID,

 AppNCs: A set containing 0 or more NCDescription tuples,

 RootDomain: DomainDescription,

 TrustTreeRootDomains: A set containing 0 or more

 DomainDescription tuples,

 TrustTreeNonRootDomains: A set containing 0 or more

 DomainWithNewTrustParentDescription tuples,

 AllDomains: A set containing references to DomainDescription tuples

 and DomainWithNewTrustParentDescription tuples. This set has at least

 one element.

 DomainsCount: A 32-bit integer that contains the number of elements in

 the AllDomains field.

 AllNCs: A set containing references to NCDescription tuples,

 DomainDescription tuples, and DomainWithNewTrustParentDescription

 tuples. This set has at least one element.

]

An NCRenameDescription tuple describes an NC Rename operation. Tuples of this type are provided
as input to an NC Rename operation.

NewReplicationEpoch: Holds the value to which the msDS-ReplicationEpoch attribute of the
NTDS Settings object (section 6.1.1.2.2.1.2.1.1) of the DC performing the NC Rename
operation is to be set. It is also used in preprocessing verification.

ConfigurationNCGuid: Holds the value of the objectGUID attribute of the root object of the
config NC.

AppNCs: Holds a set of NCDescription tuples (section 3.1.1.12.1.6). This field contains one

element for each non-domain NC replica in the forest. These elements describe the initial state
of all such non-domain NC replicas and the changes to be performed as part of the NC

Rename operation.

RootDomain: Holds a DomainDescription tuple (section 3.1.1.12.1.8) describing the root domain
of the forest. This field describes the initial state of the root domain NC replica and the
changes to be performed as part of the NC Rename operation.

TrustTreeRootDomains: A set of DomainDescription tuples. This field contains one element for

each domain NC replica that is to have no values of the trustParent attribute on the
NCCrossRef object. These elements describe the initial state of all such domain NC replicas
and the changes to be performed as part of the NC Rename operation.

TrustTreeNonRootDomains: A set of DomainWithNewTrustParentDescription tuples. This field
contains one element for each domain NC replica that is to have a new value for the
trustParent attribute on the NCCrossRef object. These elements describe the initial state of
all such domain NC replicas and the changes to be performed as part of the NC Rename

operation.

AllDomains: Holds a set containing references to the elements in the union of the sets in the
TrustTreeRootDomains field, the TrustTreeNonRootDomains field, and a set containing
the value of the RootDomain field. This set holds references to both DomainDescription
tuples and DomainWithNewTrustParentDescription tuples (section 3.1.1.12.1.10). At a
minimum, this set contains one reference to a DomainDescription tuple, which is the

%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

372 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

DomainDescription in the RootDomain field. This field contains one reference to an object
that describes each domain NC in the forest.

Note This field contains only references to tuples, not instances of the tuple, in order to
formally preserve the uniqueness constraints of various tuple fields. Although it contains only

references, it can be used in a production rule exactly as if it contained the instances
themselves.

DomainsCount: Holds the number of elements in the AllDomains field.

AllNCs: Holds a set containing references to the elements in the union of the sets in the AppNCs
field, the TrustTreeRootDomains field, the TrustTreeNonRootDomains field, and a set
containing the value of the RootDomain field. At a minimum, this set contains a reference to
one DomainDescription tuple, which is the DomainDescription in the RootDomain field.

Note This field contains only references to tuples, not instances of the tuple, in order to
formally preserve the uniqueness constraints of various tuple fields. Although it contains only
references, it can be used in a production rule exactly as if it contained the instances

themselves.

3.1.1.12.2 Encoding/Decoding Rules

This section defines a notation for encoding and decoding a tuple to and from a string. An
expression that describes the specific encoding/decoding for an NCRenameDescription tuple (section
3.1.1.12.1.11) is defined.

3.1.1.12.2.1 EBNF-M

Extended Backus-Naur Form (EBNF) [ISO/IEC-14977] is a notation used for expressing context-free
grammars, describing all possible legal statements that match an expression. The syntax used to

describe the encoding and decoding of an NCRenameDescription tuple to and from a string is a
modified version of EBNF, hereafter called Extended Backus-Naur Form--Modified (EBNF-M). EBNF-M
is defined here and is used to express an instance (or set of equivalent instances) of a legal

statement based on an instance of a tuple. The elements defined in the following sections have been
added to EBNF to produce EBNF-M.

3.1.1.12.2.1.1 Tuples as Parameters to Production Rules

An EBNF-M production rule can be defined such that it has access to one or more instances of
tuples. The syntax for this is as follows.

productionRule(parameterList) = __expression__

Where productionRule and __expression__ are standard EBNF syntax and parameterList is a

comma-delimited list of one or more tuple types. These parameters are accessible to
__expression__, which can make use of them as described in the following sections.

3.1.1.12.2.1.2 Parameter Fields as Terminal Values

In EBNF, an __expression__ is a substitution rule that is made up of a set of operators and either
terminal values or non-terminals. In EBNF-M, parameter fields are terminals. When a parameter
field is used as a terminal, the meaning is to use the value of the field as a terminal value. The

following is an example of this usage.

Given:

http://go.microsoft.com/fwlink/?LinkId=112362

373 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

type tuple1 = [field1: string]

tuple1 Instance1 = [field1= "b"]

productionRule1(tuple1) = "a" , tuple1.field1, "c";

Then:

productionRule1(Instance1) == "abc"

3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values

Tuple fields are not limited to strings. In the case where a field is not a string, a specification for
how to express the value as a string is necessary. The syntax for this is as follows.

<type> = Text description of how to format the type as a string

The following is an example of this usage.

Given:

type tuple2 = [field1: integer]

tuple2 Instance2 = [field1 = 2]

<integer> = A base 10 integer with no leading zeros

productionRule2(tuple2) = "1" , tuple2.field1, "3";

Then:

productionRule2(Instance2) == "123"

3.1.1.12.2.1.4 Parameter Fields as Iterators

In EBNF, the standard way to define that a production rule results in one or more repetitions of
another production rule is the following.

productionRuleX = productionRuleX | (productionRuleX , productionRuleY)

When describing how an instance of a tuple results in a legal expression, it is often necessary to

constrain this basic repetition to invoke a production rule once for every element in a set stored as a
field in a tuple. EBNF-M uses "foreach", a specialized non-terminal, to describe this. The syntax for
this keyword is the following.

foreach(typeA in typeB.field) productionRule(typeA)

typeB.field must be a set of elements of type typeA. This non-terminal is equivalent to the following.

productionRule(typeB.field.elementX),

 productionRule(typeB.field.elementY),

...

374 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 productionRule(typeB.field.elementZ);

Where the set in typeB.field comprises all typeB.field.element*. No ordering of element* is implied

or required. Since the elements of a set are not ordered, this non-terminal results in more than one
legal statement when typeB.field contains more than one element.

The following is an example of this usage.

Given:

type tuple3 = [field1: set of integers]

tuple3 Instance3 = [field1 = {1, 2}]

<integer> = A base 10 integer with no leading zeros

productionRule3(tuple1) =

 foreach(integer in tuple3.field1) productionRule4(string);

productionRule4(integer) = "<", integer, ">";

Then:

productionRule3(Instance3) == "<1><2>"

Or:

productionRule3(Instance3) == "<2><1>"

3.1.1.12.2.1.5 Reversed Production Rules

EBNF-M production rules can be reversed. That is, given a production rule with a tuple as a
parameter and the result of the production rule, the instance of the tuple that produced the result

can be recovered. The syntax for this is as follows.

Reversed::productionRule(result) = tuple

The following is an example of this usage.

Given:

type tuple4 = [field1: stringVal; field2: integer]

<stringVal> = A string containing no quotation marks.

<integer> = A base 10 integer with no leading zeros

productionRule5(tuple4) =

 "The string is \"", tuple4.field1, "\"",

 " and the integer is ", tuple4.field2, ".";

Then:

Reversed::productionRule5("The string is \"a\" and the integer is 1) =

 [field1 = "a", field2 = 1]

375 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Note that not all production rules can be deterministically reversed. The following is an example of

such a production rule.

Given:

type tuple5 = [field1: string; field2: string]

productionRule6(tuple5) = tuple5.field1, tuple5.field2;

Then:

Reversed::productionRule("a,b") = Error

The error occurs because any of the following tuples produce the result.

[field1: "a,b"; field2: ""]

[field1: "a,"; field2: "b"]

[field1: "a"; field2: ",b"]

[field1: ""; field2: "a,b"]

Note that not all reversible production rules can be reversed in a context-free manner, although

they can still be reversed. The following is an example of such a production rule.

Given:

type tuple6 = [field1: alphabetic caracter;

 field2:alphabetic character;

 field3:alphabetic character]

field1 of all instances of tuple6 is unique across all instances of tuple6

type tuple7 = [field4: a set of tuple6]

productionRule7(tuple7) =

 "[",

 foreach(tuple6 in tuple7.field4) productionRule8(tuple6),

 "]",

 "[",

 foreach(tuple6 in tuple7.field4) productionRule9(tuple6),

 "]";

productionRule8(tuple6) = "(", tuple6.field1, "," tuple6.field2, ")";

productionRule9(tuple6) = "(", tuple6.field1, "," tuple6.field3, ")";

Then:

Reversed::productionRule("[(a,b)(d,e)][(d,f),(a,c)") =

 [field4: {(field1:a, field2:b, field3:c),(field1:d,field2:e,field3:f)]

Reversal is possible in this case because the use of tuple6.field1 is unique across all instances of

tuple6 and is used in both productionRule8 and productionRule9, allowing field1 to be used as a
"key" to combine the results from reversing productionRule8 and productionRule9.

376 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.12.2.2 CodedNCRenameDescription

This section defines an EBNF-M expression that is used to encode an NCRenameDescription tuple
into a string and to decode strings to NCRenameDescription tuples. The given expression is a

reversible EBNF-M expression.

3.1.1.12.2.2.1 Expression

CodedNCRenameDescription(NCRenameDescription):=

 ExpressionPrefix,

 Tests(NCRenameDescription),

 Flatten(NCRenameDescription),

 Rebuild(NCRenameDescription),

 CrossRefs(NCRenameDescription),

 Trusts(NCRenameDescription),

 ReplicationEpoch(NCRenameDescription),

 ExpressionSuffix;

ExpressionPrefix =

 ExpressionPrefixFragment01,

 WhiteSpace,

 ExpressionPrefixFragment02,

 WhiteSpace;

ExpressionPrefixFragment01 =

 "<?xml version =\"1.0\"?>";

ExpressionPrefixFragment02 =

 "<NTDSAscript opType=\"renamedomain\">"

ExpressionSuffix:=

 "</NTDSAscript>";

3.1.1.12.2.2.2 Common

<GUID> = Expressed in the form of a dashed-string UUID defined in ([RFC4122] section 3).

<SecurityIdentifier> = Expressed in the form of a Security Descriptor

 Definition Language (SDDL) SID string. The SID structure and the format

 of SDDL SID strings are defined in [MS-DTYP] sections 2.4.2 and 2.5.1.

<DNSAddress> = Expressed in the form defined in [RFC1035] section 2.3.1.

<DN> = Expressed in the form defined in [RFC2253] section 3.

<32-bit integer> = Expressed as a base 10 integer with no leading zeros.

ErrorReportNoEnd =

 ErrorMessage,

 Space,

 ReturnValue,

 ErrorReportNoEndFragment01,

 WhiteSpace;

ErrorReportNoEndFragment01 =

 ">";

ErrorReport =

 ErrorMessage,

 Space,

 ReturnValue,

377 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ErrorReportFragment01,

 WhiteSpace;

ErrorReportFragment01 =

 "/>";

ErrorMessage =

 Quote,

 Message,

 Quote;

Quote =

 "\"";

Message =

 A string composed strictly of spaces and alphanumerics.

ReturnValue =

 ReturnValueFragment01,

 Code;

ReturnValueFragment01 =

 "returnCode=";

Code =

 Quote,

 Number,

 Quote;

Number =

 A 32-bit integer.

Space =

 " ";

Comma =

 ",";

SystemRDN =

 ",CN=System,";

WhiteSpace =

 "" |

 WhiteSpaceChar |

 (WhiteSpaceChar, WhiteSpace);

WhiteSpaceChar =

 A space, a newline, or a tab.

3.1.1.12.2.2.3 Tests

Tests(NCRenameDescription) =

 TestsBegin,

 TestConfigurationNC(NCRenameDescription),

 TestReplicationEpoch(NCRenameDescription),

 TestAppNCs(NCRenameDescription),

 TestDomains(NCRenameDescription),

378 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 TestPartitionCounts(NCRenameDescription),

 TestsEnd;

TestsBegin =

 TestsBeginFragment01,

 Message,

 TestsBeginFragment02,

 Message,

 TestsBeginFragment03,

 WhiteSpace;

TestsBeginFragment01 =

 "<action name=\"";

TestsBeginFragment02 =

 "\" stage=\"";

TestsBeginFragment03 =

 "\">";

TestsEnd =

 TestsEndFragment01,

 WhiteSpace;

TestsEndFragment01 =

 "</action>";

3.1.1.12.2.2.3.1 TestConfigurationNC

TestConfigurationNC(NCRenameDescription) =

 TestConfigurationNCFragment01,

 NCRenameDescription.ConfigurationNCGUID,

 TestConfigurationNCFragment02,

 ErrorReport;

TestConfigurationNCFragment01 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

TestConfigurationNCFragment02 =

 "\" type=\"base\" ";

3.1.1.12.2.2.3.2 TestReplicationEpoch

TestReplicationEpoch(NCRenameDescription) =

 TestReplicationEpochFragment01,

 ErrorReportNoEnd,

 TestReplicationEpochFragment02,

 TestReplicationEpochFragment03,

 NCRenameDescription.NewReplicationEpoch,

 TestReplicationEpochFragment04,

 ErrorReport,

 TestReplicationEpochFragment05,

 WhiteSpace;

TestReplicationEpochFragment01 =

 "<predicate test=\"not\" ";

379 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TestReplicationEpochFragment02 =

 "<predicate test=\"compare\" path=\"$LocalNTDSSettingsObjectDN$\"";

TestReplicationEpochFragment03 =

 " attribute=\"msDS-ReplicationEpoch\" attrval=\"";

TestReplicationEpochFragment04 =

 "\" defaultvalue=\"0\" type=\"base\" ";

TestReplicationEpochFragment05 =

 "</predicate>";

3.1.1.12.2.2.3.3 TestAppNCs

TestAppNCs(NCRenameDescription) =

 foreach(NCDescription in NCRenameDescription.AppNCs)

 TestAppNCCrossRef(NCDescription);

TestAppNCCrossRef(NCDescription) =

 TestAppNCCrossRefExists(NCDescription),

 TestAppNCCrossRefNCNameUnchanged(NCDescription);

TestAppNCCrossRefExists(NCDescription) =

 TestAppNCCrossRefExistsFragment01,

 NCDescription.CrossRefGuid,

 TestAppNCCrossRefExistsFragment02,

 ErrorReport;

TestAppNCCrossRefExistsFragment01 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

TestAppNCCrossRefExistsFragment02 =

 "\" type=\"base\" ";

TestAppNCCrossRefNCNameUnchanged(NCDescription) =

 TestAppNCCrossRefNCNameUnchangedFragment01,

 NCDescription.CrossRefGuid,

 TestAppNCCrossRefNCNameUnchangedFragment02,

 NCDescription.ExistingDN,

 TestAppNCCrossRefNCNameUnchangedFragment03,

 ErrorReport;

TestAppNCCrossRefNCNameUnchangedFragment01 =

 "<predicate test=\"compare\" path=\"guid:";

TestAppNCCrossRefNCNameUnchangedFragment02 =

 "\" attribute=\"NcName\" attrval=\"";

TestAppNCCrossRefNCNameUnchangedFragment03 = "\" defaultvalue=\"0\" type=\"base\" ";

3.1.1.12.2.2.3.4 TestDomains

TestDomains(NCRenameDescription) =

 foreach(DomainDescription in NCRenameDescription.AllDomains)

 TestDomainDescription(NCRenameDescription, DomainDescription);

380 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TestDomainDescription(NCRenameDescription, DomainDescription) =

 TestCrossRef(NCRenameDescription, DomainDescription),

 TestServersInstantiated(DomainDescription),

 TestTrustedDomainObjectDescriptions(DomainDescription),

 TestTrustCount(DomainDescription),

 TestInterdomainTrustAccountDescriptions(DomainDescription),

 TestDomainDescriptionFragment01,

 WhiteSpace,

 TestDomainDescriptionFragment02,

 WhiteSpace,

 TestDomainDescriptionFragment03,

 WhiteSpace,

 TestServerDescriptions(DomainDescription);

TestDomainDescriptionFragment01 =

 "</action>";

TestDomainDescriptionFragment02 =

 "</then>";

TestDomainDescriptionFragment03 =

 "</condition>";

3.1.1.12.2.2.3.4.1 TestCrossRef

TestCrossRef(NCRenameDescription, DomainDescription) =

 TestCrossRefExists(DomainDescription),

 TestCrossRefNCNameUnchanged(DomainDescription),

 TestCrossRefNewDNUnused(NCRenameDescription, DomainDescription);

TestCrossRefExists(DomainDescription) =

 CrossRefExistsFragment01,

 DomainDescription.CrossRefGuid,

 CrossRefExistsFragment02,

 ErrorReport;

CrossRefExistsFragment01 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

CrossRefExistsFragment02 =

 "\" type=\"base\" ";

TestCrossRefNCNameUnchanged(DomainDescription) =

 TestCrossRefNCNameUnchangedFragment01,

 DomainDescription.CrossRefGuid,

 TestCrossRefNCNameUnchangedFragment02,

 DomainDescription.ExistingDN,

 TestCrossRefNCNameUnchangedFragment03,

 ErrorReport;

TestCrossRefNCNameUnchangedFragment01 =

 "<predicate test=\"compare\" path=\"guid:";

TestCrossRefNCNameUnchangedFragment02 =

 "\" attribute=\"NcName\" attrval=\"";

381 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TestCrossRefNCNameUnchangedFragment03 =

 "\" defaultvalue=\"0\" type=\"base\" ";

TestCrossRefNewDNUnused(NCRenameDescription, DomainDescription) =

 TestCrossRefNewDNUnusedFragment01,

 ErrorReportNoEnd,

 TestCrossRefNewDNUnusedFragment02,

 DomainDescription.NewFlatName,

 TestCrossRefNewDNUnusedFragment03,

 NCRenameDescription.RootDomain.ExistingDN,

 TestCrossRefNewDNUnusedFragment04,

 ErrorReport,

 TestCrossRefNewDNUnusedFragment05,

 WhiteSpace;

TestCrossRefNewDNUnusedFragment01 =

 "<predicate test=\"not\" ";

TestCrossRefNewDNUnusedFragment02 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN=";

TestCrossRefNewDNUnusedFragment03 =

 ",CN=Partitions,CN=Configuration,";

TestCrossRefNewDNUnusedFragment04 =

 "\" type=\"base\" ";

TestCrossRefNewDNUnusedFragment05 =

 "</predicate>";

3.1.1.12.2.2.3.4.2 TestServersInstantiated

TestServersInstantiated(DomainDescription) =

 foreach(ServerDescription in DomainDescription.Servers)

 TestServerInstantiated(ServerDescription);

TestServerInstantiated(ServerDescription)

 TestServerInstantiatedFragment01,

 WhiteSpace,

 TestServerInstantiatedFragment02,

 WhiteSpace,

 TestServerInstantiatedFragment03,

 ServerDescription.serverGuid,

 TestServerInstantiatedFragment04,

 WhiteSpace,

 TestServerInstantiatedFragment05,

 WhiteSpace,

 TestServerInstantiatedFragment06,

 WhiteSpace,

 TestServerInstantiatedFragment07,

 WhiteSpace;

TestServerInstantiatedFragment01 =

 "<condition>";

TestServerInstantiatedFragment02 =

 "<if>";

382 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TestServerInstantiatedFragment03 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

TestServerInstantiatedFragment04 =

 "\" type=\"base\"/>";

TestServerInstantiatedFragment05 =

 "</if>";

TestServerInstantiatedFragment06 =

 "<then>";

TestServerInstantiatedFragment07 =

 "<action>";

3.1.1.12.2.2.3.4.3 TestTrustCount

TestTrustCount(DomainDescription) =

 TestTrustCountFragment01,

 DomainDescription.ExistingDN,

 TestTrustCountFragment02,

 DomainDescription.CountTrusts,

 TestTrustCountFragment03,

 ErrorReport;

TestTrustCountFragment01 =

 "<predicate test=\"cardinality\" type=\"subTree\" path=\"CN=System,";

TestTrustCountFragment02 =

 "\" filter=\"COUNT_TRUSTS_FILTER\" cardinality=\"";

TestTrustCountFragment03 =

 "\" ";

3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions

TestTrustedDomainObjectDescriptions(DomainDescription) =

 foreach(TrustedDomainObjectDescription in

 DomainDescription.TrustedDomainObjects)

 TestTrustedDomainObjectDescription(DomainDescription,

 TrustedDomainObjectDescription);

TestTrustedDomainObjectDescription(DomainDescription, TrustedDomainObjectDescription) =

 TestTrustedDomainObjectDescriptionFragment01,

 TrustedDomainObjectDescription.Guid,

 TestTrustedDomainObjectDescriptionFragment02,

 ErrorReport,

 TestTrustedDomainObjectDescriptionFragment03,

 TrustedDomainObjectDescription.Guid,

 TestTrustedDomainObjectDescriptionFragment04,

 TrustedDomainObjectDescription.SID,

 TestTrustedDomainObjectDescriptionFragment05,

 ErrorReport,

 TestTrustedDomainObjectDescriptionFragment06,

 ErrorReportNoEnd,

383 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 TestTrustedDomainObjectDescriptionFragment07,

 TrustedDomainObjectDescription.NewTrustPartnerDNSName,

 SystemRDN,

 DomainDescription.ExistingDN,

 TestTrustedDomainObjectDescriptionFragment08,

 ErrorReport,

 TestTrustedDomainObjectDescriptionFragment09,

 WhiteSpace;

TestTrustedDomainObjectDescriptionFragment01 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

TestTrustedDomainObjectDescriptionFragment02 =

 "\" type=\"base\" ";

TestTrustedDomainObjectDescriptionFragment03 =

 "<predicate test=\"compare\" path=\"guid:";

TestTrustedDomainObjectDescriptionFragment04 =

 "\" attribute=\"securityIdentifier\" attrval=\"";

TestTrustedDomainObjectDescriptionFragment05 =

 "\" defaultvalue=\"0\" type=\"base\" ";

TestTrustedDomainObjectDescriptionFragment06 =

 "<predicate test=\"not\" ";

TestTrustedDomainObjectDescriptionFragment07 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN=";

TestTrustedDomainObjectDescriptionFragment08 =

 "\" type=\"base\" ";

TestTrustedDomainObjectDescriptionFragment09 =

 "</predicate>";

3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions

TestInterdomainTrustAccountDescriptions(DomainDescription) =

 foreach(InterdomainTrustAccountDescription in

 DomainDescription.InterdomainTrustAccounts)

 TestInterdomainTrustAccountDescription(DomainDescription,

 InterdomainTrustAccountDescription);

TestInterdomainTrustAccountDescription(DomainDescription,

 InterdomainTrustAccountDescription) =

 TestInterdomainTrustAccountDescriptionFragment01,

 InterdomainTrustAccountDescription.Guid,

 TestInterdomainTrustAccountDescriptionFragment02,

 ErrorReport,

 TestInterdomainTrustAccountDescriptionFragment03,

 InterdomainTrustAccountDescription.Guid,

 TestInterdomainTrustAccountDescriptionFragment04,

 InterdomainTrustAccountDescription.ExistingFlatName,

 TestInterdomainTrustAccountDescriptionFragment05,

 ErrorReport,

 TestInterdomainTrustAccountDescriptionFragment06,

384 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ErrorReportNoEnd,

 TestInterdomainTrustAccountDescriptionFragment07,

 InterdomainTrustAccountDescription.NewFlatName,

 Comma,

 InterdomainTrustAccountDescription.ParentDNFromDomainDN,

 Comma,

 DomainDescription.NewDN,

 TestInterdomainTrustAccountDescriptionFragment08,

 ErrorReport,

 TestInterdomainTrustAccountDescriptionFragment09,

 WhiteSpace;

TestInterdomainTrustAccountDescriptionFragment01 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

TestInterdomainTrustAccountDescriptionFragment02 =

 "\" type=\"base\" ";

TestInterdomainTrustAccountDescriptionFragment03 =

 "<predicate test=\"compare\" path=\"guid:";

TestInterdomainTrustAccountDescriptionFragment04 =

 "\" attribute=\"samAccountName\" attrval=\"";

TestInterdomainTrustAccountDescriptionFragment05 =

 "\" defaultvalue=\"0\" type=\"base\" ";

TestInterdomainTrustAccountDescriptionFragment06 =

 "<predicate test=\"not\" ";

TestInterdomainTrustAccountDescriptionFragment07 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"CN=";

TestInterdomainTrustAccountDescriptionFragment08 =

 "\" type=\"base\" ";

TestInterdomainTrustAccountDescriptionFragment09 =

 "</predicate>";

3.1.1.12.2.2.3.4.6 TestServerDescriptions

TestServerDescriptions(DomainDescription) =

 foreach (ServerDescription in DomainDescription.Servers)

 TestServerSPNs(ServerDescription)

TestServerSPNs(ServerDescription) =

 TestServerSPNsFragment01,

 WhiteSpace,

 TestServerSPNsFragment02,

 WhiteSpace,

 TestServerSPNsFragment03,

 ServerDescription.serverGuid,

 TestServerSPNsFragment04,

 WhiteSpace,

 TestServerSPNsFragment05,

 WhiteSpace,

 TestServerSPNsFragment06,

385 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 WhiteSpace,

 TestServerSPNsFragment07,

 WhiteSpace,

 TestSPNs(ServerDescription),

 TestServerSPNsFragment08,

 WhiteSpace,

 TestServerSPNsFragment09,

 WhiteSpace,

 TestServerSPNsFragment10,

 WhiteSpace;

TestServerSPNsFragment01 =

 "<condition>";

TestServerSPNsFragment02 =

 "<if>";

TestServerSPNsFragment03 =

 "<predicate test=\"instantiated\" instancetype=\"read\" path=\"guid:";

TestServerSPNsFragment04 =

 "\" type=\"base\"/>";

TestServerSPNsFragment05 =

 "</if>";

TestServerSPNsFragment06 =

 "<then>";

TestServerSPNsFragment07 =

 "<action>";

TestServerSPNsFragment08 =

 "</action>";

TestServerSPNsFragment09 =

 "</then>";

TestServerSPNsFragment10 =

 "</condition>";

TestSPNs(ServerDescription) =

 foreach(SPNValue in ServerDescription.SPNs)

 TestSPN(SPNValue, ServerDescription);

TestSPN(SPNValue, ServerDescription) =

 TestSPNFragment01,

 ServerDescription.ExistingDN,

 TestSPNFragment02,

 SPNValue,

 TestSPNFragment03,

 ErrorReport;

TestSPNFragment01 =

 "<predicate test=\"compare\" path=\"";

TestSPNFragment02 =

386 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 "\" attribute=\"servicePrincipalName\" attrval=\"";

TestSPNFragment03 =

 "\" defaultvalue=\"0\" type=\"base\" ";

3.1.1.12.2.2.3.5 TestPartitionCounts

TestPartitionCounts(NCRenameDescription) =

 TestPartitionCountsFragment01,

 NCRenameDescription.RootDomain.ExistingDN,

 TestPartitionCountsFragment02,

 NCRenameDescription.DomainsCount,

 TestPartitionCountsFragment03,

 ErrorReport;

TestPartitionCountsFragment01 =

 "<predicate test=\"cardinality\" type=\"subTree\" path=\"CN=Partitons,CN=Configuration,";

TestPartitionCountsFragment02 =

 "\" filter=\"COUNT_DOMAINS_FILTER\" cardinality=\"";

TestPartitionCountsFragment03 =

 "\" ";

3.1.1.12.2.2.4 Flatten

Flatten(NCRenameDescription) =

 FlattenFragment01,

 Message,

 FlattenFragment02,

 WhiteSpace,

 FlattenNCs(NCRenameDescription),

 FlattenFragment03,

 WhiteSpace;

FlattenFragment01 =

 "<action name=\"";

FlattenFragment02 =

 "\">";

FlattenFragment03 =

 "</action>";

FlattenNCs(NCRenameDescription) =

 foreach(NCDescription in NCRenameDescription.AllNCs)

 FlattenNC(NCDescription);

FlattenNC(NCDescription) =

 FlattenNCFragment01,

 NCDescription.ExistingDN,

 FlattenNCFragment02,

 WhiteSpace,

 FlattenNCFragment03,

 NCDescription.Guid,

387 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 FlattenNCFragment04,

 WhiteSpace,

 FlattenNCFragment05,

 WhiteSpace;

FlattenNCFragment01 =

 "<move path=\"dn:";

FlattenNCFragment02 =

 "\" metadata=\"0\">";

FlattenNCFragment03 =

 "<to path=\"dn:DC=";

FlattenNCFragment04 =

 ",DC=INVALID\"/>";

FlattenNCFragment05 =

 "</move>";

3.1.1.12.2.2.5 Rebuild

Rebuild(NCRenameDescription) =

 RebuildFragment01,

 Message,

 RebuildFragment02,

 WhiteSpace,

 RebuildNCs(NCRenameDescription),

 RebuildFragment03,

 WhiteSpace;

RebuildFragment01 =

 "<action name=\"";

RebuildFragment02 =

 "\">";

RebuildFragment03 =

 "</action>";

RebuildNCs(NCRenameDescription) =

 foreach(NCDescription in NCRenameDescription.AllNCs)

 RebuildNC(NCDescription);

RebuildNC(NCDescription) =

 RebuildNCFragment01,

 NCDescription.Guid,

 RebuildNCFragment02,

 WhiteSpace,

 RebuildNCFragment03,

 NCDescription.NewDN,

 RebuildNCFragment04,

 WhiteSpace,

 RebuildNCFragment05,

 WhiteSpace;

388 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RebuildNCFragment01 =

 "<move path=\"dn:DC=";

RebuildNCFragment02 =

 ",DC=INVALID\" metadata=\"0\">";

RebuildNCFragment03 =

 "<to path=\"dn:";

RebuildNCFragment04 =

 "\"/>";

RebuildNCFragment05 =

 "</move>";

3.1.1.12.2.2.6 Trusts

Trusts(NCRenameDescription) =

 TrustsFragment01,

 Message,

 TrustsFragment02,

 WhiteSpace,

 DomainsTrusts(NCRenameDescription),

 TrustsFragment03,

 WhiteSpace;

TrustsFragment01 =

 "<action name=\"";

TrustsFragment02 =

 "\">";

TrustsFragment03 =

 "</action>";

DomainsTrusts(NCRenameDescription) =

 foreach(DomainDescription in NCRenameDescription.AllDomains)

 DomainTrust(DomainDescription);

DomainTrust(DomainDescription)

 DomainTrustFragment01,

 WhiteSpace,

 DomainTrustFragment02,

 WhiteSpace,

 DomainTrustFragment03,

 DomainDescription.Guid,

 DomainTrustFragment04,

 WhiteSpace,

 DomainTrustFragment05,

 WhiteSpace,

 DomainTrustFragment06,

 WhiteSpace,

 DomainTrustFragment07,

 WhiteSpace,

 DomainTrustSpecifications(DomainDescription),

 DomainTrustAccounts(DomainDescription),

 DomainTrustFragment08,

389 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 WhiteSpace,

 DomainTrustFragment09,

 WhiteSpace,

 DomainTrustFragment10,

 WhiteSpace;

DomainTrustFragment01 =

 "<condition>";

DomainTrustFragment02 =

 "<if>";

DomainTrustFragment03 =

 "<predicate test=\"instantiated\" instancetype=\"write\" path=\"guid:";

DomainTrustFragment04 =

 "\" type=\"base\"/>";

DomainTrustFragment05 =

 "</if>";

DomainTrustFragment06 =

 "<then>";

DomainTrustFragment07 =

 "<action>";

DomainTrustFragment08 =

 "</action>";

DomainTrustFragment09 =

 "</then>";

DomainTrustFragment10 =

 "</condition>";

3.1.1.12.2.2.6.1 DomainTrustSpecifications

DomainTrustSpecifications(DomainDescription) =

 foreach(TrustedDomainObject in DomainDescription.TrustedDomainObjects)

 DomainTrustSpecification(DomainDescription, TrustedDomainObject);

DomainTrustSpecification(DomainDescription, TrustedDomainObject) =

 DomainTrustSpecificationFragment01,

 TrustedDomainObject.ExistingTrustPartnerDNSName,

 SystemRDN,

 DomainDescription.NewDN,

 DomainTrustSpecificationFragment02,

 WhiteSpace,

 DomainTrustSpecificationFragment03,

 TrustedDomainObject.NewTrustPartnerFlatName,

 DomainTrustSpecificationFragment04,

 WhiteSpace,

 DomainTrustSpecificationFragment05,

 TrustedDomainObject.NewTrustPartnerDNSName,

 DomainTrustSpecificationFragment06,

 WhiteSpace,

390 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 DomainTrustSpecificationFragment07,

 WhiteSpace,

 DomainTrustSpecificationFragment08,

 TrustedDomainObject.ExistingTrustPartnerDNSName,

 SystemRDN,

 DomainDescription.NewDN,

 DomainTrustSpecificationFragment09,

 WhiteSpace

 DomainTrustSpecificationFragment10,

 TrustedDomainObject.NewTrustPartnerDNSName,

 SystemRDN,

 DomainDescription.NewDN,

 DomainTrustSpecificationFragment11,

 WhiteSpace,

 DomainTrustSpecificationFragment12,

 WhiteSpace;

DomainTrustSpecificationFragment01 =

 "<update path=\"dn:CN=";

DomainTrustSpecificationFragment02 =

 "\" metadata=\"1\">";

DomainTrustSpecificationFragment03 =

 "<flatName op=\"replace\">";

DomainTrustSpecificationFragment04 =

 "</flatName>";

DomainTrustSpecificationFragment05 =

 "<trustPartner op=\"replace\">";

DomainTrustSpecificationFragment06 =

 "</trustPartner>";

DomainTrustSpecificationFragment07 =

 "</update>";

DomainTrustSpecificationFragment08 =

 "<move path=\"dn:CN=";

DomainTrustSpecificationFragment09 =

 "\" metadata=\"1\">";

DomainTrustSpecificationFragment10 =

 "<to path=\"dn:CN=";

DomainTrustSpecificationFragment11 =

 "\"/>";

DomainTrustSpecificationFragment12 =

 "</move>";

3.1.1.12.2.2.6.2 DomainTrustAccounts

DomainTrustAccounts(DomainDescription) =

 foreach (InterdomainTrustAccountDescription in

391 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 DomainDescription.InterdomainTrustAccounts)

 InterdomainTrustAccount(DomainDescription,

 InterdomainTrustAccountDescription);

InterdomainTrustAccount(DomainDescription,

 InterdomainTrustAccountDescription) =

 InterdomainTrustAccountFragment01,

 InterdomainTrustAccountDescription.ExistingFlatName,

 Comma,

 InterdomainTrustAccountDescription.ParentDNFromDomainDN,

 Comma,

 DomainDescription.NewDN,

 InterdomainTrustAccountFragment02,

 WhiteSpace,

 InterdomainTrustAccountFragment03,

 InterdomainTrustAccountDescription.NewFlatName,

 InterdomainTrustAccountFragment04,

 WhiteSpace,

 InterdomainTrustAccountFragment05,

 WhiteSpace,

 InterdomainTrustAccountFragment06,

 InterdomainTrustAccountDescription.ExistingFlatName,

 Comma,

 InterdomainTrustAccountDescription.ParentDNFromDomainDN,

 Comma,

 DomainDescription.NewDN,

 InterdomainTrustAccountFragment07,

 WhiteSpace,

 InterdomainTrustAccountFragment08,

 InterdomainTrustAccountDescription.NewFlatName,

 Comma,

 InterdomainTrustAccountDescription.ParentDNFromDomainDN,

 Comma,

 DomainDescription.NewDN,

 InterdomainTrustAccountFragment09,

 WhiteSpace,

 InterdomainTrustAccountFragment10,

 WhiteSpace;

InterdomainTrustAccountFragment01 =

 "<update path=\"dn:CN=";

InterdomainTrustAccountFragment02 =

 "\" metadata=\"1\">";

InterdomainTrustAccountFragment03 =

 "<samAccountName op=\"replace\">";

InterdomainTrustAccountFragment04 =

 "</samAccountName>";

InterdomainTrustAccountFragment05 =

 "</update>";

InterdomainTrustAccountFragment06 =

 "<move path=\"dn:CN=";

InterdomainTrustAccountFragment07 =

 "\" metadata=\"1\">";

392 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

InterdomainTrustAccountFragment08 =

 "<to path=\"dn:CN=";

InterdomainTrustAccountFragment09 =

 "\"/>";

InterdomainTrustAccountFragment10 =

 "</move>";

3.1.1.12.2.2.7 CrossRefs

CrossRefs(NCRenameDescription) =

 CrossRefsFragment01,

 Message,

 CrossRefsFragment02,

 WhiteSpace,

 ConfigurationCrossRef(NCRenameDescription),

 SchemaCrossRef(NCRenameDescription),

 NCRenameDescriptionRootCrossRef(NCRenameDescription),

 TrustTreeRootDomainCrossRefs(NCRenameDescription),

 TrustTreeNonRootDomainCrossRefs(NCRenameDescription),

 AppNCsCrossRefs(NCRenameDescription),

 CrossRefsFragment03,

 WhiteSpace;

CrossRefsFragment01 =

 "<action name=\"";

CrossRefsFragment02 =

 "\">";

CrossRefsFragment03 =

 "</action>";

3.1.1.12.2.2.7.1 ConfigurationCrossRef

ConfigurationCrossRef(NCRenameDescription) =

 ConfigurationCrossRefFragment01,

 NCRenameDescription.RootDomain.NewDN,

 ConfigurationCrossRefFragment02,

 WhiteSpace,

 ConfigurationCrossRefFragment03,

 NCRenameDescription.RootDomain.NewDNSName,

 ConfigurationCrossRefFragment04,

 WhiteSpace,

 ConfigurationCrossRefFragment05,

 WhiteSpace;

ConfigurationCrossRefFragment01 =

 "<update path=\"dn:CN=Enterprise Configuration,CN=Partitions,CN=Configuration,";

ConfigurationCrossRefFragment02 =

 "\" metadata=\"1\">";

ConfigurationCrossRefFragment03 =

393 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 "<DnsRoot op=\"replace\">";

ConfigurationCrossRefFragment04 =

 "</DnsRoot>";

ConfigurationCrossRefFragment05 =

 "</update>";

3.1.1.12.2.2.7.2 SchemaCrossRef

SchemaCrossRef(NCRenameDescription) =

 SchemaCrossRefFragment01,

 NCRenameDescription.RootDomain.NewDN,

 SchemaCrossRefFragment02,

 WhiteSpace,

 SchemaCrossRefFragment03,

 NCRenameDescription.RootDomain.NewDNSName,

 SchemaCrossRefFragment04,

 WhiteSpace,

 SchemaCrossRefFragment05,

 WhiteSpace;

SchemaCrossRefFragment01 =

 "<update path=\"dn:CN=Enterprise Schema,CN=Partitions,CN=Configuration,";

SchemaCrossRefFragment02 =

 "\" metadata=\"1\">";

SchemaCrossRefFragment03 =

 "<DnsRoot op=\"replace\">";

SchemaCrossRefFragment04 =

 "</DnsRoot>";

SchemaCrossRefFragment05 =

 "</update>";

3.1.1.12.2.2.7.3 AppNCsCrossRefs

AppNCsCrossRefs(NCRenameDescription) =

 foreach(NCDescription in NCRenameDescription.AppNCs)

 AppNCCrossRef(NCRenameDescription, NCDescription);

AppNCCrossRef(NCRenameDescription, NCDescription) =

 AppNCCrossRefFragment01,

 NCDescription.ExistingFlatname,

 AppNCCrossRefFragment02,

 NCRenameDescription.RootDomain.NewDN,

 AppNCCrossRefFragment03,

 WhiteSpace,

 AppNCCrossRefFragment04,

 NCDescription.NewDNSName,

 AppNCCrossRefFragment05,

 WhiteSpace,

 AppNCCrossRefFragment06,

 WhiteSpace;

394 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

AppNCCrossRefFragment01 =

 "<update path=\"dn:CN=";

AppNCCrossRefFragment02 =

 ",CN=Partitions,CN=Configuration,";

AppNCCrossRefFragment03 =

 "\" metadata=\"0\">";

AppNCCrossRefFragment04 =

 "<DnsRoot op=\"replace\">";

AppNCCrossRefFragment05 =

 "</DnsRoot>";

AppNCCrossRefFragment06 =

 "</update>";

3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef

NCRenameDescriptionRootCrossRef(NCRenameDescription) =

 NCRenameDescriptionRootCrossRefFragment01,

 NCRenameDescription.RootDomain.ExistingFlatName,

 NCRenameDescriptionRootCrossRefFragment02,

 NCRenameDescription.RootDomain.NewDN,

 NCRenameDescriptionRootCrossRefFragment03,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment04,

 NCRenameDescription.RootDomain.NewDNSName,

 NCRenameDescriptionRootCrossRefFragment05,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment06,

 NCRenameDescription.RootDomain.ExistingDNSName,

 NCRenameDescriptionRootCrossRefFragment07,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment08,

 NCRenameDescription.RootDomain.NewFlatName,

 NCRenameDescriptionRootCrossRefFragment09,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment10,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment11,

 NCRenameDescription.RootDomain.ExistingFlatName,

 NCRenameDescriptionRootCrossRefFragment12,

 NCRenameDescription.RootDomain.NewDN,

 NCRenameDescriptionRootCrossRefFragment13,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment14,

 NCRenameDescription.RootDomain.NewFlatName,

 NCRenameDescriptionRootCrossRefFragment15,

 NCRenameDescription.RootDomain.NewDN,

 NCRenameDescriptionRootCrossRefFragment16,

 WhiteSpace,

 NCRenameDescriptionRootCrossRefFragment17,

 WhiteSpace;

395 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NCRenameDescriptionRootCrossRefFragment01 =

 "<update path=\"dn:CN=";

NCRenameDescriptionRootCrossRefFragment02 =

 ",CN=Partitions,CN=Configuration,";

NCRenameDescriptionRootCrossRefFragment03 =

 "\" metadata=\"0\">";

NCRenameDescriptionRootCrossRefFragment04 =

 "<DnsRoot op=\"replace\">";

NCRenameDescriptionRootCrossRefFragment05 =

 "</DnsRoot>";

NCRenameDescriptionRootCrossRefFragment06 =

 "<msDS-DnsRootAlias op=\"replace\">";

NCRenameDescriptionRootCrossRefFragment07 =

 "</msDS-DnsRootAlias>";

NCRenameDescriptionRootCrossRefFragment08 =

 "<NetBiosName op=\"replace\">";

NCRenameDescriptionRootCrossRefFragment09 =

 "</NetBiosName>";

NCRenameDescriptionRootCrossRefFragment10 =

 "</update>";

NCRenameDescriptionRootCrossRefFragment11 =

 "<move path=\"dn:CN=";

NCRenameDescriptionRootCrossRefFragment12 =

 ",CN=Partitions,CN=Configuration,";

NCRenameDescriptionRootCrossRefFragment13 =

 "\" metadata=\"0\">";

NCRenameDescriptionRootCrossRefFragment14 =

 "<to path=\"dn:CN=";

NCRenameDescriptionRootCrossRefFragment15 =

 ",CN=Partitions,CN=Configuration,";

NCRenameDescriptionRootCrossRefFragment16 =

 "\"/>";

NCRenameDescriptionRootCrossRefFragment17 =

 "</move>";

3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs

TrustTreeNonRootDomainCrossRefs(NCRenameDescription) =

 foreach(DomainWithNewTrustParentDescription in

 NCRenameDescription.TrustTreeNonRootDomains)

 TrustTreeNonRootDomainCrossRef(NCRenameDescription,

396 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 DomainWithNewTrustParentDescription);

TrustTreeNonRootDomainCrossRef(NCRenameDescription,

 DomainWIthNewTrustParentDescription) =

 TrustTreeNonRootDomainCrossRefFragment01,

 DomainWithNewTrustParentDescription.ExistingFlatName,

 TrustTreeNonRootDomainCrossRefFragment02,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeNonRootDomainCrossRefFragment03,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment04,

 DomainWithNewTrustParentDescription.NewDNSName,

 TrustTreeNonRootDomainCrossRefFragment05,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment06,

 DomainWithNewTrustParentDescription.NewFlatName,

 TrustTreeNonRootDomainCrossRefFragment07,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment08,

 DomainWithNewTrustParentDescription.NewTrustParentFlatName,

 TrustTreeNonRootDomainCrossRefFragment09,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeNonRootDomainCrossRefFragment10,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment11,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment12,

 DomainWithNewTrustParentDescription.ExistingDNSName,

 TrustTreeNonRootDomainCrossRefFragment13,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment14,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment15,

 DomainWithNewTrustParentDescription.ExistingFlatName,

 TrustTreeNonRootDomainCrossRefFragment02,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeNonRootDomainCrossRefFragment16,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment17,

 DomainWithNewTrustParentDescription.NewFlatName,

 TrustTreeNonRootDomainCrossRefFragment02,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeNonRootDomainCrossRefFragment18,

 WhiteSpace,

 TrustTreeNonRootDomainCrossRefFragment19,

 WhiteSpace;

TrustTreeNonRootDomainCrossRefFragment01 =

 "<update path=\"dn:CN=";

TrustTreeNonRootDomainCrossRefFragment02 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeNonRootDomainCrossRefFragment03 =

 "\" metadata=\"1\">";

TrustTreeNonRootDomainCrossRefFragment04 =

 "<DnsRoot op=\"replace\">";

397 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

TrustTreeNonRootDomainCrossRefFragment05 =

 "</DnsRoot>";

TrustTreeNonRootDomainCrossRefFragment06 =

 "<NetBiosName op=\"replace\">";

TrustTreeNonRootDomainCrossRefFragment07 =

 "</NetBiosName>";

TrustTreeNonRootDomainCrossRefFragment08 =

 "<TrustParent op=\"replace\">CN=";

TrustTreeNonRootDomainCrossRefFragment09 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeNonRootDomainCrossRefFragment10 =

 "</TrustParent>";

TrustTreeNonRootDomainCrossRefFragment11 =

 "<RootTrust op=\"delete\"></RootTrust>";

TrustTreeNonRootDomainCrossRefFragment12 =

 "<msDS-DnsRootAlias op=\"replace\">";

TrustTreeNonRootDomainCrossRefFragment13 =

 "</msDS-DnsRootAlias>";

TrustTreeNonRootDomainCrossRefFragment14 =

 "</update>";

TrustTreeNonRootDomainCrossRefFragment15 =

 "<move path=\"dn:CN=";

TrustTreeNonRootDomainCrossRefFragment16 =

 "\" metadata=\"0\">";

TrustTreeNonRootDomainCrossRefFragment17 =

 "<to path=\"dn:CN=";

TrustTreeNonRootDomainCrossRefFragment18 =

 "\"/>";

TrustTreeNonRootDomainCrossRefFragment19 =

 "</move>";

3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs

TrustTreeRootDomainCrossRefs(NCRenameDescription) =

 foreach (TrustTreeRootDomainDescription in

 NCRenameDescription.TrustTreeRootDomains)

 TrustTreeRootDomainCrossRef(NCRenameDescription,

 TrustTreeRootDomainDescription);

TrustTreeRootDomainCrossRef(NCRenameDescription, TrustTreeRootDomainDescription) =

 TrustTreeRootDomainCrossRefFragment01,

 TrustTreeRootDomainDescription.ExistingFlatName,

 TrustTreeRootDomainCrossRefFragment02,

398 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeRootDomainCrossRefFragment03,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment04,

 TrustTreeRootDomainDescription.NewDNSName,

 TrustTreeRootDomainCrossRefFragment05,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment06,

 TrustTreeRootDomainDescription.NewFlatName,

 TrustTreeRootDomainCrossRefFragment07,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment08,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment09,

 NCRenameDescription.RootDomain.NewFlatName,

 TrustTreeRootDomainCrossRefFragment10,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeRootDomainCrossRefFragment11,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment12,

 TrustTreeRootDomainDescription.ExistingDNSName,

 TrustTreeRootDomainCrossRefFragment13,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment14,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment15,

 TrustTreeRootDomainDescription.ExistingFlatName,

 TrustTreeRootDomainCrossRefFragment16,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeRootDomainCrossRefFragment17,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment18,

 TrustTreeRootDomainDescription.NewFlatName,

 TrustTreeRootDomainCrossRefFragment19,

 NCRenameDescription.RootDomain.NewDN,

 TrustTreeRootDomainCrossRefFragment20,

 WhiteSpace,

 TrustTreeRootDomainCrossRefFragment21,

 WhiteSpace;

TrustTreeRootDomainCrossRefFragment01 =

 "<update path=\"dn:CN=";

TrustTreeRootDomainCrossRefFragment02 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeRootDomainCrossRefFragment03 =

 "\" metadata=\"1\">";

TrustTreeRootDomainCrossRefFragment04 =

 "<DnsRoot op=\"replace\">";

TrustTreeRootDomainCrossRefFragment05 =

 "</DnsRoot>";

TrustTreeRootDomainCrossRefFragment06 =

 "<NetBiosName op=\"replace\">";

TrustTreeRootDomainCrossRefFragment07 =

399 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 "</NetBiosName>";

TrustTreeRootDomainCrossRefFragment08 =

 "<TrustParent op=\"delete\"></TrustParent>";

TrustTreeRootDomainCrossRefFragment09 =

 "<RootTrust op=\"replace\">CN=";

TrustTreeRootDomainCrossRefFragment10 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeRootDomainCrossRefFragment11 =

 "</RootTrust>";

TrustTreeRootDomainCrossRefFragment12 =

 "<msDS-DnsRootAlias op=\"replace\">";

TrustTreeRootDomainCrossRefFragment13 =

 "</msDS-DnsRootAlias>";

TrustTreeRootDomainCrossRefFragment14 =

 "</update>";

TrustTreeRootDomainCrossRefFragment15 =

 "<move path=\"dn:CN=";

TrustTreeRootDomainCrossRefFragment16 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeRootDomainCrossRefFragment17 =

 "\" metadata=\"0\">";

TrustTreeRootDomainCrossRefFragment18 =

 "<to path=\"dn:CN=";

TrustTreeRootDomainCrossRefFragment19 =

 ",CN=Partitions,CN=Configuration,";

TrustTreeRootDomainCrossRefFragment20 =

 "\"/>";

TrustTreeRootDomainCrossRefFragment21 =

 "</move>";

3.1.1.12.2.2.8 ReplicationEpoch

ReplicationEpoch(NCRenameDescription) =

 ReplicationEpochFragment01,

 Message,

 ReplicationEpochFragment02,

 WhiteSpace,

 ReplicationEpochFragment03,

 WhiteSpace,

 ReplicationEpochFragment04,

 NCRenameDescription.NewReplicationEpoch,

 ReplicationEpochFragment05,

 WhiteSpace,

400 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ReplicationEpochFragment06,

 WhiteSpace,

 ReplicationEpochFragment07,

 WhiteSpace;

ReplicationEpochFragment01 =

 "<action name=\"";

ReplicationEpochFragment02 =

 "\">";

ReplicationEpochFragment03 =

 "<update path=\"$LocalNTDSSettingsObjectDN$\" metadata=\"0\">";

ReplicationEpochFragment04 =

 "<msDS-ReplicationEpoch op=\"replace\">";

ReplicationEpochFragment05 =

 "</msDS-ReplicationEpoch>";

ReplicationEpochFragment06 =

 "</update>";

ReplicationEpochFragment07 =

 "</action>";

3.1.1.12.3 Decode Operation

To process an NC Rename operation, an instance of the NCRenameDescription tuple (section
3.1.1.12.1.11) describing the operation is required and is provided by the invoker of the NC Rename
operation. The following EBNF-M operation is performed on the value.

Reversed::CodedNCRenameDescription(value) = NR

If the reverse operation returns an error (that is, the reversal does not result in a single instance of

an NCRenameDescription (see section 3.1.1.12.2.1.5)), this protocol does not restrict what changes
occur in the abstract data of the NC performing the NC Rename operation, nor what the return value

from the operation is. Such changes can be nondeterministic, and no expectation can be made by
the user of the NC Rename operation as to what the result of an operation using a malformed value
will be. In order to improve the usability of this operation, it is suggested to implementers that an
error be returned in this case.

3.1.1.12.4 Verify Conditions

Before an NC Rename operation is performed, the following conditions must be true for the abstract

data of the DC performing the rename and the NCRenameDescription tuple (section 3.1.1.12.1.11)
describing the operation, hereafter called NR.

NR.ConfigurationNCGuid is the GUID of a writable object in an NC replica hosted on this DC.

The value of the msDS-ReplicationEpoch attribute on the DC's NTDS Settings object (section

6.1.1.2.2.1.2.1.1) does not equal NR.NewReplicationEpoch.

%5bMS-ADA2%5d.pdf

401 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The number of crossRef objects that refer to domain NCs in the Partitions container (that is, the

count of domain crossrefs) equals NR.DomainsCount.

For every NCDescription AppNC in NR.AppNCs:

AppNC.CrossRefGuid is the GUID of a writable object in an NC replica hosted on this DC.

The DN of the object whose GUID is AppNC.CrossRefGuid equals AppNC.ExistingDN.

For every DomainDescription Domain in the union of NR.AllDomains:

Domain.CrossRefGuid is the GUID of a writable object in an NC replica hosted on this DC.

The value of the nCName attribute on the object whose GUID is Domain.CrossRefGuid equals

Domain.ExistingDN.

There does not exist an object in an NC replica hosted on this DC whose DN is

"CN=Domain.NewFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExistingDN".

For every ServerDescription Server in Domain.Servers:

Server.serverGuid is the GUID of a writable object in an NC replica hosted on this DC.

Every value in Server.SPNs exists as a value of the servicePrincipalName attribute on the

object whose DN is Server.ExistingDN.

For every TrustedDomainObjectDescription TrustedDomainObject in

Domain.TrustedDomainObjects:

TrustedDomainObject.Guid refers to a writable object in an NC replica hosted on this DC.

The value of the securityIdentifier attribute on the object whose GUID is

TrustedDomainObject.Guid equals TrustedDomainObject.SID.

There does not exist an object whose DN is

"CN=TrustedDomainObject.NewTrustPartnerDNSName".

For every InterdomainTrustAccountDescription InterdomainTrustAccount in

Domain.InterdomainTrustAccounts:

InterdomainTrustAccount.Guid refers to a writable object in an NC replica hosted on this

DC.

The value of the sAMAccountName attribute on the object whose GUID is

InterdomainTrustAccount.Guid equals InterdomainTrustAccount.ExistingFlatName.

There does not exist an object whose DN is

"CN=InterdomainTrustAccount.NewFlatName,InterdomainTrustAccount.ParentDNFromDom
ainDN,Domain.NewDN".

The number of objects of class trustedDomain that are children of the object whose DN is

"CN=System,Domain.ExistingDN" equals Domain.CountTrusts.

If an NC Rename operation is attempted when any of these conditions are not met, the NC Rename

operation is not performed and the operation returns an error. This protocol does not prescribe what
error is to be returned; the value of the error is strictly for implementation debugging purposes, and
clients cannot rely on consistent or meaningful return codes.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

402 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.12.5 Process Changes

To perform the NC Rename operation, the following changes are completed. No ordering of these
changes is implied or required. When an object is referred to by DN, the value of the DN is the value

before any changes have been completed. Except where indicated, the metadata of changed objects
is not updated to reflect the changes. Where the metadata is not updated, the changes are not
replicated.

As in the previous section, NR is the NCRenameDescription tuple (section 3.1.1.12.1.11) describing
the NC Rename operation.

For the object referred to by the DN "CN=Enterprise

Configuration,CN=Partitions,CN=Configuraiton,NR.RootDomain.ExistingDN":

The dnsRoot attribute is set to NR.RootDomain.NewDNSName.

The metadata of the object is updated to reflect this change.

For the object referred to by the DN "CN=Enterprise

Schema,CN=Partitions,CN=Configuration,NR.RootDomain.ExistingDN":

The dnsRoot attribute is set to NR.RootDomain.NewDNSName.

The metadata of the object is updated to reflect this change.

For every NCDescription AppNC in NR.AppNCs:

The DN of the object whose GUID is AppNC.Guid is set to AppNC.NewDN.

For the object referred to by

"CN=AppNC.ExistingFlatName,CN=Partitions,CN=Configuraiton,NR.RootDomain.ExistingDN":

The dnsRoot attribute on the object is set to AppNC.NewDNSName.

For the root domain described by the DomainDescription tuple in NR.RootDomain:

The DN of the object referred to by NR.RootDomain.GUID is set to NR.RootDomain.NewDN.

For the object referred to by

"CN=NR.RootDomain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.Exsti
ngDN":

The RDN is set to NR.RootDomain.NewFlatName.

The dnsRoot attribute is set to NR.RootDomain.NewDNSName.

The msDS-DnsRootAlias attribute is set to NR.RootDomain.ExistingDNSName.

The nETBIOSName attribute is set to NR.RootDomain.NewFlatName.

For every DomainDescription Domain in NR.TrustTreeRootDomains:

The DN of the object referred to by Domain.Guid is set to Domain.NewDN.

For the object referred to by

"CN=Domain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExstingDN":

The RDN is set to Domain.NewFlatName.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf

403 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The dnsRoot attribute is set to Domain.NewDNSName.

The nETBIOSName attribute is set to Domain.NewFlatName.

Any values of the trustParent attribute are removed.

The rootTrust attribute is set to Domain.NewDN.

The msDS-DnsRootAlias attribute is set to Domain.ExistingDNSName.

For every DomainWithNewTrustParentDescription Domain in NR.TrustTreeNonRootDomains:

The DN of the object whose GUID is Domain.Guid is set to Domain.NewDN.

For the object referred to by

"CN=Domain.ExistingFlatName,CN=Partitions,CN=Configuration,NR.RootDomain.ExstingDN":

The RDN is set to Domain.NewFlatName.

The dnsRoot attribute is set to Domain.NewDNSName.

The nETBIOSName attribute is set to Domain.NewFlatName.

The trustParent attribute is set to Domain.NewTrustParentFlatName.

Any values of the rootTrust attribute are removed.

The msDS-DnsRootAlias attribute is set to Domain.ExistingDNSName.

For every DomainDescription Domain in NR.AllDomains, where Domain.Guid refers to a writable

object in an NC replica hosted on this DC:

For every TrustedDomainObjectDescription TrustedDomainObject in

Domain.TrustedDomainObjects:

For the object referred to by

"CN=TrustedDomainObject.ExistingTrustPartnerDNSName,CN=System,Domain.ExistingDN"
:

The RDN is set to TrustedDomainObject.NewTrustPartnerDNSName.

The flatName attribute is set to TrustedDomainObject.NewTrustPartnerFlatName.

The trustPartner attribute is set to TrustedDomainObject.NewTrustPartnerDNSName.

The metadata of the object is updated to reflect these changes.

For every InterdomainTrustAccountDescription InterdomainTrustAccount in

Domain.InterdomainTrustAccounts:

For the object referred to by

"CN=InterdomainTrustAccount.ExistingFlatName,InterdomainTrustAccount.ParentDNFromD

omainDN,Domain.ExistingDN"

The RDN is set to InterdomainTrustAccount.NewFlatName.

The sAMAccountName attribute is set to InterdomainTrustAccount.NewFlatName.

The metadata of the object is updated to reflect these changes.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

404 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The msDS-ReplicationEpoch attribute on the DC's NTDS Settings object (section

6.1.1.2.2.1.2.1.1) is set to NR.NewReplicationEpoch.

When the changes have been successfully performed, the NC Rename operation returns a value of

success. If some part of the NC Rename operation is not or cannot be performed, this protocol does
not restrict what changes do occur in the abstract data of the NC performing the NC Rename
operation, nor what the return value from the operation is. Such changes can be nondeterministic,
and no expectation can be made by the user of the NC Rename operation as to what the result of a
failed NC Rename operation will be. In order to improve the usability of this operation, it is
suggested to implementers that, in this failure case, no changes be made and an error be returned.

%5bMS-ADA2%5d.pdf

405 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4 Protocol Examples

Note To examine a sample scenario for joining a domain, see [MS-SYS] Appendix A.

The Active Directory Technical Specification (this document) does not specify a protocol, but rather
a state model and a set of behaviors that must be followed such that protocols in the documentation
set (for instance, the protocols specified in [MS-DRSR] and [MS-SAMR]) will expose the expected
behavior to Windows clients. While this document includes a discussion of LDAP, it does so only to
specify Active Directory's conformance with and extensions to that protocol, not to specify the
protocol itself.

As a result, no protocol examples are appropriate for this document. This section is left in place to
maintain section numbering consistency with the documentation template that is used throughout
the protocol documentation set.

%5bMS-SYS%5d.pdf
%5bMS-SYS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-SAMR%5d.pdf

406 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5 Security

5.1 LDAP Security

References

LDAP attributes userPassword, sAMAccountName, userPrincipalName, uPNSuffixes,
supportedCapabilities, servicePrincipalName, nTSecurityDescriptor, schemaIDGUID,
attributeSecurityGUID, dSHeuristics, validAccesses, rightsGuid, appliesTo: [MS-ADA1], [MS-ADA2],
[MS-ADA3]

LDAP object class controlAccessRight: [MS-ADSC]

ACCESS_MASK structure and access right bits: [MS-DTYP] section 2.4.3

ACE structure: [MS-DTYP] section 2.4.4

ACL structure: [MS-DTYP] section 2.4.5

SECURITY_DESCRIPTOR structure: [MS-DTYP] section 2.4.6

5.1.1 Authentication

This section discusses the use of the LDAP bind mechanism in Active Directory to perform
authentication, and the various authentication methods that are supported.

5.1.1.1 Supported Authentication Methods

[RFC2251] section 4.2 defines an AuthenticationChoice structure for a BindRequest that contains
two alternatives: simple and SASL. [RFC1777] section 4.1 defines an authentication structure for a
BindRequest that contains three alternatives: simple, krbv42LDAP, and krbv42DSA. Active Directory

supports only simple and SASL authentication mechanisms. The former is for LDAP simple binds,
while the latter is for LDAP SASL binds (as documented in [RFC2829]). In addition,Active Directory

supports a third mechanism named "Sicily" that is primarily intended for compatibility with legacy
systems. Sicily support adds three choices to the AuthenticationChoice structure, resulting in the
following.

AuthenticationChoice ::= CHOICE {

 simple [0] OCTET STRING,

 sasl [3] SaslCredentials

 sicilyPackageDiscovery [9] OCTET STRING

 sicilyNegotiate [10] OCTET STRING

 sicilyResponse [11] OCTET STRING }

The relationship of the three authentication mechanisms, and the authentication protocols supported

by each, is summarized in the following tables.

Authentication Mechanism: Simple

For the simple authentication mechanism, authentication is described entirely by the mechanism; no
additional authentication protocols are used.

Authentication Mechanism: SASL

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkId=90386

407 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Authentication

protocols Comments

GSS-SPNEGO GSS-SPNEGO, in turn, uses Kerberos or NTLM as the underlying

authentication protocol.

GSSAPI GSSAPI, in turn, always uses Kerberos as the underlying authentication

protocol.

EXTERNAL -

DIGEST-MD5 -

Authentication Mechanism: Sicily

Authentication protocols Comments

NTLM -

Each of the three authentication mechanisms supported by Active Directory is discussed in more
detail in the following sections.

5.1.1.1.1 Simple Authentication

The support of simple bind in Active Directory is consistent with [RFC2251] section 4.2 and
[RFC2829]. Active Directory does not require, but supports, the use of an SSL/TLS-encrypted or
otherwise protected connection when performing a simple bind. Also, while section 6.2 of [RFC2829]
specifies that an object possessing a userPassword attribute is a prerequisite to being able to
perform a simple bind using that object's credentials, Active Directory does not use the
userPassword attribute to store the user's password in most cases, and possession of such an

attribute is not a prerequisite to performing a simple bind against an object. The password attributes
used in Active Directory are discussed in more detail in "LDAP Password Modify Operations" in
section 3.1.1.3.1.5. The simple bind uses the password policy settings described in the Group Policy:

Security Protocol [MS-GPSB] section 2.2.1.2 and is applied using the policy described in [MS-GPSB]
section 3.2.5.2.

When performing a simple bind, Active Directory accepts several forms of name in the name field of

the BindRequest. Each name form is tried in turn. If the name field of the BindRequest maps to a
single object using the attempted name form, the password on that object is checked, and the
authentication succeeds or fails (with the error invalidCredentials / <unrestricted>) depending on
the result. If the name field of the BindRequest maps to more than one object, the BindRequest fails
with the error invalidCredentials / ERROR_INVALID_PARAMETER. If the name field of the
BindRequest maps to no object, the next object name form is tried; if all forms have been tried, the
BindRequest fails with the error invalidCredentials / ERROR_INVALID_PARAMETER.

For AD DS, the name forms are tried in the order they are listed below. For AD LDS, the name forms
are tried in the order below, except that forms marked "Only for AD DS" are not tried, and the User
Principal Name (UPN) mapping (the second form below) is tried last.

The name forms are:

1. The DN of the object.

2. The user principal name (UPN) of the object. The UPN of an object is either:

A value of the userPrincipalName attribute of the object, or

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90386
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-GPSB%5d.pdf
%5bMS-GPSB%5d.pdf
%5bMS-ADA3%5d.pdf

408 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Only for AD DS: The value of the sAMAccountName attribute of the object, followed by a "@"

sign, followed by either:

The DNS name of a domain in the same forest as the object, or

A value in the uPNSuffixes attribute of the Partitions container in the config NC replica.

When a name matches both the userPrincipalName attribute of one object and the UPN
generated from the sAMAccountName of another object, the simple bind processing attempts
to authenticate as the first object (that is, priority is given to the value of the
userPrincipalName attribute) rather than failing the bind due to duplicate objects.

3. Only for AD DS: The NetBIOS domain name, followed by a backslash ("\"), followed by the value

of the sAMAccountName attribute of the object.

4. The canonical name of the object.

5. The value of the objectGUID attribute of the object, expressed in dashed-string form ([RFC4122]

section 3) and surrounded by curly braces (for example, "{ca2e693f-6280-4589-9376-
b3707345d3ad}").

6. The value of the displayName attribute of the object.

7. Only for AD DS: A value of the servicePrincipalName attribute of the object.

8. Only for AD DS: A value V that, when the MapSPN(V, M) algorithm of [MS-DRSR] section
4.1.4.2.19 is applied to it, corresponds to a value of the servicePrincipalName attribute of the
object. M is the value of the sPNMappings attribute of the nTDSService object.

9. The value of the objectSid attribute of the object, in SDDL SID string form ([MS-DTYP] section
2.4.2.1).

10.Only for AD DS: A value from the sIDHistory attribute of the object, in SDDL SID string form

([MS-DTYP] section 2.4.2.1).

11.The canonical name of the object in which the rightmost forward slash (/) is replaced with a
newline character (\n).

5.1.1.1.2 SASL Authentication

The support of SASL bind in Active Directory is consistent with [RFC2251] section 4.2.1 and
[RFC2829]. The following SASL mechanisms are supported by Active Directory. They are briefly

described in "LDAP SASL Mechanisms", section 3.1.1.3.4.5:

GSS_SPNEGO [MS-SPNG]

GSSAPI [RFC2078]

EXTERNAL [RFC2829]

DIGEST-MD5 [RFC2831]

Active Directory supports the optional use of integrity verification or encryption that is negotiated as
part of the SASL authentication. While Active Directory permits SASL binds to be performed on an
SSL/TLS-protected connection, it does not permit the use of SASL-layer encryption/integrity
verification mechanisms on such a connection. While this restriction is present in Active Directory on
Windows 2000 Server operating system, Windows Server 2003 operating system, Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90386
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90312
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90387

409 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

operating system, and Windows Server 2012 R2 operating system, versions prior to Windows
Server 2008 can fail to reject an LDAP bind that is requesting SASL-layer encryption/integrity

verification mechanisms when that bind request is sent on a SSL/TLS-protected connection.

Once a SASL-layer encryption/integrity verification mechanism is in use on a connection, the client

SHOULD not send an additional bind request on that connection (for example, to change the
credentials with which the connection is authenticated), unless the
LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID capability is present in the supportedCapabilities
attribute of the rootDSE for that DC (see "LDAP Capabilities" in section 3.1.1.3.4.3). If the client
sends an additional bind to a DC on which that capability is not present, the DC returns the
unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH error.

Regarding [RFC2829] section 9: when using the EXTERNAL SASL mechanism, Active Directory

supports the authzId field. However, it only supports the dnAuthzId form and not the uAuthzId
form. Additionally, it does not permit an authorization identity to be established on the connection
that is different from the authentication identity used on the connection. Violation of either of these
rules causes the DC to return the invalidCredentials / <unrestricted> error.

Regarding [RFC2829] section 6.1: when using the DIGEST-MD5 mechanism:

On Windows 2000 operating system, Windows Server 2003, Windows Server 2003 R2 operating

system, Windows Server 2008, and Windows Server 2008 R2, Active Directory does not support
subsequent authentication, although the credentials field contains the string defined by
"response-auth" in [RFC2831] section 2.1.3.

On Windows Server 2008 R2 SP1, Windows Server 2012, and Windows Server 2012 R2, Active

Directory also does not support subsequent authentication, but will respond to such requests with
an initial authentication challenge (see [RFC2831] section 2.1.1).

5.1.1.1.3 Sicily Authentication

Sicily is a combination of a package discovery mechanism and an authentication mechanism. Unlike
SASL, Sicily includes package discovery in the authentication mechanism itself. The package

discovery mechanism permits a client to discover the authentication protocols (also known as
packages) that a DC supports. The authentication mechanism then permits a client to authenticate
using one of those protocols. The authentication mechanism is independent of the package

discovery mechanism in that a client may skip the package discovery mechanism entirely and
proceed directly to the authentication mechanism (for example, if the client has some out-of-band
knowledge of which authentication protocols the server supports).

Windows 2000 Server operating system, Windows Server 2003 operating system, Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012
operating system, and Windows Server 2012 R2 operating system versions of Active Directory

expose and support only the NTLM authentication protocol, as specified in [MS-NLMP], via Sicily.

The package discovery mechanism is performed by the client sending a BindRequest to the DC in
which the name field of the BindRequest is empty and the authentication field contains the
sicilyPackageDiscovery choice. The octet string contained in the sicilyPackageDiscovery choice is not
used and is empty.

The DC responds to a sicilyPackageDiscovery by returning a SicilyBindResponse. A
SicilyBindResponse is similar to an [RFC2251] BindResponse, but some of the fields differ. The

SicilyBindResponse is defined as follows.

SicilyBindResponse ::= [APPLICATION 1] SEQUENCE {

http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90386
http://go.microsoft.com/fwlink/?LinkId=90387
http://go.microsoft.com/fwlink/?LinkId=90387
%5bMS-NLMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325

410 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 resultCode ENUMERATED {

 success (0),

 protocolError (2),

 adminLimitExceeded (11),

 inappropriateAuthentication (48),

 invalidCredentials (49),

 busy (51),

 unavailable (52),

 unwillingToPerform (53),

 other (80) },

 serverCreds OCTET STRING,

 errorMessage LDAPString }

Note that resultCode is a subset of the enumeration present in LDAPResult. If the

sicilyPackageDiscovery request is successful, the DC sets the resultCode to success in its
SicilyBindResponse, and returns a string in serverCreds consisting of the semicolon-separated

names of the authentication protocols it supports via the Sicily authentication mechanism. Active
Directory supports NTLM, and returns the string "NTLM" in the package discovery response. The

names of the authentication protocols are ordered in the server's preferred order, starting with the
most-preferred authentication protocol. If the sicilyPackageDiscovery request is not successful, the
DC returns an error in the resultCode field of the SicilyBindResponse. If the sicilyPackageDiscovery
request fails because the DC does not support any authentication protocols via Sicily, the DC returns
the error inappropriateAuthentication / ERROR_DS_INAPPROPRIATE_AUTH. The errorMessage field
of the SicilyBindResponse may contain additional implementation-specific details indicating why the
request failed.

Once the client has determined which authentication protocol it will use, it uses the Sicily
authentication mechanism to authenticate the connection. The Sicily authentication mechanism
consists of two requests, both of which take the form of an LDAP BindRequest. The first request is
the sicilyNegotiate request. If successful, this is followed by the sicilyResponse request.

The authentication begins when the client sends the sicilyNegotiate request to the DC. This

constitutes a BindRequest in which the name field is set to "NTLM" and the authentication field
contains the sicilyNegotiate choice. The sicilyNegotiate choice contains an octet string consisting of

binary data supplied by and dependent on the authentication protocol that is used, and which serves
as a representation of the credentials with which the client wishes to authenticate the connection. If
successful, the DC responds with a SicilyBindResponse in which the resultCode is set to success and
the serverCreds contains binary data supplied by the authentication protocol on the server side. The
client is expected to pass this binary data, whose content is authentication protocol–specific, to its
implementation of the authentication package. If not successful, the DC returns an error in the

resultCode field of the SicilyBindResponse, indicating that the sicilyNegotiate request was not
successful. If the credentials supplied by the client are invalid, the DC returns the invalidCredentials
/ <unrestricted> error. If the client requests an authentication protocol that is not supported by the
DC, it returns the inappropriateAuthentication / ERROR_DS_INAPPROPRIATE_AUTH error. The
errorMessage field of the SicilyBindResponse may contain additional implementation-specific details
indicating why the request failed.

If the sicilyNegotiate request is successful, the client then sends the sicilyResponse request to the

DC by sending a BindRequest in which the name field is empty and the authentication field contains
the sicilyResponse choice. The octet string in the sicilyResponse choice contains authentication
protocol–specific data, generated in response to the data received in the serverCreds field of the
SicilyBindResponse. The DC responds to this sicilyResponse request by sending a
SicilyBindResponse. The serverCred field is not used in this response, and is empty. If successful,
the DC sets the resultCode field to success, and the connection is now authenticated as the client-

411 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

supplied credentials. If the bind fails, the DC sets resultCode to an error and the connection is not
authenticated. As in the previous case, the DC uses the error invalidCredentials / <unrestricted> to

indicate that the client presented incorrect credentials, and the error inappropriateAuthentication /
ERROR_DS_INAPPROPRIATE_AUTH to indicate that the client requested an unsupported protocol.

The errorMessage field of the SicilyBindResponse may contain additional implementation-specific
details indicating why the request failed.

As with SASL, integrity verification or encryption can be negotiated as part of the Sicily
authentication. The support for, and means of implementation of, such mechanisms is dependent on
the particular authentication protocol used (for example, NTLM). As with SASL, such mechanisms
cannot be used on a connection that is protected by SSL/TLS mechanisms, and once such a
mechanism is in use, the connection cannot be rebound unless the

LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID capability is present in the supportedCapabilities
attribute of the rootDSE of the DC.

5.1.1.2 Using SSL/TLS

Active Directory permits two means of establishing an SSL/TLS-protected connection to a DC. The
first is by connecting to a DC on a protected LDAPS port (TCP ports 636 and 3269 in AD DS, and a

configuration-specific port in AD LDS). The second is by connecting to a DC on a regular LDAP port
(TCP ports 389 or 3268 in AD DS, and a configuration-specific port in AD LDS), and later sending an
LDAP_SERVER_START_TLS_OID extended operation [RFC2830]. In both cases, the DC will request
(but not require) the client's certificate as part of the SSL/TLS handshake [RFC2246]. If the client
presents a valid certificate to the DC at that time, it can be used by the DC to authenticate (bind)
the connection as the credentials represented by the certificate.

If the client establishes the SSL/TLS-protected connection by means of connecting on a protected

LDAPS port, then the connection is considered to be immediately authenticated (bound) as the
credentials represented by the client certificate. An EXTERNAL bind is not required but is permitted.
If the client does not present a certificate during the SSL/TLS handshake, the connection is not
authenticated and is treated as anonymous. In that case, the DC rejects any attempt to perform an
EXTERNAL bind with the error invalidCredentials / <unrestricted>.

If the client establishes the SSL/TLS-protected connection by means of an
LDAP_SERVER_START_TLS_OID operation, the authentication state of the connection remains the

same after the operation as it was before the operation. The DC authenticates the connection as the
credentials represented by the client's certificate only if an EXTERNAL SASL bind is subsequently
performed. This is similar to the "implicit assertion" of [RFC2830] section 5.1.2.1, except that
neither the authentication identity nor the authorization identity is established on the connection
until the EXTERNAL bind takes place. If the client includes the authzId field in the EXTERNAL bind, in
accord with the "explicit assertion" of [RFC2830] section 5.1.2.2, then as described in section

5.1.1.1.2 the authzId field contains the DN of the object that the EXTERNAL bind is authenticating
the connection as; in other words, the object associated with the credentials represented by the
certificate. Therefore, the implicit assertion and explicit assertion are functionally identical. If the
client performs an EXTERNAL bind but does not supply a certificate during the SSL/TLS handshake,
the EXTERNAL bind fails with the error invalidCredentials / <unrestricted>.

Alternatively, the client can perform any other form of LDAP bind that is permissible on an SSL/TLS-

protected connection, or the client can perform no bind to continue to use any authentication and

authorization identity that was previously established on the connection.

5.1.1.3 Using Fast Bind

Active Directory supports a mode of operation known as "fast bind" that can be enabled for each
LDAP connection. Fast bind mode allows a client to use the LDAP bind request to simply validate

http://go.microsoft.com/fwlink/?LinkId=91359
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=91359
http://go.microsoft.com/fwlink/?LinkId=91359

412 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

credentials and authenticate the client without the overhead of establishing the authorization
information. Fast bind mode is enabled on a connection by sending the

LDAP_SERVER_FAST_BIND_OID LDAP extended operation on the connection, documented in "LDAP
Extended Operations" in section 3.1.1.3.4.2.

Once fast bind mode is enabled on a connection, it cannot be disabled on that connection. This
mode cannot be enabled on a connection on which a successful bind was previously performed, and
the server returns unwillingToPerform / ERROR_DS_INAPPROPRIATE_AUTH if such an attempt is
made.

When fast bind mode is enabled on an LDAP connection, the DC accepts bind requests and validates
the credentials presented, returning an error code that indicates a success or failure. However, on
successful binds, the DC does not perform authorization steps, and the connection is treated as if it

was authorized as the anonymous user.

While [RFC2251] section 4.2.1 specifies that a bind request causes all operations currently in
progress on a connection to be abandoned, when the connection is in fast bind mode, multiple
independent binds (for example, using different credentials) can simultaneously be in progress on

the same connection without any of them being abandoned. This permits a client to validate multiple
sets of credentials at the same time, while the DC always considers the connection to be

authenticated and authorized as the anonymous user.

Only simple binds are accepted on a connection in fast bind mode. The client can use SSL/TLS
protection on a connection in fast bind mode.

5.1.1.4 Mutual Authentication

[MS-DRSR] sections 2.2.2 and 2.2.4 specify the mutual authentication requirements for client-to-DC
interactions over the RPC interfaces documented in [MS-DRSR]. The requirements are the same for

mutual authentication in an LDAP connection.

Therefore, by registering its SPNs for the RPC interfaces documented in [MS-DRSR], a DC also
satisfies its SPN registration requirements for LDAP.

5.1.1.5 Supported Types of Security Principals

For AD DS, the concept of "security principal" is straightforward: a security principal is an object in
the directory that possesses an objectSid attribute. But for AD LDS, the notion of security principal

is more complex, because AD LDS recognizes three distinct types of security principals, any of which
can authenticate via an LDAP Bind request:

AD LDS security principals that are created in an AD LDS NC.

Principals that are defined by the operating system of the computer on which AD LDS is running.

Principals that are defined in an Active Directory domain to which the computer on which AD LDS

is running is joined, or principals that are in domains that are trusted by the joined domain.

In addition to these three types of security principals, AD LDS also supports bind proxies, which are

not security principals but which can be authenticated via an LDAP Bind request. This section will
discuss each of the three types of security principals in turn, and follow that with a discussion of
bind proxies. Finally, it will conclude with an explanation of which types of LDAP Binds an AD LDS
server must support for each type of principal and bind proxy.

The first type of security principal in AD LDS is unchanged from AD DS: an object in the directory

that possesses an objectSid attribute. However, while AD DS restricts security principals to the

http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

413 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

domain NC, AD LDS (which has no domain NCs) permits security principals to be stored in an
application NC. Additionally, if the ADAMAllowADAMSecurityPrincipalsInConfigPartition configuration

setting is supported and equals 1 (section 3.1.1.3.4.7), AD LDS permits security principals to be
created in the config NC.

In AD DS, the set of security principal object classes is fixed. In AD LDS, any object class that
statically links (section 3.1.1.2.4.6) to the msDS-BindableObject auxiliary class is a security principal
object class. Dynamically instantiating the msDS-BindableObject auxiliary class does not have the
same effect.

The second and third types of principals are similar to each other in that both are means for AD LDS
to "pass through" the Authentication to the underlying operating system on which it is running. AD
LDS recognizes as a security principal those security principals (users and groups) that are stored

locally on the computer on which AD LDS is running. Additionally, if the computer is a member of a
domain, then AD LDS recognizes as security principals any security principals that are in that
domain or which are in a domain trusted by that domain. Such security principals may be included
in the security descriptors of objects in the AD LDS directory in the same fashion as security
principals of the first type. Additionally, such security principals may be included in the membership

of group objects in AD LDS, and in the msDS-ServiceAccount attribute of nTDSDSA objects in AD

LDS, via the automatic creation of foreignSecurityPrincipal objects (sections 3.1.1.5.2.4 and
3.1.1.5.3.3).

Note that, except for the creation of foreignSecurityPrincipal objects as needed to represent group
members or service accounts, the second and third types of principals are not represented as
objects in AD LDS. Instead, upon receipt of an LDAP Bind request for such a principal, AD LDS
provides the credentials it receives in the Bind request to the host operating system and relies on
the host operating system to validate those credentials. The means of passing the received

credentials to the host operating system, as well as the method that the host operating system uses
to validate those credentials, is implementation-specific.

Bind proxies are objects in AD LDS that contain the msDS-BindProxy auxiliary class. A bind proxy
contains an objectSid attribute but is not a security principal. Rather, it is a means of associating an
object in AD LDS with a security principal of the underlying operating system (that is, the second or

third type of security principal). The objectSid attribute contains the SID of a security principal of
the second or third type. When an LDAP Bind request is received in which the object identified in the

name field of the BindRequest is an msDS-BindProxy object, the server performs the following
actions:

Retrieve the value V of the objectSid attribute from the named object.

Pass through the Authentication request to the host operating system as a request to

authenticate a principal whose SID is V and whose password is as supplied in the LDAP Bind

request.

An LDAP Bind request that targets an msDS-BindProxy object O has nearly the same effect as an
LDAP Bind request for a security principal S of the second or third type. Instead of directly naming S
in the LDAP Bind request, the client names an object O such that O!objectSid equals the SID of S.
The security context generated by the two requests is slightly different, as specified in section
5.1.3.4.

In order for an object class to be usable in an LDAP Bind request in AD LDS, that object class must

either contain the msDS-BindableObject class or the msDS-BindProxy class.

AD LDS servers restrict the authentication mechanisms and protocols that can be used to
authenticate different types of security principal and bind proxies. The authentication mechanisms

%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf

414 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

and protocols supported by AD LDS for each type of principal or proxy are specified in the following
table.

Type of principal/proxy

Supported authentication

mechanism

Supported authentication

protocol

First type (AD LDS principal) Simple

SASL

-

DIGEST-MD5*

Second or third type (computer or

domain principal)

SASL

SASL

SASL

SASL

Sicily

GSSAPI

GSS-SPNEGO

DIGEST-MD5

EXTERNAL

NTLM

Bind proxy Simple -

* DIGEST-MD5 authentication for AD LDS security principals is supported only when the
ADAMDisableSSI configurable setting (section 3.1.1.3.4.7) is supported and is equal to 0. If the
ADAMDisableSSI configurable setting is not supported, then DIGEST-MD5 authentication for AD LDS

security principals is not supported.

In particular, note that simple bind is not supported for principals of the second or third type, and
that DIGEST-MD5 is the only SASL protocol supported for all types of security principals in AD LDS.

5.1.2 Message Security

5.1.2.1 Using SASL

Active Directory supports the optional use of an LDAP message security layer that provides message
integrity and/or confidentiality protection services that are negotiated as part of the SASL
authentication. Support for such mechanisms and their implementation is dependent on the specific

authentication protocol used (for example, Kerberos or Digest), and is documented in the SASL
specification for each authentication protocol.

Once a SASL-negotiated security layer is in effect in the LDAP data stream, it remains in effect until
either a subsequently negotiated security layer is installed or the underlying transport connection is

closed. When in effect, the security layer processes protocol data into buffers of protected data as
per [RFC2222].

While Active Directory permits SASL binds to be performed on an SSL/TLS-protected connection, it
does not permit the use of SASL-layer confidentiality/integrity protection mechanisms on such a
connection. Active Directory can also be configured to require that SASL layer integrity protection
services be used on a LDAP connection (the way in which the configuration can be done is outside

the scope of the state model and is implementation-dependent).

On Windows 2000 Server operating system, Windows Server 2003 operating system, Windows
Server 2008 operating system, Windows Server 2008 operating system with Service Pack 2 (SP2),

Windows Server 2008 R2 operating system, Windows Server 2012 operating system, and Windows
Server 2012 R2 operating system, Active Directory treats a request for SASL-layer integrity
protection and SASL-layer confidentiality protection distinctly. Therefore, if a client does not request
SASL-layer integrity protection or requests SASL-layer confidentiality protection without requesting

integrity protection when sending a bind request to a DC which is configured to require SASL-layer
integrity protection, the DC will reject such a bind and return the error strongAuthRequired /

http://go.microsoft.com/fwlink/?LinkId=90322

415 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ERROR_DS_STRONG_AUTH_REQUIRED. On Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2, Active Directory treats a request for SASL-

layer confidentiality protection as also requesting SASL-layer integrity protection; therefore, a DC
that is configured to require SASL-layer integrity protection will accept a bind from a client that

requests SASL-layer confidentiality protection but does not explicitly request SASL-layer integrity
protection. A DC configured to require SASL-layer integrity protection will accept a bind request
from a client sent on a SSL/TLS-protected connection even if the client does not request SASL-layer
integrity because it will accept the SSL/TLS-encryption in lieu of SASL-layer integrity.

5.1.2.2 Using SSL/TLS

Active Directory supports LDAP message security on an SSL/TLS-protected connection to a DC in

accordance with [RFC2246].

As indicated in the previous section, Active Directory does not permit SASL-layer message
confidentiality/integrity protection mechanisms to be employed on an SSL/TLS-protected LDAP
connection.

5.1.3 Authorization

Although the LDAP security model does not include mechanisms for access control, Active Directory
provides access control in the form of access control lists (ACLs) on directory objects.

If the fLDAPBlockAnonOps heuristic of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) is true,
anonymous (unauthenticated) users are limited to performing rootDSE searches and binds. If
fLDAPBlockAnonOps is false, anonymous users can perform any LDAP operation, subject to access
checks that use the ACL mechanisms described in this section.

5.1.3.1 Background

The security context of a requester (see security context in the Glossary) requesting access to an
Active Directory object represents the authorization information that is associated with the
requester. A DC performs an access check to determine whether the security context, and thus the

requester, is authorized for the type of access that has been requested before allowing any further
processing to continue. Access control information associated with an object is contained in the
security descriptor of the object.

Every object in Active Directory has an nTSecurityDescriptor attribute whose value is the security
descriptor that contains access control information for the object.

An access check compares information in the thread's security context with information in the
object's security descriptor:

The security context contains a SID that identifies the principal associated with the thread, and

SIDs that identify the groups of which the principal is a member.

The security descriptor contains a DACL that specifies the access rights that are allowed or

denied to specific principals or groups. It also identifies the owner of the object. The structure of
a security descriptor is described in [MS-DTYP] section 2.4.6.

A DACL in a security descriptor is an ordered list of access control entries (ACEs) that define the
protections that apply to an object and its properties. Each ACE identifies a security principal (that
is, a user, group, and so on) and specifies a set of access rights that are allowed, denied, or audited

for that security principal. The data structures for an ACE and a DACL are described in [MS-DTYP]
sections 2.4.4 and 2.4.5.

http://go.microsoft.com/fwlink/?LinkId=90324
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

416 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

There are two types of ACEs: simple and object-specific. A simple ACE applies to an entire object. If
a simple ACE gives a particular user read access, the user can read all information associated with

the object. An object-specific ACE, on the other hand, can apply to any individual attribute of an
object or to a set of attributes. It makes it possible to place independent access controls on each

attribute of an Active Directory object.

During an access check, the server steps through the ACEs in the order in which they appear in the
object's DACL, looking for ACEs that apply to the principal and group SIDs from the thread's security
context. It steps through each ACE until it finds one that either allows or denies access to the
principal or one of the principal's groups, or until there are no more ACEs to check. If it comes to
the end of the DACL, and the thread's desired access is still not explicitly allowed or denied, the
server denies access to the object.

The order in which ACEs are listed in a DACL is important. For example, an object's DACL might
contain one ACE that allows access to a group and another ACE that denies access to a principal
who is a member of the group. If the access check process encounters the ACE that allows access to
the group before the ACE that denies access to the principal, the principal is allowed access to the
object. If the ACEs are encountered in the reverse order, then the principal is denied access to the

object.

AD LDS security principals cannot appear in an AD DS ACE. Section 6.1.3.3 specifies a restriction on
the AD LDS security principals that can be used in an AD LDS ACE.

5.1.3.2 Access Rights

The following diagram specifies access rights that can be assigned to or requested for an Active
Directory object. The access mask in an ACE contains a combination of these values.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

G

R

G

W

G

X

G

A

X X X X X X X X W

O

W

D

R

C

D

E

X X X X X X X C

R

L

O

D

T

W

P

R

P

V

W

L

C

D

C

C

C

Note The values are presented in big-endian byte order.

CC (RIGHT_DS_CREATE_CHILD, 0x00000001): The right to create child objects of the object.
The ObjectType member of an ACE can contain a GUID that identifies the objectClass of child object
whose creation is controlled. If ObjectType does not contain a GUID, the ACE controls the creation
of all child object classes allowed by the schema.

DC (RIGHT_DS_DELETE_CHILD, 0x00000002): The right to delete child objects of the object.
The ObjectType member of an ACE can contain a GUID that identifies the objectClass of the child

object whose deletion is controlled. If ObjectType does not contain a GUID, the ACE controls the
deletion of all child object classes.

LC (RIGHT_DS_LIST_CONTENTS, 0x00000004): The right to list child objects of this object. For
more information about this right, see section 3.1.1.4.

VW (RIGHT_DS_WRITE_PROPERTY_EXTENDED, 0x00000008): The right to perform an
operation controlled by a validated write access right. The ObjectType member of an ACE can

contain a GUID that identifies the validated write. If ObjectType does not contain a GUID, the ACE
controls the rights to perform all validated write operations associated with the object. For a list of

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

417 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

validated write rights, see section 5.1.3.2.2. For specifics of validated write processing, see the
Modify operation in section 3.1.1.5.3.

RP (RIGHT_DS_READ_PROPERTY, 0x00000010): The right to read properties of the object.
The ObjectType member of an ACE can contain a GUID that identifies a property set or an attribute.

If ObjectType does not contain a GUID, the ACE controls the right to read all attributes of the
object.

WP (RIGHT_DS_WRITE_PROPERTY, 0x00000020): The right to write properties of the object.
The ObjectType member of an ACE can contain a GUID that identifies a property set or an attribute.
If ObjectType does not contain a GUID, the ACE controls the right to write all attributes of the
object.

DT (RIGHT_DS_DELETE_TREE, 0x00000040): The right to perform a Delete-Tree operation on

this object. See the Delete operation in section 3.1.1.5.5 for more details.

LO (RIGHT_DS_LIST_OBJECT, 0x00000080): The right to list a particular object. If the user is
not granted this right, and the user is not granted the RIGHT_DS_LIST_CONTENTS right on the

object's parent, the object is hidden from the user. Note that LIST_OBJECT rights are not enforced
by Active Directory by default. In order to enable LIST_OBJECT enforcement, the fDoListObject
heuristic of the dSHeuristics attribute (see section 6.1.1.2.4.1.2) must be true.

CR (RIGHT_DS_CONTROL_ACCESS, 0x00000100): The right to perform an operation controlled
by a control access right. The ObjectType member of an ACE can contain a GUID that identifies the
control access right. If ObjectType does not contain a GUID, the ACE controls the right to perform all
control access right controlled operations associated with the object. For a list of control access
rights, see section 5.1.3.2.1.

DE (RIGHT_DELETE, 0x00010000): The right to delete the object.

RC (RIGHT_READ_CONTROL, 0x00020000): The right to read data from the security descriptor

of the object, not including the data in the SACL.

WD (RIGHT_WRITE_DAC, 0x00040000): The right to modify the DACL in the object security

descriptor.

WO (RIGHT_WRITE_OWNER, 0x00080000): The right to modify the owner of an object in the
object's security descriptor. A user can only take ownership of an object, but cannot transfer
ownership of an object to other users.

GA (RIGHT_GENERIC_ALL, 0x10000000): The right to create or delete child objects, delete a

subtree, read and write properties, examine child objects and the object itself, add and remove the
object from the directory, and read or write with an extended right.

GX (RIGHT_GENERIC_EXECUTE, 0x20000000): The right to read permissions on, and list the
contents of, a container object.

GW (RIGHT_GENERIC_WRITE, 0x40000000): The right to read permissions on this object,
write all the properties on this object, and perform all validated writes to this object.

GR (RIGHT_GENERIC_READ, 0x80000000): The right to read permissions on this object, read
all the properties on this object, list this object name when the parent container is listed, and list the
contents of this object if it is a container.

X: Ignored. These bits are ignored in Active Directory DACLs.

%5bMS-ADA1%5d.pdf

418 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The four generic rights are presented, along with the specific access rights which they represent.
The mapping for access to objects in Active Directory is as follows:

GR = (RC | LC | RP | LO)

GW = (RC | WP | VW)

GX = (RC | LC)

GA = (DE | RC | WD | WO | CC | DC | DT | RP | WP | LC | LO | CR | VW)

Note that the preceding "GENERIC" access mask bits are never stored in Active Directory security
descriptor values. They can be present in an SD value sent by a user in an add or modify request.
When the SD value is stored in the database, the GENERIC access bits are mapped according to the
specific access rights that they represent, using the mapping described above. See section 6.1.3 and
[MS-DTYP] section 2.4.3 for more information.

5.1.3.2.1 Control Access Rights

In Active Directory, the implementer can control which users have the right to perform a particular
operation on an object or its attributes by using standard access rights. However, there are certain
operations that have semantics that are not tied to specific properties, or where it is desirable to
control access in a way that is not supported by the standard access rights. For example, the

implementer can grant users a "Reanimate tombstones" right so that they are able to perform
tombstone reanimation on any object in a naming context. Active Directory allows the standard
access control mechanism to be extended for controlling access to custom actions or operations,
using a mechanism called control access rights.

A control access right is not identified by a specific bit in an access mask as the standard access
rights are. Instead, each control access right is identified by a GUID. An ACE that grants or denies a
control access right specifies the RIGHT_DS_CONTROL_ACCESS (CR) bit in the ACCESS_MASK field

and the GUID identifying the particular control access right in the ObjectType field of the ACE. If the
ObjectType field does not contain a GUID, the ACE is deemed to control the right to perform all
operations associated with the objects that are controlled by control access rights. For convenience

and easy identification by Active Directory administrative tools facilitating access control, each
control access right is represented by an object of class controlAccessRight in the Extended-Rights
container. Note that these objects are not integral to evaluating access to an operation and,
therefore, their presence is not required for the proper functioning of the access control mechanism.

There are a number of predefined control access rights in Active Directory, and that list can be
extended by application developers by adding controlAccessRight objects to the Extended-Rights
container.

The pertinent attributes on the controlAccessRight object that defines the use of the control access
right for the administrative tools are as follows:

validAccesses: The type of access right bits in the ACCESS_MASK field of an ACE with which the

control access right can be associated. The only permitted access right for control access rights is
RIGHT_DS_CONTROL_ACCESS (CR).

rightsGuid: The GUID that is used to identify the control access right in an ACE. The GUID value

is placed in the ObjectType field of the ACE.

appliesTo: This multivalue attribute has a list of object classes that the control access right

applies to. Each object class in the list is represented by the schemaIDGUID attribute of the

classSchema object that defines the object class in the Active Directory schema. The appliesTo
values on the controlAccessRight are not enforced by the directory server; that is, the

%5bMS-DTYP%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf

419 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

controlAccessRight can be included in security descriptors of objects of classes not specified in
the appliesTo attribute.

The following table summarizes the predefined control access rights, and the corresponding GUID
value identifying each right, that can be specified in an ACE that is supported by each

Windows Server operating system version.

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Abandon-

Replicatio

n

ee914

b82-

0a98-

11d1-

adbb-

00c04

fd8d5

cd

X

Add-GUID 44082

0ad-

65b4-

11d1-

a3da-

0000f

875ae

0d

X X X X X X X X X X

Allocate-

Rids

1abd7

cf8-

0a99-

11d1-

adbb-

00c04

fd8d5

cd

X X X X X X

Allowed-

To-

Authentic

ate

68b1d

179-

0d15-

4d4f-

ab71-

46152

e79a7

bc

 X X X X X

%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

420 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Apply-

Group-

Policy

edacf

d8f-

ffb3-

11d1-

b41d-

00a0c

968f9

39

X X X X X X

Certificat

e-

Enrollmen

t

0e10c

968-

78fb-

11d2-

90d4-

00c04

f79dc

55

X X X X X X

Certificat

e-

AutoEnrol

lment

a05b8

cc2-

17bc-

4802-

a710-

e7c15

ab866

a2

 X X

Change-

Domain-

Master

014bf

69c-

7b3b-

11d1-

85f6-

08002

be74f

ab

 X X X X X

Change-

Infrastruc

ture-

Master

cc17b

1fb-

33d9-

11d2-

97d4-

00c04

fd8d5

X X X X X X

421 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

cd

Change-

PDC

bae50

096-

4752-

11d1-

9052-

00c04

fc2d4

cf

X X X X X X

Change-

Rid-

Master

d58d5

f36-

0a98-

11d1-

adbb-

00c04

fd8d5

cd

X X X X X X

Change-

Schema-

Master

e12b5

6b6-

0a95-

11d1-

adbb-

00c04

fd8d5

cd

X X X X X X X X X X

Create-

Inbound-

Forest-

Trust

e2a36

dc9-

ae17-

47c3-

b58b-

be34c

55ba6

33

 X X X X X

Do-

Garbage-

Collection

fec36

4e0-

0a98-

11d1-

adbb-

00c04

X X X X X X X X X X

422 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

fd8d5

cd

Domain-

Administe

r-Server

ab721

a52-

1e2f-

11d0-

9819-

00aa0

04052

9b

X X X X X X

DS-

Check-

Stale-

Phantoms

69ae6

200-

7f46-

11d2-

b9ad-

00c04

f79f8

05

X X X X X X

DS-

Execute-

Intentions

-Script

2f16c

4a5-

b98e-

432c-

952a-

cb388

ba33f

2e

 X X X X X X X X X

DS-

Install-

Replica

9923a

32a-

3607-

11d2-

b9be-

0000f

87a36

b2

X X X X X X X X X X

DS-

Query-

Self-

Quota

4ecc0

3fe-

ffc0-

4947-

b630-

 X X X X X X X X X

423 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

eb672

a8a9d

bc

DS-

Replicatio

n-Get-

Changes

1131f

6aa-

9c07-

11d1-

f79f-

00c04

fc2dc

d2

X X X X X X X X X X

DS-

Replicatio

n-Get-

Changes-

All

1131f

6ad-

9c07-

11d1-

f79f-

00c04

fc2dc

d2

 X X X X X X X X X

DS-

Replicatio

n-Get-

Changes-

In-

Filtered-

Set

89e95

b76-

444d-

4c62-

991a-

0facb

eda64

0c

 X X X X

DS-

Replicatio

n-

Manage-

Topology

1131f

6ac-

9c07-

11d1-

f79f-

00c04

fc2dc

d2

X X X X X X X X X X

DS-

Replicatio

n-

Monitor-

f9834

0fb-

7c5b-

4cdb-

 X X X X X X X X X

424 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Topology a00b-

2ebdf

a115a

96

DS-

Replicatio

n-

Synchroni

ze

1131f

6ab-

9c07-

11d1-

f79f-

00c04

fc2dc

d2

X X X X X X X X X X

Enable-

Per-User-

Reversibl

y-

Encrypted

-

Password

05c74

c5e-

4deb-

43b4-

bd9f-

86664

c2a7f

d5

 X X X X X

Generate-

RSoP-

Logging

b7b1b

3de-

ab09-

4242-

9e30-

9980e

5d322

f7

 X X X X X

Generate-

RSoP-

Planning

b7b1b

3dd-

ab09-

4242-

9e30-

9980e

5d322

f7

 X X X X X

Manage-

Optional-

7c0e2

a7c-

a419-

 X X X X X X

425 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Features 48e4-

a995-

10180

aad54

dd

Migrate-

SID-

History

ba338

15a-

4f93-

4c76-

87f3-

57574

bff81

09

 X X X X X

msmq-

Open-

Connecto

r

b4e60

130-

df3f-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Peek

06bd3

201-

df3e-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Peek-

computer

-Journal

4b6e0

8c3-

df3c-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Peek-

4b6e0

8c1-

X X X X X X

426 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Dead-

Letter

df3c-

11d1-

9c86-

00600

8764d

0e

msmq-

Receive

06bd3

200-

df3e-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Receive-

computer

-Journal

4b6e0

8c2-

df3c-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Receive-

Dead-

Letter

4b6e0

8c0-

df3c-

11d1-

9c86-

00600

8764d

0e

X X X X X X

msmq-

Receive-

journal

06bd3

203-

df3e-

11d1-

9c86-

00600

8764d

0e

X X X X X X

427 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

msmq-

Send

06bd3

202-

df3e-

11d1-

9c86-

00600

8764d

0e

X X X X X X

Open-

Address-

Book

a1990

816-

4298-

11d1-

ade2-

00c04

fd8d5

cd

X X X X X X

Read-

Only-

Replicatio

n-Secret-

Synchroni

zation

1131f

6ae-

9c07-

11d1-

f79f-

00c04

fc2dc

d2

 X X X X

Reanimat

e-

Tombston

es

45ec5

156-

db7e-

47bb-

b53f-

dbeb2

d03c4

0f

 X X X X X X X X X

Recalculat

e-

Hierarchy

0bc15

54e-

0a99-

11d1-

adbb-

00c04

fd8d5

X X X X X X

428 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

cd

Recalculat

e-

Security-

Inheritan

ce

62dd2

8a8-

7f46-

11d2-

b9ad-

00c04

f79f8

05

X X X X X X X X X X

Receive-

As

ab721

a56-

1e2f-

11d0-

9819-

00aa0

04052

9b

X X X X X X

Refresh-

Group-

Cache

9432c

620-

033c-

4db7-

8b58-

14ef6

d0bf4

77

 X X X X X

Reload-

SSL-

Certificat

e

1a60e

a8d-

58a6-

4b20-

bcdc-

fb71e

b8a9ff

8

 X X X X X X X X

Run-

Protect_A

dmin_Gro

ups-Task

7726b

9d5-

a4b4-

4288-

a6b2-

dce95

 X X X

429 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

2e80a

7f

SAM-

Enumerat

e-Entire-

Domain

91d67

418-

0135-

4acc-

8d79-

c08e8

57cfb

ec

 X X X X X

Send-As ab721

a54-

1e2f-

11d0-

9819-

00aa0

04052

9b

X X X X X X

Send-To ab721

a55-

1e2f-

11d0-

9819-

00aa0

04052

9b

X X X X X X

Unexpire-

Password

ccc2d

c7d-

a6ad-

4a7a-

8846-

c04e3

cc535

01

 X X X X X X X X X

Update-

Password

-Not-

Required-

280f3

69c-

67c7-

438e-

ae98-

 X X X X X

430 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Bit 1d46f

3c6f5

41

Update-

Schema-

Cache

be2bb

760-

7f46-

11d2-

b9ad-

00c04

f79f8

05

X X X X X X X X X X

User-

Change-

Password

ab721

a53-

1e2f-

11d0-

9819-

00aa0

04052

9b

X X X X X X X X X X

User-

Force-

Change-

Password

00299

570-

246d-

11d0-

a768-

00aa0

06e05

29

X X X X X X X X X X

DS-

Clone-

Domain-

Controller

3e0f7

e18-

2c7a-

4c10-

ba82-

4d926

db99a

3e

 X X

DS-Read-

Partition-

Secrets

084c9

3a2-

620d-

4879-

 X X

431 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Control

access

right

symbol

Ident

ifying

GUID

used

in

ACE

Wind

ows 2

000

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syst

em

Wind

ows

Serv

er 20

08

oper

ating

syst

em

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

a836-

f0ae4

7de0e

89

DS-Write-

Partition-

Secrets

94825

a8d-

b171-

4116-

8146-

1e34d

8f540

1

 X X

DS-Set-

Owner

4125c

71f-

7fac-

4ff0-

bcb7-

f09a4

13252

86

 X X

DS-

Bypass-

Quota

4125c

71f-

7fac-

4ff0-

bcb7-

f09a4

13252

86

 X X

5.1.3.2.2 Validated Writes

In Active Directory, write access to an object's attributes is controlled by using the

RIGHT_DS_WRITE_PROPERTY (WP) access right. However, that would allow any value that is
permissible by the attribute schema to be written to the attribute with no value checking performed.
There are cases where validation of the attribute values being written, beyond that required by the
schema, is necessary before writing them to an object in order to maintain integrity constraints.
Active Directory extends the standard access control mechanism to allow such additional validation
semantics to be incorporated by using a mechanism called "validated write rights". The attributes to

432 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

which the validated write rights apply, and the specific validations performed, are specified in
section 3.1.1.5.3.1.

A validated write right is not identified by a specific bit in an access mask as the standard access
rights are. Instead, each validated write right is identified by a GUID. This GUID is the value of the

schemaIDGUID attribute from the attributeSchema object of the attribute where the validated write
is defined. An ACE that grants or denies a validated write right specifies the
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) bit in the ACCESS_MASK field and the GUID
identifying the particular validated write right in the ObjectType field of the ACE. If the
ObjectType field does not contain a GUID, the ACE is deemed to control the right to perform all
validated write operations associated with the object. As with control access rights, each validated
write right is represented by an object of class controlAccessRight in the Extended-Rights container

for convenience and easy identification by Active Directory administrative tools. Note that these
objects are not integral to evaluating access to an update operation and, therefore, their presence is
not required for the proper functioning of the access control mechanism. The predefined list of
validated write rights in Active Directory cannot be extended by application developers.

The attributes to which the validated write rights apply to, and the specific validations performed,

are specified in section 3.1.1.5.3.1.1. The following table summarizes the validated write rights, and

the corresponding GUID value identifying each right, that can be specified in an ACE that is
supported by each Windows Server operating system version.

Vali

date

d

writ

e

right

sym

bol

Identifyi

ng GUID

used in

ACE

Windo

ws 20

00

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syste

m

Wind

ows

Serv

er 20

08

oper

ating

syste

m

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Self-

Mem

bers

hip

bf9679c0-

0de6-

11d0-

a285-

00aa0030

49e2

(member

attribute)

X X X X X X X X X X

Valid

ated

-

DNS

-

Host

-

Nam

e

72e39547

-7b18-

11d1-

adef-

00c04fd8

d5cd

(dNSHost

Name

attribute)

X X X X X X

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

433 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Vali

date

d

writ

e

right

sym

bol

Identifyi

ng GUID

used in

ACE

Windo

ws 20

00

opera

ting

syste

m

Wind

ows

Serv

er 20

03

oper

ating

syste

m

Wind

ows

Serv

er 20

08

oper

ating

syste

m

AD

DS

Wind

ows

Serv

er 20

08

AD

LDS

Windo

ws

Server

 2008

R2

operat

ing

syste

m AD

DS

Windo

ws

Server

 2008

R2 AD

LDS

Win

do

ws

Ser

ver

201

2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

AD

LDS

Win

do

ws

Ser

ver

201

2

R2

ope

rati

ng

syst

em

AD

DS

Win

do

ws

Ser

ver

201

2

R2

AD

LDS

Valid

ated

-MS-

DS-

Addit

ional

-

DNS

-

Host

-

Nam

e

80863791

-dbe9-

4eb8-

837e-

7f0ab55d

9ac7

(msDS-

Additional

DnsHostN

ame

attribute)

 X X

Valid

ated

-MS-

DS-

Beha

vior-

Versi

on

d31a8757

-2447-

4545-

8081-

3bb610ca

cbf2(msD

S-

Behavior-

Version

attribute)

 X X

Valid

ated

-SPN

f3a64788-

5306-

11d1-

a9c5-

0000f803

67c1

(servicePr

incipalNa

me

attribute)

X X X X X X

5.1.3.3 Checking Access

Before performing a requested access on an object in Active Directory, the DC performs an access
check to confirm that the security context of the requester is authorized for the type of access
requested. This determination is made by using the following information:

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

434 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The requester's security context

The requester's desired access mask

An appropriate security descriptor (the security descriptor used for the access check is typically

the security descriptor of the object itself, but for some types of access the security descriptor of
the object's parent and/or other objects in the directory may be used).

Note that a special principal called "Principal Self," identified by the fixed SID value of S-1-5-10,
may appear in the SID field of an ACE in the security descriptor of an object. This fixed SID value
represents the object itself in an ACE on a security principal object. For example, when an ACE on a
user object grants certain access rights to Principal Self, it essentially grants those access rights to

the user represented by that object. During an access check for object O, if O!nTSecurityDescriptor
contains any ACEs with the fixed SID for Principal Self the server replaces them with O!objectSid
before proceeding with the access check.

For the access checking behavior described in the following sections, it is assumed that any security
descriptor used as input to that process has already undergone the SID substitution for Principal Self

(as described in this section), if necessary.

5.1.3.3.1 Null vs. Empty DACLs

The presence of a NULL DACL in the nTSecurityDescriptor attribute of an object grants full access to
the object to any principal that requests it; normal access checks are not performed with respect to
the object.

An empty DACL, on the other hand, is a properly allocated and initialized DACL containing no ACEs.
An empty DACL in the nTSecurityDescriptor attribute of an object grants no access to the object.
Note that even with an empty DACL, some rights are implied. For example, the current OWNER of

an object is implicitly granted RIGHT_READ_CONTROL and RIGHT_WRITE_DAC access. If the user
possesses the SE_TAKE_OWNERSHIP_PRIVILEGE, then RIGHT_WRITE_OWNER access is implied.

5.1.3.3.2 Checking Simple Access

When evaluating standard access rights specified in simple ACEs for an Active Directory object, the
security descriptor of the object is used. Let G and D denote the access rights that are granted and

denied, respectively, on the object. Set both to a value of 0 initially.

The following rules are used to determine the authorization for the requester's security context:

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the
requester all possible access rights on the object.

2. If the DACL does not have any ACE, then grant the requester no access rights on the object.

3. If the SID in the Owner field of the object's security descriptor matches any SID in the
requester's security context, then add the bits "Read Control" (RC), "Write DACL" (WD) and

"Write Owner" (WO) to G.

4. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the

following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of
the ACE have a value M.

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE.

2. If the SID in the ACE does not match any SID in the requester's security context, skip the
ACE.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

435 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3. If the ACE type is "Access Denied" and the access rights in M are not in G, then add the rights
in M to D.

4. If the ACE type is "Access Allowed" and the access rights in M are not in D, then add the rights
in M to G.

5. When the end of the DACL is reached, the access rights in G is the maximum standard access
available to the requester on the object. Check the requested access mask against the access
rights granted in G.

5.1.3.3.3 Checking Object-Specific Access

This section describes how object-specific access rights on Active Directory objects are evaluated,
with the exception of access rights representing control access rights and validated write rights.

That is the subject of the subsequent sections.

When evaluating object-specific access rights specified in object-specific ACEs for an Active
Directory object, the security descriptor of the object (or its parent) is used along with a three-level

"object type tree" associated with that object. For an object O that is the subject of an access check,
the object type tree T(V, E) consists of nodes V={v1, v2, ...}, edges E={e1, e2, ...}, and a GUID-
valued label for each node in V indicated by Guid(v), and is constructed as follows:

Let O be an object of class c, and let A={a1, a2, ...} be the set of attributes that instances of

class c may contain. For each attribute ai that is an element of A, if ai.attributeSecurityGUID ≠
NULL, then let pi denote the property set of which ai is a member and let Guid(pi) =
ai.attributeSecurityGUID (see Property Set in section 3.1.1.2). Let P be the union of all such sets
{pi}.

Add c to V as the root node of the tree and set Guid(c) to c!schemaIDGUID.

For every property set pi that is an element of P, add a node pi to V and Guid(pi) is as specified

earlier.

For every attribute ai that is an element of A, add a node ai to V and set Guid(ai) to

ai!schemaIDGUID.

For every property set pi that is an element of P, add an edge (c, pi) to E such that pi is a child of

c.

For every attribute ai that is an element of A, if there exists a property set pi that is an element

of P of which ai is a member then add an edge (pi, ai) to E such that ai is a child of pi; otherwise
add an edge (c, ai) to E such that ai is a child of c.

Note The object type tree used during an access check can include only a subset of the property
set (see Property Set in section 3.1.1.2.3.3) nodes and a subset of the attribute nodes that the

requester is interested in. An object type tree for an object is illustrated by the following figure.

%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

436 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 4: An object type tree

Let r be the root node of the object type tree T. Further, label each node v that is an element of V
with two additional labels called Grant(v) and Deny(v) indicating the access rights that are granted
and denied, respectively, at that node. Set both labels to a value 0 initially for every node.

The following rules are used to determine the authorization for the requester's security context:

1. If the security descriptor of object O has no DACL or its "DACL Present" (DP) bit is not set, then
grant the requester all possible access rights on the object.

2. If the DACL does not have any ACE, then grant the requester no access rights on the object.

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of
the ACE have a value M.

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE.

2. If the SID in the ACE does not match any SID in the requester's security context, skip the
ACE.

3. If the ACE type is "Access Allowed" and the access rights in M are not in Deny(r), then add the
rights in M to Grant(r) (where r denotes the root node of object type tree T as stated above).
For every descendant node u of r, if the rights in M are not in Deny(u), then add the rights in
M to Grant(u).

4. If the ACE type is "Object Access Allowed" and the ObjectType field in the ACE is not present,
then treat the ACE type as "Access Allowed" and perform the action in 3.3.

5. If the ACE type is "Object Access Allowed" and the ObjectType field in the ACE contains a

GUID value g:

If there exists no node v that is an element of V such that Guid(v) = g, then skip the ACE.

Otherwise, let v that is an element of V be the unique node such that Guid(v) = g. If the
rights in M are not in Deny(v), then add the rights in M to Grant(v). For every descendant
node u of v, if the rights in M are not in Deny(u), then add the rights in M to Grant(u).

437 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1. If v = r, then proceed to the next ACE.

2. If Grant(v) = Grant(s) for every sibling s of node v, then add the rights in Grant(v) to
Grant(p) where p is the parent of node v. Otherwise, proceed to the next ACE.

3. Set v to p, and repeat these three steps.

6. If the ACE type is "Access Denied" and the access rights in M are not in Grant(r), then add the
rights in M to Deny(r). For every descendant node u below the root node, if the rights in M are
not in Grant(u), then add the rights in M to Deny(u).

7. If the ACE type is "Object Access Denied" and the ObjectType field in the ACE is not present,
then treat the ACE type as "Access Denied" and perform the action in 3.6.

8. If the ACE type is "Object Access Denied" and the ObjectType field in the ACE contains a GUID
value g:

If there exists no node v that is an element of V such that Guid(v) = g, then skip the ACE.

Otherwise, let v be the unique node in P such that Guid(v) = g if any such node exists. If no
such node exists, let v be the unique node in A such that Guid(v) = g. If the rights in M are
not in Grant(v), then add the rights in M to Deny(v). For every descendant node u of v, if the
rights in M are not in Grant(u), then add the rights in M to Deny(u). For every ancestor node
w of v, add the rights in M to Deny(w).

4. When the end of the DACL is reached, the access rights in Grant(r) at the root node of tree T is
the maximum access available to the requester on the object. For each node u below the root
node r, the access rights in Grant(u) is the maximum access available to the requester for that
node.

If the requested access is for the entire object, check the requested access mask against the access
rights granted in Grant(r). If the requested access is for specific properties on the object, check the
requested access mask against the rights granted in Grant(u) where u is the attribute node in tree T

that is the target of the request.

5.1.3.3.4 Checking Control Access Right-Based Access

When evaluating the right to perform an operation that is controlled by a control access right
identified by the GUID value G, use the following rules to determine the authorization for the
requester's security context:

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the

requester the requested control access right.

2. If the DACL does not have any ACE, then deny the requester the requested control access right.

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of
the ACE have a value M.

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE.

2. If the SID in the ACE does not match any SID in the requester's security context, skip the
ACE.

438 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3. If the ACE type is "Object Access Allowed", the access right RIGHT_DS_CONTROL_ACCESS
(CR) is present in M, and the ObjectType field in the ACE is not present, then grant the

requested control access right. Stop any further access checking.

4. If the ACE type is "Object Access Allowed" the access right RIGHT_DS_CONTROL_ACCESS

(CR) is present in M, and the ObjectType field in the ACE contains a GUID value equal to G,
then grant the requested control access right. Stop any further access checking.

5. If the ACE type is "Object Access Denied", the access right RIGHT_DS_CONTROL_ACCESS
(CR) is present in M, and the ObjectType field in the ACE is not present, then deny the
requested control access right. Stop any further access checking.

6. If the ACE type is "Object Access Denied" the access right RIGHT_DS_CONTROL_ACCESS (CR)
is present in M, and the ObjectType field in the ACE contains a GUID value equal to G, then

deny the requested control access right. Stop any further access checking.

5.1.3.3.5 Checking Validated Write-Based Access

When evaluating the right to perform an operation controlled by a validated write access right
identified by the GUID value G, use the following rules to determine the authorization for the
requester's security context:

1. If the security descriptor has no DACL or its "DACL Present" (DP) bit is not set, then grant the
requester the requested validated write right.

2. If the DACL does not have any ACE, then deny the requester the requested validated write right.

3. Evaluate the DACL by examining each ACE in sequence, starting with the first ACE. Perform the
following sequence of actions for each ACE in the order as shown. Let the ACCESS_MASK field of
the ACE have a value M.

1. If the "Inherit Only" (IO) flag is set in the ACE, skip the ACE.

2. If the SID in the ACE does not match any SID in the requester's security context, skip the

ACE.

3. If the ACE type is "Object Access Allowed", the access right
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in
the ACE is not present, then grant the requested validated write right. Stop any further access
checking.

4. If the ACE type is "Object Access Allowed" the access right

RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in
the ACE contains a GUID value equal to G, then grant the requested validated write right.
Stop any further access checking.

5. If the ACE type is "Object Access Denied", the access right
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in
the ACE is not present, then deny the requested validated write right. Stop any further access

checking.

6. If the ACE type is "Object Access Denied" the access right
RIGHT_DS_WRITE_PROPERTY_EXTENDED (VW) is present in M, and the ObjectType field in
the ACE contains a GUID value equal to G, then deny the requested validated write right. Stop
any further access checking.

439 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5.1.3.3.6 Checking Object Visibility

An object in Active Directory is considered to be "visible" to a requester if the requester can see the
name of the object and thus learn of its existence, even if the requester can see no other attributes

of the object. The default behavior of Active Directory with respect to making objects visible to a
requesting principal is as follows:

If a user is granted the RIGHT_DS_LIST_CONTENTS access right on a container, all child objects

of that container are visible to the user.

Otherwise (if a user is not granted the RIGHT_DS_LIST_CONTENTS access right on a container),

no child object of that container is visible to the user. This allows the contents of entire

containers to be hidden.

However, Active Directory can optionally be put into a special mode, called the "List Object" mode.
Active Directory is put into the "List Object" mode by setting the third character of dSHeuristics
(section 6.1.1.2.4.1.2) to the value "1". The mode is disabled by setting the same character to the
value "0". The default setting is "0".

In "List Object" mode, a requester is allowed to selectively view specific child objects of a container

while other child objects remain hidden. In this mode, an object is visible if the user has been
granted the RIGHT_DS_LIST_CONTENTS right on the parent object. If, however, the user does not
have that right on the parent, then the object is visible if the user is granted the
RIGHT_DS_LIST_OBJECT right on both the object and its parent.

In summary, an object is not visible to a requester if:

The object is not the root object of a NC replica, and

The requester lacks RIGHT_DS_LIST_CONTENTS right on the object's parent, and

"List Object" mode is not set (as described above) or the requester lacks the

RIGHT_DS_LIST_OBJECT right on both the object and its parent.

5.1.3.4 AD LDS Security Context Construction

The construction of a Windows security context for an authenticated security principal in AD DS is

specified in [MS-PAC] section 4.1.2.2.

After a successful authentication to an AD LDS DC, the DC constructs a security context for the
authenticated security principal as follows:

1. Create an initial security context.

If the bind named an AD LDS user object, the initial security context contains only the

objectSid of that object.

If the bind named an AD LDS bind proxy, or the SID of some Windows account, the initial

security context is the context returned by the Windows login.

2. Extend the security context with well-known SIDs.

If the bind named an AD LDS user object or an AD LDS bind proxy object, add the following

SIDs to the security context if not already present:

1. Authenticated Users (section 6.1.1.2.6.2).

%5bMS-ADA1%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-ADA3%5d.pdf

440 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. Everyone (section 6.1.1.2.6.10).

3. Users, for the NC containing the AD LDS object (section 6.1.1.4.13.3).

4. Users, for the config NC of the forest containing the AD LDS object (section 6.1.1.4.13.3).

3. Extend the security context with AD LDS group memberships.

If a SID currently in the security context is a member of an AD LDS group on this DC, and

that group is not already present in the context, add the SID of that group to the context.
(The group membership is represented as a reference to an object whose objectSid equals the
SID: either an AD LDS user, an AD LDS bind proxy, an AD LDS group, or a
foreignSecurityPrincipal object.) Repeat until there are no more SIDs to add.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

441 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Additional Information

6.1 Special Objects and Forest Requirements

This section specifies the objects that are necessary for the proper functioning of the DCs in a forest
and the requirements that govern the state of these objects.

6.1.1 Special Objects

6.1.1.1 Naming Contexts

References

Special Attributes: Well-known Objects, Other Well-known Objects, Behavior Version

Forest Requirements

FSMO Roles

State Model: NC Naming

Security: SD Reference Domain

Glossary Terms: NC, NC Replica, NC root, DC, Forest root, Domain NC, PDC, FSMO

LDAP attributes: instanceType, subRefs, repsTo, repsFrom, replUpToDateVector, wellKnownObjects,
otherWellKnownObjects, name, objectClass, nTSecurityDescriptor, fSMORoleOwner, msDS-Behavior-
Version, distinguishedName, systemFlags, nTMixedDomain, domainReplica, msDS-

AllowedDNSSuffixes, dNSHostName, msDS-AdditionalDnsHostName, msDS-SDReferenceDomain

LDAP classes: configuration, dMD, domainDNS

Constants

Access mask bits, control access rights: DS-Replication-Get-Changes, DS-Replication-Get-

Changes-All, DS-Replication-Get-Changes-In-Filtered-Set

systemFlags bits: FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |

FLAG_DOMAIN_DISALLOW_MOVE

6.1.1.1.1 Any NC Root

The following attributes have constant semantics across all types of NCs.

instanceType: The instanceType of an NC root is a bit field, which is presented here in big-endian
byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X G C A W U H

X: Unused. SHOULD be zero and MUST be ignored.

H (IT_NC_HEAD, 0x00000001): This flag is set (value 1) on all NC roots.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

442 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

U (IT_UNINSTANT, 0x00000002): If this flag is set, the NC replica that this root represents
does not exist locally. This flag implies that this root is a subordinate reference object.

W (IT_WRITE, 0x00000004): This flag is written locally based upon the desired NC replica
type. A regular NC replica will have this flag set, and a partial NC replica will not have this

flag set. The IT_WRITE flag MUST be propagated identically to every object in the NC replica.

A (IT_NC_ABOVE, 0x00000008): This flag indicates that the local DC holds an instantiated
NC replica that is a parent of the NC replica represented by this NC root. This flag also
indicates that this NC root is a subordinate reference object.

C (IT_NC_COMING, 0x00000010): This flag indicates that the NC replica has not completed
its initial replication into the local DC, and may not have a full set of objects in the NC
represented by this NC root.

G (IT_NC_GOING, 0x00000020): This flag indicates that the NC replica is being removed from
the local DC, and may not have a full set of objects in the NC represented by this NC root.

Requirements:

IT_UNINSTANT can only be set with IT_NC_HEAD and IT_NC_ABOVE. The remaining bits are

incompatible with IT_UNINSTANT.

IT_NC_COMING and IT_NC_GOING cannot be set at the same time.

If IT_NC_GOING is set, then no replication can occur with that NC, either as server or as client.

subRefs: This value references all child objects in this NC replica of this NC root that are,
themselves, NC roots. For example, the schema NC is always referenced by this value on the Config
NC root object.

repsTo: This attribute contains the abstract attribute repsTo that is associated with this DC for this

NC replica. This attribute is nonreplicated. [MS-DRSR] section 5.170 specifies this abstract attribute.

repsFrom: This attribute contains the abstract attribute repsFrom that is associated with this DC for
this NC replica. This attribute is nonreplicated. [MS-DRSR] section 5.169 specifies this abstract
attribute.

replUpToDateVector: This attribute contains the abstract attribute replUpToDateVector that is
associated with this DC for this NC replica. This attribute is nonreplicated. [MS-DRSR] section 5.165
specifies this abstract attribute.

6.1.1.1.2 Config NC Root

name: Configuration

parent: For AD DS, the forest root NC root object. For AD LDS, no parent.

objectClass: configuration

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details.

instanceType: This value can never contain the following flags:

IT_NC_COMING

IT_NC_GOING

%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

443 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

IT_UNINSTANT

nTSecurityDescriptor:

Let D1 be a DC that is instructed to host a writable replica of the config NC (see section 6.1.2.3

for hosting requirements). In order for D1 to replicate the config NC, D1 MUST be granted the
following rights on the config NC root:

DS-Replication-Get-Changes

DS-Replication-Get-Changes-All

DS-Replication-Get-Changes-In-Filtered-Set

Let D2 be a DC that is instructed to host a read-only replica of config NC (see section 6.1.2.3 for

hosting requirements) such that the objects in the NC replica will not contain attributes in the
filtered attribute set. In order for D2 to replicate the config NC, D2 MUST be granted the
following rights on the config NC root:

DS-Replication-Get-Changes

msDS-ReplAuthenticationMode: Present and used on AD LDS only. Specifies the authentication that

is used for DC-to-DC communication over RPC ([MS-DRSR]). The msDS-ReplAuthenticationMode
values 0, 1, and 2 are valid; if absent, the effect is as if the value was 1. See [MS-DRSR] section
2.2.1 for the effects of these values.

objectSid: Present and used on AD LDS only. This attribute contains the SID that is used in
generating objectSid values for new AD LDS security principals residing in the config NC, as
specified in section 3.1.1.5.2.4. This attribute is not returned by LDAP queries.

6.1.1.1.3 Schema NC Root

name: Schema

parent: Config NC root

objectClass: dMD

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the Schema Master
FSMO. See section 6.1.5.

instanceType: This value can never contain the following flags:

IT_NC_COMING

IT_NC_GOING

IT_UNINSTANT

nTSecurityDescriptor: Let D be a DC that is instructed to host the schema replica NC (see section

6.1.2.3 for hosting requirements). In order for D to replicate the schema NC, D must be granted the

following rights on the schema NC root:

DS-Replication-Get-Changes

DS-Replication-Get-Changes-All

DS-Replication-Get-Changes-In-Filtered-Set

%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

444 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.1.4 Domain NC Root

distinguishedName: See section 3.1.1.1 for more information about domain NC naming rules.

objectClass: domainDNS

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the PDC FSMO role.
See section 6.1.5 for more information about the PDC role.

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details.

otherWellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details.

msDS-Behavior-Version: This value defines the functional level of the domain. See section 6.1.4.

nTMixedDomain: This value defines whether NT BDC replication [MS-NRPC] is available in the

domain. See section 6.1.4.1.

domainReplica: See section 3.1.1.5 for more information.

msDS-AllowedDNSSuffixes: List of DNS suffixes that are allowed in the dNSHostName and msDS-
AdditionalDnsHostName attributes of computer objects in this domain.

nTSecurityDescriptor:

Let D1 be a DC that is instructed to host a writable domain replica NC (see section 6.1.2.3 for

hosting requirements). In order for D1 to replicate the domain NC, D1 must be granted the
following rights on the domain NC root:

DS-Replication-Get-Changes

DS-Replication-Get-Changes-All

DS-Replication-Get-Changes-In-Filtered-Set

Let D2 be a DC that is instructed to host a partial or read-only domain replica NC (see section

6.1.2.3 for hosting requirements) such that objects in the NC replica can have attributes in the
filtered attribute set. In order for D2 to replicate the domain NC, D2 must be granted the
following right on the domain NC root:

DS-Replication-Get-Changes

DS-Replication-Get-Changes-In-Filtered-Set

Let D3 be a DC that is instructed to host a partial or read-only domain replica NC (see section

6.1.2.3 for hosting requirements) such that objects in the NC replica will not have attributes in
the filtered attribute set. In order for D3 to replicate the domain NC, D3 must be granted the
following right on the domain NC root:

DS-Replication-Get-Changes

msDS-EnabledFeature: This value references the objects that represent optional features that are
enabled in the domain. See section 3.1.1.9.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

445 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.1.5 Application NC Root

distinguishedName: See section 3.1.1.1 for more information about domain NC naming rules.

objectClass: domainDNS (AD DS); any structural or 88 class except dMD and configuration (AD

LDS)

wellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details.

otherWellKnownObjects: This attribute holds DN-Binary values. See section 6.1.4 for details.

nTSecurityDescriptor:

Let D1 be a DC that is instructed to host a writable application replica NC (see section 6.1.2.3 for

hosting requirements). In order for D1 to replicate the NC, D1 must be granted the following

rights on the NC root:

DS-Replication-Get-Changes

DS-Replication-Get-Changes-All

DS-Replication-Get-Changes-In-Filtered-Set

Let D2 be a DC that is instructed to host a read-only application replica NC (see section 6.1.2.3

for hosting requirements) such that objects in the NC replica will not contain attributes in the
filtered attribute set. In order for D2 to replicate the NC, D2 must be granted the following rights
on the NC root:

DS-Replication-Get-Changes

Note that this nTSecurityDescriptor must be resolved with the domain specified on the msDS-

SDReferenceDomain attribute on the crossRef object representing this NC; see section 5 for

details.

objectSid: Present and used on AD LDS only. This attribute contains the SID that is used in

generating objectSid values for new AD LDS security principals residing in this application NC, as
specified in section 3.1.1.5.2.4. This attribute is not returned by LDAP queries.

6.1.1.2 Configuration Objects

References

FSMO Roles

LDAP

Special Attributes

Forest Requirements

Security

Knowledge Consistency Checker

Originating Updates

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

446 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Glossary Terms: NC, NC Replica, NC root, DC, Domain NC, FSMO, Forest Functional Level,
Application NC, KCC, ISTG, Intra-site, Inter-site, Global Catalog, Forest, SMTP, Site, COM

(Component Object Model), UUID, MAPI, ANR, NSPI

LDAP attributes: name, objectClass, fSMORoleOwner, msDS-Behavior-Version, msDS-

EnabledFeature, distinguishedName, systemFlags, nTMixedDomain, dnsRoot, nCName, msDS-
Replication-Notify-First-DSA-Delay, msDS-Replication-Notify-Subsequent-DSA-Delay,
nETBIOSName, msDS-SDReferenceDomain, options, schedule, interSiteTopologyGenerator,
interSiteTopologyFailover, interSiteTopologyRenew, serverReference, dNSHostName, mailAddress,
invocationId, hasMasterNCs, hasPartialReplicaNCs, msDS-HasInstantiatedNCs, instanceType, msDS-
OptionalFeatureGUID, msDS-RequiredForestBehaviorVersion, msDS-OptionalFeatureFlags, msDS-
HasDomainNCs, msDS-hasMasterNCs, msDS-ReplicationEpoch, enabledConnection, fromServer,

transportType, mS-DS-ReplicatesNCReason, siteObject, transportDLLName,
transportAddressAttribute, cost, siteList, replInterval, siteLinkList, adminPropertyPages,
shellPropertyPages, adminContextMenu, shellContextMenu, adminMultiselectPropertyPages,
treatAsLeaf, creationWizard, createWizardExt, dSHeuristics, objectGUID, msDS-KeyVersionNumber,
msDS-DeletedObjectLifetime, tombstoneLifetime, sPNMappings, msDS-Other-Settings, rightsGuid,

appliesTo, localizationDisplayId, validAccesses, repsTo

LDAP classes: crossRefContainer, crossRef, sitesContainer, site, nTDSSiteSettings, nTDSConnection,
serversContainer, server, nTDSDSA, subnetContainer, subnet, interSiteTransportContainer,
interSiteTransport, siteLink, container, displaySpecifier, nTDSService, physicalLocation,
controlAccessRight

Constants

systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_CR_NTDS_NC, FLAG_CR_NTDS_DOMAIN,

FLAG_CR_NTDS_NOT_GC_REPLICATED, FLAG_DISALLOW_MOVE_ON_DELETE,
FLAG_CONFIG_ALLOW_LIMITED_MOVE, FLAG_CONFIG_ALLOW_RENAME

Replication bits: DRS_SYNC_FORCED

6.1.1.2.1 Cross-Ref-Container Container

name: Partitions

parent: Config NC root

objectClass: crossRefContainer

fSMORoleOwner: This value references the Domain Naming Master FSMO role owner. See section
6.1.5.

systemFlags: {FLAG_DISALLOW_DELETE}

msDS-Behavior-Version: This value defines the forest functional level. See section 6.1.4.

msDS-EnabledFeature: This value references the objects that represent optional features that are

enabled in the forest. See section 3.1.1.9.

6.1.1.2.1.1 Cross-Ref Objects

The following is the description of the flags and their meaning for crossRef objects stored in
systemFlags. The flags are presented in big-endian byte order.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

447 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X G

C

D N

C

X: Unused. Must be zero and ignored.

NC (FLAG_CR_NTDS_NC, 0x00000001): NC exists within the forest (not external).

D (FLAG_CR_NTDS_DOMAIN, 0x00000002): NC is a domain.

GC (FLAG_CR_NTDS_NOT_GC_REPLICATED, 0x00000004): NC must not be replicated to
GC servers as a read-only replica.

The following attributes and attribute values are common to crossRef objects representing all NC

types:

parent: crossRefContainer object

objectClass: crossRef

Enabled: If false, this is a "pre-created" crossRef; that is, the crossRef exists, but the corresponding
NC root does not yet exist. See section 3.1.1.5.2.8.

dnsRoot: If Enabled equals false, in AD DS dnsRoot holds the DNS name of the DC that will create

the root of this NC. If Enabled equals false, in AD LDS, dnsRoot holds the DNS name of the DC that
will create the root of this NC followed by a colon (":"), followed by the LDAP port number used by
the DC, followed by another colon (":"), followed by the SSL port number used by the DC. If
Enabled is not false, in AD DS dnsRoot holds the fully qualified DNS name used for LDAP referrals
(section 3.1.1.4.6). If Enabled is not false, in AD LDS dnsRoot is absent.

nCName: If Enabled is not false, a reference to the NC root corresponding to this crossRef.

msDS-Replication-Notify-First-DSA-Delay: Indicates the number of seconds that each DC should
delay after receiving updates (originating or replicated) to objects in the NC referred to by nCName
before the DC notifies another DC of updates received according to the DCs local repsTos. See
IDL_DRSReplicaSync in [MS-DRSR] section 4.1.23.

msDS-Replication-Notify-Subsequent-DSA-Delay: Indicates the number of seconds that each DC
should delay after notifying the first DC of updates received to objects in the NC referred to by
nCName before notifying each additional DC according to the DCs local repsTos. See

IDL_DRSReplicaSync in [MS-DRSR] section 4.1.23.

6.1.1.2.1.1.1 Foreign crossRef Objects

A foreign crossRef object is used to enable referrals for searches that need to return objects from
different forests or LDAP services. For more information, see section 3.1.1.3. The following attribute

and attribute values are defined for a foreign crossRef:

systemFlags: 0

6.1.1.2.1.1.2 Configuration crossRef Object

name: Enterprise Configuration

%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

448 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

systemFlags: { FLAG_CR_NTDS_NC }

nCName: The value must equal the config NC root.

dnsRoot: In AD DS, the value is the forest root's fully qualified DNS name. Not present in AD LDS.

6.1.1.2.1.1.3 Schema crossRef Object

name: Enterprise Schema

systemFlags: { FLAG_CR_NTDS_NC }

nCName: The value must equal the schema NC root.

dnsRoot: In AD DS, the value is the forest root's fully qualified DNS name. Not present in AD LDS.

6.1.1.2.1.1.4 Domain crossRef Object

The following attribute and attribute values are common to domain crossRef objects:

name: The NetBIOS name of the domain.

nCName: The reference must be to a domain NC root.

nETBIOSName: This value is the NetBIOS name of the domain.

trustParent: This attribute is not present on the root domain NC's crossRef object. For child NCs, this
value references the parent NC's crossRef object. For a domain NC that is not the root and does not

have a parent NC, this value references the root domain's crossRef object.

nTMixedDomain: This value is read-only on this object. It is kept in sync with the same attribute on
the NC root of the NC referred to by nCName. See section 6.1.4.1.

systemFlags: { FLAG_CR_NTDS_NC | FLAG_CR_NTDS_DOMAIN }

msDS-Behavior-Version: This value is read-only on this object. It is kept in sync with the same
attribute on the NC root of the NC referred to by nCName. See section 6.1.4.

6.1.1.2.1.1.5 Application NC crossRef Object

dnsRoot: In AD DS, the value for dnsRoot for an application NC crossRef is derived by syntactically
converting the DN portion of the crossRef's nCName into a fully qualified DNS name as specified in
section 3.1.1.1.5. Not present in AD LDS.

systemFlags: { FLAG_CR_NTDS_NC | FLAG_CR_NTDS_NOT_GC_REPLICATED }

msDS-NC-Replica-Locations: This attribute references the nTDSDSA objects representing every DC
instructed to hold a writable NC replica of this application NC. See Hosting Requirements in section

6.1.2.3.

msDS-SDReferenceDomain: In AD DS, the attribute references an NC root object for a domain. All
security descriptors in this application NC must use the NC represented as the reference domain for
resolution. See section 5 for security descriptor reference domain information. Not present in AD
LDS.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf

449 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

msDS-NC-RO-Replica-Locations: This attribute references the nTDSDSA object representing every
DC instructed to hold a read-only NC replica of this application NC. See Hosting Requirements in

section 6.1.2.3.

6.1.1.2.2 Sites Container

Each forest contains a Sites container in the Config NC. For each site in the forest, a site object
exists in the Sites container.

name: Sites

parent: Config NC root object

objectClass: sitesContainer

systemFlags: { FLAG_DISALLOW_DELETE | FLAG_DISALLOW_MOVE_ON_DELETE }

6.1.1.2.2.1 Site Object

A site object corresponds to a set of one or more IP subnets that have LAN connectivity. Thus, by
virtue of their subnet associations, DCs that are in the same site are well connected in terms of
speed. Each site object has a child nTDSSiteSettings object and a Servers container.

parent: Sites container

objectClass: site

systemFlags: { FLAG_CONFIG_ALLOW_RENAME | FLAG_DISALLOW_MOVE_ON_DELETE }

Note The initial AD DS and AD LDS configuration contains one initial site object named Default-
First-Site-Name, which has no subnet association.

6.1.1.2.2.1.1 NTDS Site Settings Object

NTDS site settings objects identify site-wide settings. There is one nTDSSiteSettings object per

site.

name: NTDS Site Settings

parent: site object

objectClass: nTDSSiteSettings

options: One or more bits from the following diagram. The bits are presented in big-endian byte
order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X R

S

E

S

H

E

B

H

D

W

2

K

F

W

B

G

C

E

I

S

D

D

S

D

M

H

D

T

C

D

A

T

D

%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

450 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

X: Unused. Must be zero and ignored.

ATD (NTDSSETTINGS_OPT_IS_AUTO_TOPOLOGY_DISABLED, 0x00000001): Automatic
topology generation is disabled. See section 6.2 for more information.

TCD (NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED, 0x00000002): Automatic

topology cleanup is disabled. See section 6.2 for more information.

MHD (NTDSSETTINGS_OPT_IS_TOPL_MIN_HOPS_DISABLED, 0x00000004): Automatic
minimum hops topology is disabled. See section 6.2 for more information.

DSD (NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED, 0x00000008):
Automatic stale server detection is disabled. See section 6.2 for more information.

ISD (NTDSSETTINGS_OPT_IS_INTER_SITE_AUTO_TOPOLOGY_DISABLED,
0x00000010): Automatic intersite topology generation is disabled. See section 6.2 for more

information.

GCE (NTDSSETTINGS_OPT_IS_GROUP_CACHING_ENABLED, 0x00000020): Caching of
users' group memberships is enabled for this site. This caching is an implementation-specific
behavior. This flag may be ignored by other implementations but must not be used in a
conflicting way that would affect the performance of Windows DCs.

FWB (NTDSSETTINGS_OPT_FORCE_KCC_WHISTLER_BEHAVIOR, 0x00000040): Force

the KCC to behave in a forest functional level of DS_BEHAVIOR_WIN2003 or greater. See
section 6.2 for more information.

W2K (NTDSSETTINGS_OPT_FORCE_KCC_W2K_ELECTION, 0x00000080): Force the KCC
to use the Windows 2000 operating system intersite topology generator (ISTG) election
algorithm. See section 6.2 for more information.

BHD (NTDSSETTINGS_OPT_IS_RAND_BH_SELECTION_DISABLED, 0x00000100):
Prevent the KCC from randomly picking a bridgehead when creating a connection. See section

6.2 for more information.

SHE (NTDSSETTINGS_OPT_IS_SCHEDULE_HASHING_ENABLED, 0x00000200): Allow the
KCC to use hashing when creating a replication schedule. See section 6.2 for more
information.

RSE (NTDSSETTINGS_OPT_IS_REDUNDANT_SERVER_TOPOLOGY_ENABLED,
0x00000400): Create static failover connections. See section 6.2 for more information.

schedule: The default replication schedule (defined as a SCHEDULE structure) that applies to all

nTDSConnection objects for intrasite replication within this site. If this attribute does not contain any
value, a schedule of once per hour is applied to replication within this site. See section 6.2 for more
information.

interSiteTopologyGenerator: A reference to the nTDSDSA object of the DC that is acting as the ISTG
for this site. See section 6.2 for more information on the ISTG.

interSiteTopologyFailover: Indicates how much time must transpire since the last keep-alive for the

ISTG to be considered dead. See section 6.2 for more information.

interSiteTopologyRenew: Indicates how often the intersite topology generator updates the keep-
alive message that is sent to domain controllers contained in the same site. See section 6.2 for
more information.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

451 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.2.1.2 Servers Container

Each site contains a Servers container that contains the server objects for all the DCs that are in
that site.

parent: site object

objectClass: serversContainer

systemFlags: FLAG_DISALLOW_MOVE_ON_DELETE

6.1.1.2.2.1.2.1 Server Object

Each DC in a domain has a server object in the config NC. See requirements in section 6.1.2.1. A
server object has the following attributes:

parent: The parent of this object is a serversContainer object.

objectClass: server

systemFlags: { FLAG_CONFIG_ALLOW_RENAME | FLAG_CONFIG_ALLOW_LIMITED_MOVE |
FLAG_DISALLOW_MOVE_ON_DELETE }

serverReference: In AD DS, a reference to the domain controller object representing this DC. See
requirements in section 6.1.2.1. Not present in AD LDS.

dNSHostName: Fully qualified DNS name of the DC.

mailAddress: To enable the DC to perform intersite replication via the SMTP protocol (see [MS-
SRPL]), this attribute must contain the SMTP mail address of the server.

6.1.1.2.2.1.2.1.1 nTDSDSA Object

Each DC in a forest has an nTDSDSA object in the config NC. See requirements in section 6.1.2.1.

An nTDSDSA object has the following attributes:

name: NTDS Settings

parent: An object with objectClass server.

objectClass: nTDSDSA

dMDLocation: The DSName of the schema NC root.

invocationId: The invocationId for this DC (section 3.1.1.1.9).

options: One or more of the following bits presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X D

S

D

N

X

D

O

D

I

G

C

%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

452 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

X: Unused. Must be zero and ignored.

GC (NTDSDSA_OPT_IS_GC, 0x00000001): This DC is, or is becoming, a GC server.

DI (NTDSDSA_OPT_DISABLE_INBOUND_REPL, 0x00000002): This DC does not perform
inbound replication unless the DRS_SYNC_FORCED flag is passed. See [MS-DRSR] section

4.1.10.4.1, ReplicateNCRequestMsg, for the effects of this option.

DO (NTDSDSA_OPT_DISABLE_OUTBOUND_REPL, 0x00000004): This DC does not perform
outbound replication unless the DRS_SYNC_FORCED flag is passed. See [MS-DRSR] section
4.1.10.5.2, GetReplChanges, for the effects of this option.

DNX (NTDSDSA_OPT_DISABLE_NTDSCONN_XLATE, 0x00000008): This DC does not
translate connection objects into repsFroms. See section 6.2 for more information.

DS (NTDSDSA_OPT_DISABLE_SPN_REGISTRATION, 0x00000010): This DC does not

perform SPN registration. Only interpreted by AD LDS DCs. See [MS-DRSR] sections 2.2.3.3
and 2.2.4.3, SPN for a Target DC in AD LDS, for the effects of this option.

systemFlags: {FLAG_DISALLOW_MOVE_ON_DELETE}

msDS-Behavior-Version: Indicates the DC version. See section 6.1.4.2 for more information.

msDS-PortLDAP: In AD LDS, stores the LDAP port for this instance. Not present in AD DS.

msDS-PortSSL: In AD LDS, stores the SSL port for this instance. Not present in AD DS.

msDS-ServiceAccount: In AD LDS, stores the foreignSecurityPrincipal object that represents the
service account running this DC. Not present in AD DS.

hasMasterNCs: Contains the DSName of the NC root objects representing the schema NC, config
NC, and domain NC for the default domain of the DC. This attribute always contains these three
values and only these three values. This attribute is not present on the nTDSDSA object of an
RODC.

hasPartialReplicaNCs: Contains the DSName of the root objects of all domain NCs within the forest

for which the DC hosts a partial NC replica.

msDS-HasInstantiatedNCs: Contains an Object(DN-Binary) value for each NC replica that is hosted
by this DC. The DN field is the DN of the root object of the NC. The Binary field contains the value of
the instanceType attribute on the root object of the NC. This is a binary encoding of attribute
instanceType with little-endian byte ordering.

Requirement: The DN fields of all the values of msDS-HasInstantiatedNCs must be equal to the set
of DNs contained in the values of msDS-hasMasterNCs and hasPartialReplicaNCs.

msDS-HasDomainNCs: Equals the DSName of the NC root object for which the DC is hosting a
regular NC replica. This attribute must have only one value. This NC root is called the default
domain for the DC.

msDS-hasMasterNCs: Contains the DSNames of the root objects of all writable NC replicas hosted

by this DC. Not present on the nTDSDSA object of an RODC. On a normal (writable) DC, includes
the default NC, config NC, schema NC, and all application NC replicas hosted by the DC.

msDS-hasFullReplicaNCs: Contains the DSNames of the root objects of all read-only full NC
replicas hosted by this DC. Not present on the nTDSDSA object of a normal (writable) DC. On an
RODC, includes the default NC, config NC, schema NC, and all application NC replicas hosted by the
DC.

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

453 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

msDS-ReplicationEpoch: [MS-DRSR] section 4.1.3.1 (client behavior of IDL_DRSBind) and [MS-
DRSR] section 4.1.10.5 (server behavior of IDL_DRSGetNCChanges) specify the effects of this

attribute.

msDS-DefaultNamingContext: In AD LDS, specifies the NC that should be returned as the default NC

by the defaultNamingContext attribute of the root DSE. If this attribute is not set, AD LDS does not
have a default NC and the defaultNamingContext attribute of the root DSE is treated by the server
as if it does not exist. Not present in AD DS.

objectCategory: This attribute is a mandatory attribute representing the schema definition of the
nTDSDSA object. If the objectCategory points to the classSchema object for the nTDSDSA class,
then this nTDSDSA object is for a normal (writable) DC. If the objectCategory points to the
classSchema object for the nTDSDSARO class, then this nTDSDSA object is for an RODC.

msDS-EnabledFeature: This value references the objects that represent optional features that are
enabled in the DC. See section 3.1.1.9.

6.1.1.2.2.1.2.1.2 Connection Object

An nTDSConnection object represents a path for replication from a source DC to a destination DC.
This object is a child of the nTDSDSA object of the destination DC. See section 6.2 for more

information about connection objects.

Each nTDSConnection object has the following attributes:

parent: nTDSDSA object

objectClass: nTDSConnection

enabledConnection: Indicates whether the connection can be used for replication.

fromServer: A reference to the nTDSDSA object of the source DC.

schedule: Contains a SCHEDULE structure specifying the time intervals when replication can be

performed between the source and the destination DCs. In case of intrasite replication (source and
destination DCs are in the same site), the value of this attribute is derived from the schedule
attribute on the nTDSSiteSettings object of the site where the two DCs reside. In case of intersite
replication (source and destination DCs are in different sites), the value is derived from the schedule
attribute on the siteLink object that links the two sites.

systemFlags: {FLAG_CONFIG_ALLOW_RENAME | FLAG_CONFIG_ALLOW_MOVE}

options: One or more bits from the following diagram. The bits are presented in big-endian byte

order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X U

O

S

D

I

C

U

N

O

N

D

T

S

I

G

X: Unused. Must be zero and ignored.

%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

454 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

IG (NTDSCONN_OPT_IS_GENERATED, 0x00000001): The nTDSConnection object was
generated by the KCC. See section 6.2 for more information.

TS (NTDSCONN_OPT_TWOWAY_SYNC, 0x00000002): Indicates that a replication cycle
should be performed in the opposite direction at the end of a replication cycle that is using this

connection.

OND (NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT, 0x00000004): Do not use defaults
to determine notification.

UN (NTDSCONN_OPT_USE_NOTIFY, 0x00000008): The source DC notifies the destination
DC regarding changes on the source DC.

DIC (NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION, 0x00000010): For intersite
replication, this indicates that the compression of replication data is disabled.

UOS (NTDSCONN_OPT_USER_OWNED_SCHEDULE, 0x00000020): For KCC-generated
connections, indicates that the schedule attribute is owned by the user and should not be

modified by the KCC. See section 6.2 for more information.

transportType: A reference to the interSiteTransport object for the transport used on this
connection. For more information about physical transport types, see [MS-SRPL].

mS-DS-ReplicatesNCReason: For each NC that is replicated using this connection, this attribute

contains an Object(DN-Binary) value, where the DN portion is the DN of the NC, and the binary
value is a 32-bit–wide bit field. The binary portion contains extended information about a connection
object that could be used by administrators. It consists of one or more bits from the following
diagram. The bits are presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X R

S

S

I

F

S

F

I

S

I

S

G

O

C

S

S

M

H

R G

C

X: Unused. Must be zero and ignored.

GC (NTDSCONN_KCC_GC_TOPOLOGY, 0x00000001): Not used.

R (NTDSCONN_KCC_RING_TOPOLOGY, 0x00000002): The connection object is created to
form a ring topology.

MH (NTDSCONN_KCC_MINIMIZE_HOPS_TOPOLOGY, 0x00000004): The connection object
is created to minimize hops between replicating nodes.

SS (NTDSCONN_KCC_STALE_SERVERS_TOPOLOGY, 0x00000008): If the KCC finds that

the destination server is not responding, then it sets this bit.

OC (NTDSCONN_KCC_OSCILLATING_CONNECTION_TOPOLOGY, 0x00000010): The KCC
sets this bit if deletion of the connection object was prevented.

When the KCC considers deleting a connection object, it first checks if it previously deleted
connection objects with the same source DC, destination DC, and options for an

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-ADA2%5d.pdf

455 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

implementation-specific number of times T (default value is 3) over the last implementation-
specific time period t (the default is 7 days) since the server has started. If it did, it will set

the NTDSCONN_KCC_OSCILLATING_CONNECTION_TOPOLOGY bit on the connection
object and will not delete it. Otherwise, it will delete the connection object.

ISG (NTDSCONN_KCC_INTERSITE_GC_TOPOLOGY, 0x00000020): This connection is to
enable replication of partial NC replica between DCs in different sites.

IS (NTDSCONN_KCC_INTERSITE_TOPOLOGY, 0x00000040): This connection is to enable
replication of a full NC replica between DCs in different sites.

SF (NTDSCONN_KCC_SERVER_FAILOVER_TOPOLOGY, 0x00000080): This connection is a
redundant connection between DCs that is used for failover when other connections between
DCs are not functioning.

SIF (NTDSCONN_KCC_SITE_FAILOVER_TOPOLOGY, 0x00000100): This connection is a
redundant connection between bridgehead DCs in different DCs; it is used for failover when
other connections between bridgehead DCs connecting two sites are not functioning.

RS (NTDSCONN_KCC_REDUNDANT_SERVER_TOPOLOGY, 0x00000200): Redundant
connection object connecting bridgeheads in different sites.

The connection object is for server-to-server replication implementation only. Peer DCs MAY assign

a meaning to it, but it is not required for interoperation with Windows clients.

See section 6.2 for more information about these options.

6.1.1.2.2.1.2.1.3 RODC NTFRS Connection Object

An RODC NTFRS connection object exists for each RODC in the forest. RODC NTFRS connection
objects do not exist for writable DCs. An RODC NTFRS connection object represents a path for File
Replication Service (FRS) replication [MS-FRS1] from a source DC to a destination DC; it is not

used for directory replication service (DRS) replication [MS-DRSR]. This object is a child of the
nTDSDSA object of the destination RODC. See section 6.2 for more information about connection

objects.

Each RODC NTFRS connection object has the following attributes:

name: RODC Connection (SYSVOL)

Note On Windows Server 2008 operating system and Windows Server 2008 R2 operating system,
the name attribute was set to "RODC Connection (FRS)".

parent: nTDSDSA object

objectClass: nTDSConnection

enabledConnection: true

fromServer: A reference to the nTDSDSA object of the source DC.

schedule: Contains a SCHEDULE structure that specifies the time intervals when replication can be
performed between the source and the destination DCs. See section 6.2.2.7 for more information

about how this value is derived.

systemFlags: {FLAG_CONFIG_ALLOW_RENAME}

%5bMS-GLOS%5d.pdf
%5bMS-FRS1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

456 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

options: Both of the bits from the following diagram. The bits are presented in big-endian byte
order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X R

T

X X X X X I

G

X: Unused. Must be zero and ignored.

IG (NTDSCONN_OPT_IS_GENERATED, 0x00000001): The nTDSConnection object was
generated by the system, not by a user or administrator directly.

RT (NTDSCONN_OPT_RODC_TOPOLOGY, 0x00000040): The
NTDSCONN_OPT_RODC_TOPOLOGY bit in the options attribute indicates whether the

connection can be used for DRS replication [MS-DRSR]. When set, the connection should be
ignored by DRS replication and used only by FRS replication [MS-FRS1]. See section 6.2 and
[MS-FRS1] section 3.1.1.8.

6.1.1.2.2.2 Subnets Container

Each forest contains a Subnets container in the config NC. A network subnet is a segment of a
TCP/IP network to which a set of logical IP addresses is assigned. For each subnet in the forest, a
subnet object exists in the Subnets container.

name: Subnets

parent: Sites container

objectClass: subnetContainer

systemFlags: FLAG_DISALLOW_DELETE

6.1.1.2.2.2.1 Subnet Object

subnet objects define network subnets in the directory. Subnets group computers in a way that
identifies their physical proximity on the network. subnet objects are used to map computers to
sites.

name: The name of the subnet object identifies the set of IP addresses that fall in this subnet. An

IP address that falls in this subnet is considered to be in the site specified by the siteObject
attribute of this object.

A valid subnet name must satisfy the following constraints:

Let s be the subnet name.

Let l be the length of the subnet name.

Let BitMask[] = {0x00000000, 0x00000080, 0x000000C0, 0x000000E0, 0x000000F0,

0x000000F8, 0x000000FC, 0x000000FE, 0x000000FF, 0x000080FF, 0x0000C0FF, 0x0000E0FF,
0x0000F0FF, 0x0000F8FF, 0x0000FCFF, 0x0000FEFF, 0x0000FFFF, 0x0080FFFF, 0x00C0FFFF,
0x00E0FFFF, 0x00F0FFFF, 0x00F8FFFF, 0x00FCFFFF, 0x00FEFFFF, 0x00FFFFFF, 0x80FFFFFF,
0xC0FFFFFF, 0xE0FFFFFF, 0xF0FFFFFF, 0xF8FFFFFF, 0xFCFFFFFF, 0xFEFFFFFF, 0xFFFFFFFF };

%5bMS-ADA3%5d.pdf
%5bMS-FRS1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

457 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

s is a valid subnet name if:

1. There is only one occurrence of the character "/" in s. Let i be the index of the character "/" in
s.

2. The substring s[0, i-1] does not have any leading zeros and is either a valid IPv4 address in

dotted decimal notation (as specified in [RFC1166]) or a valid IPv6 address in colon-hexadecimal
form or compressed form (as specified in [RFC2373]).

Let b be the binary representation of the address in little-endian format.

3. The substring s[i+1, l-1] does not have any leading zeros and can be converted to an
unsigned integer n.

4. When the address is in IPv4 format, 0 < n <= 32. When the address is in IPv6 format, 0 < n
<= 128.

5. When the address is in IPv4 format, b & (~BitMask[n]) = 0.

6. When the address is in IPv4 format, b ≠ BitMask[n].

Based on the subnet object name, the range of the IP addresses that the subnet contains can be
determined. For example, if the IPv4 subnet object name is 10.121.0.0/22, then according the
above definition, b will be 00001010.01111001.00000000.00000000 and n will be 22. This
means that the first 22 bits of b will be fixed for the range of the IP addresses the subnet

contains. Then the IP address range of the subnet is from
00001010.01111001.00000000.00000000 to 00001010.01111001.00000011.11111111, namely
from 10.121.0.0 to 10.121.3.255. Similarly, an IPv6 subnet object name 2001:DA8::/48
represents the IPv6 addresses from 2001:DA8:0:0:0:0:0:0 to
2001:DA8:0:FFFF:FFFF:FFFF:FFFF:FFFF.

parent: Subnets container

objectClass: subnet

systemFlags: FLAG_CONFIG_ALLOW_RENAME

siteObject: The DSName of the site object for the site that covers this subnet.

6.1.1.2.2.3 Inter-Site Transports Container

The Inter-Site Transports container provides the means for specifying the transport or wire protocol

to be used for replication between sites. Intersite replication can use either the RPC protocol over IP
(see [MS-DRSR]), or the SMTP protocol (see [MS-SRPL]).

name: Inter-Site Transports

parent: Sites container

objectClass: interSiteTransportContainer

systemFlags: FLAG_DISALLOW_DELETE

6.1.1.2.2.3.1 IP Transport Container

The IP Transport container contains all the siteLink and siteLinkBridge objects that connect two or
more sites for intersite replication using RPC over IP protocol.

http://go.microsoft.com/fwlink/?LinkId=103593
http://go.microsoft.com/fwlink/?LinkId=94517
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

458 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

parent: Inter-Site Transports container

objectClass: interSiteTransport

transportDLLName: The value of this attribute MUST be the string "ismip.dll".

transportAddressAttribute: Identifies which attribute on the server object of a DC should be used as

the network address of the DC for replication using this transport. For the IP transport, the attribute
is dNSHostName.

options: A set of the following bit flags presented in big-endian byte order. For IP transport, the
initial value is none present (options value 0x0).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X B

R

I

S

X: Unused. Must be zero and ignored.

IS (NTDSTRANSPORT_OPT_IGNORE_SCHEDULES, 0x00000001): If present, values of the
schedule attribute for siteLink objects associated with this transport are ignored. In this case,
the schedule is assumed to be always "on"; that is, that the transport is always available to

send and receive messages.

BR (NTDSTRANSPORT_OPT_BRIDGES_REQUIRED, 0x00000002): If present, transitive
connectivity between siteLink objects associated with this transport is assumed only if the
siteLink objects are in the siteLinkList of the same siteLinkBridge object. If absent, the system
behaves as if all siteLink objects associated with this transport were in the siteLinkList of a
common siteLinkBridge object associated with this transport.

6.1.1.2.2.3.2 SMTP Transport Container

In AD DS, the SMTP Transport container contains all the siteLink and siteLinkBridge objects that
connect two or more sites for intersite replication using the SMTP protocol. Not present in AD LDS.

parent: Inter-Site Transports container

objectClass: interSiteTransport

transportDLLName: The value of this attribute MUST be the string "ismsmtp.dll".

transportAddressAttribute: Identifies which attribute on the server object of a DC should be used as
the network address of the DC for replication using this transport. For the SMTP transport, the
attribute is mailAddress.

options: A set of bit flags as defined for options in section 6.1.1.2.2.3.1. For SMTP transport, the

initial value is NTDSTRANSPORT_OPT_IGNORE_SCHEDULES present (options value 0x1).

6.1.1.2.2.3.3 Site Link Object

For a DC in one site to replicate directly with a DC in a different site, a siteLink object (or a series of
siteLink objects) must connect the two sites specified. A siteLink object identifies the transport (wire
protocol) to be used for replication between the sites. If the transport is IP, the siteLink object is a

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

459 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

child of the IP Transport container. If the transport is SMTP, the siteLink object is a child of the
SMTP Transport container. Any single siteLink object may encompass two or more sites. If a siteLink

object contains two sites, then those two sites are considered to be directly connected. If a siteLink
object contains more than two sites, then all of the sites listed in the siteLink are considered to be

connected in a mesh of point-to-point links.

parent: Either IP Transport container or SMTP Transport container.

objectClass: siteLink

systemFlags: FLAG_CONFIG_ALLOW_RENAME

cost: An administrator-defined cost value associated with that replication path.

siteList: Contains the DSName of the site objects for the sites that are connected using this site
link.

replInterval: An interval that determines how frequently replication occurs over this site link during

the times when the schedule allows replication.

schedule: Replication schedule of type SCHEDULE that specifies the time intervals when replication
is permitted between the two sites.

options: A set of the following bit flags presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X D

C

T

S

U

N

X: Unused. Must be zero and ignored.

UN (NTDSSITELINK_OPT_USE_NOTIFY, 0x00000001): If present, enables replication

notifications (see Updates, section 3.1.1.5) between DCs in different sites in the siteList.

TS (NTDSSITELINK_OPT_TWOWAY_SYNC, 0x00000002): If present, forces a replication
cycle in the opposite direction at the end of a replication cycle between DCs in different sites
in the siteList.

DC (NTDSSITELINK_OPT_DISABLE_COMPRESSION, 0x00000004): If present, disables
compression of IDL_DRSGetNCChanges response messages sent between DCs in different
sites in the siteList.

6.1.1.2.2.3.4 Site Link Bridge Object

A siteLinkBridge object connects two or more siteLink objects that are associated with the same
transport. The siteLinkBridge object is a child of the interSiteTransport object for the transport used

by the siteLink objects that are being connected.

When NTDSTRANSPORT_OPT_BRIDGES_REQUIRED is present in the options of a transport,
replication only assumes transitive communication between sites as specified in the siteLinkBridge

objects for that transport. See the specification of IDL_QuerySitesByCost ([MS-DRSR] section
4.1.16.3).

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf

460 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

parent: Either an IP transport container or an SMTP transport container.

objectClass: siteLinkBridge

systemFlags: FLAG_CONFIG_ALLOW_RENAME

siteLinkList: Contains the DSNames of the siteLink objects for the site links that are being

connected by this site link bridge.

6.1.1.2.3 Display Specifiers Container

The Display Specifier objects are installed in the directory for use by the administrative applications
of the directory. Each supported locale (that is, language and location) for the administrative
application is assigned a number, called a Locale ID (LCID), and each of the children of the Display
Specifier container is named with that number's hexadecimal character representation (for example,

1033 is named "409"). Section 2.2.1 contains a table associating each locale with an LCID. Some
locales do not have Display Specifier objects installed by default.

name: DisplaySpecifiers

parent: Config NC root

objectClass: container

systemFlags: FLAG_DISALLOW_DELETE

6.1.1.2.3.1 Display Specifier Object

name: The name of each Display Specifier is a hexadecimal number in Unicode characters that
represents a locale.

parent: Display Specifiers container

objectClass: displaySpecifier

The children of the Display Specifier object describe an implementation component of the

administrative application. These objects are not interpreted by the DC.

The attributes of the children of the Display Specifier object are:

parent: Display Specifier object

objectClass: displaySpecifier

adminPropertyPages: Each administrative application component for an object of class
displaySpecifier associates a Component Object Model (COM) object represented by a
universally unique identifier (UUID) called a property page in this attribute. Each value in this

multivalued attribute describes a single COM object. The description of a COM object is a string with
the following format:

<order-number>,<UUID>,[optional data]

where:

The order-number determines the desired ordering in the application for each COM object

represented in the value.

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

461 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The UUID is a string representation of a UUID representing a COM object enclosed in curly

braces.

The optional data is passed to the COM object by the implementation.

shellPropertyPages: This attribute has the same semantics as adminPropertyPages.

adminContextMenu: This attribute can store values, where each value describes either a single COM
object representation or a single application representation. For a COM object, this attribute has the
same semantics as adminPropertyPage. For an application representation, the description is stored
as a string with the following format:

<order-number>,<context menu name>,<program name>

where:

The order-number determines the desired ordering for each COM object represented in the value.

The context menu name is the text of the menu item for the administrative application interface.

The program name is the application that is executed when the application references this

adminContextMenu attribute. Either the full path must be specified, or the application must be in
the search path.

shellContextMenu: This attribute has the same semantics as adminContextMenu.

adminMultiselectPropertyPages: This attribute has the same semantics as adminPropertyPages.

treatAsLeaf: This attribute is a Boolean that instructs the administrative application to ignore any
child objects of this object, whether they exist or not.

creationWizard: The creationWizard attribute identifies primary object creation COM objects to
replace the existing or native object creation wizard in Active Directory administrative applications.

The COM objects in this value are represented by UUID.

createWizardExt: The createWizardExt attribute identifies secondary object creation COM objects for
the administrative applications, if needed. This attribute is multivalued and requires the following
format:

<order number>,<UUID>

where

The order-number determines the desired ordering for each COM object represented in the value.

The UUID is a string representation of a UUID representing a COM object.

iconPath: The iconPath attribute can be specified in one of two ways:

1. "<state>,<icon file name>" or

2. "<state>,<module file name>,<resource ID>"

In these examples, the "<state>" is an integer with a value between 0 and 15. The value 0 is
defined to be the default or closed state of the icon. The value 1 is defined to be the open state of

the icon. The value 2 is the disabled state. All other values are application-defined.

The "<icon file name>" is the path and file name of an icon file that contains the icon image.

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf

462 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The "<module file name>" is the path and file name of a module, such as an EXE or DLL, that
contains the icon image in a resource. The "<resource ID>" is an integer that specifies the resource

identifier of the icon resource within the module.

6.1.1.2.4 Services

name: Services

parent: Config NC root object

objectClass: container

systemFlags: { FLAG_DISALLOW_DELETE }

6.1.1.2.4.1 Windows NT

name: Windows NT

parent: Services

objectClass: container

6.1.1.2.4.1.1 Directory Service

name: Directory Service

parent: Windows NT (section 6.1.1.2.4.1)

objectClass: nTDSService

tombstoneLifetime: The number of days that a tombstone or recycled-object exists before it is
garbage collected. See 3.1.1 for more information.

deletedObjectLifetime: The number of days that a deleted-object exists before it is transformed into

a recycled-object. If no value is specified, the value of the tombstoneLifetime attribute is used
instead.

sPNMappings: In AD DS, a set of SPN mappings, as specified in [MS-DRSR] section 4.1.4.2.19
(MapSPN). Not present in AD LDS.

msDS-Other-Settings: A multivalued string where each string value encodes a name-value pair. In
the encoding, the name and value are separated by an "=". For example, the encoding of the name
"DisableVLVSupport" with value "0" is "DisableVLVSupport=0". Each name is the name of an LDAP
configurable setting, and the value is the value of that setting. The LDAP configurable settings and
their effects are specified in section 3.1.1.3.4.7.

dSHeuristics: See section 6.1.1.2.4.1.2. By default, this attribute is not set.

6.1.1.2.4.1.2 dSHeuristics

dSHeuristics is a Unicode string attribute. Each character in the string represents a heuristic that is
used to determine the behavior of Active Directory. These heuristics are described partly in this
section and partly elsewhere in this specification.

The following constraints apply to the dSHeuristics string:

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf

463 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The order of the characters in the string is fixed; characters can be omitted only by truncating

the string.

By default, the dSHeuristics attribute does not exist and, unless otherwise specified, the default

value of each character in the dSHeuristics string is "0".

When modifying an existing dSHeuristics string, the values of all existing characters that are not

of interest to the modification should be preserved.

These constraints are illustrated by the following examples.

1. If dSHeuristics is not present or has length of zero, then the fSupFirstLastANR heuristic is false.

2. If dSHeuristics is only two Unicode characters long, then the fDoListObject heuristic, which would

be represented by the third character in the string, is false.

3. Consider a scenario where the fSupFirstLastANR, fSupLastFirstANR, and fDoNickRes heuristics are
required for certain system behaviors. The dSHeuristics string would consist of at least four

characters, fSupFirstLastANR, fSupLastFirstANR, fDoListObject, and fDoNickRes, even
though the fDoListObject heuristic is not needed. An implementer would set the fDoListObject
character to the default value of "0" as described earlier.

4. Consider a scenario where anonymous LDAP operations to Active Directory need to be enabled.

In this scenario, the seventh character of the dSHeuristics string, fLDAPBlockAnonOps, would
be set to character "2". If the dSHeuristics string was already in existence before this operation,
no characters in the dSHeuristics string other than the seventh character would be modified. If
the dSHeuristics string did not yet exist before this operation, the first through sixth characters
would be set to their default values, resulting in a dSHeuristics string of "0000002" in this case.

The following table describes the characters of the dSHeuristics string.

Charact

er

number Character name Description

1 fSupFirstLastANR If this character is "0", then the

fSupFirstLastANR heuristic is false; otherwise,

the fSupFirstLastANR heuristic is true.

Section 3.1.1.3.1.3.4 specifies the effects of

this heuristic.

2 fSupLastFirstANR If this character is "0", then the

fSupLastFirstANR heuristic is false; otherwise,

the fSupLastFirstANR heuristic is true.

Section 3.1.1.3.1.3.4 specifies the effects of

this heuristic.

3 fDoListObject If this character is "1", then the fDoListObject

heuristic is true; otherwise, the fDoListObject

heuristic is false.

Section 5.1.3.2 specifies the effects of this

heuristic.

4 fDoNickRes If this character is "0", then the fDoNickRes

heuristic is false; otherwise, the fDoNickRes

heuristic is true.

The effects of the fDoNickRes heuristic are

%5bMS-ADA1%5d.pdf

464 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Charact

er

number Character name Description

outside the state model. If the fDoNickRes

heuristic is true, an ANR request via MAPI

attempts an exact match against the MAPI

nickname attribute (the attribute with mAPIID

equal to 0x3A00) before performing an ANR

search (see section 3.1.1.3.1.3.4).

5 fLDAPUsePermMod If this character is "0", then the

fLDAPUsePermMod heuristic is false;

otherwise, the fLDAPUsePermMod heuristic is

true.

If the fLDAPUsePermMod heuristic is true, then

all LDAP Modify operations behave as if the

LDAP_SERVER_PERMISSIVE_MODIFY_OID

control was passed. Section 3.1.1.3.4.1.8

specifies the effects of the

LDAP_SERVER_PERMISSIVE_MODIFY_OID

control.

6 ulHideDSID The ulHideDSID heuristic equates to the

numeric value of this character; that is,

character "0" equates to 0, character "1"

equates to 1, and so on.

The ulHideDSID heuristic controls when DSIDs

are returned in the LDAP extended error string

when an operation encounters an error. If the

heuristic is 0, then DSIDs will be returned at

all times. If the heuristic is 1, then DSIDs will

be returned as long as the error is not a name

error where different DSIDs may reveal the

existence of an object that is not visible to the

client. If the heuristic is anything but 0 or 1,

then DSIDs will not be returned at all.

A DSID consists of the string "DSID-", followed

by an implementation-specific 32-bit integer

expressed in hexadecimal. The integer

identifies the execution point at which an error

occurred.

7 fLDAPBlockAnonOps If this character is "2", then the

fLDAPBlockAnonOps heuristic is false;

otherwise, the fLDAPBlockAnonOps heuristic is

true. If this character is not present in the

string, it defaults to "2" when the DC

functional level is less than

DS_BEHAVIOR_WIN2003, and to "0"

otherwise.

Section 5.1.3 specifies the effects of this

heuristic.

8 fAllowAnonNSPI If this character is "0", then the

fAllowAnonNSPI heuristic is false; otherwise,

the fAllowAnonNSPI heuristic is true.

If the fAllowAnonNSPI heuristic is true, allow

%5bMS-ADA2%5d.pdf

465 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Charact

er

number Character name Description

anonymous calls to the name service

provider interface (NSPI) RPC bind method.

Otherwise, only allow authenticated clients.

9 fUserPwdSupport If this character is neither "0" nor "2", then the

fUserPwdSupport heuristic is true. If this

character is "2", then the fUserPwdSupport

heuristic is false. If this character is "0", then

the fUserPwdSupport heuristic is false for AD

DS and true for AD LDS.

Sections 3.1.1.3.1.5.2 and 3.1.1.4.4 specify

the effects of this heuristic.

10 tenthChar When setting dSHeuristics to a value that is 10

or more Unicode characters long, if the value

of tenthChar is not character "1", the server

rejects the update. See section 3.1.1.5.3.2.

11 fSpecifyGUIDOnAdd If this character is "0", then the

fSpecifyGUIDOnAdd heuristic is false;

otherwise, the fSpecifyGUIDOnAdd heuristic is

true.

The fSpecifyGUIDOnAdd heuristic applies only

to AD DS. AD LDS always treats this heuristic

as if the character is "0"; that is, as if the

fSpecifyGUIDOnAdd heuristic is false.

Section 3.1.1.5.2.2 specifies the effects of this

heuristic.

12 fDontStandardizeSDs If this character is "0", then the

fDontStandardizeSDs heuristic is false;

otherwise, the fDontStandardizeSDs heuristic

is true.

Section 6.1.3 specifies the effects of this

heuristic.

13 fAllowPasswordOperationsOverNonSecureConn

ection

If this character is "0", then the

fAllowPasswordOperationsOverNonSecureConn

ection heuristic is false; otherwise, the

fAllowPasswordOperationsOverNonSecureConn

ection heuristic is true.

The

fAllowPasswordOperationsOverNonSecureConn

ection heuristic applies only to AD LDS.

Sections 3.1.1.3.1.5.1, 3.1.1.5.2.2, and

3.1.1.5.3.2 specify the effects of this heuristic.

14 fDontPropagateOnNoChangeUpdate If this character is "0", then the

fDontPropagateOnNoChangeUpdate heuristic is

false; otherwise, the

fDontPropagateOnNoChangeUpdate heuristic is

true.

If the fDontPropagateOnNoChangeUpdate

heuristic is true, when the

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADA1%5d.pdf

466 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Charact

er

number Character name Description

nTSecurityDescriptor attribute of an object is

set to a value that is bitwise identical to the

current value, no work item is enqueued for

the task that updates the security descriptors

on the children of a modified object in order to

propagate inherited ACEs (section 6.1.3). If

the fDontPropagateOnNoChangeUpdate

heuristic is false, a work item is always

enqueued when the nTSecurityDescriptor

attribute is modified.

The fDontPropagateOnNoChangeUpdate

heuristic applies to Windows Server 2008

operating system, Windows Server 2008 R2

operating system, Windows Server 2012

operating system, and Windows Server 2012

R2 operating system. Windows 2000 Server

operating system and Windows Server 2003

operating system versions of Active Directory

behave as if the

fDontPropagateOnNoChangeUpdate heuristic is

false.

15 fComputeANRStats If this character is "0", then the

fComputeANRStats heuristic is false;

otherwise, the fComputeANRStats heuristic is

true.

The effects of the fComputeANRStats heuristic

are outside the state model. If the

fComputeANRStats heuristic is true, ANR

searches (section 3.1.1.3.1.3.4) are optimized

using cardinality estimates like all other

searches.

16 dwAdminSDExMask The valid values for this character are from the

set "0"–"9" and "a"–"f". The

dwAdminSDExMask heuristic equals the

character interpreted as a hex digit and

converted into a 4-bit value (that is, "1"=0x1,

"f"=0xF).

Section 3.1.1.6.1 specifies the effects of this

heuristic.

17 fKVNOEmuW2K If this character is "0", then the

fKVNOEmuW2K heuristic is false; otherwise,

the fKVNOEmuW2K heuristic is true.

Section 3.1.1.4.5.16 specifies the effects of

this heuristic.

18 fLDAPBypassUpperBoundsOnLimits If this character is "0", then the

fLDAPBypassUpperBoundsOnLimits heuristic is

false; otherwise, the

fLDAPBypassUpperBoundsOnLimits heuristic is

true.

If the fLDAPBypassUpperBoundsOnLimits

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

467 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Charact

er

number Character name Description

heuristic is false, DCs impose implementation-

dependent limits when interpreting values of

the LDAP policies specified in section

3.1.1.3.4.6. If the configured policy value

exceeds the limit, the DC ignores the policy

value and instead uses the implementation-

dependent limit.

This heuristic applies to Windows Server 2008,

Windows Server 2008 R2, Windows Server

2012, and Windows Server 2012 R2.

Windows 2000 Server and Windows

Server 2003 versions of Active Directory do

not impose any such limits.

19 fDisableAutoIndexingOnSchemaUpdate If this character is "0", then the

fDisableAutoIndexingOnSchemaUpdate

heuristic is false; otherwise, the

DisableAutoIndexingOnSchemaUpdate

heuristic is true. The effects of the

fDisableAutoIndexingOnSchemaUpdate

heuristic are outside the state model.

If the fDisableAutoIndexingOnSchemaUpdate

heuristic is false, DCs can initiate index

creation upon detection of index-related

changes to the searchFlags attribute (see

section 2.2.10). If the

fDisableAutoIndexingOnSchemaUpdate

heuristic is true, it is a hint to DCs that index

creation can be delayed upon detection of

index-related changes to the searchFlags

attribute until either an administrator issues

the schemaUpdateNow rootDSE modify

operation, the DC is rebooted, or an

implementation-dependent time period has

elapsed.

This heuristic applies to Windows Server 2012

and Windows Server 2012 R2. Windows 2000

Server, Windows Server 2003, Windows

Server 2003 R2 operating system, Windows

Server 2008, and Windows Server 2008 R2 do

not implement support for this heuristic.

20 twentiethChar When setting dSHeuristics to a value that is 20

or more Unicode characters long, if the value

of twentiethChar is not character "2", the

server rejects the update. See section

3.1.1.5.3.2.

21 DoNotVerifyUPNUniqueness If this character is anything other than "0", AD

LDS will not check values of userPrincipalName

for uniqueness. See section 3.1.1.5.2.2.

This heuristic applies to Windows Server 2003,

Windows Server 2008, Windows

Server 2008 R2, and Windows Server 2012.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

468 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Charact

er

number Character name Description

22-23 MinimumGetChangesRequestVersion A hexadecimal value, ranging from "00" to

"FF". This value controls the minimum version

of the DRS_MSG_GETCHGREQ* structures the

DC will send or accept. If the value is not set,

the value "00" is used. When the value is "00",

no restriction is enforced.

See [MS-DRSR] section 4.1.10.5.1.

24-25 MinimumGetChangesReplyVersion A hex value, ranging from "00" to "FF". This

value controls the minimum version of the

DRS_MSG_GETCHGREPLY* structures the DC

will send or accept. If the value is not set, the

value "00" is used. When the value is "00", no

restriction is enforced.

See [MS-DRSR] section 4.1.10.5.18.

6.1.1.2.4.1.3 Optional Features Container

A container to store the optional features objects. See section 3.1.1.9, Optional Features.

parent: Directory Service

name: Optional Features

objectClass: container

6.1.1.2.4.1.3.1 Recycle Bin Feature Object

An msDS-OptionalFeature object that represents the Recycle Bin optional feature. See section

3.1.1.9 for information on optional features. See section 3.1.1.9.1 for the effects of the Recycle Bin
optional feature.

parent: Optional Features

name: Recycle Bin Feature

objectClass: msDS-OptionalFeature

msDS-OptionalFeatureFlags: FOREST_OPTIONAL_FEATURE (see section 3.1.1.9)

msDS-OptionalFeatureGUID: 766ddcd8-acd0-445e-f3b9-a7f9b6744f2a

msDS-RequiredForestBehaviorVersion: DS_BEHAVIOR_WIN2008R2

6.1.1.2.4.1.4 Query-Policies

A container to store the default queryPolicy object. Can also contain queryPolicy objects created by
administrators. See section 3.1.1.3.4.6 for the effects of queryPolicy objects.

name: Query-Policies

parent: Directory Service

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf

469 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

objectClass: container

6.1.1.2.4.1.4.1 Default Query Policy

Stores the default LDAP query policies. See section 3.1.1.3.4.6 for the effects of the default

queryPolicy object.

name: Default Query Policy

parent: Query-Policies

objectClass: queryPolicy

lDAPAdminLimits: Encoding of the LDAP policies as specified in section 3.1.1.3.4.6.

6.1.1.2.4.1.5 SCP Publication Service Object

This object is present only in AD LDS. It is system-created but can be removed and recreated by the

administrator if desired. This object stores forest-wide configuration that is used to control the
creation of serviceConnectionPoint objects by an AD LDS DC running on a computer joined to an AD
DS domain. Section 6.3.8 specifies the effects of this object.

name: SCP Publication Service

parent: Directory Service

objectClass: msDS-ServiceConnectionPointPublicationService

Enabled: A Boolean value. If false, no DC in this forest will create a serviceConnectionPoint object.

msDS-DisableForInstances: A set of references to nTDSDSA objects in this forest. A DC in this set
will not create a serviceConnectionPoint object.

msDS-SCPContainer: If present, is a reference to an AD DS object (a reference to an object outside

this AD LDS forest). The parent of any serviceConnectionPoint object created by a DC in this forest
is msDS-SCPContainer. If an AD LDS DC in this forest is joined to domain D, then a DC of domain D

must be capable of generating a referral to a DC containing a writable replica of the NC containing
msDS-SCPContainer.

keywords: A set of strings. The keywords attribute of any serviceConnectionPoint object created by
a DC in this forest contains all of these strings. There are no semantic constraints imposed on this
attribute apart from any syntactic constraints that may be imposed by the schema.

6.1.1.2.5 Physical Locations

This object is not present on AD LDS.

name: Physical Locations

parent: config NC root object

objectClass: physicalLocation

6.1.1.2.6 WellKnown Security Principals

This object is not present on AD LDS.

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

470 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name: WellKnown Security Principals

parent: config NC root object

objectClass: container

systemFlags: { FLAG_DISALLOW_DELETE}

6.1.1.2.6.1 Anonymous Logon

name: Anonymous Logon

parent: WellKnown Security Principals

objectSid: S-1-5-7

6.1.1.2.6.2 Authenticated Users

name: Authenticated Users

parent: WellKnown Security Principals

objectSid: S-1-5-11

6.1.1.2.6.3 Batch

name: Batch

parent: WellKnown Security Principals

objectSid: S-1-5-3

6.1.1.2.6.4 Console Logon

name: Console Logon

parent: WellKnown Security Principals

objectSid: S-1-2-1

6.1.1.2.6.5 Creator Group

name: Creator Group

parent: WellKnown Security Principals

objectSid: S-1-3-1

6.1.1.2.6.6 Creator Owner

name: Creator Owner

parent: WellKnown Security Principals

objectSid: S-1-3-0

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

471 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.6.7 Dialup

name: Dialup

parent: WellKnown Security Principals

objectSid: S-1-5-1

6.1.1.2.6.8 Digest Authentication

name: Digest Authentication

parent: WellKnown Security Principals

objectSid: S-1-5-64-21

6.1.1.2.6.9 Enterprise Domain Controllers

name: Enterprise Domain Controllers

parent: WellKnown Security Principals

objectSid: S-1-5-9

By default all normal (writable) DCs in the forest belong to this group.

6.1.1.2.6.10 Everyone

name: Everyone

parent: WellKnown Security Principals

objectSid: S-1-1-0

6.1.1.2.6.11 Interactive

name: Interactive

parent: WellKnown Security Principals

objectSid: S-1-5-4

6.1.1.2.6.12 IUSR

name: IUSR

parent: WellKnown Security Principals

objectSid: S-1-5-17

6.1.1.2.6.13 Local Service

name: Local Service

parent: WellKnown Security Principals

objectSid: S-1-5-19

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

472 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.6.14 Network

name: Network

parent: WellKnown Security Principals

objectSid: S-1-5-2

6.1.1.2.6.15 Network Service

name: Network Service

parent: WellKnown Security Principals

objectSid: S-1-5-20

6.1.1.2.6.16 NTLM Authentication

name: NTLM Authentication

parent: WellKnown Security Principals

objectSid: S-1-5-64-10

6.1.1.2.6.17 Other Organization

name: Other Organization

parent: WellKnown Security Principals

objectSid: S-1-5-1000

6.1.1.2.6.18 Owner Rights

name: Owner Rights

parent: WellKnown Security Principals

objectSid: S-1-3-4

6.1.1.2.6.19 Proxy

name: Proxy

parent: WellKnown Security Principals

objectSid: S-1-5-8

6.1.1.2.6.20 Remote Interactive Logon

name: Remote Interactive Logon

parent: WellKnown Security Principals

objectSid: S-1-5-14

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

473 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.6.21 Restricted

name: Restricted

parent: WellKnown Security Principals

objectSid: S-1-5-12

6.1.1.2.6.22 SChannel Authentication

name: SChannel Authentication

parent: WellKnown Security Principals

objectSid: S-1-5-64-14

6.1.1.2.6.23 Self

name: Self

parent: WellKnown Security Principals

objectSid: S-1-5-10

6.1.1.2.6.24 Service

name: Service

parent: WellKnown Security Principals

objectSid: S-1-5-6

6.1.1.2.6.25 System

name: System

parent: WellKnown Security Principals

objectSid: S-1-5-18

6.1.1.2.6.26 Terminal Server User

name: Terminal Server User

parent: WellKnown Security Principals

objectSid: S-1-5-13

6.1.1.2.6.27 This Organization

name: This Organization

parent: WellKnown Security Principals

objectSid: S-1-5-15

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf

474 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7 Extended Rights

name: Extended Rights

parent: Config NC root object

objectClass: container

systemFlags: { FLAG_DISALLOW_DELETE }

6.1.1.2.7.1 controlAccessRight objects

All controlAccessRight objects have:

objectClass: controlAccessRight

rightsGuid: This value is the identifier of the control access right used for security descriptors and

SDDL.

appliesTo: Each value in this attribute is a GUID, with each GUID equaling an attribute
schemaIDGUID on a schema object defining a class in the schema NC. This class defines the objects
in which the control access right can be a security descriptor for. The appliesTo values on the
controlAccessRight are not enforced by the directory server; that is, the controlAccessRight can be
included in security descriptors of objects of classes not specified in the appliesTo attribute.

localizationDisplayId: This is implementation-specific information for the administrative application.

validAccesses: This is implementation-specific information for the administrative application.

6.1.1.2.7.2 Change-Rid-Master

This object is present in AD DS only.

name: Change-Rid-Master

rightsGuid: d58d5f36-0a98-11d1-adbb-00c04fd8d5cd

appliesTo: 6617188d-8f3c-11d0-afda-00c04fd930c9

6.1.1.2.7.3 Do-Garbage-Collection

This object is present in AD DS and AD LDS.

name: Do-Garbage-Collection

rightsGuid: fec364e0-0a98-11d1-adbb-00c04fd8d5cd

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.4 Recalculate-Hierarchy

This object is present in AD DS only.

name: Recalculate-Hierarchy

rightsGuid: 0bc1554e-0a99-11d1-adbb-00c04fd8d5cd

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

475 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.5 Allocate-Rids

This object is present in AD DS only.

name: Allocate-Rids

rightsGuid: 1abd7cf8-0a99-11d1-adbb-00c04fd8d5cd

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.6 Change-PDC

This object is present in AD DS only.

name: Change-PDC

rightsGuid: bae50096-4752-11d1-9052-00c04fc2d4cf

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.7 Add-GUID

This object is present in AD DS and AD LDS.

name: Add-GUID

rightsGuid: 440820ad-65b4-11d1-a3da-0000f875ae0d

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.8 Change-Domain-Master

This object is present in AD DS only.

name: Change-Domain-Master

rightsGuid: 014bf69c-7b3b-11d1-85f6-08002be74fab

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1

6.1.1.2.7.9 Public-Information

This object is present in AD DS and AD LDS.

name: Public-Information

rightsGuid: e48d0154-bcf8-11d1-8702-00c04fb96050

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only)

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

476 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.10 msmq-Receive-Dead-Letter

This object is present in AD DS only.

name: msmq-Receive-Dead-Letter

rightsGuid: 4b6e08c0-df3c-11d1-9c86-006008764d0e

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.11 msmq-Peek-Dead-Letter

This object is present in AD DS only.

name: msmq-Peek-Dead-Letter

rightsGuid: 4b6e08c1-df3c-11d1-9c86-006008764d0e

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.12 msmq-Receive-computer-Journal

This object is present in AD DS only.

name: msmq-Receive-computer-Journal

rightsGuid: 4b6e08c2-df3c-11d1-9c86-006008764d0e

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.13 msmq-Peek-computer-Journal

This object is present in AD DS only.

name: msmq-Peek-computer-Journal

rightsGuid: 4b6e08c3-df3c-11d1-9c86-006008764d0e

appliesTo: 9a0dc344-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.14 msmq-Receive

This object is present in AD DS only.

name: msmq-Receive

rightsGuid: 06bd3200-df3e-11d1-9c86-006008764d0e

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.15 msmq-Peek

This object is present in AD DS only.

name: msmq-Peek

rightsGuid: 06bd3201-df3e-11d1-9c86-006008764d0e

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

477 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.16 msmq-Send

This object is present in AD DS only.

name: msmq-Send

rightsGuid: 06bd3202-df3e-11d1-9c86-006008764d0e

appliesTo:

9a0dc343-c100-11d1-bbc5-0080c76670c0

46b27aac-aafa-4ffb-b773-e5bf621ee87b (only in schema version 30 and greater)

6.1.1.2.7.17 msmq-Receive-journal

This object is present in AD DS only.

name: msmq-Receive-journal

rightsGuid: 06bd3203-df3e-11d1-9c86-006008764d0e

appliesTo: 9a0dc343-c100-11d1-bbc5-0080c76670c0

6.1.1.2.7.18 msmq-Open-Connector

This object is present in AD DS only.

name: msmq-Open-Connector

rightsGuid: b4e60130-df3f-11d1-9c86-006008764d0e

appliesTo: bf967ab3-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.19 Apply-Group-Policy

This object is present in AD DS only.

name: Apply-Group-Policy

rightsGuid: edacfd8f-ffb3-11d1-b41d-00a0c968f939

appliesTo: f30e3bc2-9ff0-11d1-b603-0000f80367c1

6.1.1.2.7.20 RAS-Information

This object is present in AD DS only.

name: RAS-Information

rightsGuid: 037088f8-0ae1-11d2-b422-00a0c968f939

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

478 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

bf967aba-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.21 DS-Install-Replica

This object is present in AD DS and AD LDS.

name: DS-Install-Replica

rightsGuid: 9923a32a-3607-11d2-b9be-0000f87a36b2

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.22 Change-Infrastructure-Master

This object is present in AD DS only.

name: Change-Infrastructure-Master

rightsGuid: cc17b1fb-33d9-11d2-97d4-00c04fd8d5cd

appliesTo: 2df90d89-009f-11d2-aa4c-00c04fd7d83a

6.1.1.2.7.23 Update-Schema-Cache

This object is present in AD DS and AD LDS.

name: Update-Schema-Cache

rightsGuid: be2bb760-7f46-11d2-b9ad-00c04f79f805

appliesTo: bf967a8f-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.24 Recalculate-Security-Inheritance

This object is present in AD DS and AD LDS.

name: Recalculate-Security-Inheritance

rightsGuid: 62dd28a8-7f46-11d2-b9ad-00c04f79f805

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.25 DS-Check-Stale-Phantoms

This object is present in AD DS only.

name: DS-Check-Stale-Phantoms

rightsGuid: 69ae6200-7f46-11d2-b9ad-00c04f79f805

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.26 Certificate-Enrollment

This object is present in AD DS only.

name: Certificate-Enrollment

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

479 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

rightsGuid: 0e10c968-78fb-11d2-90d4-00c04f79dc55

appliesTo: e5209ca2-3bba-11d2-90cc-00c04fd91ab1

6.1.1.2.7.27 Self-Membership

This object is present in AD DS and AD LDS.

name: Self-Membership

rightsGuid: bf9679c0-0de6-11d0-a285-00aa003049e2

appliesTo: bf967a9c-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.28 Validated-DNS-Host-Name

This object is present in AD DS only.

name: Validated-DNS-Host-Name

rightsGuid: 72e39547-7b18-11d1-adef-00c04fd8d5cd

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater)

7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 55 and greater)

6.1.1.2.7.29 Validated-SPN

This object is present in AD DS only.

name: Validated-SPN

rightsGuid: f3a64788-5306-11d1-a9c5-0000f80367c1

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater)

6.1.1.2.7.30 Generate-RSoP-Planning

This object is present in AD DS only.

name: Generate-RSoP-Planning

rightsGuid: b7b1b3dd-ab09-4242-9e30-9980e5d322f7

appliesTo:

19195a5b-6da0-11d0-afd3-00c04fd930c9

bf967aa5-0de6-11d0-a285-00aa003049e2

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

480 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.31 Refresh-Group-Cache

This object is present in AD DS only.

name: Refresh-Group-Cache

rightsGuid: 9432c620-033c-4db7-8b58-14ef6d0bf477

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.32 Reload-SSL-Certificate

This object is present in AD DS and AD LDS.

name: Reload-SSL-Certificate

rightsGuid: 1a60ea8d-58a6-4b20-bcdc-fb71eb8a9ff8

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

6.1.1.2.7.33 SAM-Enumerate-Entire-Domain

This object is present in AD DS only.

name: SAM-Enumerate-Entire-Domain

rightsGuid: 91d67418-0135-4acc-8d79-c08e857cfbec

appliesTo: bf967aad-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.34 Generate-RSoP-Logging

This object is present in AD DS only.

name: Generate-RSoP-Logging

rightsGuid: b7b1b3de-ab09-4242-9e30-9980e5d322f7

appliesTo:

19195a5b-6da0-11d0-afd3-00c04fd930c9

bf967aa5-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.35 Domain-Other-Parameters

This object is present in AD DS only.

name: Domain-Other-Parameters

rightsGuid: b8119fd0-04f6-4762-ab7a-4986c76b3f9a

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.36 DNS-Host-Name-Attributes

This object is present in AD DS only.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

481 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name: DNS-Host-Name-Attributes

rightsGuid: 72e39547-7b18-11d1-adef-00c04fd8d5cd

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64

7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 55 and greater)

6.1.1.2.7.37 Create-Inbound-Forest-Trust

This object is present in AD DS only.

name: Create-Inbound-Forest-Trust

rightsGuid: e2a36dc9-ae17-47c3-b58b-be34c55ba633

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.38 DS-Replication-Get-Changes-All

This object is present in AD DS and AD LDS.

name: DS-Replication-Get-Changes-All

rightsGuid: 1131f6ad-9c07-11d1-f79f-00c04fc2dcd2

appliesTo:

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.39 Migrate-SID-History

This object is present in AD DS only.

name: Migrate-SID-History

rightsGuid: BA33815A-4F93-4c76-87F3-57574BFF8109

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.40 Reanimate-Tombstones

This object is present in AD DS and AD LDS.

name: Reanimate-Tombstones

rightsGuid: 45EC5156-DB7E-47bb-B53F-DBEB2D03C40F

appliesTo:

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

482 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.41 Allowed-To-Authenticate

This object is present in AD DS only.

name: Allowed-To-Authenticate

rightsGuid: 68B1D179-0D15-4d4f-AB71-46152E79A7BC

appliesTo:

4828cc14-1437-45bc-9b07-ad6f015e5f28

bf967aba-0de6-11d0-a285-00aa003049e2

bf967a86-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater)

6.1.1.2.7.42 DS-Execute-Intentions-Script

This object is present in AD DS and AD LDS.

name: DS-Execute-Intentions-Script

rightsGuid: 2f16c4a5-b98e-432c-952a-cb388ba33f2e

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1

6.1.1.2.7.43 DS-Replication-Monitor-Topology

This object is present in AD DS and AD LDS.

name: DS-Replication-Monitor-Topology

rightsGuid: f98340fb-7c5b-4cdb-a00b-2ebdfa115a96

appliesTo:

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.44 Update-Password-Not-Required-Bit

This object is present in AD DS only.

name: Update-Password-Not-Required-Bit

rightsGuid: 280f369c-67c7-438e-ae98-1d46f3c6f541

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

483 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.45 Unexpire-Password

This object is present in AD DS and AD LDS.

name: Unexpire-Password

rightsGuid: ccc2dc7d-a6ad-4a7a-8846-c04e3cc53501

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password

This object is present in AD DS only.

name: Enable-Per-User-Reversibly-Encrypted-Password

rightsGuid: 05c74c5e-4deb-43b4-bd9f-86664c2a7fd5

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.47 DS-Query-Self-Quota

This object is present in AD DS and AD LDS.

name: DS-Query-Self-Quota

rightsGuid: 4ecc03fe-ffc0-4947-b630-eb672a8a9dbc

appliesTo: da83fc4f-076f-4aea-b4dc-8f4dab9b5993

6.1.1.2.7.48 Private-Information

This object is present in AD DS only.

name: Private-Information

rightsGuid: 91e647de-d96f-4b70-9557-d63ff4f3ccd8

appliesTo:

bf967aba-0de6-11d0-a285-00aa003049e2

4828cc14-1437-45bc-9b07-ad6f015e5f28

6.1.1.2.7.49 MS-TS-GatewayAccess

This object is present in AD DS only.

name: MS-TS-GatewayAccess

rightsGuid: ffa6f046-ca4b-4feb-b40d-04dfee722543

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

484 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ce206244-5827-4a86-ba1c-1c0c386c1b64

6.1.1.2.7.50 Terminal-Server-License-Server

This object is present in AD DS only.

name: Terminal-Server-License-Server

rightsGuid: 5805bc62-bdc9-4428-a5e2-856a0f4c185e

appliesTo:

bf967aba-0de6-11d0-a285-00aa003049e2

4828cc14-1437-45bc-9b07-ad6f015e5f28

6.1.1.2.7.51 Domain-Administer-Server

This object is present in AD DS only.

name: Domain-Administer-Server

rightsGuid: ab721a52-1e2f-11d0-9819-00aa0040529b

appliesTo: bf967aad-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.52 User-Change-Password

This object is present in AD DS and AD LDS.

name: User-Change-Password

rightsGuid: ab721a53-1e2f-11d0-9819-00aa0040529b

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater)

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater, for AD DS

only)

6.1.1.2.7.53 User-Force-Change-Password

This object is present in AD DS and AD LDS.

name: User-Force-Change-Password

rightsGuid: 00299570-246d-11d0-a768-00aa006e0529

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

485 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater)

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater, for AD DS

only)

6.1.1.2.7.54 Send-As

This object is present in AD DS only.

name: Send-As

rightsGuid: ab721a54-1e2f-11d0-9819-00aa0040529b

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater)

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater)

6.1.1.2.7.55 Receive-As

This object is present in AD DS only.

name: Receive-As

rightsGuid: ab721a56-1e2f-11d0-9819-00aa0040529b

appliesTo:

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

4828CC14-1437-45bc-9B07-AD6F015E5F28 (only in schema version 30 and greater)

ce206244-5827-4a86-ba1c-1c0c386c1b64 (only in schema version 45 and greater)

6.1.1.2.7.56 Send-To

This object is present in AD DS only.

name: Send-To

rightsGuid: ab721a55-1e2f-11d0-9819-00aa0040529b

appliesTo: bf967a9c-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.57 Domain-Password

This object is present in AD DS only.

name: Domain-Password

rightsGuid: c7407360-20bf-11d0-a768-00aa006e0529

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

486 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

appliesTo:

19195a5b-6da0-11d0-afd3-00c04fd930c9

19195a5a-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.58 General-Information

This object is present in AD DS and AD LDS.

name: General-Information

rightsGuid: 59ba2f42-79a2-11d0-9020-00c04fc2d3cf

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967aba-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.59 User-Account-Restrictions

This object is present in AD DS and AD LDS.

name: User-Account-Restrictions

rightsGuid: 4c164200-20c0-11d0-a768-00aa006e0529

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967a86-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only)

7b8b558a-93a5-4af7-adca-c017e67f1057 (only in schema version 54 and greater, for AD DS

only)

6.1.1.2.7.60 User-Logon

This object is present in AD DS and AD LDS.

name: User-Logon

rightsGuid: 5f202010-79a5-11d0-9020-00c04fc2d4cf

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967aba-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.61 Membership

This object is present in AD DS and AD LDS.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

487 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

name: Membership

rightsGuid: bc0ac240-79a9-11d0-9020-00c04fc2d4cf

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967aba-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.62 Open-Address-Book

This object is present in AD DS only.

name: Open-Address-Book

rightsGuid: a1990816-4298-11d1-ade2-00c04fd8d5cd

appliesTo: 3e74f60f-3e73-11d1-a9c0-0000f80367c1

6.1.1.2.7.63 Personal-Information

This object is present in AD DS and AD LDS.

name: Personal-Information

rightsGuid: 77B5B886-944A-11d1-AEBD-0000F80367C1

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967a86-0de6-11d0-a285-00aa003049e2

5cb41ed0-0e4c-11d0-a286-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

ce206244-5827-4a86-ba1c-1c0c386c1b64 (for AD DS only)

641e87a4-8326-4771-ba2d-c706df35e35a (only in schema version 52 or greater)

6.1.1.2.7.64 Email-Information

This object is present in AD DS and AD LDS.

name: Email-Information

rightsGuid: E45795B2-9455-11d1-AEBD-0000F80367C1

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

bf967a9c-0de6-11d0-a285-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

488 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.65 Web-Information

This object is present in AD DS and AD LDS.

name: Web-Information

rightsGuid: E45795B3-9455-11d1-AEBD-0000F80367C1

appliesTo:

4828CC14-1437-45bc-9B07-AD6F015E5F28

5cb41ed0-0e4c-11d0-a286-00aa003049e2

bf967aba-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.66 DS-Replication-Get-Changes

This object is present in AD DS and AD LDS.

name: DS-Replication-Get-Changes

rightsGuid: 1131f6aa-9c07-11d1-f79f-00c04fc2dcd2

appliesTo:

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.67 DS-Replication-Synchronize

This object is present in AD DS and AD LDS.

name: DS-Replication-Synchronize

rightsGuid: 1131f6ab-9c07-11d1-f79f-00c04fc2dcd2

appliesTo:

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.68 DS-Replication-Manage-Topology

This object is present in AD DS and AD LDS.

name: DS-Replication-Manage-Topology

rightsGuid: 1131f6ac-9c07-11d1-f79f-00c04fc2dcd2

appliesTo:

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

489 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.69 Change-Schema-Master

This object is present in AD DS and AD LDS.

name: Change-Schema-Master

rightsGuid: e12b56b6-0a95-11d1-adbb-00c04fd8d5cd

appliesTo: bf967a8f-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set

This object is present in AD DS only.

name: DS-Replication-Get-Changes-In-Filtered-Set

rightsGuid: 89e95b76-444d-4c62-991a-0facbeda640c

appliesTo:

19195a5b-6da0-11d0-afd3-00c04fd930c9

bf967a87-0de6-11d0-a285-00aa003049e2

bf967a8f-0de6-11d0-a285-00aa003049e2

6.1.1.2.7.71 Run-Protect-Admin-Groups-Task

This object is present in AD DS only.

name: Run-Protect-Admin-Groups-Task

rightsGuid: 7726b9d5-a4b4-4288-a6b2-dce952e80a7f

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.72 Manage-Optional-Features

This object is present in AD DS and AD LDS.

name: Manage-Optional-Features

rightsGuid: 7c0e2a7c-a419-48e4-a995-10180aad54dd

appliesTo: ef9e60e0-56f7-11d1-a9c6-0000f80367c1

6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization

This object is present in AD DS only.

name: Read-Only-Replication-Secret-Synchronization

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

490 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

rightsGuid: 1131f6ae-9c07-11d1-f79f-00c04fc2dcd2

appliesTo

bf967a8f-0de6-11d0-a285-00aa003049e2

bf967a87-0de6-11d0-a285-00aa003049e2

19195a5b-6da0-11d0-afd3-00c04fd930c9

6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name

This object is present in AD DS only.

name: Validated-MS-DS-Additional-DNS-Host-Name

rightsGuid: 80863791-dbe9-4eb8-837e-7f0ab55d9ac7

appliesTo: bf967a86-0de6-11d0-a285-00aa003049e2

This object exists in schema version 56 or greater.

6.1.1.2.7.75 Validated-MS-DS-Behavior-Version

This object is present in AD DS only.

name: Validated-MS-DS-Behavior-Version

rightsGuid: d31a8757-2447-4545-8081-3bb610cacbf2

appliesTo: f0f8ffab-1191-11d0-a060-00aa006c33ed

This object exists in schema version 56 or greater.

6.1.1.2.7.76 DS-Clone-Domain-Controller

This object is present in AD DS only.

name: DS-Clone-Domain-Controller

rightsGuid: 3e0f7e18-2c7a-4c10-ba82-4d926db99a3e

appliesTo: 19195a5b-6da0-11d0-afd3-00c04fd930c9

This object exists in schema version 56 or greater.

6.1.1.2.7.77 Certificate-AutoEnrollment

This object is present in AD DS only.

name: Certificate-AutoEnrollment

rightsGuid: a05b8cc2-17bc-4802-a710-e7c15ab866a2

appliesTo: e5209ca2-3bba-11d2-90cc-00c04fd91ab1

This object exists in schema version 56 or greater.

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

491 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.7.78 DS-Read-Partition-Secrets

name: DS-Read-Partition-Secrets

rightsGuid: 084c93a2-620d-4879-a836-f0ae47de0e89

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e

This object exists in schema version 69 or greater.

6.1.1.2.7.79 DS-Write-Partition-Secrets

name: DS-Write-Partition-Secrets

rightsGuid: 084c93a2-620d-4879-a836-f0ae47de0e89

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e

This object exists in schema version 69 or greater.

6.1.1.2.7.80 DS-Set-Owner

name: DS-Set-Owner

rightsGuid: 4125c71f-7fac-4ff0-bcb7-f09a41325286

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e

This object exists in schema version 69 or greater.

6.1.1.2.7.81 DS-Bypass-Quota

name: DS-Bypass-Quota

rightsGuid: 88a9933e-e5c8-4f2a-9dd7-2527416b8092

appliesTo: 26f11b08-a29d-4869-99bb-ef0b99fd883e

This object exists in schema version 69 or greater.

6.1.1.2.8 Forest Updates Container

The Forest Updates container includes child containers that specify the version of the forest revision.
Some or all of the following containers exist, depending on the forest revision.

Container Minimum forest revision for which the container exists

Operations 0.9

Windows2003Update 0.9

ActiveDirectoryUpdate 2.9

If the version of the RODC revision is 2 or higher, the Forest Updates container includes the child
container ActiveDirectoryRodcUpdate.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

492 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The major version of the forest revision is stored on the revision attribute of the
ActiveDirectoryUpdate container. If the ActiveDirectoryUpdate container does not exist, the major

version is 0. After a forest revision upgrade process, it must be equal to the major version of the
current revision.

The minor version of the forest revision is stored on the revision attribute of the
Windows2003Update container. If the Windows2003Update container does not exist, the minor
version is 0. After a forest revision upgrade process, it must be equal to the minor version of the
current revision.

The version of the RODC revision is stored on the revision attribute of the
ActiveDirectoryRodcUpdate container. If the ActiveDirectoryRodcUpdate container does not exist,
the version is 0. After an RODC revision upgrade process, it must be equal to the version of the

current revision.

parent: Config NC root object

name: ForestUpdates

objectClass: container

6.1.1.2.8.1 Operations Container

The contents of the Operations container are outside the state model and are implementation-
specific.

parent: Forest Updates container

name: Operations

objectClass: container

6.1.1.2.8.2 Windows2003Update Container

This container stores the minor version of the forest revision.

parent: Forest Updates container

name: Windows2003Update

objectClass: container

revision: The minor version of the forest revision.

6.1.1.2.8.3 ActiveDirectoryUpdate Container

This container stores the major version of the forest revision.

parent: Forest Updates container

name: ActiveDirectoryUpdate

objectClass: container

revision: The major version of the forest revision.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

493 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container

This container stores the version of the RODC revision.

parent: Forest Updates container

name: ActiveDirectoryRodcUpdate

objectClass: container

revision: The version of the RODC revision.

6.1.1.3 Critical Domain Objects

References

FSMO Roles

Forest Requirements

Security

Originating Updates

LDAP

Attribute Syntaxes: DN-Binary

Glossary Terms: NC, NC Replica, NC root, DC, Domain NC, FSMO, Forest, UUID, SPN, PDC, RID

LDAP attributes: name, objectClass, distinguishedName, systemFlags, primaryGroupID,
servicePrincipalName, dNSHostName, msDS-AdditionalDnsHostName, wellKnownObjects, isDeleted,
revision

LDAP classes: computer, container, msDS-QuotaContainer, infrastructureUpdate, organizationalUnit,

domainPolicy, samServer

WKGuids: GUID_USERS_CONTAINER_W, GUID_COMPUTERS_CONTAINER_W,
GUID_SYSTEMS_CONTAINER_W, GUID_DOMAIN_CONTROLLERS_CONTAINER_W,
GUID_INFRASTRUCTURE_CONTAINER_W, GUID_DELETED_OBJECTS_CONTAINER_W,
GUID_LOSTANDFOUND_CONTAINER_W, GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W,
GUID_PROGRAM_DATA_CONTAINER_W, GUID_NTDS_QUOTAS_CONTAINER_W

Constants

systemFlags bits: FLAG_DISALLOW_DELETE, FLAG_DOMAIN_DISALLOW_RENAME,

FLAG_DOMAIN_DISALLOW_MOVE

userAccountControl bits: ADS_UF_SERVER_TRUST_ACCOUNT,

ADS_UF_TRUSTED_FOR_DELEGATION

groupType bits: GROUP_TYPE_RESOURCE_GROUP, GROUP_TYPE_SECURITY_ENABLED,

GROUP_TYPE_ACCOUNT_GROUP

6.1.1.3.1 Domain Controller Object

In AD DS, each normal (not read-only) DC in a domain has a domain controller object in its default
NC. The DC's domain controller object is the DC's computer object (subject to the computer object

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

494 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

constraints specified in [MS-SAMR] sections 3.1.1.6 and 3.1.1.8) with additional requirements as
described in this section.

An AD DS RODC has a read-only domain controller object as specified in section 6.1.1.3.2. An AD
LDS DC does not have a domain controller object.

objectClass: computer

userAccountControl: {ADS_UF_SERVER_TRUST_ACCOUNT | ADS_UF_TRUSTED_FOR_DELEGATION}

primaryGroupID: Contains the value 516.

This attribute is populated by the system during creation of the DC corresponding to the DC object.
The primary group of a DC object is the domain relative well-known Domain Controllers security
group. So the primaryGroupID attribute of a DC object equals the RID of the Domain Controllers
security group, 516.

servicePrincipalName: This attribute contains all of the SPNs for a normal (not read-only) DC, as

specified in [MS-DRSR] section 2.2.2.

dNSHostName: Fully qualified DNS name of the DC.

msDS-AdditionalDnsHostName: Additional DNS names by which the DC can be identified.

objectCategory: Contains the distinguished name of the classSchema object for the computer class.
This is the value of the defaultObjectCategory attribute of the computer class.

6.1.1.3.2 Read-Only Domain Controller Object

Each RODC in a domain has a read-only DC object in its default NC. The DC's RODC object is the
DC's computer object (subject to the computer object constraints specified in [MS-SAMR] sections
3.1.1.6 and 3.1.1.8) with additional requirements as described in this section. An RODC object
cannot be created on Windows 2000 Server operating system or Windows Server 2003 operating
system DCs and cannot be created until the Read-Only Domain Controllers Object exists in the

domain.

objectClass: computer

userAccountControl: {ADS_UF_PARTIAL_SECRETS_ACCOUNT |
ADS_UF_WORKSTATION_TRUST_ACCOUNT}

primaryGroupID: Contains the value 521.

This attribute is populated during creation of the RODC corresponding to the RODC object. The
primary group of an RODC object is the domain relative well-known RODCs security group. So the

primaryGroupID attribute of an RODC object equals the RID of the RODCs security group, 521.

servicePrincipalName: This attribute contains all of the SPNs for the RODC, as specified in [MS-
DRSR] section 2.2.2.

dNSHostName: Fully qualified DNS name of the RODC.

msDS-AdditionalDnsHostName: Additional DNS names by which the RODC can be identified.

msDS-RevealedUsers: Contains information about the user objects whose secret attributes are

cached at this RODC. This attribute is maintained by the system; see procedure UpdateRevealedList,
[MS-DRSR] section 4.1.10.5.9. A more usable form of this attribute is the constructed attribute
msDS-RevealedList, specified in section 3.1.1.4.5.34.

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf

495 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

msDS-AuthenticatedToAccountlist: Contains a list of user objects that have attempted to
authenticate at this RODC. This attribute is a back link attribute whose corresponding forward link is

the msDS-AuthenticatedAtDC attribute. The msDS-AuthenticatedAtDC attribute is maintained by the
system; see section 6.1.4.6.

msDS-NeverRevealGroup: This attribute is maintained by an administrator. It contains a set of user
and security-enabled group objects. A user in this set, or reachable from this set by traversing any
number of member links from a group in this set, will not change state from not being cached to
being cached at this RODC. If a user is added to this attribute (directly or indirectly) while one of its
secret attributes is already cached, the secret attribute remains cached until the secret attribute
changes, at which time the caching stops. For the use of this attribute, see procedure
RevealSecretsForUserAllowed, [MS-DRSR] section 4.1.10.5.15.

msDS-RevealOnDemandGroup: This attribute is maintained by an administrator. It contains a set of
user and security-enabled group objects. A user in this set, or reachable from this set by traversing
any number of member links from a group in this set, and not excluded by membership in msDS-
NeverRevealGroup can change state from not being cached to being cached at this RODC. For the
use of this attribute see procedure RevealSecretsForUserAllowed, [MS-DRSR] section 4.1.10.5.15.

msDS-KrbTgtLink: This attribute is populated during creation of the RODC object. It contains a

reference to the RODC's secondary Kerberos ticket-granting ticket account. See [MS-KILE] section
3.1.5.10.

managedBy: If the value of this attribute points to a valid security principal, that security principal
will be an implicit member of the administrators group of this RODC. This applies to this RODC only.

objectCategory: Contains the distinguished name of the classSchema object for the computer class.
This is the value of the defaultObjectCategory attribute of the computer class.

6.1.1.4 Well-Known Objects

Within each NC (excluding the schema NC), there are certain well-known system objects that can be
referred to using a well-known GUID (see section 3.1.1.3 for more information). Domain and config

NC root objects contain an attribute called wellKnownObjects that lists the well-known objects
(WKO) within that NC. Each value in this list is an Object(DN-Binary) value where the Binary portion
is the well-known GUID in binary form and the DN portion is the DN of the object. The well-known
GUID can be used in conjunction with the NC DN to refer to the object (for more information, see

section 3.1.1.3). In addition to the wellKnownObjects attribute, each NC root object may also
contain an attribute called otherWellKnownObjects that lists other WKOs. Objects listed in the
attribute otherWellKnownObjects can be referred to in the same way as those in the attribute
wellKnownObjects.

The following requirements apply to the wellKnownObjects attribute on the NC root object and the
referred-to objects, but do not apply to the otherWellKnownObjects attribute:

For each of the well-known GUIDs listed below for a given NC, the wellKnownObjects attribute on

the NC root object MUST contain a value such that the binary portion matches the well-known
GUID. There MUST be exactly one such value.

If rename of the referred-to object is permitted (based on the value of the systemFlags attribute

on each object), the DN portion of the value is updated.

The well-known Users container and the well-known Computers container in the domain NC may

be redirected, under the following constraints:

The modification is made on a DC that owns the PDC FSMO.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

496 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The modification removes the reference to the existing object and adds a new reference in the

same operation.

The new object being referred to is not in the System container of the domain NC.

The new object being referred to does exist, and if different from the currently referred-to

Users or Computers containers, it does not have the following bits in the systemFlags
attribute: FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE

As part of the redirection, the following flags are added to the new object being referred to

and removed from the old object: FLAG_DISALLOW_DELETE |

FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DOMAIN_DISALLOW_MOVE

In AD DS, the following well-known objects exist within each domain NC.

RDN Symbolic name for well-known GUID

Computers GUID_COMPUTERS_CONTAINER_W

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W

Domain Controllers GUID_DOMAIN_CONTROLLERS_CONTAINER_W

ForeignSecurityPrincipals GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W

Infrastructure GUID_INFRASTRUCTURE_CONTAINER_W

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W

MicrosoftNote 1 GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_W

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W

Program Data GUID_PROGRAM_DATA_CONTAINER_W

System GUID_SYSTEMS_CONTAINER_W

Users GUID_USERS_CONTAINER_W

Note 1 The Microsoft container is a child of the Program Data container.

In AD DS, the following well-known objects exist within each application NC.

RDN Symbolic name for well-known GUID

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W

Infrastructure GUID_INFRASTRUCTURE_CONTAINER_W

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W

In AD DS, the following well-known objects exist within the config NC.

%5bMS-ADA3%5d.pdf

497 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RDN Symbolic name for well-known GUID

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W

LostAndFoundConfig GUID_LOSTANDFOUND_CONTAINER_W

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W

In AD LDS, the following well-known objects exist within each application NC.

RDN Symbolic name for well-known GUID

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W

ForeignSecurityPrincipalsNote 2 GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W

LostAndFound GUID_LOSTANDFOUND_CONTAINER_W

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W

Roles GUID_USERS_CONTAINER_W

Note 2 The ForeignSecurityPrincipals container is created (and the corresponding value created in the
wellKnownObjects attribute) when the first foreignSecurityPrincipal object is created in the NC.

In AD LDS, the following well-known objects exist within the config NC.

RDN Symbolic name for well-known GUID

Deleted Objects GUID_DELETED_OBJECTS_CONTAINER_W

ForeignSecurityPrincipals GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W

LostAndFoundConfig GUID_LOSTANDFOUND_CONTAINER_W

NTDS Quotas GUID_NTDS_QUOTAS_CONTAINER_W

Roles GUID_USERS_CONTAINER_W

The following other well-known object exists within each domain NC.

RDN Symbolic name for well-known GUID

Managed Service Accounts GUID_MANAGED_SERVICE_ACCOUNTS_CONTAINER_W

The following table gives the GUID values for each of the symbolic names of the well-known GUIDs.

Symbolic name for well-known GUID GUID

GUID_COMPUTERS_CONTAINER_W AA312825768811D1ADED00C04FD8D5CD

GUID_DELETED_OBJECTS_CONTAINER_W 18E2EA80684F11D2B9AA00C04F79F805

GUID_DOMAIN_CONTROLLERS_CONTAINER_W A361B2FFFFD211D1AA4B00C04FD7D83A

GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_W 22B70C67D56E4EFB91E9300FCA3DC1AA

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

498 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Symbolic name for well-known GUID GUID

GUID_INFRASTRUCTURE_CONTAINER_W 2FBAC1870ADE11D297C400C04FD8D5CD

GUID_LOSTANDFOUND_CONTAINER_W AB8153B7768811D1ADED00C04FD8D5CD

GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_W F4BE92A4C777485E878E9421D53087DB

GUID_NTDS_QUOTAS_CONTAINER_W 6227F0AF1FC2410D8E3BB10615BB5B0F

GUID_PROGRAM_DATA_CONTAINER_W 09460C08AE1E4A4EA0F64AEE7DAA1E5A

GUID_SYSTEMS_CONTAINER_W AB1D30F3768811D1ADED00C04FD8D5CD

GUID_USERS_CONTAINER_W A9D1CA15768811D1ADED00C04FD8D5CD

GUID_MANAGED_SERVICE_ACCOUNTS_CONTAINER_W 1EB93889E40C45DF9F0C64D23BBB6237

6.1.1.4.1 Lost and Found Container

Each domain NC, application NC, and config NC contains a Lost and Found container for objects that

are orphaned as a result of Add and Delete operations that originated on different DCs.

objectClass: lostAndFound

systemFlags: On domain and application NCs: {FLAG_DISALLOW_DELETE |
FLAG_DOMAIN_DISALLOW_RENAME | FLAG_DOMAIN_DISALLOW_MOVE}

On Config NC: {FLAG_DISALLOW_DELETE}

isCriticalSystemObject: TRUE

6.1.1.4.2 Deleted Objects Container

Each domain NC and application NC, as well as the config NC, contains a Deleted Objects container.
Objects within the domain NC that are deleted are stored in this container (unless indicated
otherwise by the object's systemFlags).

Tombstones and recycled-objects are stored until at least an amount of time equal to the tombstone
lifetime has passed, after which they are permanently removed from storage.

Deleted-objects are stored until at least an amount of time equal to the deleted-object lifetime has
passed, after which they are transformed into recycled-objects.

To ensure that this container does not get garbage collected, the replication metadata for the
isDeleted attribute must show that the time at which the isDeleted attribute was set to true is 9999-
12-29. Furthermore, the isRecycled attribute must have no values. See section 3.1.1.5.5 for more
information about the tombstone lifetime, the deleted-object lifetime, and the Deleted Objects
container.

objectClass: container

isDeleted: true

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf

499 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

isCriticalSystemObject: TRUE

6.1.1.4.3 NTDS Quotas Container

Each domain NC, application NC, and the config NC contain an NTDS Quotas Container that contains

quotas restricting the number of objects that can be created by a specified security principal.

objectClass: msDS-QuotaContainer

systemFlags:{FLAG_DISALLOW_DELETE}

isCriticalSystemObject: TRUE

msDS-DefaultQuota: Specifies the default object creation quota for security principles. By default
this attribute is not set. See section 3.1.1.5.2.5 for details.

6.1.1.4.4 Infrastructure Object

In AD DS, each domain and application NC has an infrastructure object that maintains a reference to
the current Infrastructure role owner. This object is not present in AD LDS.

objectClass: infrastructureUpdate

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

fSMORoleOwner: This value refers to the nTDSDSA object of the DC that owns the Infrastructure
FSMO role.

isCriticalSystemObject: TRUE

6.1.1.4.5 Domain Controllers OU

This is a well-known container within the domain NC containing the computer objects for domain

controllers within this domain.

objectClass: organizationalUnit

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

isCriticalSystemObject: TRUE

6.1.1.4.6 Users Container

Each domain NC contains a well-known default Users container.

objectClass: container

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |

FLAG_DOMAIN_DISALLOW_MOVE}

isCriticalSystemObject: TRUE

6.1.1.4.7 Computers Container

Each domain NC contains a well-known default Computers container.

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

500 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

objectClass: container

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

isCriticalSystemObject: TRUE

6.1.1.4.8 Program Data Container

Each domain NC contains a well-known default Program Data container. This container initially
contains a single object of class container named "Microsoft". This protocol does not constrain the
applications that store data in these containers, nor the application-specific data that is stored,
beyond the normal access control and schema validation that is applied to all data access.

name: Program Data

parent: domain NC root

objectClass: container

systemFlags: {}

6.1.1.4.9 Managed Service Accounts Container

In AD DS, each domain NC contains this container. This container is not present in AD LDS.

name: Managed Service Accounts

parent: domain NC root

objectClass: container

systemFlags: {}

6.1.1.4.10 Foreign Security Principals Container

In AD DS, each domain NC contains a well-known Foreign Security Principals container. This

container holds objects of class foreignSecurityPrincipal. These objects represent security principals
from trusted domains external to the forest, and allow foreign security principals to become
members of groups within the domain.

In AD LDS, the config NC contains a well-known Foreign Security Principals container. It stores
foreign security principals from outside of the AD LDS forest.

In an AD LDS application NC, a Foreign Security Principals container is created (and the
corresponding value created in the wellKnownObjects attribute) when the first

foreignSecurityPrincipal object is created in the application NC.

The automatic creation of foreignSecurityPrincipal objects is specified in sections 3.1.1.5.2.4 and
3.1.1.5.3.3).

name: ForeignSecurityPrincipals

parent: domain NC root on AD DS; config NC root on AD LDS.

objectClass: container

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

501 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

systemFlags (on AD DS): {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

systemFlags (on AD LDS): {FLAG_DISALLOW_DELETE}

isCriticalSystemObject: TRUE

6.1.1.4.11 System Container

name: System

parent: Domain NC root object

objectClass: container

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

isCriticalSystemObject: TRUE

6.1.1.4.11.1 Password Settings Container

In AD DS, each domain NC contains a well-known Password Settings container. This container is
initially empty, but is designed to contain objects of class msDS-PasswordSettings. These objects
represent password settings for a group of users in the domain. For more information, see [MS-

SAMR] section 3.1.1.5.

name: Password Settings container

parent: System container

objectClass: msDS-PasswordSettings

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |

FLAG_DOMAIN_DISALLOW_MOVE}

6.1.1.4.12 Builtin Container

In AD DS, each domain NC contains this container. Its children are described later in this section.
This container is not present in AD LDS.

name: Builtin

parent: domain NC root

objectClass: builtinDomain

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |

FLAG_DOMAIN_DISALLOW_MOVE}

The children of the Builtin container are well-known security principals from the built-in domain.

Each child of the Builtin container is a group with the following attributes:

parent: Builtin container

objectClass: group

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

502 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

objectSid: The domain portion is the built-in domain SID (S-1-5-32). The RID portion is specified
per object in the following subsections. For instance, the Account Operators RID is 548, so the

Account Operators objectSid is S-1-5-32-548.

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |

FLAG_DOMAIN_DISALLOW_MOVE}

groupType: {GROUP_TYPE_BUILTIN_LOCAL_GROUP | GROUP_TYPE_RESOURCE_GROUP |
GROUP_TYPE_SECURITY_ENABLED}

Unless otherwise noted in the following subsections, the initial membership of each group is empty.
After initialization, the administrator controls the membership of each group.

6.1.1.4.12.1 Account Operators Group Object

name: Account Operators

RID: 548

6.1.1.4.12.2 Administrators Group Object

name: Administrators

RID: 544

member: Administrator (section 6.1.1.6.1), Domain Administrators (section 6.1.1.6.5), Enterprise
Administrators (section 6.1.1.6.10).

6.1.1.4.12.3 Backup Operators Group Object

name: Backup Operators

RID: 551

6.1.1.4.12.4 Certificate Service DCOM Access Group Object

name: Certificate Service DCOM Access

RID: 574

6.1.1.4.12.5 Cryptographic Operators Group Object

name: Cryptographic Operators

RID: 569

6.1.1.4.12.6 Distributed COM Users Group Object

name: Distributed COM Users

RID: 562

6.1.1.4.12.7 Event Log Readers Group Object

name: Event Log Readers

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

503 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RID: 573

6.1.1.4.12.8 Guests Group Object

name: Guests

RID: 546

member: Guest (section 6.1.1.6.2), Domain Guests (section 6.1.1.6.8)

6.1.1.4.12.9 IIS_IUSRS Group Object

name: IIS_IUSRS

RID: 568

member: NT AUTHORITY\IUSR well-known security principal (SID S-1-5-17).

6.1.1.4.12.10 Incoming Forest Trust Builders Group Object

name: Incoming Forest Trust Builders

RID: 557

6.1.1.4.12.11 Network Configuration Operators Group Object

name: Network Configuration Operators

RID: 556

6.1.1.4.12.12 Performance Log Users Group Object

name: Performance Log Users

RID: 559

6.1.1.4.12.13 Performance Monitor Users Group Object

name: Performance Monitor Users

RID: 558

6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object

name: Pre-Windows 2000 operating system Compatible Access

RID: 554

member: The initial membership of this group depends on the version of Windows running on the

first DC of the domain and on the administrator's choice between "Pre-Windows 2000 Compatible
Permissions mode" and "Windows 2000-Only Permissions mode". In Windows 2000 Server operating
system, in the Pre-Windows 2000 Compatible Permissions mode, Everyone (S-1-1-0) is a member,
and in the Windows 2000-Only Permissions mode, the membership is empty. In Windows
Server 2003 operating system, in the Pre-Windows 2000 Compatible Permissions mode, Everyone
(S-1-1-0) and Anonymous (S-1-5-7) are members, and in the Windows 2000-Only Permissions

mode, Authenticated Users (S-1-5-11) are members.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf

504 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.4.12.15 Print Operators Group Object

name: Print Operators

RID: 550

6.1.1.4.12.16 Remote Desktop Users Group Object

name: Remote Desktop Users

RID: 555

6.1.1.4.12.17 Replicator Group Object

name: Replicator

RID: 552

6.1.1.4.12.18 Server Operators Group Object

name: Server Operators

RID: 549

6.1.1.4.12.19 Terminal Server License Servers Group Object

name: Terminal Server License Servers

RID: 561

6.1.1.4.12.20 Users Group Object

name: Users

RID: 545

member: Domain Users group (section 6.1.1.6.9), NT AUTHORITY\Authenticated Users well-known

security principal (SID S-1-5-11), NT AUTHORITY\INTERACTIVE well-known security principal (SID
S-1-5-4).

6.1.1.4.12.21 Windows Authorization Access Group Group Object

name: Windows Authorization Access Group

RID: 560

member: NT AUTHORITY\ENTERPRISE DOMAIN CONTROLLERS well-known security principal (SID

S-1-5-9).

6.1.1.4.13 Roles Container

In AD LDS, each application NC and the config NC contain this container. It stores the well-known
AD LDS groups for this NC. This container is not present in AD DS, nor are any of its child objects,
which are specified later in this section.

name: Roles

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf

505 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

parent: Application NC root or config NC root

objectClass: container

systemFlags: {FLAG_DISALLOW_DELETE}

Each child of the Roles container is a group with the following attributes:

parent: Roles Container

objectClass: group

objectSid: A SID with two SubAuthority values, consisting of the objectSid of the NC root followed
by the RID that is specified for each child in the following subsections.

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

member: Unless otherwise noted in the following sections, the initial membership of each group is
empty. After initialization the administrator can modify the membership of each group.

6.1.1.4.13.1 Administrators Group Object

name: Administrators

RID: 519 (in the config NC) or 512 (in an application NC).

member: At least one foreignSecurityPrincipal is configured into this group by the administrator
when creating a forest.

6.1.1.4.13.2 Readers Group Object

name: Readers

RID: 514

6.1.1.4.13.3 Users Group Object

This group is used in constructing an AD LDS security context as specified in section 5.1.3.4.

name: Users

RID: 513

6.1.1.4.13.4 Instances Group Object

In AD LDS, every DC's service account belongs to this group. The system attempts to maintain this
group, although an administrator can still modify the membership. This group is only present in the
Roles container of the config NC.

name: Instances

RID: 518

member: An AD LDS DC ensures that its service account is a member of this group. If an AD LDS
DC's service account is Network Service or Local System, the DC also ensures that its computer
object is a member of this group.

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

506 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.5 Other System Objects

The following sections describe other objects that are required by Active Directory, in addition to
those listed in section 6.1.1.4.

6.1.1.5.1 AdminSDHolder Object

parent: System container

name: AdminSDHolder

objectClass: container

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

isCriticalSystemObject: TRUE

nTSecurityDescriptor: The default value of nTSecurityDescriptor for AdminSDHolder depends on the
schema version (see section 3.1.1.2). In the following text, the value of the nTSecurityDescriptor is
specified using SDDL ([MS-DTYP] section2.5.1).

Schema version 13:

O:S-1-5-21-1330137634-1750626333-945493308-512G:S-1-5-21-1330137634-1750626333-945493308-

512D:PAI(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPLOCRSDRCWDWO;;;BA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;S-1-

5-21-1330137634-1750626333-945493308-519)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;S-1-5-21-1330137634-

1750626333-945493308-512)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)(OA;;RP;037088f8-0ae1-11d2-b422-

00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-

00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-

00aa0040529b;;WD)S:AI(AU;CIIDSAFA;CCDCSWWPDTCRSDWDWO;;;WD)

Schema version 30, Schema version 31:

O:DAG:DAD:PAI(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPLOCRSDRCWDWO;;;BA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;

;EA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;DA)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)(OA;;RP;037088f8-

0ae1-11d2-b422-00a0c968f939;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-

11d0-9020-00c04fc2d3cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-

9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;bf967aba-0de6-11d0-a285-00aa003049e2;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)(OA;;CR;ab721a53-1e2f-11d0-

9819-00aa0040529b;;PS)(OA;;RPWP;bf967a7f-0de6-11d0-a285-00aa003049e2;;CA)(OA;;RP;037088f8-

0ae1-11d2-b422-00a0c968f939;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;59ba2f42-79a2-

11d0-9020-00c04fc2d3cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;bc0ac240-79a9-11d0-

9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;4c164200-20c0-11d0-a768-

00aa006e0529;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;RP;5f202010-79a5-11d0-9020-

00c04fc2d4cf;4828cc14-1437-45bc-9b07-ad6f015e5f28;RU)(OA;;LCRPLORC;;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;46a9b11d-60ae-405a-b7e8-ff8a58d456d2;;S-1-5-32-

560)(OA;;RPWP;6db69a1c-9422-11d1-aebd-0000f80367c1;;S-1-5-32-

561)S:AI(AU;SA;WPWDWO;;;WD)(OU;CIIOIDSA;WP;f30e3bbe-9ff0-11d1-b603-0000f80367c1;bf967aa5-

0de6-11d0-a285-00aa003049e2;WD)(OU;CIIOIDSA;WP;f30e3bbf-9ff0-11d1-b603-0000f80367c1;bf967aa5-

0de6-11d0-a285-00aa003049e2;WD)

Schema version 44, Schema version 47:

O:DAG:DAD:PAI(OA;;RP;4c164200-20c0-11d0-a768-00aa006e0529;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;4c164200-20c0-11d0-a768-00aa006e0529;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;5f202010-79a5-11d0-9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;5f202010-79a5-11d0-9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-

%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf

507 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

00aa003049e2;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-00c04fc2d4cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;bc0ac240-79a9-11d0-9020-00c04fc2d4cf;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-00c04fc2d3cf;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;59ba2f42-79a2-11d0-9020-00c04fc2d3cf;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RP;037088f8-0ae1-11d2-b422-00a0c968f939;4828cc14-1437-45bc-9b07-

ad6f015e5f28;RU)(OA;;RP;037088f8-0ae1-11d2-b422-00a0c968f939;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;RPWP;bf967a7f-0de6-11d0-a285-00aa003049e2;;CA)(OA;;RP;46a9b11d-60ae-

405a-b7e8-ff8a58d456d2;;S-1-5-32-560)(OA;;RPWP;6db69a1c-9422-11d1-aebd-0000f80367c1;;S-1-5-

32-561)(OA;;RPWP;5805bc62-bdc9-4428-a5e2-856a0f4c185e;;S-1-5-32-561)(OA;;LCRPLORC;;4828cc14-

1437-45bc-9b07-ad6f015e5f28;RU)(OA;;LCRPLORC;;bf967aba-0de6-11d0-a285-

00aa003049e2;RU)(OA;;CR;ab721a53-1e2f-11d0-9819-00aa0040529b;;WD)(OA;;CR;ab721a53-1e2f-11d0-

9819-00aa0040529b;;PS)(OA;CI;RPWPCR;91e647de-d96f-4b70-9557-

d63ff4f3ccd8;;PS)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;DA)(A;;CCDCLCSWRPWPLOCRRCWDWO;;;EA)(A;;CCDCLCSW

RPWPLOCRSDRCWDWO;;;BA)(A;;LCRPLORC;;;AU)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;SY)S:AI(AU;SA;WPWDWO

;;;WD)(OU;CIIOIDSA;WP;f30e3bbe-9ff0-11d1-b603-0000f80367c1;bf967aa5-0de6-11d0-a285-

00aa003049e2;WD)(OU;CIIOIDSA;WP;f30e3bbf-9ff0-11d1-b603-0000f80367c1;bf967aa5-0de6-11d0-a285-

00aa003049e2;WD)

6.1.1.5.2 Default Domain Policy Container

This container is not necessary for Active Directory functioning, and this protocol does not define
any constraints beyond those listed in this section. This container is used by the Group Policy
System ([MS-GPOD] section 1.1.4).

parent: System container

name: Default Domain Policy

objectClass: domainPolicy

isCriticalSystemObject: TRUE

6.1.1.5.3 Sam Server Object

parent: System container

name: Server

objectClass: samServer

systemFlags: {FLAG_DISALLOW_DELETE | FLAG_DOMAIN_DISALLOW_RENAME |
FLAG_DOMAIN_DISALLOW_MOVE}

Note Domain controllers running Windows Server 2012 operating system and Windows Server
2012 R2 operating system do not create the systemFlags attribute on the Sam Server object.

6.1.1.5.4 Domain Updates Container

The Domain Updates container includes child containers that specify the version of the domain

revision. Some or all of the following containers exist, depending on the domain revision.

Container Minimum domain revision for which the container exists

Operations 0.8

Windows2003Update 0.8

ActiveDirectoryUpdate 3.9

%5bMS-GLOS%5d.pdf
%5bMS-GPOD%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

508 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The version of the revision is stored under the Domain Updates child containers.

The major version is stored on the revision attribute of the ActiveDirectoryUpdate container. If the
ActiveDirectoryUpdate container does not exist, the major version is 0. After a domain revision
upgrade process, the revision attribute of the ActiveDirectoryUpdate container must be equal to the

major version of the current revision.

The minor version is stored on the revision attribute of the Windows2003Update container. If the
Windows2003Update container does not exist, the minor version is 0. After a domain revision
upgrade process, the revision attribute of the Windows2003Update container must be equal to the
minor version of the current revision.

parent: System container

name: DomainUpdates

objectClass: container

6.1.1.5.4.1 Operations Container

The contents of the Operations container are outside the state model and are implementation-
specific.

parent: Domain Updates container

name: Operations

objectClass: container

6.1.1.5.4.2 Windows2003Update Container

This container stores the minor version of the domain revision.

parent: Domain Updates container

name: Windows2003Update

objectClass: container

revision: The minor version of the domain revision.

6.1.1.5.4.3 ActiveDirectoryUpdate Container

This container stores the major version of the domain revision.

parent: Domain Updates container

name: ActiveDirectoryUpdate

objectClass: container

revision: The major version of the domain revision.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

509 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.6 Well-Known Domain-Relative Security Principals

In each domain NC, there are certain well-known security principals. These well-known security
principals are given default privileges in the domain. For more information, see section 5 and also

see [MS-SAMR] section 3.1.4.2.

Each of these objects has the following attributes:

parent: Users container (section 6.1.1.4.6).

objectSid: A SID consisting of the objectSid of the domain NC root, followed by the RID that is
specified for each child in the following subsections.

The objects of class user have the following attribute:

primaryGroupID: This value is a RID, which refers to another well-known domain relative security

principal.

6.1.1.6.1 Administrator

name: Administrator

objectClass: user

RID: 500

primaryGroupID: 513 (Domain Users)

6.1.1.6.2 Guest

name: Guest

objectClass: user

RID: 501

primaryGroupID: 514 (Domain Guests)

6.1.1.6.3 Key Distribution Center Service Account

name: krbtgt

objectClass: user

RID: 502

primaryGroupID: 513 (Domain Users)

6.1.1.6.4 Cert Publishers

name: Cert Publishers

objectClass: group

RID: 517

groupType: {GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED}

%5bMS-SAMR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

510 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.1.6.5 Domain Administrators

name: Domain Admins

objectClass: group

RID: 512

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.6 Domain Computers

name: Domain Computers

objectClass: group

RID: 515

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.7 Domain Controllers

name: Domain Controllers

objectClass: group

RID: 516

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.8 Domain Guests

name: Domain Guests

objectClass: group

RID: 514

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.9 Domain Users

name: Domain Users

objectClass: group

RID: 513

groupType: { GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED }

6.1.1.6.10 Enterprise Administrators

This group exists only in the forest root domain.

name: Enterprise Admins

objectClass: group

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

511 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RID: 519

groupType:

If the forest root domain is mixed (section 6.1.4.1):

{GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

If the forest root domain is not mixed:

{GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.11 Group Policy Creator Owners

name: Group Policy Creator Owners

objectClass: group

RID: 520

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.12 RAS and IAS Servers

name: RAS and IAS Servers

objectClass: group

RID: 553

groupType: {GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED}

6.1.1.6.13 Read-Only Domain Controllers

name: Read-Only Domain Controllers

objectClass: group

RID: 521

groupType: {GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED}

This group is created in a domain by the PDC the first time a Windows Server 2008 operating
system, Windows Server 2008 R2 operating system, Windows Server 2012 operating system, or
Windows Server 2012 R2 operating system DC holds the PDC FSMO.

6.1.1.6.14 Enterprise Read-Only Domain Controllers

name: Enterprise Read-Only Domain Controllers

objectClass: group

RID: 498

groupType: {GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED}

This group is created in the root domain by the root domain PDC the first time a Windows
Server 2008 operating system, Windows Server 2008 R2 operating system, Windows Server 2012

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

512 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

operating system, or Windows Server 2012 R2 operating system DC holds the root domain PDC
FSMO.

6.1.1.6.15 Schema Admins

This group exists only in the forest root domain.

name: Schema Admins

objectClass: group

RID: 518

groupType:

If the forest root domain is mixed (section 6.1.4.1):

{ GROUP_TYPE_ACCOUNT_GROUP | GROUP_TYPE_SECURITY_ENABLED }

If the forest root domain is not mixed:

{ GROUP_TYPE_UNIVERSAL_GROUP | GROUP_TYPE_SECURITY_ENABLED }

6.1.1.6.16 Allowed RODC Password Replication Group

name: Allowed RODC Password Replication Group

objectClass: group

RID: 571

groupType: { GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED }

6.1.1.6.17 Denied RODC Password Replication Group

name: Denied RODC Password Replication Group

objectClass: group

RID: 572

groupType: { GROUP_TYPE_RESOURCE_GROUP | GROUP_TYPE_SECURITY_ENABLED }

6.1.2 Forest Requirements

References: nTDSDSA object, server object, Domain Controller object, SPN construction, crossRef
object, NC root object

Glossary Terms: DC, NC, NC Replica

LDAP Attributes: serverReference, dNSHostName, servicePrincipalName, nCName, msDS-NC-

Replica-Locations, msDS-hasMasterNCs, msDS-HasInstantiatedNCs, hasPartialReplicaNCs

LDAP Classes: nTDSDSA, server, crossRef

Constants: NTDSDS_OPT_IS_GC

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

513 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.2.1 DC Existence

For any DC in the forest, the following objects must exist:

nTDSDSA object: See section 6.1.1.

server object: See section 6.1.1.

Domain Controller object (in AD DS, not AD LDS): See section 6.1.1.

For the purposes of this section, an RODC object is a Domain Controller object.

Any one of these objects can be said to "represent" the DC.

Relationships:

The server object is the parent of the nTDSDSA object. On AD DS, the name of the server object

is the computer name of the DC; on AD LDS, the name of the server object is the computer
name, followed by "$", followed by the instance name of the DC.

On AD DS, the attribute serverReference on the server object must reference the domain

controller object.

On AD DS, the dNSHostName attribute of the domain controller object must equal the

dNSHostName attribute of the server object.

The dNSHostName attribute of the server object must equal the DNS hostname of the computer

that is physically the DC.

On AD DS, every value of the servicePrincipalName attribute of the domain controller object,

which has a DNS hostname as the instance name (see section 5.1.1.4, "Mutual Authentication",

for SPN construction), should have an instance name equal to the dNSHostName of the domain
controller object.

6.1.2.2 NC Existence

For any NC in the forest, the following objects must exist:

crossRef: see section 6.1.1.

NC root: see section 6.1.1.

Either of these objects can be said to "represent" the NC.

Relationships:

The nCName attribute of the crossRef object must reference the NC root object.

6.1.2.3 Hosting Requirements

6.1.2.3.1 DC and Application NC Replica

A DC is instructed to host an application NC replica if:

The attribute msDS-NC-Replica-Locations on the crossRef representing the NC contains the

DSName of the nTDSDSA object representing the DC.

A DC is hosting an application NC replica when the following are true:

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

514 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The attribute msDS-hasMasterNCs on the nTDSDSA object representing the DC contains the

DSName of the NC root representing the NC.

The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an

Object(DN-Binary) value such that the DN field is the DSName of the NC root representing the
NC, and the Data field contains the value of the instanceType attribute on the NC root object on
the DC.

6.1.2.3.2 DC and Regular Domain NC Replica

A DC is instructed to host a regular domain NC replica if:

The domain controller object representing the DC is in the domain NC.

A DC is hosting a regular domain NC replica when the following are true:

The attribute msDS-hasMasterNCs and attribute hasMasterNCs on the nTDSDSA object

representing the DC contain the DSName of the NC root representing the domain NC.

The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an

Object(DN-Binary) value such that the DN field is the DSName of the domain NC root

representing the domain NC, and the Data field contains the value of the instanceType attribute
on the domain NC root object on the DC.

The attribute msDS-HasDomainNCs on the nTDSDSA object representing the DC references the

domain NC root. A DC hosts only one full domain NC replica.

6.1.2.3.3 DC and Schema/Config NC Replicas

Every DC is instructed to host the schema and config NC replicas.

A DC is hosting the schema and config NC replicas when the following are true:

The attribute msDS-hasMasterNCs and attribute hasMasterNCs on the nTDSDSA object

representing the DC contain the DSName of both the NC roots representing the schema and
config NCs.

The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains

two Object(DN-Binary) values such that the DN fields are the DSName of the NC root
representing the config and schema NCs, and the binary fields contain the values of the
instanceType attribute on the config and schema NC root objects on the DC.

6.1.2.3.4 DC and Partial Replica NCs Replicas

A DC is instructed to host a partial NC replica of every domain NC in the forest if:

The options attribute of the nTDSDSA object representing that DC has the following flag:

NTDSDS_OPT_IS_GC.

A DC hosts a partial NC replica of a domain NC when the following are true:

The attribute hasPartialReplicaNCs on the nTDSDSA object representing the DC contains the

DSName of the NC roots representing the domain NC.

The attribute msDS-HasInstantiatedNCs on the nTDSDSA object representing the DC contains an

Object(DN-Binary) value such that the DN field is the DSName of the NC root representing the

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf

515 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NC, and the Data field contains the value of the instanceType attribute on the NC root object on
the DC.

6.1.3 Security Descriptor Requirements

Constants

LDAP constants: LDAP_SERVER_SD_FLAGS_OID.

SD flags: OWNER_SECURITY_INFORMATION, GROUP_SECURITY_INFORMATION,

DACL_SECURITY_INFORMATION, SACL_SECURITY_INFORMATION, SECURITY_PRIVATE_OBJECT.

Security access mask bits and privileges: SE_RESTORE_PRIVILEGE, RIGHT_WRITE_DAC,

RIGHT_WRITE_OWNER, ACCESS_SYSTEM_SECURITY, SE_GROUP_OWNER,
SE_GROUP_USE_FOR_DENY_ONLY.

Security descriptor values stored in Active Directory are in SECURITY_DESCRIPTOR format (see

[MS-DTYP] section 2.4.6). In addition to the defined fields, the RM Control (Resource Manager

Control) field is used. It is stored in the Sbz1 byte of the SECURITY_DESCRIPTOR structure. The
SECURITY_PRIVATE_OBJECT bit (0x01) might be present in the field.

Error codes: ERROR_INVALID_OWNER.

The following requirements apply to SDs that are maintained by a DC:

1. Each object's SD retains the set of explicit (noninherited) ACEs stamped in its DACL and SACL (if
present). It also retains the owner and group SID values as well as various SD flags (see SD
reference [MS-DTYP] section 2.4.6). The owner SID may not be NULL, while the group SID may
be NULL.

2. The SD also includes the set of inheritable ACEs from its parent object. It includes both applicable

and nonapplicable inheritable ACEs. The following exceptions apply to the preceding rule:

1. The object is the root of an NC. In this case, the SD does not include any inherited ACEs.

2. If the ACL (either DACL or SACL) has the "protected from inheritance" flag set. In this case,
the ACL does not include inheritable ACEs from the parent object's SD.

3. The object is deleted. In this case, the set of inheritable ACEs that were obtained from the
parent object's SD at the time of object deletion is retained.

3. When the forest functional level is DS_BEHAVIOR_WIN2003 or above and the
fDontStandardizeSDs heuristic is false (section 6.1.1.2.4.1.2), then the ACEs in the ACLs are
sorted according to ACE ordering rules (see the following ACE ordering rules section). Otherwise,
if the forest functional level is less than DS_BEHAVIOR_WIN2003, the order of explicit ACEs
supplied by the client is preserved.

4. The ACEs with the inheritedObjectType field present are marked as effective or ineffective by
setting the INHERIT_ONLY_ACE flag. The INHERIT_ONLY_ACE flag identifies an ineffective ACE,

which does not control access to the object to which it is attached. If this flag is not set, the ACE

is an effective ACE, which controls access to the object to which it is attached. This flag is set
according to SD merge rules (see the CreateSecurityDescriptor algorithm in [MS-DTYP] section
2.5.3.4.1), based on the current value of the object's objectClass attribute. Specifically, the
following objectClass values are considered when processing inheritable ACEs from the parent's
SD: the most specific structural objectClass value, as well as all dynamic auxiliary class values.
The static auxiliary classes and non–most specific object classes are not considered. For example,

in Active Directory schema, computer objects have the following objectClass values: top, person,

%5bMS-ADA1%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

516 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

organizationalPerson, user, and computer. In this case, only the computer class has to be
considered for inheritance processing. For inheritance processing, each effective objectClass

value is converted to the GUID (as per schema mapping object classes to GUIDs; see Schema
(section 3.1.1.3.1.1)) and supplied as an input to the SD merge routine.

5. In order to compute the resultant SD value for an object, the CreateSecurityDescriptor algorithm
([MS-DTYP] section 2.5.3.4.1) is invoked with the following input parameters:

1. ParentDescriptor: If the object is NC root, then NULL; otherwise, the SD value of the parent
object.

2. CreatorDescriptor: The current SD value stamped on the object. When an LDAP add operation
is performed and no SD value is supplied, the SD value is first defaulted according to the rules
specified in sections 6.1.3.5 and 6.1.3.6.

3. IsContainerObject: true is always passed.

4. AutoInheritFlags: DACL_AUTO_INHERIT | SACL_AUTO_INHERIT.

5. Token: When processing an originating SD write, the security information of the requester is
used. Otherwise, SYSTEM security information is used; note that, in the case of auto-
propagation into children, the information from the token is never used, because all required
SD parts are always present and there is nothing that needs to be defaulted.

6. GenericMapping: The following mapping table is used for all Active Directory SD operations:

GENERIC_READ_MAPPING = RIGHT_READ_CONTROL | RIGHT_DS_LIST_CONTENTS |

RIGHT_DS_READ_PROPERTY | RIGHT_DS_LIST_OBJECT

GENERIC_WRITE_MAPPING = RIGHT_READ_CONTROL |

RIGHT_DS_WRITE_PROPERTY_EXTENDED | RIGHT_DS_WRITE_PROPERTY

GENERIC_EXECUTE_MAPPING = RIGHT_READ_CONTROL | RIGHT_DS_LIST_CONTENTS

GENERIC_ALL_MAPPING = RIGHT_DELETE | RIGHT_READ_CONTROL | RIGHT_WRITE_DAC

| RIGHT_WRITE_OWNER | RIGHT_DS_CREATE_CHILD | RIGHT_DS_DELETE_CHILD |
RIGHT_DS_DELETE_TREE | RIGHT_DS_READ_PROPERTY | RIGHT_DS_WRITE_PROPERTY |
RIGHT_DS_LIST_CONTENTS | RIGHT_DS_LIST_OBJECT | RIGHT_DS_CONTROL_ACCESS |
RIGHT_DS_WRITE_PROPERTY_EXTENDED

6. Any CREATOR/OWNER ineffective ACE has a matching effective ACE granted to the current owner

of the object (as obtained from the SD OWNER field).

7. NULL DACLs are disallowed.

6.1.3.1 ACE Ordering Rules

ACE ordering rules apply only to ACLs in canonical form (see [MS-DTYP] section 2.4.5), and only
when the forest functional level is DS_BEHAVIOR_WIN2003 or above. The following rules are

applied, in the following order:

1. Explicit ACEs come before inherited ACEs.

2. Deny ACEs come before Allow ACEs.

3. Regular ACEs come before object ACEs.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

517 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4. Within each group, the ACEs are ordered lexicographically (that is, based on octet string
comparison rules).

Rules 3 and 4 above are enforced only when the forest functional level is DS_BEHAVIOR_WIN2003
or above. Otherwise, the order of ACEs within each group defined by rules 1 and 2 is retained as

supplied by the user or replication partner.

6.1.3.2 SD Flags Control

When performing an LDAP operation (modify or search), the client may supply an SD Flags Control
LDAP_SERVER_SD_FLAGS_OID (section 3.1.1.3.4.1.11) with the operation. The value of the control
is an integer, which is used to identify which security descriptor (SD) parts the client intends to read
or modify. When the control is not specified, then the default value of 15 (0x0000000F) is used.

The SD parts are identified using the following bit values: OWNER_SECURITY_INFORMATION,
GROUP_SECURITY_INFORMATION, DACL_SECURITY_INFORMATION,
SACL_SECURITY_INFORMATION, which correspond to OWNER, GROUP, DACL and SACL SD fields,
respectively.

If the LDAP_SERVER_SD_FLAGS_OID control is present in an LDAP search request, the server
returns an SD with the parts specified in the control when the SD attribute name is explicitly

mentioned in the requested attribute list, or when the requested attribute list is empty, or when all
attributes are requested ([RFC2251] section 4.5.1). Without the presence of this control, the server
returns an SD only when the SD attribute name is explicitly mentioned in the requested attribute
list.

For update operations, the bits identify which SD parts are affected by the operation. Note that the
client may supply values for other (or all) SD fields. However, the server only updates the fields that
are identified by the SD control. The remaining fields are ignored. When performing an LDAP add

operation, the client can supply an SD flags control with the operation; however, it will be ignored
by the server.

6.1.3.3 Processing Specifics

1. The clients may send in SD values that include both explicit and inherited ACEs (during add or
modify operations). Only the set of explicit ACEs is considered authoritative data. Any inherited
ACEs that are included in the SD value are ignored. Instead, the set of inherited ACEs is

computed per the rules in the preceding sections and set on the object.

2. During an add operation, the DC makes sure that the object's security descriptor value is
consistent with the parent's SD value (according to the preceding rules), at the moment when
the add operation is committed.

3. During a move operation, the DC makes sure that the moved object's security descriptor value is
consistent with the new parent's SD value (according to the preceding rules), at the moment

when the move operation is committed. If the moved object has descendant objects (that is, a
tree move was performed), then the SD values of the children objects are updated outside of the
move transaction (see Modify DN, section 3.1.1.5.4).

4. During an SD modify operation, the DC ensures that the updated object's security descriptor
value is consistent with the parent's SD value (according to the preceding rules), at the moment
when the modify operation is committed. If the updated object has descendant objects, then the
SD values of the children objects are updated outside of the modify transaction.

5. When processing inbound replication containing SD updates, the SD requirements are enforced
(in other words, it is not guaranteed that the SD value sent by the replication partner is

http://go.microsoft.com/fwlink/?LinkId=90325

518 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

consistent with the parent's SD value). It is the responsibility of the DC performing the inbound
replication to ensure that the set of inherited ACEs present in the SD is consistent in the subtree

that is rooted at the affected object (according to the preceding rules). One exception to this rule
is when processing inbound replication of a deleted object. In this case, the DC retains the SD

value (including both explicit and inherited ACEs) as it is supplied by the replication partner, in
cases when it is supplied by the replication partner. If the SD value is not supplied by the
replication partner, then the existing SD value is retained.

6. When an originating add operation is processed, the client may or may not supply an SD value. If
the SD value is not supplied, then the DACL and SACL on the newly created object are defaulted
according to the SD defaulting rules (section 6.1.3.5). If the SD value is present, then the DACL
and SACL are obtained from this value. If the DACL is not present in the supplied value, then the

add operation is failed with unwillingToPerform / <unrestricted> (per the preceding constraint).
If the SACL is not present in the supplied value, then a NULL value is written in place of this
SACL.

7. If the RM control field is present in the supplied SD value, then its value is reset to contain the
SECURITY_PRIVATE_OBJECT bit, and nothing else.

8. AD LDS imposes a restriction on the security principals that can be used in an AD LDS security

descriptor (owner, group, and SID values within ACEs). The SID of a security principal within an
AD LDS application NC can appear in a security descriptor within that application NC, but cannot
appear in a security descriptor within any other NC of the same forest. Other SIDs are not
restricted, so for instance a Windows security principal is allowed in any AD LDS security
descriptor, as is a security principal from another AD LDS forest, as well as a security principal
from the config NC of the same AD LDS forest.

9. Microsoft Windows Server 2008 R2 operating system and above impose a restriction on

modifying the OWNER field. If a modify operation attempts to set the OWNER SID to a value, the
operation will fail with a constraintViolation / ERROR_INVALID_OWNER error unless at least one
of the following conditions applies.

Let U be the user performing the modify operation:

U.SID equals OWNER SID.

Let G be a group in U.Groups whose SID is being set in the OWNER field. G.Attributes contains

SE_GROUP_OWNER but not SE_GROUP_USE_FOR_DENY_ONLY.

U.Privileges contains SE_RESTORE_PRIVILEGE.

This restriction is processed before the security checks described in section 6.1.3.4.

6.1.3.4 Security Considerations

When an add operation is processed, the client is allowed to specify any SD value, subject to some

constraints to the OWNER field, specified in this section.

When a modify operation is processed, the following security checks are applied to the requester's
security context. If the requester does not pass the check, then accessDenied is returned.

1. If the DACL value is written (according to SD flags), then one of the following requirements must
be satisfied:

1. RIGHT_WRITE_DAC is granted to the requester on the object.

519 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. The OWNER SID in the SD value is one of the SIDs in the requester's token (either as user
SID or group SID).

2. If the OWNER and/or GROUP value is written (according to SD flags), then one of the following
requirements must be satisfied:

1. RIGHT_WRITE_OWNER is granted to the requester on the object.

2. The requester possesses the SE_TAKE_OWNERSHIP_PRIVILEGE.

3. The control access right DS-Set-Owner is granted to the requestor on the object that is the
root of the naming context to which the object holding the SD belongs.

3. If the SACL value is written (according to SD flags), then the following requirement must be
satisfied:

The requester possesses the SE_SECURITY_PRIVILEGE.

4. If the object being modified is in the config NC or schema NC, and the RM control of the SD is
present and contains SECURITY_PRIVATE_OBJECT bit, then additional requirements on the DC
performing the operation must be enforced:

1. The DC must be a member of the root domain in the forest, or

2. The DC must be a member of the same domain to which the current object owner belongs.

When the OWNER value is being written (via SD flags control, either in an add or a modify

operation), then the following constraint must be satisfied. The value of the OWNER field must be
one of the following SIDs:

1. The SID of the user performing the operation.

2. The SID of the "default administrators group" (DAG; section 6.1.3.7), only when the DAG is
defined and the user is a member of this group.

3. Any SID, when the user possesses the SE_RESTORE_PRIVILEGE.

If the owner SID does not satisfy the preceding rules, then the server fails the operation, returning
an unwillingToPerform / ERROR_INVALID_OWNER error.

If the owner SID is written on an object in the config NC or schema NC, then additional
requirements on the DC performing the operation are enforced:

The DC must be a member of the root domain in the forest, or

The DC must be a member of the same domain to which the current object owner belongs.

6.1.3.5 SD Defaulting Rules

When an add operation is performed and the client does not supply an SD value, then the SD value
is defaulted as follows:

1. The SD is determined from the defaultSecurityDescriptor value obtained from the classSchema
object corresponding to the most specific structural objectClass of the object being created. The
value of defaultSecurityDescriptor is an SDDL string. The string is converted to the binary SD

value in the context of domain SID (used to resolve domain SID references, such as Domain
Administrators alias) and root domain SID (used to resolve forest SID references, such as
Enterprise Administrators alias). See [MS-DTYP] section 2.5.1 for more details.

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DTYP%5d.pdf

520 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. When the object is created in an application NC, then the value or sdReferenceDomain from the
crossRef corresponding to the NC is used to determine the domain SID used as context in the

SDDL conversion process.

6.1.3.6 Owner and Group Defaulting Rules

The OWNER and GROUP fields are defaulted in the following scenarios:

The SD flags do not include the OWNER bit.

The SD flags include the OWNER bit, but the OWNER field in the supplied value is NULL.

In the preceding cases, the OWNER field is defaulted as follows:

If the user performing the operation is a member of the DAG for the object (when it is defined),

the SID of this group is written into the OWNER field of the SD.

Otherwise, if the requester's security context contains the TokenOwner field, then the SID

contained in this field is written into the OWNER field of the SD.

Otherwise, the requester's user SID is written into the OWNER field of the SD.

If the DC functional level is DS_BEHAVIOR_WIN2008 or higher, and the DAG was used as the

default OWNER field value, then the same SID is written into the GROUP field. In all other cases, the
GROUP field is not modified before the SD value is passed to the CreateSecurityDescriptor algorithm
as specified in section 6.1.3.

6.1.3.7 Default Administrators Group

The "default administrators group" (DAG), which is used for OWNER/GROUP defaulting and also in
OWNER write access checks, is computed based on two inputs: the contents of the requester's token

and the location of the object whose SD is being written. The following rules are applied (in order):

1. When the object belongs to a domain NC:

1. If the user is a member of Domain Admins for this domain, then Domain Admins is designated
as the DAG.

2. If the user is a member of Enterprise Admins for the forest, then Enterprise Admins is
designated as the DAG.

3. Otherwise, the DAG is undefined.

2. When the object belongs to the config NC:

1. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the
DAG.

2. If the user is a member of Domain Admins (for the domain that the current DC belongs to),
then this Domain Admins group is designated as the DAG.

3. Otherwise, the DAG is undefined.

3. When the object belongs to the schema NC:

1. If the user is a member of Schema Admins, then Schema Admins is designated as the DAG.

%5bMS-ADSC%5d.pdf

521 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the
DAG.

3. If the user is a member of Domain Admins (for the domain that the current DC belongs to),
then this Domain Admins group is designated as the DAG.

4. Otherwise, the DAG is undefined.

4. When the object belongs to an application NC:

1. If the user is a member of Domain Admins for the domain that is designated as
sdReferenceDomain for this application NC, then this Domain Admins group is designated as
the DAG.

2. If the user is a member of Enterprise Admins, then Enterprise Admins is designated as the
DAG.

3. Otherwise, the DAG is undefined.

6.1.4 Special Attributes

Glossary Terms: FSMO Role, PDC FSMO Role Owner

LDAP Attributes: nTMixedDomain, msDS-Behavior-Version

LDAP Classes: nTDSDSA, crossRef

Constants: crossRefContainer

6.1.4.1 ntMixedDomain

The attribute nTMixedDomain is present on each domain NC root object. The value of this attribute
MUST be 0 or 1. The value 1 indicates a domain that is in mixed mode and that supports replication
to Windows NT operating system backup domain controllers ([MS-NRPC]). The value 0 indicates a

domain that does not support such replication.

If the value of nTMixedDomain is 0, it cannot be changed.

The attribute nTMixedDomain on a crossRef object is read-only and equals the attribute
nTMixedDomain on the corresponding domain NC root object.

If there are Windows Server 2008 operating system, Windows Server 2008 R2 operating system,
Windows Server 2012 operating system, or Windows Server 2012 R2 operating system DCs in the
domain, nTMixedDomain MUST be 0. This implies that Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, and Windows Server 2012 R2 DCs cannot be used in a

domain that is in mixed mode.

6.1.4.2 msDS-Behavior-Version: DC Functional Level

The msDS-Behavior-Version attribute is written on the nTDSDSA object representing a DC. The

value is the highest domain or forest functional level that the DC is capable of supporting. A DC
supports any domain or forest functional level less than or equal to its msDS-Behavior-Version.

The value of the msDS-Behavior-Version attribute on an nTDSDSA object changes during an

operating system upgrade of that DC. The value of the msDS-Behavior-Version attribute never
decreases.

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf

522 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The absence of the msDS-Behavior-Version attribute on an nTDSDSA object is equivalent to the
msDS-Behavior-Version attribute on that object having the value zero.

The following values are defined.

Identifier Value

DS_BEHAVIOR_WIN2000 0

DS_BEHAVIOR_WIN2003 2

DS_BEHAVIOR_WIN2008 3

DS_BEHAVIOR_WIN2008R2 4

DS_BEHAVIOR_WIN2012 5

DS_BEHAVIOR_WIN2012R2 6

6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level

The msDS-Behavior-Version for domains is written on both the domain NC root object and the
crossRef representing the domain. The attribute on the crossRef is read-only and is kept in sync with
the attribute on the domain NC root object. Only the PDC FSMO role owner accepts originating
updates to the attribute on the domain NC root.

Requirements: The functional level of a domain is never larger than any domain DC's functional level
that hosts or is instructed to host (see section 6.1.2.3) the domain NC. When the functional level of
a domain is DS_BEHAVIOR_WIN2003 or greater, the attribute nTMixedDomain on the domain NC

root is 0 (see section 6.1.4.1).

The absence of the msDS-Behavior-Version attribute on a domain NC root object is equivalent to the
msDS-Behavior-Version attribute on that object having the value zero.

The value msDS-Behavior-Version defines the lower limit on the version of the server operating
system that can run on domain controllers within the domain. Ensuring this lower limit allows
advanced features to be enabled throughout the domain.

The following values are defined.

Identifier

Domain controller operating systems

that are allowed in the domain Value

DS_BEHAVIOR_WIN2000 Windows 2000 Server operating system

Windows Server 2003 operating system

Windows Server 2008 operating system

Windows Server 2008 R2 operating system

Windows Server 2012 operating system

Windows Server 2012 R2 operating system

0

DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS Windows Server 2003

Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

1

%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

523 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Identifier

Domain controller operating systems

that are allowed in the domain Value

Windows Server 2012 R2

DS_BEHAVIOR_WIN2003 Windows Server 2003

Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

2

DS_BEHAVIOR_WIN2008 Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

3

DS_BEHAVIOR_WIN2008R2 Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

4

DS_BEHAVIOR_WIN2012 Windows Server 2012

Windows Server 2012 R2

5

DS_BEHAVIOR_WIN2012R2 Windows Server 2012 R2 6

6.1.4.4 msDS-Behavior-Version: Forest Functional Level

The msDS-Behavior-Version for the forest is written on the crossRefContainer object (see section
6.1.1.2.1). Only the Domain Naming Master role FSMO owner accepts updates to this attribute.

Requirements: The value of msDS-Behavior-Version for the forest is never larger than any
functional level of any domain NC in the forest.

The absence of the msDS-Behavior-Version attribute on a crossRefContainer object is equivalent to

the msDS-Behavior-Version attribute on that object having the value zero.

The value msDS-Behavior-Version defines the lower limit on the version of the server operating
system that can run on domain controllers within the forest. Ensuring this lower limit allows
advanced features to be enabled throughout the forest.

The following values are defined.

Identifier

Domain controller operating systems or

products that are allowed in the forest Value

DS_BEHAVIOR_WIN2000 Windows 2000 Server operating system

Windows Server 2003 operating system

Windows Server 2008 operating system

Windows Server 2008 R2 operating system

Windows Server 2012 operating system

Windows Server 2012 R2 operating system

0

DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS Windows Server 2003 1

%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

524 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Identifier

Domain controller operating systems or

products that are allowed in the forest Value

Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

DS_BEHAVIOR_WIN2003 Windows Server 2003

Active Directory Application Mode (ADAM)

Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

2

DS_BEHAVIOR_WIN2008 Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

3

DS_BEHAVIOR_WIN2008R2 Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

4

DS_BEHAVIOR_WIN2012 Windows Server 2012

Windows Server 2012 R2

5

DS_BEHAVIOR_WIN2012R2 Windows Server 2012 R2 6

6.1.4.5 Replication Schedule Structures

6.1.4.5.1 SCHEDULE_HEADER Structure

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Type

Offset

Type (4 bytes): This value must be 0.

Offset (4 bytes): An offset, in bytes, into the Data field of the SCHEDULE structure. The offset
represents the start of the replication schedule data.

525 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.4.5.2 SCHEDULE Structure

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size

Bandwidth

NumberOfSchedules

Schedules

...

Data (variable)

...

Size (4 bytes): Size of the entire replication schedule structure.

Bandwidth (4 bytes): Not used; this field is ignored.

NumberOfSchedules (4 bytes): Number of elements in Schedules. This value is always 1.

Schedules (8 bytes): Array of SCHEDULE_HEADER structures. There is only one
SCHEDULE_HEADER element in the array.

Data (variable): This is a sequence of bytes specifying the time slots when replication is
permitted between the source and the destination DC. Each schedule header specifies an

offset into the data field. The replication schedule data for that schedule is the next 168 bytes.
Each byte represents an hour in the week (24 * 7 = 168). The lower 4 bits of each byte
represent 15-minute intervals in the hour. The first bit, that is, the fourth least significant bit
in the byte, corresponds to the first 15 minutes in the hour, the second bit corresponds to the
next 15 minutes, and so on. If one of these bits is set, it indicates that replication is permitted

in that 15-minute time interval within that hour.

The offset field of the SCHEDULE_HEADER structure points to the beginning of the Data field, and
the Data field is exactly 168 bytes since there is only one schedule.

6.1.4.5.3 REPS_FROM

Specified in [MS-DRSR] section 5.167.

6.1.4.5.4 REPS_TO

Specified in [MS-DRSR] section 5.168.

6.1.4.5.5 MTX_ADDR Structure

Specified in [MS-DRSR] section 5.131.

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf

526 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.4.5.6 REPLTIMES Structure

Specified in [MS-DRSR] section 5.164.

6.1.4.5.7 PAS_DATA Structure

Specified in [MS-DRSR] section 5.148.

6.1.4.6 msDS-AuthenticatedAtDC

This attribute is maintained by the DC on user and computer objects. The attribute contains a list of
computer objects, corresponding to the RODCs at which the user or computer has authenticated.
This attribute is a forward link attribute whose corresponding back link is the msDS-

AuthenticatedToAccountlist attribute (see section 6.1.1.3.2). When a writable DC authenticates a
user or computer to an RODC, that writable DC adds the DN of the RODC's computer object to the
list in the msDS-AuthenticatedAtDC attribute of the user or computer that was authenticated.

This attribute was first maintained by DCs running Windows Server 2008 operating system.

6.1.5 FSMO Roles

References: SID, RID, RID Allocation, RID Master role in interdomain move, PDC Emulator role,

Infrastructure role

Functions: RoleObject, GetRoleScope

Glossary Terms: FSMO Role, NC Replica, DC, SID

Ldap Attributes: fSMORoleOwner

Ldap Classes: nTDSDSA

A FSMO role is defined as a set of objects that may be updated in only one NC replica at any given

time. The DC that hosts this NC replica is the owner for that FSMO role.

Each FSMO role is represented by an object in the directory. The function RoleObject (section
3.1.1.5.1.8) specifies the object for a given FSMO role type and NC. This object is an element of the
FSMO role and contains the fSMORoleOwner attribute, which references the nTDSDSA object of the
DC that owns the role. The function GetRoleScope defined in [MS-DRSR] section 4.1.10.5.16
identifies the set of objects that comprise each FSMO role. These objects must be updated only on
the DC that currently owns the FSMO role.

6.1.5.1 Schema Master FSMO Role

The Schema Master FSMO role owner is the DC responsible for performing updates to the directory
schema. This DC is the only one that can process updates to the directory schema. Once the schema
update is complete, it is replicated from the Schema Master FSMO role owner to all other DCs in the
directory. There is only one Schema Master FSMO role per forest.

6.1.5.2 Domain Naming Master FSMO Role

The Domain Naming Master FSMO role owner is the DC responsible for making changes to the
forest-wide domain name space of the directory in the Partitions container. This DC is the only one
that can add or remove a domain or application NC from the directory. It can also add or remove
cross references to domains in external directories. Only the Domain Naming Master FSMO role

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-DRSR%5d.pdf

527 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

owner can write to the Partitions container or its children. There is only one Domain Naming Master
FSMO role per forest.

6.1.5.3 RID Master FSMO Role

The RID Master FSMO role owner is the single DC responsible for processing RID Pool requests from
all DCs within a given domain. It is also responsible for moving an object from one domain to
another during an interdomain object move.

When a DC creates a security principal object such as a user or group, it attaches a unique SID to
the object. This SID consists of a domain SID (the same for all SIDs created in a domain) and a
relative ID (RID) that is unique for each security principal SID created in a domain.

RIDs are allocated from a RID pool that is controlled by the RID Master FSMO. When a new domain

is created, the rIDAvailablePool attribute on the RID Manager object is set to a value of
4611686014132421709. This value defines the minimum and maximum RIDs that will be allocated
by the RID Master FSMO within the domain. See [MS-DRSR] section 4.1.10.5.12 for details on how
this attribute is used by the RID Master FSMO. Each DC in the domain is then allocated a pool of

RIDs that it is allowed to assign to the security principals it creates.

When a DC's allocated RID pool falls below a threshold, that DC issues a request for additional RIDs

to the domain's RID Master FSMO role owner (see [MS-DRSR] section 4.1.10.4.3,
PerformExtendedOpRequestMsg with ulExtendedOp = EXOP_FSMO_RID_REQ_ROLE). The RID
Master FSMO role owner responds to the request by retrieving RIDs from the domain's unallocated
RID pool and assigns them to the pool of the requesting DC (see [MS-DRSR] section 4.1.10.5.12,
ProcessFsmoRoleRequest with ulExtendedOp = EXOP_FSMO_RID_REQ_ROLE). There is one RID
Master FSMO role per domain in a directory.

See section 3.1.1.5 for more information about the RID Master's role in interdomain object move

operations.

6.1.5.4 PDC Emulator FSMO Role

The PDC Emulator FSMO role owner performs the following functions:

Password changes performed by other DCs in the domain are replicated preferentially to the PDC

emulator.

If a logon authentication fails at a given DC in a domain due to a bad password, the DC will

forward the authentication request to the PDC emulator to validate the request against the most
current password. If the PDC reports an invalid password to the DC, the DC will send back a bad
password failure message to the user.

Account lockout is processed on the PDC emulator.

The PDC emulator FSMO also fulfills the role of the PDC in the NetLogon Remote Protocol

methods described in [MS-NRPC] section 3. Therefore, the PDC emulator FSMO MUST support
and perform all PDC specific functionality specified in that section. Every DC, other than the PDC
emulator FSMO, MUST NOT perform this functionality.

There is one PDC Emulator FSMO role per domain in a directory. See 3.1.1.7 for more information
about the PDC Emulator FSMO role.

%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-NRPC%5d.pdf

528 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.5.5 Infrastructure FSMO Role

When an object in one domain is referenced by another object in another domain, it represents the
reference as a dsname. There is one Infrastructure FSMO role per domain and application NC in a

directory.

If all the domain controllers in a domain also host the GC, then all the domain controllers have the
current data, and it is not important which domain controller owns the Infrastructure Master (IM)
role. See section 3.1.1.5 for more information about the Infrastructure Master.

When the Recycle Bin optional feature is not enabled, the Infrastructure FSMO role owner is the DC
responsible for updating a cross-domain object reference in the event that the referenced object is
moved, renamed, or deleted. In this case, the Infrastructure Master role should be held by a domain

controller that is not a GC server. If the Infrastructure Master runs on a GC server, it will not update
object information, because it does not contain any references to objects that it does not hold. This
is because a GC server holds a partial replica of every object in the forest.

When the Recycle Bin optional feature is enabled, every DC is responsible for updating its cross-

domain object references in the event that the referenced object is moved, renamed, or deleted. In
this case, there are no tasks associated with the Infrastructure FSMO role, and it is not important

which domain controller owns the Infrastructure Master role.

6.1.6 Trust Objects

6.1.6.1 Overview (Synopsis)

Active Directory domains rarely exist in isolation. Many Active Directory deployments in customer
sites consist of two or more domains that represent boundaries between different geographical,

managerial, organizational, or administrative layouts. For example, when company "A" acquires
company "B," it quickly becomes necessary for preexisting domains to start trusting each other.
Alternately, in some deployments, servers that have a specific role (such as a mail server) may be
members of a "resource domain", easing the management burden by combining like roles under one
administrative domain.

Enabling communication between disparate domains, especially secure communication involving
authentication and authorization, requires that some stateful knowledge be shared between the peer

domains in order for them to trust one another. Some of this knowledge is sensitive, forming the
cryptographic basis of trust mechanisms used in protocols such as Kerberos and Netlogon RPC.
Other state is public knowledge, such as the NetBIOS name of a peer domain, or which security
identifiers are owned by the peer domain. Information like this plays a crucial role when performing
name lookups, which are essential for authorization, locating user accounts, or simply displaying
information in some type of user interface.

Active Directory stores trust information in trusted domain objects (TDOs) and, depending on the

kind of trust established, in associated user accounts (interdomain trust accounts) for the trusted
domain. This section of the document details the contents of these objects, focusing on analysis of
the properties that are specific to TDOs and interdomain trust accounts, and that are essential for
proper interdomain functionality.

529 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.2 Relationship to Other Protocols

6.1.6.2.1 TDO Replication over DRS

After they are created, TDOs are replicated along with other objects over replication protocols (as
specified in [MS-DRSR] and [MS-SRPL]). In this manner, they are no different than any other
directory service object.

6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries

For most network authentication protocols, if a client wishes to securely authenticate to a service
residing in a foreign domain, it becomes necessary for the client and service domains to have some

form of trust. Most trust systems in use today rely upon some form of key for trust validation.

TDOs play an important part in the storage and distribution of information used for trust validation
between domains. Commonly used Windows network authentication mechanisms such as Kerberos
([RFC4120] section 1.1) retrieve information from TDOs that have been established between the

client and service domains. Additionally, services using other protocols such as NTLM, Digest, and
SSL Certificate Mapping use the Generic Pass-through Mechanism over the Netlogon Remote
Protocol [MS-NRPC] to authenticate users from foreign domains. Establishing the Netlogon Secure

Channel requires the use of information contained in TDOs. The format and storage locations for this
information will be discussed later (section 6.1.6.9.1), including information on the usage for
relevant authentication protocols.

6.1.6.2.3 TDO Roles in Authorization over Domain Boundaries

In some configurations, authorization data from a trusted domain, such as a SID ([MS-DTYP]

section 2.4.2) or a client name in a Kerberos cross-realm ticket-granting ticket ([RFC4120] section
5.3), must be scrutinized to protect against attempts in the foreign domain to claim identities from
within the local domain. For example, if the foreign DC were to become compromised by an
attacker, without these protections it would be possible to inject the SID of the local domain
administrator into the transferred TGT. This would have the end result of granting the attacker

domain administrator rights in the local domain.

To protect against these attacks, TDOs contain name spaces and SID spaces that legitimately

belong to the foreign domain. When enabled, authentication protocols will use this information to
verify that authorization data that is passed through the protocol is valid for the trust. If a SID or
name within the authorization data does not correspond to those claimed within the TDO, the
request is rejected. This can cause network logon attempts to fail or may alternately cause Kerberos
ticket requests to fail, as discussed in [MS-PAC] section 4.2.3.

6.1.6.3 Prerequisites/Preconditions

TDOs are only used for storing trust information on Windows 2000 operating system, Windows
Server 2003 operating system, Windows Server 2008 operating system, Windows Server 2008 R2
operating system, Windows Server 2012 operating system, and Windows Server 2012 R2 operating
system.

6.1.6.4 Versioning and Capability Negotiation

Building TDOs that represent cross-forest trusts requires that both the domain and the forest

are running in a domain and forest functional level of DS_BEHAVIOR_WIN2003 or greater.

An uplevel trust, by definition, is one in which both trusting domains are running all

Windows 2000 operating system or newer DCs.

%5bMS-DRSR%5d.pdf
%5bMS-SRPL%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-NRPC%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-PAC%5d.pdf
%5bMS-GLOS%5d.pdf

530 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A downlevel trust is one in which either of the trusting domains are running Windows NT 4.0

operating system DCs.

6.1.6.5 Vendor-Extensible Fields

It is possible to store provider-specific values in the trustAuthOutgoing and the trustAuthIncoming
attributes [MS-ADA3] on a TDO. See the sections on TDO keys (section 6.1.6.9.1) and
trustAuthIncoming (section 6.1.6.7.10) for details on the range of extensible values.

6.1.6.6 Transport

TDOs are replicated along with other DS objects, as described in [MS-DRSR] and [MS-SRPL].

6.1.6.7 Essential Attributes of a Trusted Domain Object

TDOs are stored in the System container, with a CN representing the fully qualified domain name
(FQDN) (2) of the trusted domain. For example, if a.example.com trusts b.example.com, an object

would be created in the System container with a CN of b.example.com. The System container can
be found by using the function GetWellknownObject(NC, default NC,
GUID_SYSTEM_CONTAINER_W). For more information, see section 3.1.1.1.

The contents of TDOs are described by the trustedDomain schema object [MS-ADSC]. The following
table details those attributes that are essential to a well-functioning interdomain trust, with links to
specific sections detailing their relevance and format when these attributes are present.

Attribute name Reference

flatName MS-ADA1

isCriticalSystemObject MS-ADA1

msDS-SupportedEncryptionTypes MS-ADA2,

MS-ADTS section 6.1.6.9.1

msDS-TrustForestTrustInfo MS-ADA2,

MS-ADTS section 6.1.6.9.3

nTSecurityDescriptor MS-ADA3

objectCategory MS-ADA3

objectClass MS-ADA3

securityIdentifier MS-ADA3

trustAttributes MS-ADA3

trustAuthIncoming MS-ADA3,

MS-ADTS section 6.1.6.9.1

trustAuthOutgoing MS-ADA3,

MS-ADTS section 6.1.6.9.1

trustDirection MS-ADA3

trustPartner MS-ADA3

%5bMS-GLOS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-SRPL%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

531 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Attribute name Reference

trustPosixOffset MS-ADA3,

MS-ADTS section 6.1.6.9.4

trustType MS-ADA3

6.1.6.7.1 flatName

The flatName attribute contains the NetBIOS name (as specified in [RFC1088]) of the trusted
domain in String(Unicode) syntax.

This attribute is unique on all TDOs within the domain. The system rejects attempts to create a
duplicate value.

6.1.6.7.2 isCriticalSystemObject

A mandatory Boolean attribute. Always set to true for TDOs, which indicates that it must be
replicated when a new replica is installed.

6.1.6.7.3 msDs-supportedEncryptionTypes

Implemented on Windows Server 2008 operating system, Windows Server 2008 R2 operating
system, Windows Server 2012 operating system, and Windows Server 2012 R2 operating system

only.

Contains bitmapped values that define the encryption types supported by this trust relationship. One
or more of the following flags can be set. Unused flags should be set to 0 when writing the attribute
and should be ignored when reading the attribute. The flags are presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0 A

2

5

6

A

1

2

8

R

C

4

M

D

5

C

R

C

CRC (KERB_ENCTYPE_DES_CBC_CRC, 0x00000001): Supports CRC32 as described in
[RFC3961] page 31.

MD5 (KERB_ENCTYPE_DES_CBC_MD5, 0x00000002): Supports RSA-MD5 as described in
[RFC3961] page 31.

RC4 (KERB_ENCTYPE_RC4_HMAC_MD5, 0x00000004): Supports RC4-HMAC-MD5 as

described in [RFC4757].

A128 (KERB_ENCTYPE_AES128_CTS_HMAC_SHA1_96, 0x00000008): Supports HMAC-
SHA1-96-AES128 as described in [RFC3961] page 31.

A256 (KERB_ENCTYPE_AES256_CTS_HMAC_SHA1_96, 0x00000010): Supports HMAC-
SHA1-96-AES256 as described in [RFC3961] page 31.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90266
http://go.microsoft.com/fwlink/?LinkId=90450
http://go.microsoft.com/fwlink/?LinkId=90450
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=90450
http://go.microsoft.com/fwlink/?LinkId=90450

532 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.7.4 msDS-TrustForestTrustInfo

Implemented on Windows Server 2003 operating system, Windows Server 2003 R2 operating
system, Windows Server 2008 operating system, Windows Server 2008 R2 operating system,

Windows Server 2012 operating system, and Windows Server 2012 R2 operating system.

The contents of this attribute are fully specified in section 6.1.6.9.3.

6.1.6.7.5 nTSecurityDescriptor

A mandatory object attribute that contains the security descriptor that is tied to the Active Directory
object. The security descriptor mandates access controls to the object. TDOs are sensitive objects
and have tight access controls placed upon them. Stored as the type String(NT-Sec-Desc) in SDDL

([MS-DTYP] section 2.5.1), the default security descriptor for TDOs is as follows.

Platforms Default Security Descriptor in SDDL Format

--------- --

W2000 D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)(A;;RPWPCRCCDCLCLOR

 CWOWDSDDTSW;;;SY)(A;;RPLCLORC;;;AU)

W2003 D:(A;;RPWPCRCCDCLCLORCWOWDSDDTSW;;;DA)(A;;RPWPCRCCDCLCLOR

W2003R2 CWOWDSDDTSW;;;SY)(A;;RPLCLORC;;;AU)(OA;;WP;736e4812-af31-

W2008 11d2-b7df-00805f48caeb;bf967ab8-0de6-11d0-a285-00aa003049

W2008R2 e2;CO)(A;;SD;;;CO)

6.1.6.7.6 objectCategory

A mandatory attribute representing the schema definition for TDOs. The value is a reference to the

classSchema object for the trustedDomain class.

6.1.6.7.7 objectClass

A mandatory multivalued attribute representing the classes that the target object is derived from.
For a TDO, this value contains [top, leaf, trustedDomain].

6.1.6.7.8 securityIdentifier

The securityIdentifier attribute contains a String(Octet) representation of the SID belonging to the
trusted domain. This value contains the domain relative SID ([MS-DTYP] section 2.4.2) of identities
issued by the trusted domain. For example, for "example.com", a trusted domain, the value may be
S-1-5-2223345-6677. The domain administrator for example.com would have a SID of S-1-5-
2223345-6677-512.

This attribute is unique on all TDOs within the domain. The system rejects attempts to create a
duplicate value.

6.1.6.7.9 trustAttributes

The trustAttributes attribute contains the value of a trust relationship. This value corresponds to the
TrustAttributes field detailed in the LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure ([MS-
LSAD] section 2.2.7.9). The flags in the following diagram are presented in big-endian byte order.

%5bMS-DTYP%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf

533 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

R R R R R R R R O O R R R R R R R R R R R R T

A

N

C

R T

A

R

C

T

A

T

E

T

A

W

F

T

A

C

O

T

A

F

T

T

A

Q

D

T

A

U

O

T

A

N

T

Name and value

Description and restrictions/special

notes

TANT

(TRUST_ATTRIBUTE_NON_TRANSITIVE)

0x00000001

If this bit is set, then the trust cannot

be used transitively. For example, if

domain A trusts domain B, which in turn

trusts domain C, and the A<-->B trust

has this attribute set, then a client in

domain A cannot authenticate to a

server in domain C over the A<-->B<--

>C trust linkage.

TAUO

(TRUST_ATTRIBUTE_UPLEVEL_ONLY)

0x00000002

If this bit is set in the attribute, then

only Windows 2000 operating system

and newer clients may use the trust

link. Netlogon does not consume trust

objects that have this flag set.

TAQD

(TRUST_ATTRIBUTE_QUARANTINED_DOMAIN)

0x00000004

If this bit is set, the trusted domain is

quarantined and is subject to the rules

of SID Filtering as described in [MS-

PAC] section 4.1.2.2.

TAFT

(TRUST_ATTRIBUTE_FOREST_TRANSITIVE)

0x00000008

If this bit is set, the trust link is a cross-

forest trust [MS-KILE] between the root

domains of two forests, both of which

are running in a forest functional level

of DS_BEHAVIOR_WIN2003 or greater.

Only evaluated on Windows Server 2003

operating system, Windows Server 2008

operating system, Windows

Server 2008 R2 operating system,

Windows Server 2012 operating system,

and Windows Server 2012 R2 operating

system.

Can only be set if forest and trusted

forest are running in a forest functional

level of DS_BEHAVIOR_WIN2003 or

greater.

TACO

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION)

0x00000010

If this bit is set, then the trust is to a

domain or forest that is not part of the

organization. The behavior controlled

by this bit is explained in [MS-KILE]

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-KILE%5d.pdf

534 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Name and value

Description and restrictions/special

notes

section 3.3.5.7.5 and [MS-APDS]

section 3.1.5.

Only evaluated on Windows

Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows

Server 2012, and Windows Server 2012

R2.

Can only be set if forest and trusted

forest are running in a forest functional

level of DS_BEHAVIOR_WIN2003 or

greater.

TAWF

(TRUST_ATTRIBUTE_WITHIN_FOREST)

0x00000020

If this bit is set, then the trusted

domain is within the same forest.

Only evaluated on Windows

Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows

Server 2012, and Windows Server 2012

R2.

TATE

(TRUST_ATTRIBUTE_TREAT_AS_EXTERNAL)

0x00000040

If this bit is set, then a cross-forest

trust to a domain is to be treated as an

external trust for the purposes of SID

Filtering. Cross-forest trusts are more

stringently filtered than external trusts.

This attribute relaxes those cross-forest

trusts to be equivalent to external

trusts. For more information on how

each trust type is filtered, see [MS-PAC]

section 4.1.2.2.

Only evaluated on Windows

Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows

Server 2012, and Windows Server 2012

R2.

Only evaluated if SID Filtering is used.

Only evaluated on cross-forest trusts

having

TRUST_ATTRIBUTE_FOREST_TRANSITIV

E.

Can only be set if forest and trusted

forest are running in a forest functional

level of DS_BEHAVIOR_WIN2003 or

greater.

TARC

(TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION)

0x00000080

This bit is set on trusts with the

trustType set to TRUST_TYPE_MIT,

which are capable of using RC4 keys.

Historically, MIT Kerberos distributions

supported only DES and 3DES keys

([RFC4120], [RFC3961]). MIT 1.4.1

adopted the RC4HMAC encryption type

common to Windows 2000 [MS-KILE],

so trusted domains deploying later

versions of the MIT distribution required

%5bMS-APDS%5d.pdf
%5bMS-PAC%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90450

535 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Name and value

Description and restrictions/special

notes

this bit. For more information, see "Keys

and Trusts", section 6.1.6.9.1.

Only evaluated on TRUST_TYPE_MIT

TANC

(TRUST_ATTRIBUTE_CROSS_ORGANIZATION_NO_TGT_DELEGATI

ON)

0x00000200

If this bit is set, tickets granted under

this trust MUST NOT be trusted for

delegation. The behavior controlled by

this bit is as specified in [MS-KILE]

section 3.3.5.7.5.

Only supported on Windows Server

2012 and Windows Server 2012 R2.

R

0x00000100

0x00000400 - 0x00200000

0x01000000 - 0x80000000

Reserved

O

0x00400000 - 0x00800000

Previously used trust bits, and are

obsolete.

6.1.6.7.10 trustAuthIncoming

This is a String(Octet) attribute. This value is used to compute keys used in inbound trust
validation. For more information on the contents of this attribute, see "Keys and Trusts", section
6.1.6.9.1.

This is a Secret Attribute ([MS-DRSR] section 4.1.10.3.12, IsSecretAttribute), and is not readable
outside of the context of the LSA on a DC.

6.1.6.7.11 trustAuthOutgoing

This is a String(Octet) attribute. This value is used to compute keys used in outbound trust
validation. For more information on the contents of this attribute, see "Keys and Trusts", section
6.1.6.9.1.

This is a Secret Attribute ([MS-DRSR] section 4.1.10.3.12, IsSecretAttribute), and is not readable
outside of the context of the LSA on a DC.

6.1.6.7.12 trustDirection

The trustDirection attribute dictates in which direction the trust flows. It is stored as an integer
value. There are four valid values, corresponding to the TrustDirection field in the
LSAPR_TRUSTED_DOMAIN_INFORMATION_EX structure ([MS-LSAD] section 2.2.7.9). The flags in

the following diagram are presented in big-endian byte order.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X T

D

T

D

%5bMS-KILE%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-LSAD%5d.pdf

536 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

O I

TRUST_DIRECTION_DISABLED, 0x00000000: Absence of any flags. The trust relationship
exists but has been disabled.

TDI (TRUST_DIRECTION_INBOUND, 0x00000001): The trusted domain trusts the primary
domain to perform operations such as name lookups and authentication. If this flag is set,
then the trustAuthIncoming attribute is present on this object.

TDO (TRUST_DIRECTION_OUTBOUND, 0x00000002): The primary domain trusts the

trusted domain to perform operations such as name lookups and authentication. If this flag is
set, then the trustAuthOutgoing attribute is present on this object.

TRUST_DIRECTION_BIDIRECTIONAL, 0x00000003: OR'ing of the preceding flags and
behaviors representing that both domains trust one another for operations such as name
lookups and authentication.

6.1.6.7.13 trustPartner

This String(Unicode) attribute contains the FQDN (2) of the trusted domain. This is a mandatory
attribute.

As with the securityIdentifier attribute, this attribute is unique on all TDOs within the domain. The
system rejects attempts to create a duplicate value.

6.1.6.7.14 trustPosixOffset

This integer value contains the Portable Operating System Interface (POSIX) offset for the trusted

domain. This value is added to the RID of a SID to give the POSIX user ID or group ID (as specified
in [IEEE1003.1] sections 3.188 and 3.425) for that user in the trusted domain. The calculation of
this value is documented in section 6.1.6.9.4.

6.1.6.7.15 trustType

The trustType attribute is an integer value that dictates what type of trust has been designated for
the trusted domain. Following are the valid values, corresponding to the TrustType field in

LSAPR_TRUSTED_DOMAIN_INFORMATION_EX, as specified in [MS-LSAD] section 2.2.7.9. The
trustType contains one of the following values:

TTD (TRUST_TYPE_DOWNLEVEL, 0x00000001): The trusted domain is a Windows domain
not running Active Directory.

TTU (TRUST_TYPE_UPLEVEL, 0x00000002): The trusted domain is a Windows domain
running Active Directory.

TTM (TRUST_TYPE_MIT, 0x00000003): The trusted domain is running a non-Windows,
RFC4120-compliant Kerberos distribution. This type of trust is distinguished in that (1) a SID
is not required for the TDO, and (2) the default key types include the DES-CBC and DES-CRC

encryption types (see [RFC4120] section 8.1).

TTDCE (TRUST_TYPE_DCE, 0x00000004): Historical reference; this value is not used in
Windows.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89897
%5bMS-ADA3%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458

537 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.8 Essential Attributes of Interdomain Trust Accounts

TDOs contain all the information regarding trusts. Trusts that have the trustDirection attribute equal
to TRUST_DIRECTION_INBOUND or TRUST_DIRECTION_BIDIRECTIONAL, however, also have

associated user accounts called interdomain trust accounts within the default container for users
defined in section 6.1.1.4.6. The TDO O1 and the interdomain trust account object O2 for the same
trust are associated through the partner domain's NetBIOS name, used to form the following values:
the flatName attribute of O1 and the sAMAccountName attribute of O2. Given the partner domain's
NetBIOS <NetBIOS Name>, O1!flatName=<NetBIOS Name> and O2!samAccountName=<NetBIOS
Name>$.

The following table lists the attributes that MUST be set in an interdomain trust account.

Attribute name Reference

cn (RDN) [MS-ADA1]

objectClass [MS-ADA3]

sAMAccountName [MS-ADA3]

sAMAccountType [MS-ADA3]

userAccountControl [MS-ADA3]

6.1.6.8.1 cn (RDN)

The RDN of an interdomain trust account, the cn attribute, contains the NetBIOS name of the
trusted domain account appended with the character '$', in String(Unicode) syntax.

6.1.6.8.2 objectClass

An attribute that represents the classes that the target object is derived from. For a user account,

this value contains the sequence [top, person, organizationalPerson, user].

6.1.6.8.3 sAMAccountName

The sAMAccountName attribute contains the NetBIOS name of the trusted domain account
appended with the character '$', in String(Unicode) syntax.

6.1.6.8.4 sAMAccountType

In a domain trust account, the sAMAccountType attribute MUST have the value
SAM_TRUST_ACCOUNT (0x30000002), in the Enumeration syntax.

6.1.6.8.5 userAccountControl

In a domain trust account, the userAccountControl attribute MUST have the flag

ADS_UF_INTERDOMAIN_TRUST_ACCOUNT (0x00000800) set.

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

538 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.9 Details

6.1.6.9.1 trustAuthInfo Attributes

Domain peers share a password in order to validate protocol messages flowing between the trusted
domains. The password is only good in one direction of the trust. Each direction is stored in its own
attribute: the trustAuthIncoming and trustAuthOutgoing attributes. These are both Secret Attributes
([MS-DRSR] section 4.1.10.3.12, IsSecretAttribute), and are not readable outside of the context of
the LSA on a DC.

Both trustAuthIncoming and trustAuthOutgoing are stored as a String(Octet). The storage of this
information in a TDO is described in the following diagram.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Count of auth infos

Byte offset to AuthenticationInformation

Byte offset to PreviousAuthenticationInformation

AuthenticationInformation (variable)

...

PreviousAuthenticationInformation (variable)

...

Count of auth infos (4 bytes): A ULONG count of the pairs of LSAPR_AUTH_INFORMATION
structures. Each current Authentication Information structure is accompanied by a previous
Authentication Information structure (even if it is marked as invalid), and the count of the

pairs of elements is stored in this field.

Byte offset to AuthenticationInformation (4 bytes): The BYTE offset from the base of the
structure to the array of LSAPR_AUTH_INFORMATION structures representing the current
Authentication information.

Byte offset to PreviousAuthenticationInformation (4 bytes): The BYTE offset from the
base of the structure to the array of LSAPR_AUTH_INFORMATION structures representing the
previous authentication information.

AuthenticationInformation (variable): Array of LSAPR_AUTH_INFORMATION [1...Count].

Following the byte offset to PreviousAuthenticationInformation is an array of

LSAPR_AUTH_INFORMATION structures representing the current authentication information.

PreviousAuthenticationInformation (variable): Array of LSAPR_AUTH_INFORMATION
[1...Count].

Following the current authentication information is an array of LSAPR_AUTH_INFORMATION

structures representing the previous authentication information. If authentication information

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

539 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

has not been previously stored, then the previous Authentication Information structure is an
exact copy of the current Authentication Information structure.

6.1.6.9.1.1 LSAPR_AUTH_INFORMATION

The format of the LSAPR_AUTH_INFORMATION structure is as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

LastUpdateTime

...

AuthType

AuthInfoLength

AuthInfo (variable)

...

Padding (variable)

...

LastUpdateTime (8 bytes): This LARGE_INTEGER value represents the last time that the
authentication information was set, in FILETIME format, as specified in [MS-DTYP] section
2.3.

AuthType (4 bytes): This ULONG value dictates the type of AuthInfo that is being stored.
There are four values that are recognized by Windows.

Possible Values Meaning

TRUST_AUTH_TYPE_NONE

0

AuthInfo byte field is invalid/not relevant.

TRUST_AUTH_TYPE_NT4OWF

1

AuthInfo byte field contains an RC4 Key [RFC4757].

TRUST_AUTH_TYPE_CLEAR

2

AuthInfo byte field contains a cleartext password, encoded as a

Unicode string.

TRUST_AUTH_TYPE_VERSION

3

AuthInfo byte field contains a version number, used by Netlogon

for versioning interdomain trust secrets.

AuthInfoLength (4 bytes): A ULONG count of bytes in AuthInfo.

AuthInfo (variable): A BYTE field containing authentication data. Its size is

[1...AuthInfoLength].

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90488
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

540 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Padding (variable): Some number of bytes used to align the end of the
LSAPR_AUTH_INFORMATION structure to a ULONG boundary. This padding is not included in

the AuthInfoLength and consists of zeros.

6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes

Microsoft's implementation of Kerberos ([RFC4120], [MS-KILE]) uses TDOs to retrieve cross-domain
passwords when building cross-realm ticket-granting ticket (TGT). The KDC supports the following
AuthTypes:

1. TRUST_AUTH_TYPE_CLEAR

This flag indicates that the information stored in the attribute is a Unicode plaintext password. If
this AuthType is present, Kerberos can then use this password to derive additional key types

needed to encrypt and decrypt cross-realm TGTs:

DES-CBC ([RFC4120] section 8.1)

DES-CRC [RFC4120]

RC4HMAC [RFC4757]

Other derivations of the plaintext password are possible using the string-to-key functionality

defined in [RFC3961]. It is important to note that if the trustType is set to TRUST_TYPE_MIT,
then RC4HMAC keys will not be derived for the trust unless the corresponding TDO's
trustAttribute includes the TRUST_ATTRIBUTE_USES_RC4_ENCRYPTION bit flag.

In Windows Server 2008 operating system, Windows Server 2008 R2 operating system, Windows
Server 2012 operating system, and Windows Server 2012 R2 operating system, if
KERB_ENCTYPE_RC4_HMAC_MD5 (4) is set in the msDs-supportedEncryptionTypes attribute,
then the MIT realm supports RC4.

2. TRUST_AUTH_TYPE_NT4OWF

This flag indicates that the key is stored as a raw RC4HMAC key [RFC4757]. Because the key was
precomputed with this AuthType, it is not possible to derive alternate key types for the TDO.

Kerberos' usage of the TDO keys is somewhat counterintuitive. Consider the following scenario
involving two trusting Active Directory domains, where a user in a primary domain wishes to
authenticate to a service in the trusted domain using Kerberos. The primary domain issues a referral

TGT to the trusted domain containing the service.

Figure 5: Kerberos protocol usage of keys

There is a one-way trust in place. The referral TGT issued by the primary domain is encrypted based
on the key in trustAuthIncoming, not trustAuthOutgoing. This is non-intuitive but fits the definition

of an inbound trust. This direction of trust allows Kerberos to build a TGT for the trusted domain in
the primary domain, fulfilling the definition of an inbound trust.

http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90488
http://go.microsoft.com/fwlink/?LinkId=90450
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90488
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

541 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.9.2 Netlogon Usages of Trust Objects

Netlogon uses information stored in the TDO and the interdomain trust account to establish the
secure channel. The way in which the secure channel is established is described in [MS-NRPC]

sections 3.1.1 and 3.1.4.3.

6.1.6.9.3 msDS-TrustForestTrustInfo Attribute

Information about trust relationships with other forests is stored in objects of class trustedDomain in
the domain NC replica of the forest root domain. Specifically, the msDS-TrustForestTrustInfo
attribute on such objects contains information about the trusted forest or realm. The structure of the
information contained in this attribute is represented in the following manner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Version

RecordCount

Records (variable)

...

Version (4 bytes): Version of the data structure. The only supported version of the data
structure is 1.

RecordCount (4 bytes): Number of records present in the data structure.

Records (variable): Variable-length records each containing a specific type of data about the
forest trust relationship.

IMPORTANT NOTE: Records are not aligned to 32-bit boundaries. Each record starts at the

next byte after the previous record ends.

Each record is represented as described in section 6.1.6.9.3.1.

Note All fields have little-endian byte ordering.

6.1.6.9.3.1 Record

Each Record is represented in the following manner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordLen

Flags

Timestamp

%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA2%5d.pdf

542 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

RecordType ForestTrustData (variable)

...

RecordLen (4 bytes): Length, in bytes, of the entire record, not including RecordLen.

Flags (4 bytes): Individual bit flags that control how the forest trust information in this record
can be used.

If RecordType = 0 or 1, the Flags field, represented here in big-endian byte order, can have
one or more of the following bits.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X T

D

C

T

D

A

T

D

N

X: Unused. Must be zero and ignored.

TDN (LSA_TLN_DISABLED_NEW, 0x00000001): Entry is not yet enabled.

TDA (LSA_TLN_DISABLED_ADMIN, 0x00000002): Entry is disabled by administrator.

TDC (LSA_TLN_DISABLED_CONFLICT, 0x00000004): Entry is disabled due to a
conflict with another trusted domain.

If RecordType = 2, the Flags field, represented here in big-endian byte order, can have one
or more of the following bits.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

X N

D

C

N

D

A

S

D

C

S

D

A

SDA (LSA_SID_DISABLED_ADMIN, 0x00000001): Entry is disabled for SID, NetBIOS,
and DNS name–based matches by the administrator.

SDC (LSA_SID_DISABLED_CONFLICT, 0x00000002): Entry is disabled for SID,
NetBIOS, and DNS name–based matches due to a SID or DNS name–based conflict with
another trusted domain.

NDA (LSA_NB_DISABLED_ADMIN, 0x00000004): Entry is disabled for NetBIOS
name–based matches by the administrator.

543 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NDC (LSA_NB_DISABLED_CONFLICT, 0x00000008): Entry is disabled for NetBIOS
name–based matches due to a NetBIOS domain name conflict with another trusted

domain.

For RecordType = 2, NETBIOS_DISABLED_MASK is defined as a mask on the lower 4 bits of

the Flags field.

For all record types, LSA_FTRECORD_DISABLED_REASONS is defined as a mask on the lower
16 bits of the Flags field. Unused bits covered by the mask are reserved for future use.

Timestamp (8 bytes): 64-bit timestamp value indicating when this entry was created, in
system time (see the FILETIME structure in [MS-DTYP] section 2.3.3).

RecordType (1 byte): 8-bit value specifying the type of record contained in this specific entry.
The structure of the content in the next field depends on this value. The current version of the

protocol defines the behavior of the next field ForestTrustData if the value of RecordType is
one of the three values below.

Name Value

ForestTrustTopLevelName 0

ForestTrustTopLevelNameEx 1

ForestTrustDomainInfo 2

ForestTrustData (variable): Variable-length type-specific record, depending on the
RecordType value, containing a specific type of data about the forest trust relationship.

IMPORTANT NOTE: The type-specific ForestTrustData record is not necessarily aligned to a
32-bit boundary. Each record starts at the byte following the RecordType field.

There are three different type-specific records. Depending on the value of the RecordType
field, the structure of the type-specific record differs as follows:

If RecordType = 0 or RecordType = 1, then the type-specific record is represented in the

following manner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

NameLen

Name (variable length)...

NameLen: Length, in bytes, of the following Name field.

Name: The top level name (TLN) of the trusted forest, in UTF-8 format.

If RecordType = 2, then the type-specific record is represented in the following manner.

Note that the record contains the following structures one after another. It is important to

note here that none of the data shown is necessarily aligned to 32-bit boundaries.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

544 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

SidLen

Sid (variable length)...

DnsNameLen

DnsName (variable length)...

NetbiosNameLen

NetbiosName (variable length)...

SidLen: Length, in bytes, of the following Sid field.

Sid: The SID of a domain in the trusted forest, specified as a SID structure, which is
defined in [MS-DTYP] section 2.4.2.

DnsNameLen: Length, in bytes, of the following DnsName field.

DnsName: The DNS name of a domain in the trusted forest, in UTF-8 format.

NetbiosNameLen: Length, in bytes, of the following NetbiosName field.

NetbiosName: The NetBIOS name of a domain in the trusted forest, in UTF-8 format.

If RecordType is not one of the preceding values, the current version of the protocol does

not define the behavior for the record data. The type-specific record is represented in the
following manner.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

BinaryDataLen

BinaryData (variable length)...

BinarydataLen: Length, in bytes, of the following BinaryData field.

BinaryData: The record data. If the BinarydataLen field has a value other than 0, this
field MUST NOT be NULL.

6.1.6.9.3.2 Building Well-Formed msDS-TrustForestTrustInfo Messages

The msDS-TrustForestTrustInfo attribute contains a String(Octet) with the data structures specified
in the preceding sections. This attribute contains information about the namespaces that are served

by a given trusted forest. For example, if forest a.com contains the domains a.com, b.a.com, and
c.a.com, then the msDS-TrustForestTrustInfo for a.com would contain the FQDN and NetBIOS
names for each domain, as well as the SID space served by each domain. This section details the
rules that well-formed msDS-TrustForestTrustInfo messages must follow.

%5bMS-DTYP%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf

545 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The msDS-TrustForestTrustInfo attribute is written on the PDC for the trusting and trusted domains.
Both the trusted and trusting forest have forest functional level DS_BEHAVIOR_WIN2003 or greater.

Some concepts are necessary to understand the algorithm that is used when validating this
attribute.

Namespaces

Namespaces are meant to represent those NetBIOS, FQDN, or SID values that a trusted forest or
domain claims.

Top Level Names (TLNs)

TLNs are an important concept when detecting and resolving conflicts in namespaces between
different TDOs, and for determining which forest owns a given namespace. A TLN really corresponds
to a forest namespace, and in order to be enabled, the TLN must be unique among all TDOs. For

example, the TLN for the forest example.com is example.com. Note that it is possible that the forest
example.com could have another domain corresponding to an entirely different TLN (for example,

mailservers.com), in which case two TLNs would need to be registered for the example.com forest.
TLNs for a TDO are stored in records identified by the ForestTrustTopLevelName Record Type.

TLNs that must be excluded from a namespace are identified by the ForestTrustTopLevelNameEx
RecordType. Exclusion becomes necessary if the namespaces of two forests collide (for example, the

forests corp.mycompany.com and the forest hr.corp.mycompany.com). These exclusions are set
administratively to ensure proper functioning of the domain.

Superior/Subordinate Namespaces

When evaluating all forest trusts, TLNs are expressed as FQDNs. Parsing the FQDN allows the
concept of superior and subordinate namespaces. For example, for the namespace
sample.example.com, the superior namespace (and the TLN) is example.com. Similarly, the
sample.example.com namespace is subordinate to the example.com namespace. This allows the

routing mechanism to understand that the name sample.example.com is associated with the
example.com namespace expressed in the TLN, as it is a subordinate.

Enabled Records vs. Disabled Records

During validation of the Records stored in the msDS-ForestTrustForestInfo, it is possible to have TLN
or namespace conflicts. In these circumstances, the conflicting record is disabled. Namespace
conflicts are determined using the Record Flags specified in the msDS-ForestTrustInfo data format
definitions.

1. ForestTrustTopLevelName RecordType (0)

If the TDN / TDA / TDC Flags are present, then the name that is present in the TLN and its
subordinate namespaces (as well as all domains whose FQDNs are equal to or subordinate to the
TLN) is not used for routing names or SIDs.

2. ForestTrustTopLevelNameEx RecordType (1)

If the TDN / TDA / TDC Flags are present, then the name that is present in the exclusion TLN is

not used for exclusion purposes, and conflicts will be unresolved. All domains whose FQDNs are
equal to or subordinate to the exclusion TLN are not used for routing names or SIDs.

3. ForestTrustDomainInfo RecordType (2)

%5bMS-ADA2%5d.pdf

546 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the NDC or NDA Flags are set, then the NetBIOS name is excluded from routing for the
NetBIOS name.

If the SDA or SDC Flags are set, then the entire domain and all domains whose FQDN names are
subordinate to the FQDN name of that domain are excluded from name routing by SID, FQDN, or

NetBIOS names. The entire subtree of the forest that is rooted at the affected domain is
effectively not computed in the trust domain name mappings.

msDS-TrustForestTrustInfo Validation

When the TDO information for a domain is added or changed, or if the DC possessing the PDC FSMO
role in the root domain of the forest is freshly started, every TDO with msDS-ForestTrustInfo
attributes is validated against all other TDOs. The results of that validation are then rewritten to the
DS and replicated to the other DCs in the domain. DCs that do not own the PDC FSMO role treat the

attribute as READONLY and internally consistent.

Validation of the matrix of trusted domains and trusted forest information stored in msDS-
ForestTrustInfo includes a mechanism to prevent name collisions. Manipulations of this attribute

ensure that each namespace is only assigned to a single TDO. If any of the following rules are
violated, the colliding RecordFlag is marked as disabled.

The rules for determining whether namespaces collide for ForestTrustDomainInfo Records are as

follows:

1. Each SID corresponding to a domain in a trusted forest is unique among all TDOs and among all
of the SIDs listed within the ForestTrustData Records. If not, the Record MUST have the SDC bit
in the Record Flags.

2. Each SID for each domain in a trusted forest does not equal any SIDs within the domains of the
local forest. If not, the Record MUST have the SDC bit in the Record Flags.

3. Each FQDN corresponding to a domain in a trusted forest is unique among all TDOs and among

all of the FQDNs and TLNs listed within the ForestTrustData Records. If not, the Record MUST
have the SDC bit in the Record Flags.

4. Each FQDN for each domain in the trusted forest does not correspond to any FQDNs within the
domains from the local forest. If not, the Record MUST have the SDC bit in the Record Flags.

5. Each NetBIOS domain name corresponding to a domain in a trusted forest is unique among all
TDOs and among all of the NetBIOS domains listed within the Forest Trust Data records. If not,
the Record MUST have the NDC bit in the Record Flags. For conflict resolution, the TDO with the

alphabetically longest name is disabled.

6. Each NetBIOS name for each domain in the trusted forest does not equal any NetBIOS domain
name within the domains of the local forest. If not, the Record MUST have the NDC bit in the
Record Flags. Local forest NetBIOS names always take precedence over those of trusted forests.

The rules for determining whether namespaces collide for ForestTrustTopLevelName Records are as
follows:

1. Each TLN corresponding to a domain in a trusted forest is unique among all TDOs, and among all
of the FQDNs and TLNs listed within the Forest Trust Data records. If not, the conflicting Record
has the TDC bit in the Record Flags. For the sake of consistency, since the two TLNs are equal,
the first TLN Record that is read is authoritative, and subsequent conflicting Records are disabled.

2. Each TLN for each domain in the trusted forest does not correspond to any FQDNs within the
domains from the local forest. If not, the Record has the TDC bit in the Record Flags.

%5bMS-GLOS%5d.pdf

547 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

ForestTrustTopLevelNameEx Records, by definition, cannot conflict.

Additionally, additions to msDS-TrustForestTrustInfo pass namespace consistency checks before the
attribute is set. Any failures in the consistency checks cause the attempt to modify the msDS-
TrustForestTrustInfo to fail. The following rules dictate the requirements that each trusted forest

must match:

1. At least one ForestTrustTopLevelName TLN Record is specified for each msDS-
TrustForestTrustInfo. It is possible for a forest to have more than one TLN if it contains additional
TLNs.

2. All domains listed in the ForestTrustDomainInfo for a TDO are subordinate to the TLNs for that
TDO.

3. All domains listed in the ForestTrustDomainInfo are not subordinate or superior to other TLNs

unless an exclusion record for that TLN or domain is registered.

If all of the preceding tests pass, then the entry is written in binary format to the msDS-

ForestTrustInfo, replicated, and honored by all DCs in the forest.

6.1.6.9.4 Computation of trustPosixOffset

When a new TDO is created, a POSIX offset is computed and assigned to the new TDO's

trustPosixOffset attribute. This is done by retrieving the values of the trustPosixOffset attribute of all
of the existing outgoing Windows trusts (both TRUST_TYPE_UPLEVEL and
TRUST_TYPE_DOWNLEVEL). These values are then sorted. Finally, the range of numbers is searched
starting from 1, looking for the next unused valid POSIX offset. The selection process excludes the
following values, which are reserved for well-known identities.

Value Description

0x0800 Reserved for built-in domain

0x4000 Reserved for account domain

0xC000 Reserved for primary domain

The selection process only happens on the DC that possesses the PDC FSMO role. If the trust
creation happens on another DC the trustPosixOffset value is set to 0 and is computed using the
logic above when the TDO replicates to the PDC FSMO role owner. This keeps TDOs from having

matching POSIX offsets, which could result in collisions of UIDS and GIDS.

6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers

Logon SIDs are assigned by the Windows logon process for each logon session and have the form S-
1-5-5-X-Y, where X and Y are treated as a single LARGE_INTEGER that is incremented for each
logon session. POSIX offsets, as described in section 6.1.6.7.14, are not used during the logon SID
to POSIX identifier mapping process. These SIDs are mapped to the constant POSIX ID 0xFFF.

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-DTYP%5d.pdf

548 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.1.6.9.6 Timers

6.1.6.9.6.1 Trust Secret Cycling

The keys used to validate trusts periodically expire (typically every 30 days). This is performed by
the Netlogon service, which performs this operation when establishing the Secure Channel.
Resetting the secure channel secret is discussed in [MS-NRPC] section 3.5.4.4.5.

6.1.6.9.7 Initialization

Despite being replicated normally between peer DCs in a domain, the process of creating or
manipulating TDOs is specifically restricted to the LSA Policy APIs, as detailed in [MS-LSAD] section

3.1.1.5. Unlike other objects in the DS, TDOs cannot be created or modified by client machines
over the LDAPv3 transport. TDOs can be deleted by client machines over the LDAPv3 transport.

The following trust manipulation remote procedure calls specifically target TDOs and are responsible
for creating the special properties detailed in section 6.1.6.7. All are documented in [MS-LSAD]

section 3.1.4.

LsarCreateTrustedDomainEx()

LsarDeleteTrustedDomain()

LsarSetTrustedDomainInfoByName()

LsarSetTrustedDomainInformation()

The preceding APIs enforce the following restrictions.

Each TDO corresponds to exactly one trusted domain. The FQDN, SID, and NetBIOS name set on

the TDO all reference the same domain.

The server verifies that the trust is pointing either to a domain within the forest or a domain outside
the forest. The check is performed by verifying whether any other domain within the forest has the

SID, DNS name, or NetBIOS name matching the information being set. One of two options is legal:

1. SID, DNS name, and NetBIOS name all match the same domain within the forest.

2. No SID, DNS name, or NetBIOS name matches any domain within the forest.

Any other alternative (some information pointing inside the forest and some outside, or information

pointing at different domains within the forest) is illegal and causes the server to fail the request.

An attempt by the requester to set the TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit in the trust
attributes of the trusted domain object can only succeed if the domain is in a forest functional level
of DS_BEHAVIOR_WIN2003 or greater and the server is a domain controller in the root domain of
the forest. Failing this, the server rejects the request and does not create the TDO.

An attempt by the requester to set the TRUST_ATTRIBUTE_CROSS_ORGANIZATION bit in the trust
attributes of the trusted domain object can only succeed if the domain is in a forest functional level

of DS_BEHAVIOR_WIN2003 or greater. Failing this, the server rejects the request and does not
create the TDO.

Neither TRUST_ATTRIBUTE_FOREST_TRANSITIVE nor TRUST_ATTRIBUTE_CROSS_ORGANIZATION
bits are compatible with the TRUST_ATTRIBUTE_WITHIN_FOREST bit. The server rejects invalid
combinations of trust attributes and does not create the TDO.

%5bMS-NRPC%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf

549 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Uplevel or downlevel trusts that have TRUST_DIRECTION_OUTBOUND as one of the direction bits
cannot have a SID of NULL. Attempts to set this combination of parameters cause the server to fail

the request.

If the TRUST_ATTRIBUTE_FOREST_TRANSITIVE bit is cleared from a TDO's trustAttributes attribute,

all of the forest trust information on that TDO is removed from the TDO's msDS-
TrustForestTrustInfo attribute.

6.1.6.10 Security Considerations for Implementers

Mechanisms of trust depend on secure initialization. [MS-LSAD] describes the secure trust creation
system that is used by Active Directory. In this system, all creation and manipulation of TDOs takes
place over a secure session transport, where the client has been authenticated, and sensitive trust

information is not sent in the clear. Keys used for trust secrets are sufficiently strong to disallow
brute force attacks on the cryptographic material used in cross-domain protocols.

6.1.7 DynamicObject Requirements

Dynamic objects are objects that are automatically deleted after a period of time. When they are
deleted (automatically or manually), they do not transform into any other state, such as a

tombstone, deleted-object, or recycled-object. They are distinguished from regular objects by the
presence of the dynamicObject auxiliary class among their objectClass values. The intended time of
deletion is specified by the msDS-Entry-Time-To-Die attribute.

The following requirements apply to dynamic objects:

All of the dynamic object's descendants are dynamic objects.

A dynamic object MUST be automatically deleted when all of the following conditions are true:

The current time value is greater than or equal to its msDS-Entry-Time-To-Die attribute value.

It has no descendants.

If a dynamic object has descendent objects and the msDS-Entry-Time-To-Die of the dynamic

object is earlier than msDS-Entry-Time-To-Die of its descendant, then the DC MUST update the
msDS-Entry-Time-To-Die of the object to be greater than the maximum msDS-Entry-Time-To-

Die of its descendants. This update MUST occur before the current time reaches its original
msDS-Entry-Time-To-Die value.

NC replicas do not contain objects with linked attribute values referencing deleted dynamic

objects. In other words, when a dynamic object is deleted, any linked attribute values on other
objects referencing it are removed.

If any NC replicas contain other objects with nonlinked attribute values referencing deleted

dynamic objects, those attribute values on those objects are retained. In other words, when a
dynamic object is deleted, any nonlinked attribute values on other objects referencing it are not
removed.

The value of the entryTTL constructed attribute is specified in section 3.1.1.4.5.12.

6.2 Knowledge Consistency Checker

A server running Active Directory is part of a distributed system that performs replication. The
Knowledge Consistency Checker (KCC) is a component that reduces the administrative burden of

%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf

550 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

maintaining a functioning replication topology. Additional background is provided in section
3.1.1.1.13.

6.2.1 References

DRS options bits: [MS-DRSR] section 5.41.

instanceType bits: [MS-DRSR] section 5.91.

repsFrom abstract attribute: [MS-DRSR] section 5.169.

repsTo abstract attribute: [MS-DRSR] section 5.170.

replUpToDateVector abstract attribute: [MS-DRSR] section 5.165.

kCCFailedConnections and kCCFailedLinks variables: [MS-DRSR] sections 5.110 and 5.111.

IDL_DRSGetNCChanges method: [MS-DRSR] section 4.1.10.

IDL_DRSReplicaAdd method: [MS-DRSR] section 4.1.19.

IDL_DRSReplicaDel method: [MS-DRSR] section 4.1.20.

IDL_DRSReplicaModify method: [MS-DRSR] section 4.1.22.

IDL_DRSExecuteKCC method: [MS-DRSR] section 4.1.6.

DWORD, GUID types: [MS-DTYP] sections 2.2 and 2.3.4.

AmIRODC method: [MS-DRSR] section 5.7.

6.2.2 Overview

The KCC automates management of the NC replica graph for each NC in the forest. In doing so, it
maintains the following requirements:

There exists a path from each writable replica to every other NC replica (writable, read-only full,

or read-only partial) of the same NC.

No path from a writable replica to another writable replica passes through a read-only replica.

For each domain NC, the path from a writable replica to another writable replica utilizes only the

RPC transport (never SMTP [MS-SRPL]).

For each domain NC, the path from a writable replica to a read-only full replica utilizes only the

RPC transport (never SMTP [MS-SRPL]).

Replication latency is short between NC replicas on DCs in the same site, at the expense of

additional replication traffic within the site.

Replication traffic between sites is low, at the expense of additional replication latency between

sites.

A state in which one or more DCs are offline or unreachable (temporarily or indefinitely) does not

cause the replication latency across the remaining DCs to grow without bound.

Edges between DCs in different sites constitute a least cost spanning tree for an administrator-

defined cost metric.

%5bMS-DRSR%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SRPL%5d.pdf

551 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The KCC performs this work in a sequence of tasks called a "run". These runs execute periodically
and on receipt of an IDL_DRSExecuteKCC request. The first periodic run of the Windows KCC begins

5 minutes after system startup. Subsequent runs execute such that the interval between the end of
one run and the beginning of the next run is 15 minutes.

These tasks utilize the following inputs:

Config NC objects: crossRef, interSiteTransport, nTDSDSA, nTDSConnection, site,

nTDSSiteSettings, siteLink, siteLinkBridge

Abstract attributes of NC replicas: repsFrom, repsTo

Variables of DCs: kCCFailedConnections, kCCFailedLinks

Current date/time

And produce or update the following:

Config NC objects: nTDSConnection

Abstract attributes of NC replicas: repsFrom, repsTo

Variables of DCs: kCCFailedConnections, kCCFailedLinks

The KCC individual tasks are detailed in the remainder of this section, and are executed in the
sequence in which they appear in this document. In summary, these tasks are:

Refresh kCCFailedLinks and kCCFailedConnections.

Create intra-site connections.

Create inter-site connections.

Remove unnecessary connections.

Translate connections.

Remove unnecessary kCCFailedLinks and kCCFailedConnections.

To simplify the task descriptions, the following concepts are used:

An NC replica that "is present" on a DC. Given NC replica r of NC n and a DC with nTDSDSA

object o, r "is present" on the DC if both of the following conditions is true:

o!hasMasterNCs contains n or o!msDS-hasFullReplicaNCs contains n or o!hasPartialReplicaNCs

contains n.

One of the following two conditions is true:

o!msDS-HasInstantiatedNCs contains no value v where the dsname portion of v = n. (In

this case n is in the process of being instantiated.)

o!msDS-HasInstantiatedNCs contains a value v, where the dsname part of v = n, and the

binary part of v (DWORD in big-endian byte order) is an integer such that the
IT_NC_GOING bit is clear. (In this case n is instantiated, and is not in the process of being
uninstantiated.)

An NC replica that "should be present" on a DC. Given NC replica r of NC n and a DC with

nTDSDSA object o, r "should be present" on the DC if r is one of the following:

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf

552 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A writable replica of the config NC, the schema NC, or the DC's default NC on a writable DC.

A full read-only replica of the config NC, the schema NC, or the DC's default NC on an RODC.

A writable replica of an application NC for which there exists a crossRef object cr such that

cr!nCName = n and cr!msDS-NC-Replica-Locations contains a reference to o.

A full read-only replica of an application NC for which there exists a crossRef object cr such

that cr!nCName = n and cr.ms-DS-NC-RO-Replica-Locations contains a reference to o.

If the DC is a GC server (that is, if bit NTDSDSA_OPT_IS_GC is set in o!options), a partial

replica of a domain NC n such that n ≠ the DC's default NC, and there exists a crossRef object

cr such that cr!nCName = n.

An nTDSConnection object "implies" a tuple in the repsFrom abstract attribute of an NC replica

(and a corresponding edge in an NC replica graph). An nTDSConnection object cn implies a tuple
in r!repsFrom for NC replica r of NC n on the DC with nTDSDSA object t, if each of the following is
true:

cn is a child of t.

cn!fromServer references an nTDSDSA object s.

An NC replica of n "is present" on s.

r "should be present" on t.

The NC replica on s is a full replica or r is a partial replica.

n is not a domain NC, or r is a partial replica, or cn!transportType has no value, or

cn!transportType has an RDN of CN=IP.

6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections

This task refreshes and reconciles the contents of the kCCFailedLinks and kCCFailedConnections
variables.

The KCC updates kCCFailedLinks by inspecting the repsFrom abstract attribute associated with each

NC replica on the local DC. It first resets the FailureCount of each tuple in kCCFailedLinks to 0. Then,
for each NC replica r, for each tuple rf in r!repsFrom, if rf.consecutiveFailures > 0:

If a tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa and f.FailureCount ≠ 0:

Set f.FailureCount to MAX(f.FailureCount, rf.consecutiveFailures)

Set f.TimeFirstFailure to MIN(f.TimeFirstFailure, rf.timeLastSuccess)

Set f.LastResult to rf.resultLastAttempt

If a tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa and f.FailureCount = 0:

Set f.FailureCount to rf.consecutiveFailures

Set f.TimeFirstFailure to rf.timeLastSuccess

Set f.LastResult to rf.resultLastAttempt

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

553 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If no tuple f exists in kCCFailedLinks such that f.UUIDDsa = rf.uuidDsa, add tuple g to

kCCFailedLinks such that:

g.UUIDDsa = rf.uuidDsa

g.FailureCount = rf.consecutiveFailures

g.TimeFirstFailure = rf.timeLastSuccess

g.LastResult = rf.resultLastAttempt

For each tuple k in kCCFailedConnections, the KCC attempts to connect to that DC by calling the
IDL_DRSBind method. If the method call is successful, the KCC removes k from

kCCFailedConnections. Otherwise, it increments k.FailureCount by 1.

6.2.2.2 Intrasite Connection Creation

This task computes an NC replica graph for each NC replica that "should be present" on the local DC.

Then for each edge of the graph directed to an NC replica on the local DC, the KCC reconciles its
portion of the NC replica graph by creating an nTDSConnection object to "imply" that edge if one
does not already exist.

If the site of the local DC has a site settings object o and the
NTDSSETTINGS_OPT_IS_AUTO_TOPOLOGY_DISABLED bit is set in o!options, the KCC skips this
task.

For each NC x for which an NC replica "should be present" on the local DC, the KCC constructs an
NC replica graph as follows:

Let R be a sequence containing each writable replica f of x such that f "is present" on a DC s

satisfying the following criteria:

s is a writable DC other than the local DC.

s is in the same site as the local DC.

If x is a read-only full replica and x is a domain NC, then the DC's functional level is at least

DS_BEHAVIOR_WIN2008.

Bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in the options attribute of

the site settings object for the local DC's site, or no tuple z exists in the kCCFailedLinks or
kCCFailedConnections variables such that z.UUIDDsa is the objectGUID of the nTDSDSA object
for s, z.FailureCount > 0, and the current time - z.TimeFirstFailure > 2 hours.

If a partial (not full) replica of x "should be present" on the local DC, append to R each partial

replica p of x such that p "is present" on a DC s satisfying the same criteria defined above for full

replica DCs.

Append to R the NC replica that "should be present" on the local DC.

Sort R in order of the value of the objectGUID attribute of the corresponding DC's nTDSDSA

object. Let ri be the i'th NC replica in R, where 0 ≤ i < |R|.

Add a node for each ri to the NC replica graph.

Add an edge from ri to ri+1 for each 0 ≤ i < |R|-1 if ri is a full replica or ri+1 is a partial replica.

Add an edge from ri+1 to ri for each 0 ≤ i < |R|-1 if ri+1 is a full replica or ri is a partial replica.

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

554 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Add an edge from r|R|-1 to r0 if r|R|-1 is a full replica or r0 is a partial replica.

Add an edge from r0 to r|R|-1 if r0 is a full replica or r|R|-1 is a partial replica.

The KCC can create additional edges, but does not create more than 50 edges directed to a single

DC. To optimize replication latency in sites with many NC replicas, the Windows KCC determines
that each ri should have n+2 total edges directed to it such that n is the smallest non-negative
integer satisfying |R| ≤ 2n2 + 6n + 7. For each existing nTDSConnection object implying an edge
from rj of R to ri such that j ≠ i, an edge from rj to ri is not already in the graph, and the total edges
directed to ri is less than n+2, the KCC adds that edge to the graph. The KCC then adds new edges
directed to ri to bring the total edges to n+2, where the NC replica rk of R from which the edge is
directed is chosen at random such that k ≠ i and an edge from rk to ri is not already in the graph.

For each edge directed to the NC replica that "should be present" on the local DC, the KCC
determines whether an object c exists such that:

c is a child of the local DC's nTDSDSA object.

c!objectCategory = nTDSConnection

Given the NC replica ri from which the edge is directed, c!fromServer is the dsname of the

nTDSDSA object of the DC on which ri "is present".

c!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY

If no such object c exists, the KCC adds an object c to the local DC's NC replica of the config NC
such that it satisfies the above criteria and has the following additional attributes:

c!objectClass contains nTDSConnection

c!enabledConnection = true

c!options = NTDSCONN_OPT_IS_GENERATED

c!systemFlags = FLAG_CONFIG_ALLOW_RENAME + FLAG_CONFIG_ALLOW_MOVE

c!schedule = z : SCHEDULE, such that:

z.Size = 188

z.Bandwidth = 0

z.NumberOfSchedules = 1

z.Schedules[0].Type = 0

z.Schedules[0].Offset = 20

Byte offset 20 from z begins a stream of 168 bytes with value 0x01.

If the DC is a GC server, the KCC constructs an additional NC replica graph (and creates

nTDSConnection objects) for the config NC as above, except that only NC replicas that "are present"
on GC servers are added to R.

The DC repeats the NC replica graph computation and nTDSConnection creation for each of the NC
replica graphs above, this time assuming that no DC has failed. It does so by re-executing the steps
as if the bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED were set in the options

attribute of the site settings object for the local DC's site.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf

555 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The net result of each DC executing this distributed algorithm is the following set of overlapping
rings:

For each NC, a ring containing each full replica in the site.

For each NC, a ring containing each NC replica (full or partial) in the site.

A ring containing each GC server in the site.

For each NC, a ring containing each full replica in the site that has not failed.

For each NC, a ring containing each NC replica (full or partial) in the site that has not failed.

A ring containing each GC server in the site that has not failed.

6.2.2.3 Intersite Connection Creation

This task computes an NC replica graph for each NC replica that "should be present" on the local DC

or "is present" on any DC in the same site as the local DC. For each edge directed to an NC replica
on such a DC from an NC replica on a DC in another site, the KCC reconciles its portion of the NC
replica graph by creating an nTDSConnection object to "imply" that edge if one does not already

exist.

If the site of the local DC has a site settings object o and the
NTDSSETTINGS_OPT_IS_INTER_SITE_AUTO_TOPOLOGY_DISABLED bit is set in o!options, the KCC
skips this task.

Like intrasite connection, intersite connection creation utilizes distributed algorithms—algorithms
that rely upon each DC in the forest implementing the same algorithm and arriving at the same
conclusions given the same inputs. However, the algorithms used for intersite connection creation

are significantly more complex. Sufficient analysis of a given variation of this algorithm may yield
that DCs implementing the variation are compatible with Windows DCs, but no such different-yet-
compatible algorithm is known. To illustrate this point, consider the following simple example:

Assume a forest F that contains three DCs of the same domain in three distinct sites—DC1 in Site1,
DC2 in Site2, and DC3 in Site3—where siteLink objects exist specifying that each site is connected
to the other two sites with the same cost. DC1 and DC2 execute one implementation of the KCC,
and DC3 executes a different implementation.

DC1 and DC2 determine that the three sites should be connected by a minimum cost spanning tree
rooted at site3: both DC1 and DC2 replicate updates from DC3, assuming that DC3 replicates
updates from DC1 and DC2.

DC3, because it is running a different implementation, determines that the three sites should be
connected by a minimum cost spanning tree rooted at site1: DC3 replicates updates from DC1,
assuming that DC2 replicates updates from DC1 and DC1 replicates updates from DC2 and DC3.

The minimum cost spanning trees chosen by all the DCs are equally valid. However, the fact that
they did not arrive at the same conclusions results in a violation of the first requirement described in
section 6.2.1:

DC1 replicates updates from DC3.

DC3 replicates updates from DC1.

DC2 replicates updates from DC3 (and therefore transitively receives updates from DC1).

%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

556 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Neither DC1 nor DC2 replicates updates from DC2.

Slight variations in algorithms may result in similar failures that appear only when given specific,
complex combinations of inputs. For this reason, these algorithms are described to a high level of

detail, and implementers must carefully analyze any deviations from them.

6.2.2.3.1 ISTG Selection

First, the KCC on a writable DC determines whether it acts as an ISTG for its site.

Let s be the object such that s!lDAPDisplayName = nTDSDSA and classSchema in s!objectClass.

Let D be the sequence of objects o in the site of the local DC such that o!objectCategory = s. D is

sorted in ascending order by objectGUID.

Let o be the site settings object for the site of the local DC, or NULL if no such o exists.

Let f be the duration o!interSiteTopologyFailover seconds, or 2 hours if

o!interSiteTopologyFailover is 0 or has no value.

If o ≠ NULL and o!interSiteTopologyGenerator is not the nTDSDSA object for the local DC and

o!interSiteTopologyGenerator is an element dj of sequence D:

Let c be the cursor in the pUpToDateVector variable associated with the NC replica of the

config NC such that c.uuidDsa = dj!invocationId. If no such c exists (No evidence of replication
from current ITSG):

Let i = j.

Let t = 0.

Else if the current time < c.timeLastSyncSuccess - f (Evidence of time sync problem on

current ISTG):

Let i = 0.

Let t = 0.

Else (Evidence of replication from current ITSG):

Let i = j.

Let t = c.timeLastSyncSuccess.

Otherwise (Nominate local DC as ISTG):

Let i be the integer such that di is the nTDSDSA object for the local DC.

Let t = the current time.

(Compute a function that maintains the current ISTG if it is alive, cycles through other candidates

if not.) Let k be the integer (i + ((current time - t) / o!interSiteTopologyFailover)) MOD |D|.

The local writable DC acts as an ISTG for its site if and only if dk is the nTDSDSA object for the
local DC. If the local DC does not act as an ISTG, the KCC skips the remainder of this task.

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

557 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the local DC does act as an ISTG and o exists but o!interSiteTopologyGenerator is not the dsname
of the local DC's nTDSDSA object, the KCC performs an originating update to set

o!interSiteTopologyGenerator to this value.

The KCC on an RODC always acts as an ISTG for itself.

6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads

The KCC on a writable DC attempts to merge the link and connection failure information from
bridgehead DCs in its own site to help it identify failed bridgehead DCs.

For each nTDSDSA object bh with objectCategory nTDSDSA other than the local DC but in the local
DC's site, if bh has a child nTDSConnection object cn such that cn!fromServer is a reference to an
nTDSDSA object in a site other than the local DC's site, and cn! options does not contain

NTDSCONN_OPT_RODC_TOPOLOGY, the KCC adds the tuples from bh's kCCFailedConnections and
kCCFailedLinks to the tuples in those same variables on the local DC. It does so by calling in the
sequence IDL_DRSBind, IDL_DRSGetReplInfo for DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES,
IDL_DRSGetReplInfo for DS_REPL_INFO_KCC_DSA_LINK_FAILURES, and IDL_DRSUnbind.

If any of these calls fails, the KCC adds a tuple for bh!objectGUID to kCCFailedConnections.

For each DS_REPL_KCC_DSA_FAILUREW d it receives, the KCC updates its corresponding variable v

(kCCFailedLinks for DS_REPL_INFO_KCC_DSA_LINK_FAILURES, kCCFailedConnections for
DS_REPL_INFO_KCC_DSA_CONNECT_FAILURES) as follows:

If a tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid and f.FailureCount ≠ 0:

Set f.FailureCount to MAX(f.FailureCount, d.cNumFailures)

Set f.TimeFirstFailure to MIN(f.TimeFirstFailure, d.ftimeFirstFailure)

Set f.LastResult to d.dwLastResult

If a tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid and f.FailureCount = 0:

Set f.FailureCount to d.cNumFailures

Set f.TimeFirstFailure to d.ftimeFirstFailure

Set f.LastResult to d.dwLastResult

If no tuple f exists in v such that f.UUIDDsa = d.uuidDsaObjGuid, add tuple g to v such that

g.UUIDDsa = d.uuidDsaObjGuid

g.FailureCount = d.cNumFailures

g.TimeFirstFailure = d.ftimeFirstFailure

g.LastResult = d.dwLastResult

6.2.2.3.3 Site Graph Concepts

For each NC with an NC replica that "should be present" on the local DC or "is present" on any DC in
the same site as the local DC, the KCC constructs a site graph—a precursor to an NC replica graph.
The site connectivity for a site graph is defined by objects of class interSiteTransport, siteLink, and
siteLinkBridge in the config NC. The semantics of these objects are described in section 6.1.

%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

558 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The pseudocode in the next section maps these objects and the various constraints on these objects
as follows.

KCC concept Site graph concept

site VERTEX

siteLink MULTIEDGE

siteLinkBridge MULTIEDGESET

interSiteTransport MULTIEDGE.Type

A siteLink object may connect more than two sites. All vertices in a MULTIEDGE are

treated as a fully connected

subgraph.

siteLink object attributes: cost, schedule, options, and replInterval. MULTIEDGE properties in its

ReplInfo field: Cost, Schedule,

Options, and Interval. As paths are

formed, this information is

aggregated.

siteLink objects of different interSiteTransports objects co-exist in

the same graph and compete based on cost.

MULTIEDGEs with differing Types

co-exist in the graph and in the

spanning tree.

Only the siteLink objects referenced by a siteLinkBridge may be

combined together to form aggregated paths, with the vertices in

common acting as routers.

MULTIEDGEs in a MULTIEDGESET

are considered transitive.

NTDSTRANSPORT_OPT_BRIDGES_REQUIRED bit in the options

attribute of an interSiteTransport object.

If clear, a MULTIEDGESET is

inferred that includes all

MULTIEDGEs with the

corresponding Type.

NTDSTRANSPORT_OPT_IGNORE_SCHEDULES bit in the options

attribute of an interSiteTransport object

If set, all MULTIEDGEs with the

corresponding Type have a

Schedule that is NULL.

For a given NC, a site may contain one or more writable replicas

and zero or more partial read-only replicas, zero writable replicas

but one or more partial read-only replicas, or zero writable replicas

and zero partial read-only replicas.

VERTEX.Color

VERTEX.Color is RED, BLACK, or

WHITE, respectively.

A full replica cannot replicate from a partial replica. No edge exists from a black vertex

to a red vertex.

For each NC other than the config NC and the schema NC, the path

from a writable replica to another full replica utilizes only the RPC

transport.

VERTEX.AcceptRedRed

VERTEX.AcceptBlack

If both vertices for a given edge are

red, the edge's type must be in the

AcceptRedRed set of both vertices.

If one or both vertices for a given

edge are black, the edge's type

must be in the AcceptBlack set of

both vertices.

A site without a bridgehead DC for a particular transport cannot The vertex for such a site does not

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf

559 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

KCC concept Site graph concept

replicate updates over that transport to or from DCs in other sites. contain the corresponding type in

its AcceptRedRed or AcceptBlack

properties.

6.2.2.3.4 Connection Creation

The methods described in this section calculate a spanning tree for each NC replica graph and create

corresponding nTDSConnection objects that "imply" the corresponding spanning tree edges.

This pseudocode utilizes a type SEQUENCE<X>, which is a sequence of values of a given type X.
Values of type X may be appended to and removed from the sequence. If s is a value of type
SEQUENCE<X>, s[i] is the i'th value in s, such that 0 ≤ i < |s|.

It also references the types DWORD and GUID from [MS-DTYP] sections 2.2 and 2.3.4.

6.2.2.3.4.1 Types

The following new types are used to represent and to evaluate site graphs:

/***** REPL_INFO *****/

/* Replication parameters of a graph edge. */

struct REPLINFO {

 DWORD Cost; /* Cost of network traffic between

 * vertices; lower is preferred. */

 DWORD Interval; /* Interval between replication attempts.

 */

 DWORD Options; /* siteLink object options bits. */

 SCHEDULE Schedule; /* Schedule during which communication is

 possible; NULL means "always". */

}

/***** COLOR *****/

/* Color of a vertex. */

enum COLOR {

 RED, /* Site contains one or more full replicas. */

 BLACK, /* Site contains no full replicas but one or more

 * partial replicas. */

 WHITE /* Site contains no replicas. */

}

/***** VERTEX *****/

/* A vertex in the site graph. */

struct VERTEX {

 GUID ID; /* objectGUID of corresponding site

 * object. */

 SEQUENCE<GUID> EdgeIDs; /* Edges currently being evaluated

 * for this vertex. */

 COLOR Color; /* Color of the vertex. */

 SEQUENCE<GUID> AcceptRedRed; /* Edge types accepted when both

 * vertices are RED. */

 SEQUENCE<GUID> AcceptBlack; /* Edge types accepted when one or

 * both vertices are BLACK. */

 REPLINFO ReplInfo; /* Replication parameters. */

 int DistToRed; /* Distance in the spanning tree

 * from this vertex to the nearest

%5bMS-ADSC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

560 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * red vertex. */

 /* Dijkstra data */

 GUID RootID; /* The ID of the closest RED or

 * BLACK vertex. */

 bool Demoted; /* TRUE if vertex should be treated

 * as if Color is WHITE. */

 /* Kruskal data */

 GUID ComponentID; /* The id of the graph component

 * this vertex is in. */

 int ComponentIndex; /* The index of the graph

 component. */

}

/***** MULTIEDGE *****/

/* Fully connected subgraph of vertices. */

struct MULTIEDGE {

 GUID ID; /* objectGUID of corresponding siteLink

 * object. */

 SEQUENCE<GUID> VertexIDs; /* IDs of connected vertices. */

 GUID Type; /* Type (interSiteTransport

 * objectGUID). */

 REPLINFO ReplInfo; /* Replication parameters. */

 bool Directed; /* TRUE if uni-directional, FALSE if

 * bi-directional */

}

/***** MULTIEDGESET *****/

/* Set of transitively connected MULTIEDGEs. All edges within the set

 * have the same Type. */

struct MULTIEDGESET {

 GUID ID; /* objectGUID of corresponding

 * siteLinkBridge object. */

 SEQUENCE<GUID> EdgeIDs; /* IDs of connected edges. */

}

/***** GRAPH *****/

/* A site graph. */

struct GRAPH {

 SEQUENCE<VERTEX> Vertices; /* All vertices, sorted by

 * ascending ID (site

 * objectGUID). */

 SEQUENCE<MULTIEDGE> Edges; /* All edges. */

 SEQUENCE<MULTIEDGESET> EdgeSets; /* All edge sets. */

}

/***** INTERNALEDGE *****/

/* Path found in the graph between two non-WHITE vertices. */

struct INTERNALEDGE {

 GUID V1ID, V2ID; /* The endpoints of the path. */

 bool RedRed; /* TRUE if and only both endpoints are red. */

 REPLINFO ReplInfo; /* Combined replication info for the path. */

 GUID Type; /* All path edges must have same type. */

}

6.2.2.3.4.2 Main Entry Point

The CreateIntersiteConnections method is the beginning of the control flow. This method invokes
the remainder of the methods, directly or indirectly.

561 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

/***** CreateIntersiteConnections *****/

/* Computes an NC replica graph for each NC replica that "should be

 * present" on the local DC or "is present" on any DC in the same site

 * as the local DC. For each edge directed to an NC replica on such a

 * DC from an NC replica on a DC in another site, the KCC creates an

 * nTDSConnection object to imply that edge if one does not already

 * exist.

 *

 * OUT: keepConnections - A sequence of objectGUID values of

 * nTDSConnection objects for edges that are directed to the

 * local DC's site in one or more NC replica graphs.

 * RETURNS: TRUE if spanning trees were created for all NC replica

 * graphs, otherwise FALSE.

 */

CreateIntersiteConnections(OUT SEQUENCE<GUID> keepConnections) : bool

{

 LET allConnected be TRUE

 SET keepConnections to an empty sequence of GUID

 LET crossRefList be the set containing each object o of class

 crossRef such that o is a child of the CN=Partitions child of the

 config NC

 FOR each crossRef object cr in crossRefList

 IF cr!enabled has a value and is false, or if FLAG_CR_NTDS_NC

 is clear in cr!systemFlags, skip cr.

 LET g be the GRAPH return of SetupGraph()

 /* Create nTDSConnection objects, routing replication traffic

 * around "failed" DCs. */

 LET foundFailedDC be a Boolean variable

 LET c be the Boolean return of CreateConnections(g, cr, TRUE,

 keepConnections, foundFailedDC)

 IF !c

 SET allConnected to FALSE

 IF foundFailedDC

 /* One or more failed DCs preclude use of the ideal NC

 * replica graph. Add connections for the ideal graph.

 */

 CALL CreateConnections(graph, cr, FALSE,

 keepConnections, foundFailedDCs)

 ENDIF

 ENDIF

 ENDFOR

 RETURN allConnected

}

6.2.2.3.4.3 Site Graph Construction

The following methods construct the initial site graph, comprising the vertices, multi-edges, and
multi-edge sets corresponding to the site, siteLink, and siteLinkBridge objects (respectively) in the
config NC.

/***** SetupGraph *****/

/* Set up a GRAPH, populated with a VERTEX for each site object, a

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

562 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * MULTIEDGE for each siteLink object, and a MUTLIEDGESET for each

 * siteLinkBridge object (or implied siteLinkBridge).

 *

 * RETURNS: A new graph. */

SetupGraph() : GRAPH

{

 LET vertexIDs be the sequence containing the objectGUID of each

 site object child of the CN=Sites child of the config NC

 LET g be the GRAPH return of CreateGraph(vertexIDs)

 LET localSite be the site object for the site of the local DC

 FOR each interSiteTransport object t that is a child of the

 CN=Inter-Site Transports child of the CN=Sites child of the config

 NC

 LET L be the set containing each siteLink object that is a

 child of t

 FOR each l in L

 APPEND CreateEdge(t!objectGUID, l) to g.Edges

 ENDFOR

 IF NTDSTRANSPORT_OPT_BRIDGES_REQUIRED bit is clear in

 t!options and NTDSSETTINGS_OPT_W2K3_BRIDGES_REQUIRED bit is

 clear in localSite!options

 APPEND CreateAutoEdgeSet(g, t!objectGUID, L) to g.EdgeSets

 ELSE

 FOR each siteLinkBridge object b that is a child of t

 APPEND CreateEdgeSet(g, t!objectGUID, b) to g.EdgeSets

 ENDFOR

 ENDIF

 ENDFOR

 RETURN g

}

/***** CreateGraph *****/

/* Create a GRAPH instance.

 * IN: vertexIDs - Set containing the ID of each vertex to add to the

 * graph.

 * RETURNS: A new graph containing vertices with the specified IDs.

 */

CreateGraph(IN SEQUENCE<GUID> vertexIDs) : GRAPH

{

 LET g be a new GRAPH

 SORT vertexIDs in ascending order of objectGUID

 FOR each id in vertexIDs

 LET v be a new VERTEX

 SET v.ID to id

 APPEND v to g.Vertices

 ENDFOR

 RETURN g

}

/***** CreateEdge *****/

/* Create a MULTIEDGE instance.

 * IN: type - Type of edge to add.

 * IN: link - Corresponding siteLink object.

 * RETURNS: A new MULTIEDGE instance.

 */

CreateEdge(IN GUID type, IN siteLink link) : MULTIEDGE

{

 LET e be a new MULTIEDGE

563 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 SET e.ID to link!objectGUID

 SET e.VertexIDs to be the set containing the objectGUID value of

 each site referenced by link!siteList

 SET e.ReplInfo.Cost to link!cost;

 SET e.ReplInfo.Options to link!options

 SET e.ReplInfo.Interval to link!replInterval

 IF link!schedule has a value

 SET e.ReplInfo.Schedule to link!schedule

 ELSE

 SET e.ReplInfo.Schedule to NULL

 EndIF

 SET e.Type to type

 SET e.Directed to FALSE

 RETURN e

}

/***** CreateAutoEdgeSet *****/

/* Create a MULTIEDGESET instance containing edges for all siteLink

 * objects.

 * INOUT: g - Site graph.

 * IN: type - Type of edges being connected.

 * IN: L - All siteLink objects.

 * RETURNS: A new MULTIEDGESET instance.

 */

CreateAutoEdgeSet(INOUT GRAPH g, IN GUID type,

 IN SET OF siteLink L) : MULTIEDGESET

{

 LET s be a new MULTIEDGESET

 SET s.ID to NULL GUID

 FOR each l in L

 LET e be the edge in g.Edges such that e.ID = l!objectGUID

 IF e.Type = type

 APPEND l!objectGUID to s.EdgeIDs

 ENDIF

 ENDFOR

 RETURN s

}

/***** CreateEdgeSet *****/

/* Create a MULTIEDGESET instance.

 * INOUT: g - Site graph.

 * IN: type - Type of edges being connected.

 * IN: b - Corresponding siteLinkBridge object.

 * RETURNS: A new MULTIEDGESET instance.

 */

CreateEdgeSet(INOUT GRAPH g, IN GUID type, IN siteLinkBridge b)

: MULTIEDGESET

{

 LET s be a new MULTIEDGESET

 SET e.ID to b!objectGUID

 FOR each DSNAME l in b!siteLinkList

 LET e be the edge in g.Edges such that e.ID = l!objectGUID

 IF e.Type = type

 APPEND l!objectGUID to s.EdgeIDs

 ENDIF

 ENDFOR

 RETURN s

}

564 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

/***** ColorVertices *****/

/* Color each vertex to indicate which kinds of NC replicas it

 * contains.

 * INOUT: g - Site graph.

 * IN: cr - crossRef for NC.

 * IN: detectFailedDCs - TRUE to detect failed DCs and route

 * replication traffic around them, FALSE to assume no DC

 * has failed.

 * RETURNS: TRUE if one or more failed DCs were detected,

 * otherwise FALSE.

 */

ColorVertices(INOUT GRAPH g, IN crossRef cr,

 IN bool detectFailedDCs) : bool

{

 LET foundFailedDCs be FALSE

 FOR each v in g.Vertices

 LET s be the site object with objectGUID v.ID

 IF s contains one or more DCs with full replicas of the NC

 cr!nCName

 SET v.Color to COLOR.RED

 ELSEIF s contains one or more partial replicas of the NC

 SET v.Color to COLOR.BLACK

 ELSE

 SET v.Color to COLOR.WHITE

 ENDIF

 ENDFOR

 LET localSiteVertex be the vertex in graph.Vertices such that

 localSiteVertex.ID = objectGUID of the local DC's site object

 FOR each v in g.Vertices

 FOR each interSiteTransport object t that is a child of the

 CN=Inter-Site Transports child of the CN=Sites child of the

 config NC

 IF localSiteVertex.Color = COLOR.RED and t!name ≠ "IP"

 and FLAG_CR_NTDS_DOMAIN bit is set in cr!systemFlags

 Skip t

 ENDIF

 IF no edge e exists in g.Edges such that e.VertexIDs

 contains v.ID

 Skip t

 ENDIF

 LET partialReplicaOkay be TRUE if and only if

 localSiteVertex.Color = COLOR.BLACK

 LET bh be the result of GetBridgeheadDC(

 localSiteVertex.ID, cr, t, partialReplicaOkay,

 detectFailedDCs)

 IF bh = null

 /* No bridgehead DC is currently available. */

 SET foundFailedDCs to TRUE

 Skip t

 ENDIF

 APPEND t!objectGUID to v.AcceptRedRed

 APPEND t!objectGUID to v.AcceptBlack

 ENDFOR

 ENDFOR

 RETURN foundFailedDCs

565 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

}

6.2.2.3.4.4 Spanning Tree Computation

The following methods process the site graph and compute the minimum-cost spanning tree.

/***** GetSpanningTreeEdges *****/

/* Calculate the spanning tree and return the edges that include the

 * vertex for the local site.

 * INOUT: g - Site graph.

 * OUT: componentCount - Set to the number of graph components

 * calculated by Kruskal's algorithm. If 1, all sites are

 * connected by a spanning tree. Otherwise, one or more sites

 * could not be connected in a spanning tree.

 * RETURNS: Edges that include the vertex for the local site.

 */

GetSpanningTreeEdges(INOUT GRAPH g, OUT int componentCount)

 : SET<MULTIEDGE>

{

 /* Phase I: Run Dijkstra's algorithm and build up a list of

 * internal edges, which are really just shortest-paths

 * connecting colored vertices.

 */

 LET internalEdges be an empty sequence of INTERNALEDGE

 FOR each s in g.EdgeSets

 LET edgeType be NULL GUID

 FOR each v in g.Vertices

 REMOVE all items from v.EdgeIDs

 ENDFOR

 FOR each edge e in g.Edges such that s.EdgeIDs contains e.ID

 SET edgeType to e.Type

 FOR each vertex v in g.Vertices such that e.VertexIDs

 contains v.ID

 APPEND e to v.Edges

 ENDFOR

 ENDFOR

 /* Run Dijkstra's algorithm with just the red vertices as

 * the roots */

 CALL Dijkstra(g, edgeType, FALSE)

 /* Process the minimum-spanning forest built by Dijkstra,

 * and add any inter-tree edges to our list of internal

 * edges */

 CALL ProcessEdgeSet(g, s, internalEdges)

 /* Run Dijkstra's algorithm with red and black vertices as

 * the root vertices */

 CALL Dijkstra(g, edgeType, TRUE)

 /* Process the minimum-spanning forest built by Dijkstra,

 * and add any inter-tree edges to our list of internal

 * edges */

 CALL ProcessEdgeSet(g, s, internalEdges)

 ENDFOR

566 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 /* Process the implicit empty edge set */

 CALL SetupVertices(g)

 CALL ProcessEdgeSet(g, NULL, internalEdges)

 /* Phase II: Run Kruskal's Algorithm on the internal edges. */

 LET outputEdges be the result of Kruskal(g, internalEdges)

 /* Phase III: Post-process the output:

 * - Traverse tree structure to find one-way black-black edges

 * - Determine the component structure */

 FOR each v in g.Vertices

 IF v.Color = COLOR.RED

 SET v.DistToRed to 0

 ELSEIF there exists a path from v to a COLOR.RED vertex

 SET v.DistToRed to the length of the shortest such path

 ELSE

 SET v.DistToRed to MAX DWORD

 ENDIF

 ENDFOR

 SET componentCount to CountComponents(g)

 LET stEdgeList be CopyOutputEdges(g, outputEdges)

 RETURN stEdgeList

}

/***** GetBridgeheadDC *****/

/* Get a bridghead DC.

 * IN: siteObjectGUID - objectGUID of the site object representing

 * the site for which a bridgehead DC is desired.

 * IN: cr - crossRef for NC to replicate.

 * IN: t - interSiteTransport object for replication traffic.

 * IN: partialReplicaOkay - TRUE if a DC containing a partial

 * replica or a full replica will suffice, FALSE if only

 * a full replica will suffice.

 * IN: detectFailedDCs - TRUE to detect failed DCs and route

 * replication traffic around them, FALSE to assume no DC

 * has failed.

 * RETURNS: nTDSDSA object for the selected bridgehead DC, or NULL if

 * none is available.

 */

GetBridgeheadDC(IN GUID siteObjectGUID, IN crossRef cr,

 IN interSiteTransport t, IN bool partialReplicaOkay,

 IN bool detectFailedDCs) : nTDSDSA

{

 LET bhs be the result of GetAllBridgeheadDCs(siteObjectGUID, cr,

 t, partialReplicaOkay, detectFailedDCs)

 IF bhs is empty

 RETURN NULL

 ELSE

 RETURN bhs[0]

 ENDIF

}

/***** GetAllBridgeheadDCs *****/

/* Get all bridghead DCs satisfying the given criteria.

 * IN: siteObjectGUID - objectGUID of the site object representing

 * the site for which bridgehead DCs are desired.

567 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * IN: cr - crossRef for NC to replicate.

 * IN: t - interSiteTransport object for replication traffic.

 * IN: partialReplicaOkay - TRUE if a DC containing a partial

 * replica or a full replica will suffice, FALSE if only

 * a full replica will suffice.

 * IN: detectFailedDCs - TRUE to detect failed DCs and route

 * replication traffic around them, FALSE to assume no DC

 * has failed.

 * RETURNS: nTDSDSA objects for available bridgehead DCs.

 */

GetAllBridgeheadDCs(IN GUID siteObjectGUID, IN crossRef cr,

 IN interSiteTransport t, IN bool partialReplicaOkay,

 IN bool detectFailedDCs) : SEQUENCE OF nTDSDSA

{

 LET bhs be an empty sequence of nTDSDSA objects

 LET s be the site object such that s!objectGUID = siteObjectGUID

 LET k be an object such that

 s!lDAPDisplayName = nTDSDSA and classSchema in s!objectClass

 LET allDCsInSite be the sequence of objects o that are

 descendants of s such that o!objectCategory = k

 FOR each dc in allDCsInSite

 IF t!bridgeheadServerListBL has one or more values and

 t!bridgeheadServerListBL does not contain a reference to the

 parent object of dc

 Skip dc

 ENDIF

 IF dc is in the same site as the local DC

 IF a replica of cr!nCName is not in the set of NC replicas

 that "should be present" on dc or a partial replica of the

 NC "should be present" but partialReplicasOkay = FALSE

 Skip dc

 ENDIF

 ELSE

 IF an NC replica of cr!nCName is not in the set of NC

 replicas that "are present" on dc or a partial replica of

 the NC "is present" but partialReplicasOkay = FALSE

 Skip dc

 ENDIF

 ENDIF

 IF AmIRODC() and cr!nCName corresponds to default NC then

 Let dsaobj be the nTDSDSA object of the dc

 IF dsaobj.msDS-Behavior-Version < DS_BEHAVIOR_WIN2008

 Skip dc

 ENDIF

 ENDIF

 IF t!name ≠ "IP" and the parent object of dc has no value for

 the attribute specified by t!transportAddressAttribute

 Skip dc

 ENDIF

 IF BridgeheadDCFailed(dc!objectGUID, detectFailedDCs) = TRUE

 Skip dc

 ENDIF

 APPEND dc to bhs

568 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 ENDFOR

 IF bit NTDSSETTINGS_OPT_IS_RAND_BH_SELECTION_DISABLED is set in

 s!options

 SORT bhs such that all GC servers precede DCs that are not GC

 servers, and otherwise by ascending objectGUID

 ELSE

 SORT bhs in a random order

 ENDIF

 RETURN bhs

}

/***** BridgeheadDCFailed *****/

/* Determine whether a given DC is known to be in a failed state.

 * IN: objectGUID - objectGUID of the DC's nTDSDSA object.

 * IN: detectFailedDCs - TRUE if and only failed DC detection is

 * enabled.

 * RETURNS: TRUE if and only if the DC should be considered to be in a

 * failed state.

 */

BridgeheadDCFailed(IN GUID objectGUID, IN bool detectFailedDCs) : bool

{

 IF bit NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED is set in

 the options attribute of the site settings object for the local

 DC's site

 RETURN FALSE

 ELSEIF a tuple z exists in the kCCFailedLinks or

 kCCFailedConnections variables such that z.UUIDDsa =

 objectGUID, z.FailureCount > 1, and the current time -

 z.TimeFirstFailure > 2 hours

 RETURN TRUE

 ELSE

 RETURN detectFailedDCs

 ENDIF

}

/***** SetupVertices *****/

/* Setup the fields of the vertices that are relevant to Phase I

 * (Dijkstra's Algorithm). For each vertex, set up its cost,

 * root vertex, and component. This defines the shortest-path

 * forest structures.

 * INOUT: graph - Site graph.

 */

SetupVertices(INOUT GRAPH g)

{

 FOR each v in g.Vertices

 IF v.Color = COLOR.WHITE

 SET v.ReplInfo.Cost to MAX DWORD

 SET v.RootID to NULL GUID

 SET v.ComponentID to NULL GUID

 ELSE

 SET v.ReplInfo.Cost to 0

 SET v.RootID to v.ID

 SET v.ComponentID to v.ID

 ENDIF

 SET v.ReplInfo.Interval to 0

 SET v.ReplInfo.Options to 0xFFFFFFFF

569 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 SET v.ReplInfo.Schedule to NULL

 SET v.HeapLocation to STHEAP_NOT_IN_HEAP

 SET v.Demoted to FALSE

 ENDFOR

}

/***** Dijkstra *****/

/* Run Dijkstra's algorithm with the red (and possibly black) vertices

 * as the root vertices, and build up a shortest-path forest.

 * INOUT: g - Site graph.

 * IN: edgeType - Type of the edges in the current edge set.

 * IN: fIncludeBlack - If this is true, black vertices are also used

 * as roots.

 */

Dijkstra(INOUT GRAPH g, IN GUID edgeType, IN bool fIncludeBlack)

{

 LET vs be the result of SetupDijkstra(g, edgeType, fIncludeBlack)

 WHILE vs is not empty

 LET c be the least ReplInfo.Cost of any vertex in vs

 LET u be the vertex in vs with the least ID of all

 vertices with ReplInfo.Cost = c

 REMOVE u from vs

 FOR each e in g.Edges such that u.EdgeIDs contains e.ID

 FOR each vertexId in e.VertexIDs

 LET v be the vertex in g.Vertices such that v.ID =

 vertexId

 CALL TryNewPath(g, vs, u, e, v)

 ENDFOR

 ENDFOR

 ENDWHILE

}

/***** SetupDijkstra *****/

/* Build the initial sequence for use with Dijkstra's algorithm. It

 * will contain the red and black vertices as root vertices, unless

 * these vertices accept no edges of the current edgeType, or unless

 * black vertices are not being including.

 * INOUT: g - Site graph.

 * IN: edgeType - Type of the edges in the current edge set.

 * IN: fIncludeBlack - If this is true, black vertices are also used

 * as roots.

 * RETURNS: Sequence of vertices.

 */

SetupDijkstra(INOUT GRAPH g, IN GUID edgeType, IN bool fIncludeBlack)

 : SEQUENCE<VERTEX>

{

 CALL SetupVertices(g)

 LET vs be an empty sequence of VERTEX

 FOR each v in g.Vertices

 IF v.Color = COLOR.WHITE

 Skip v

 ENDIF

 IF (v.Color = COLOR.BLACK and fIncludeBlack = FALSE) or

 v.AcceptBlack does not contain edgeType or v.AcceptRedRed

 does not contain edgeType

 /* If black vertices are not being allowing, or if this

 * vertex accepts neither red-red nor black edges, then

570 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * 'demote' it to a WHITE vertex for the purposes of Phase

 * I. Note that the 'Color' member of the vertex structure

 * is not changed. */

 SET v.ReplInfo.Cost to MAX DWORD

 SET v.RootID to NULL GUID

 SET v.Demoted to TRUE

 ELSE

 APPEND v to vs

 ENDIF

 ENDFOR

 RETURN vs

}

/***** TryNewPath *****/

/* Helper function for Dijkstra's algorithm. A new path has been found

 * from a root vertex to vertex v. This path is (u->root, ..., u, v).

 * Edge e is the edge connecting u and v. If this new path is better

 * (in this case cheaper, or has a longer schedule), update v to use

 * the new path.

 * INOUT: g - Site graph.

 * INOUT: vs - Vertices being evaluated.

 * IN: u - Vertex connected by e to v.

 * IN: e - Edge between u and v.

 * INOUT: v - Vertex connected by e to u.

 */

TryNewPath(INOUT GRAPH g, INOUT SEQUENCE<VERTEX> vs, IN VERTEX u,

 IN MULTIEDGE e, INOUT VERTEX v)

{

 LET newRI be an empty REPLINFO

 LET fIntersect be the result of CombineReplInfo(g, u.ReplInfo,

 Edge.ReplInfo, OUT newRI)

 IF newRI.Cost > v->ReplInfo.Cost

 RETURN

 ENDIF

 IF newRI.Cost < v.ReplInfo.Cost and fIntersect = FALSE

 RETURN

 ENDIF

 LET newDuration be the total duration newRI.Schedule shows as

 available

 LET oldDuration be the total duration v.ReplInfo.Schedule shows as

 available

 IF newRI.cost < v.ReplInfo.Cost or newDuration > oldDuration

 /* The new path to v is either cheaper or has a longer

 * schedule. Update v with its new root vertex, cost, and

 * replication info. */

 SET v.RootID to u.RootID

 SET v.ComponentID to u.ComponentID

 SET v.ReplInfo to newRI

 APPEND v to vs

 ENDIF

}

/***** CombineReplInfo *****/

/* Merge schedules, replication intervals, options and costs.

571 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * INOUT: g - Site graph.

 * IN: a - Replication info to combine with b.

 * IN: b - Replication info to combine with a.

 * OUT: c - Combination of a and b.

 * RETURNS: TRUE if schedules intersect, FALSE if they don't.

 */

CombineReplInfo(INOUT GRAPH g, IN REPLINFO a, IN REPLINFO b,

 OUT REPLINFO c) : bool

{

 LET s be the schedule that is the intersection of a.Schedule and

 b.Schedule, such that a given time is available in c if and only

 if that time is available in both a.Schedule and b.Schedule

 IF s has no available time

 RETURN FALSE

 ENDIF

 IF a.Cost + b.Cost overflows

 SET c.Cost to MAX DWORD

 ELSE

 SET c.Cost to a.Cost + b.Cost

 ENDIF

 SET C.Interval to maximum of a.Interval and b.Interval

 SET C.Options to a.Options BITWISE-AND b.Options

 SET C.Schedule = s

 RETURN TRUE

}

/***** ProcessEdgeSet *****/

/* After running Dijkstra's algorithm to determine the shortest-path

 * forest, examine all edges in this edge set. Find all inter-tree

 * edges, from which to build the list of 'internal edges', which

 * will later be passed on to Kruskal's algorithm.

 * INOUT: g - Site graph.

 * IN: s - Edge set, or NULL for the implicit edge set with no edges.

 * INOUT: internalEdges - Sequence to which to add new internal edges.

 */

ProcessEdgeSet(INOUT GRAPH g, IN MULTIEDGESET s,

 INOUT SEQUENCE<INTERNALEDGE> internalEdges)

{

 IF s = NULL

 FOR each e in g.Edges

 FOR each v in g.Vertices such that e.VertexIDs contains

 v.ID

 CALL CheckDemoteOneVertex(v, e.Type)

 ENDFOR

 CALL ProcessEdge(g, e, internalEdges)

 FOR each v in g.Vertices such that e.VertexIDs contains

 v.ID

 CALL UndemoteOneVertex(v)

 ENDFOR

 ENDFOR

 ELSE

 FOR each e in g.Edges such s.EdgeIDs contains e.ID

 CALL ProcessEdge(g, e, internalEdges)

 ENDFOR

 ENDIF

572 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

}

/***** CheckDemoteOneVertex *****/

/* Demote one vertex if necessary

 * INOUT: v - Vertex to check and possibly demote.

 * IN: edgeType - Type of edge being processed.

 */

CheckDemoteOneVertex(INOUT VERTEX v, IN GUID edgeType)

{

 IF v.Color = COLOR.WHITE

 RETURN

 ENDIF

 IF v.AcceptBlack does not contain edgeType and v.AcceptRedRed does

 not contain edgeType

 /* If this vertex accepts neither red-red nor black edges,

 * then 'demote' it to a WHITE vertex for the purposes of

 * Phase I. Note that the 'Color' member of the vertex

 * structure is not changed. */

 SET v.ReplInfo.Cost to MAX DWORD

 SET v.RootID to NULL GUID

 SET v.Demoted to TRUE

 ENDIF

}

/**** UndemoteOneVertex ******/

/* Clear the demoted state of a vertex

 * INOUT: v - Vertex to 'undemote'.

 */

UndemoteOneVertex(INOUT VERTEX v)

{

 IF v.Color = COLOR.WHITE

 RETURN

 ENDIF

 SET v.ReplInfo.Cost to 0

 SET v.RootID to v.ID

 SET v.Demoted to FALSE

}

/***** ProcessEdge *****/

/* After running Dijkstra's algorithm, this function examines a

 * multi-edge and adds internal edges between every tree connected by

 * this edge.

 * INOUT: g - Site graph.

 * IN: e - Multi-edge to examine.

 * INOUT: internalEdges - Sequence to which to add any new internal

 * edges.

 */

ProcessEdge(INOUT GRAPH g, IN MULTIEDGE e,

 INOUT SEQUENCE<INTERNALEDGE> internalEdges)

{

 /* Find the best vertex to be the 'root' of this multi-edge. */

 LET vs be a sequence containing each vertex v such that

 e.VertexIDs contains v.ID

 SORT vs such that RED vertices precede BLACK vertices, a vertex

 with lower ReplInfo.Cost precedes a vertex with higher

 ReplInfo.Cost if both vertices have the same Color, and a vertex

573 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 with a lower ID precedes a vertex with higher ID if both vertices

 have the same Color and ReplInfo.Cost

 LET bestV be vs[0]

 /* Add to internalEdges an edge from every colored vertex to

 bestV.*/

 FOR each vertex v in g.Vertices such that e.VertexIDs contains v

 IF v.ComponentID ≠ NULL GUID and v.RootID ≠ NULL GUID

 Skip v

 ENDIF

 /* Only add this edge if it is a valid inter-tree edge.

 * (The two vertices must be reachable from the root vertices,

 * and in different components.) */

 IF bestV.ComponentID ≠ NULL GUID and bestV.RootID ≠ NULL GUID

 and v.ComponentID ≠ NULL GUID and bestV.RootID ≠ NULL GUID

 and bestV.ComponentID ≠ v.ComponentID

 CALL AddIntEdge(g, internalEdges, e, bestV, v)

 ENDIF

 ENDFOR

}

/***** AddIntEdge *****/

/* Add an edge to the list of edges that will be processed with

 * Kruskal's.

 * The endpoints are in fact the roots of the vertices to pass in, so

 * the endpoints are always colored vertices.

 * INOUT: g - Site graph.

 * INOUT: internalEdges - Sequence to which to add the new internal

 * edge.

 * IN: e - Existing edge being examined.

 * IN: v1 - Vertex to connect with new internal edge.

 * IN: v2 - Vertex to connect with new internal edge.

 */

AddIntEdge(INOUT GRAPH g, INOUT SEQUENCE<INTERNALEDGE> internalEdges,

 IN MULTIEDGE e, IN VERTEX v1, IN VERTEX v2)

{

 /* The edge that is passed on to Kruskal's algorithm actually goes

 * between the roots of the two shortest-path trees. */

 LET root1 be the vertex in g.Vertices such that root1.ID =

 v1.RootID

 LET root2 be the vertex in g.Vertices such that root2.ID =

 v2.RootID

 /* Check if both endpoints will allow this type of edge */

 IF root1.Color = COLOR.RED and root2.Color = COLOR.RED

 LET redRed be TRUE

 ELSE

 LET redRed be FALSE

 ENDIF

 IF redRed = TRUE

 IF root1.AcceptRedRed does not contain e.Type or

 root2.AcceptRedRed does not contain e.Type

 RETURN

 ENDIF

 ELSE

 IF root1.AcceptBlack does not contain e.Type or

574 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 root2.AcceptBlack does not contain e.Type

 RETURN

 ENDIF

 ENDIF

 /* Combine the schedules of the path from root1 to v1, root2 to

 * v2, and edge e */

 LET ri be an empty REPLINFO

 LET ri2 be an empty REPLINFO

 IF CombineReplInfo(g, v1.ReplInfo, v2.ReplInfo, OUT ri) = FALSE

 or CombineReplInfo(g, ri, e.ReplInfo, OUT ri2) = FALSE

 RETURN

 ENDIF

 /* Set up the internal simple edge from root1 to root2 */

 LET newIntEdge be an empty INTERNALEDGE

 SET newIntEdge.V1ID to root1.ID

 SET newIntEdge.V2ID to root2.ID

 SET newIntEdge.RedRed to redRed

 SET newIntEdge.ReplInfo to ri2

 SET newIntEdge.Type to e.Type

 /* Sort newIntEdge's vertices by ID */

 IF newIntEdge.V1ID > newIntEdge.V2ID

 Swap newIntEdge.V1ID and newIntEdge.V2ID

 ENDIF

 IF internalEdges does not contain an INTERNALEDGE that is

 identical to newIntEdge

 APPEND newIntEdge to internalEdges

 ENDIF

}

/***** Kruskal *****/

/* Run Kruskal's minimum-cost spanning tree algorithm on the internal

 * edges (that represent shortest paths in the original graph between

 * colored vertices).

 * INOUT: g - Site graph.

 * INOUT: internalEdges - Edges between trees.

 * RETURNS: Spanning tree edges for the vertex representing the local

 * DC's site.

 */

Kruskal(INOUT GRAPH g, INOUT SEQUENCE<INTERNALEDGE> internalEdges)

 : SEQUENCE<MULTIEDGE>

{

 FOR each v in g.Vertices

 REMOVE all items from v.EdgeIDs

 ENDFOR

 SORT internalEdges by (descending RedRed, ascending ReplInfo.Cost,

 descending available time in ReplInfo.Schedule, ascending V1ID,

 ascending V2ID, ascending Type)

 LET numExpectedTreeEdges be the count of vertices v in g.Vertices

 such that v.Color = COLOR.RED or v.Color = COLOR.WHITE

 LET cSTEdges be 0

 LET outputEdges be an empty sequence of MULTIEDGE

 WHILE internalEdges is not empty and cSTEdges <

575 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 numExpectedTreeEdges

 LET e be internalEdges[0]

 /* Cycles in the spanning tree must be prevented. If edge e

 * is to be added, its endpoints must be in different

 * components. */

 LET comp1 be the return of GetComponentID(g, e.V1ID)

 LET comp2 be the return of GetComponentID(g, e.V2ID)

 IF comp1 ≠ comp2

 /* Add spanning tree edge. */

 INCREMENT cSTEdges by 1

 CALL AddOutEdge(g, outputEdges, e)

 /* Combine the two connected components. */

 LET v be the vertex in g.Vertices such that v.ID = comp1

 SET v.ComponentID to comp2

 ENDIF

 REMOVE e from internalEdges

 ENDWHILE

 RETURN outputEdges

}

/***** GetComponentID *****/

/* Returns the id of the component containing vertex v by traversing

 * the up-tree implied by the component pointers.

 * INOUT: g - Site graph.

 * INOUT: v - Vertex for which the component ID is desired.

 * RETURNS: The component ID of v.

 */

GetComponentID(INOUT GRAPH g, INOUT VERTEX v) : GUID

{

 /* Find root of the up-tree created by component pointers */

 LET u be v

 WHILE u.ComponentID ≠ u.ID

 LET id be u.ComponentID

 SET u to the vertex in g.Vertices such that u.ID = id

 ENDWHILE

 LET root be u.ID

 /* Compress the path to the root */

 SET u to v

 WHILE u.ComponentID ≠ u.ID

 LET id be u.ComponentID

 LET w be the vertex in g.Vertices such that w.ID = id

 SET u.ComponentID to root

 SET u to w

 ENDWHILE

 RETURN root

}

/***** AddOutEdge *****/

/* A new edge, e, has been found for the spanning tree edge. Add this

 * edge to the list of output edges.

 * INOUT: g - Site graph.

 * INOUT: outputEdges - Sequence to which to add the output edge.

 * IN: e - Edge to add.

576 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 */

AddOutEdge(INOUT GRAPH g, INOUT SEQUENCE<MULTIEDGE> outputEdges,

 IN INTERNALEDGE e)

{

 LET v1 be the vertex in g.Vertices such that v1.ID = e.V1ID

 LET v2 be the vertex in g.Vertices such that v2.ID = e.V2ID

 /* Create an output multi edge */

 LET ee be an empty MULTIEDGE

 SET ee.Directed to FALSE

 APPEND v1.ID to ee.VertexIDs

 APPEND v2.ID to ee.VertexIDs

 SET ee.Type to e.Type

 SET ee.ReplInfo to e.ReplInfo

 APPEND ee to outputEdges

 /* Also add this new spanning-tree edge to the edge lists of

 * its endpoints. */

 APPEND ee to v1.EdgeIDs

 APPEND ee to v2.EdgeIDs

}

/***** CountComponents *****/

/* Count the number of components. A component is considered to be a

 * bunch of colored vertices that are connected by the spanning tree.

 * Vertices whose component id is the same as their vertex id are the

 * root of a connected component.

 *

 * When a root of a component has been found, record its 'component

 * index'. The component indices are a contiguous sequence of numbers

 * that uniquely identify a component.

 *

 * INOUT: g - Site graph.

 * RETURNS: Number of components.

 */

CountComponents(INOUT GRAPH g) : int

{

 LET numComponents be 0

 FOR each v in g.Vertices

 IF v.Color = COLOR.WHITE

 Skip v

 ENDIF

 LET compId be the result of GetComponentID(g, v)

 IF compId = v.ID

 /* It's a component root */

 SET v.ComponentIndex to numComponents

 Increment numComponents by 1

 ENDIF

 ENDFOR

 RETURN numComponents

}

/***** CopyOutputEdges *****/

/* Copy all spanning tree edges from outputEdges that contain the

 * vertex for DCs in the local DC's site.

 * INOUT: g - Site graph.

 * IN: outputEdges - All spanning tree edges.

577 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 * RETURNS: Spanning tree edges for DCs in the local DC's site.

 */

CopyOutputEdges(INOUT GRAPH g, IN SEQUENCE<MULTIEDGE> outputEdges)

 : SEQUENCE<MULTIEDGE>

{

 LET s be an empty sequence of MULTIEDGE

 LET vid be the objectGUID of site object for the local DC's site

 FOR each e in outputEdges

 LET v be the vertex in g.Vertices such that v.ID =

 e.VertexIDs[0]

 LET w be the vertex in g.Vertices such that w.ID =

 e.VertexIDs[1]

 IF v.ID = vid or w.ID = vid

 /* Check if this edge meets the criteria of a 'directed

 * edge'. */

 IF (v.Color = COLOR.BLACK or w.Color = COLOR.BLACK) and

 v.DistToRed ≠ MAX DWORD

 SET e.Directed to TRUE

 /* Swap the vertices so that e->vertexNames[0] is

 * closer to a red vertex than e->vertexNames[1]. */

 IF w.DistToRed < v.DistToRed

 Swap e.VertexIDs[0] and e.VertexIDs[1]

 ENDIF

 ENDIF

 APPEND e to s

 ENDIF

 ENDFOR

 RETURN s

}

6.2.2.3.4.5 nTDSConnection Creation

The following methods create nTDSConnection objects to "imply" the minimum-cost spanning tree
edges for which no nTDSConnection objects yet exist.

/***** CreateConnections *****/

/* Construct an NC replica graph for the NC identified by the given

 * crossRef, then create any additional nTDSConnection objects

 * required.

 *

 * INOUT: g - Site graph.

 * IN: cr - crossRef object for NC.

 * IN: detectFailedDCs - TRUE to detect failed DCs and route

 * replication traffic around them, FALSE to assume no DC

 * has failed.

 * INOUT: keepConnections - Sequence to which to add any connections

 * deemed to be "in use".

 * OUT: foundFailedDCs - Set to TRUE if one or more failed DCs

 * were detected, otherwise set to FALSE.

 * RETURNS: TRUE if the resulting NC replica graph connects

 * all sites that need to be connected.

 */

CreateConnections(INOUT GRAPH g, IN crossRef cr,

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

578 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 IN bool detectFailedDCs, INOUT SEQUENCE<GUID> keepConnectoins,

 OUT bool foundFailedDCs) : bool

{

 LET connected be a bool, initialized to true

 SET foundFailedDCs to the return of ColorVertices(g, cr,

 detectFailedDCs)

 LET localSiteVertex be the vertex in g.Vertices such that

 localSiteVertex.ID is the objectGUID of the local DC's site object

 IF localSiteVertex.Color = COLOR.WHITE

 /* No NC replicas for this NC in the site of the local DC,

 * so no nTDSConnection objects need be created. */

 return TRUE

 ENDIF

 LET componentCount be an integer

 LET edges be the sequence of MULTIEDGE returned by

 LET stEdgeList be the result of GetSpanningTreeEdges(graph,

 OUT componentCount)

 IF componentCount > 1

 /* Not all sites could be connected by the spanning tree. */

 SET connected to false

 ENDIF

 LET partialReplicaOkay be TRUE if and only if

 localSiteVertex.Color = COLOR.BLACK

 FOR each edge e in stEdgeList

 /* Ignore directed edges not directed to our site. */

 IF e.Directed and e.VertexIDs[1] ≠ localSiteVertex.ID

 Skip e

 ENDIF

 IF e.VertexIDs[0] = localSiteVertex.ID

 LET otherSiteVertex be the vertex in g.Vertices such that

 otherSiteVertex.ID = e.VertexIDs[1]

 ELSE

 LET otherSiteVertex be the vertex in g.Vertices such that

 otherSiteVertex.ID = e.VertexIDs[0]

 ENDIF

 LET t be the interSiteTransport object with objectGUID e.Type

 LET rbh be the result of GetBridgeheadDC(otherSiteVertex.ID,

 cr, t, partialReplicaOkay, detectFailedDCs)

 /* RODC acts as an BH for itself */

 IF AmIRODC() then

 LET lbh be the nTDSDSA object of the local DC

 ELSE

 LET lbh be the result of GetBridgeheadDC(localSiteVertex.ID,

 cr, t, partialReplicaOkay, detectFailedDCs)

 ENDIF

579 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 LET sched be a new SCHEDULE such that the first available time

 is that of e.ReplInfo.Schedule and each subsequent available

 time is e.ReplInfo.Interval minutes after the previous

 available time

 CALL CreateConnection(cr, rbh, t, lbh, e.ReplInfo, sched,

 partialReplicaOkay)

 ENDFOR

 RETURN connected

}

/***** CreateConnection *****/

/* Create an nTDSConnection object with the given parameters if one

 * does not already exist.

 * IN: cr - crossRef object for the NC to replicate.

 * IN: rbh - nTDSDSA object for DC to act as the IDL_DRSGetNCChanges

 * server (which is in a site other than the local DC's site).

 * IN: t - interSiteTransport object for the transport to use for

 * replication traffic.

 * IN: lbh - nTDSDSA object for DC to act as the IDL_DRSGetNCChanges

 * client (which is in the local DC's site).

 * IN: ri - Replication parameters (aggregated siteLink options, etc.)

 * IN: sch - Schedule specifying the times at which to begin

 * replicating.

 * IN: detectFailedDCs - TRUE to detect failed DCs and route

 * replication traffic around them, FALSE to assume no DC

 * has failed.

 * IN: partialReplicaOkay - TRUE if bridgehead DCs containing partial

 * replicas of the NC are acceptable.

 * INOUT: keepConnections - Sequence to which to add any connections

 * deemed to be "in use".

 */

CreateConnection(IN crossRef cr, IN nTDSDSA rbh,

 IN interSiteTransport t, IN nTDSDSA lbh, IN REPLINFO ri,

 IN SCHEDULE sch, INOUT SEQUENCE<GUID> keepConnections)

{

 LET rsiteGuid be the objectGUID of the site object ancestor of rbh

 LET lsiteGuid be the objectGUID of the site object ancestor of lbh

 LET rbhsAll be the result of GetAllBridgeheadDCs(rsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

 LET rbhsAvail be the result of GetAllBridgeheadDCs(rsiteGuid, cr,

 t, partialReplicaOkay, detectFailedDCs)

 LET lbhsAll be the result of GetAllBridgeheadDCs(lsiteGuid, cr,

 t, partialReplicaOkay, FALSE)

 LET lbhsAvail be the result of GetAllBridgeheadDCs(lsiteGuid, cr,

 t, partialReplicaOkay, detectFailedDCs)

 FOR each nTDSConnection object cn such that the parent of cn is

 a DC in lbhsAll and cn!fromServer references a DC in rbhsAll

 IF bit NTDSCONN_OPT_IS_GENERATED is set in cn!options and

 NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options and

 cn!transportType references t

580 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 IF bit NTDSCONN_OPT_USER_OWNED_SCHEDULE is clear in

 cn!options and cn!schedule ≠ sch

 Perform an originating update to set cn!schedule to sch

 ENDIF

 IF bits NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and

 NTDSCONN_OPT_USE_NOTIFY are set in cn

 IF bit NTDSSITELINK_OPT_USE_NOTIFY is clear in

 ri.Options

 Perform an originating update to clear bits

 NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and

 NTDSCONN_OPT_USE_NOTIFY in cn!options

 ENDIF

 ELSE

 IF bit NTDSSITELINK_OPT_USE_NOTIFY is set in

 ri.Options

 Perform an originating update to set bits

 NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and

 NTDSCONN_OPT_USE_NOTIFY in cn!options

 ENDIF

 ENDIF

 IF bit NTDSCONN_OPT_TWOWAY_SYNC is set in cn!options

 IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is clear in

 ri.Options

 Perform an originating update to clear bit

 NTDSCONN_OPT_TWOWAY_SYNC in cn!options

 ENDIF

 ELSE

 IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is set in

 ri.Options

 Perform an originating update to set bit

 NTDSCONN_OPT_TWOWAY_SYNC in cn!options

 ENDIF

 ENDIF

 IF bit NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION is set

 in cn!options

 IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is clear

 in ri.Options

 Perform an originating update to clear bit

 NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in

 cn!options

 ENDIF

 ELSE

 IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is set in

 ri.Options

 Perform an originating update to set bit

 NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in

 cn!options

 ENDIF

 ENDIF

 ENDIF

 ENDFOR

 LET cValidConnections be 0

 FOR each nTDSConnection object cn such that cn!parent is

 a DC in lbhsAll and cn!fromServer references a DC in rbhsAll

 IF (bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options or

 cn!transportType references t) and

 NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options

 LET rguid be the objectGUID of the nTDSDSA object

581 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 referenced by cn!fromServer

 LET lguid be (cn!parent)!objectGUID

 IF BridgeheadDCFailed(rguid, detectFailedDCs) = FALSE and

 BridgeheadDCFailed(lguid, detectFailedDCs) = FALSE

 Increment cValidConnections by 1

 ENDIF

 IF keepConnections does not contain cn!objectGUID

 APPEND cn!objectGUID to keepConnections

 ENDIF

 ENDIF

 ENDFOR

 IF cValidConnections = 0

 LET opt be NTDSCONN_OPT_IS_GENERATED

 IF bit NTDSSITELINK_OPT_USE_NOTIFY is set in ri.Options

 SET bits NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT and

 NTDSCONN_OPT_USE_NOTIFY in opt

 ENDIF

 IF bit NTDSSITELINK_OPT_TWOWAY_SYNC is set in ri.Options

 SET bit NTDSCONN_OPT_TWOWAY_SYNC opt

 ENDIF

 IF bit NTDSSITELINK_OPT_DISABLE_COMPRESSION is set in

 ri.Options

 SET bit NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION in opt

 ENDIF

 Perform an originating update to create a new nTDSConnection

 object cn that is a child of lbh, cn!enabledConnection = TRUE,

 cn!options = opt, cn!transportType is a reference to t,

 cn!fromServer is a reference to rbh, and cn!schedule = sch

 APPEND cn!objectGUID to keepConnections

 ENDIF

}

6.2.2.4 Removing Unnecessary Connections

This task deletes nTDSConnection objects that are not needed to imply edges in any NC replica
graph.

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent object
of cn and the DC with the nTDSDA object referenced by cn!fromServer are in the same site, the KCC
on dc deletes cn if all of the following are true:

Bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options.

No site settings object s exists for the local DC's site, or bit

NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED is clear in s!options.

Another nTDSConnection object cn2 exists such that cn and cn2 have the same parent object,

cn!fromServer = cn2!fromServer, and either

cn!whenCreated < cn2!whenCreated

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

582 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

cn!whenCreated = cn2!whenCreated and cn!objectGUID < cn2!objectGUID

Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options

Given an nTDSConnection object cn, if the DC with the nTDSDSA object dc that is the parent object

of cn and the DC with the nTDSDSA object referenced by cn!fromServer are in different sites, a KCC
acting as an ISTG in dc's site deletes cn if all of the following are true:

Bit NTDSCONN_OPT_IS_GENERATED is clear in cn!options.

cn!fromServer references an nTDSDSA object for a DC in a site other than the local DC's site.

The keepConnections sequence returned by CreateIntersiteConnections() does not contain

cn!objectGUID, or cn is "superseded by" (see below) another nTDSConnection cn2 and
keepConnections contains cn2!objectGUID.

The return value of CreateIntersiteConnections() was true.

Bit NTDSCONN_OPT_RODC_TOPOLOGY is clear in cn!options

An nTDSConnection cn is said to be "superseded by" another nTDSConnection cn2 if both of the
following are true:

If cn implies a tuple in r!repsFrom, cn2 also implies a tuple in r!repsFrom.

If s is (cn!fromServer)!objectGUID and t is (cn!parent)!objectGUID, BridgeheadDCFailed(s, true)

= false and BridgeheadDCFailed(t, true) = false.

6.2.2.5 Connection Translation

This task adjusts values of repsFrom abstract attributes of NC replicas on the local DC to match

those "implied" by nTDSConnection objects.

If the NTDSDSA_OPT_DISABLE_NTDSCONN_XLATE bit is set in the value of the options attribute of

the local DC's nTDSDSA object, the KCC skips this task.

First, the KCC inspects n!repsFrom for each NC replica n that "is present" or "should be present" on
the local DC. If n is not an NC replica that "should be present" on the local DC, the KCC calls
IDL_DRSReplicaDel to remove all tuples from n!repsFrom and to remove n.

Otherwise, for each tuple t in n!repsFrom, let s be the nTDSDSA object such that s!objectGUID =
t.uuidDsa. Let cn be the nTDSConnection object such that cn is a child of the local DC's nTDSDSA
object and cn!fromServer = s and cn!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY,
or NULL if no such cn exists. The KCC calls IDL_DRSReplicaDel to remove t from n!repsFrom if any
of the following is true:

cn = NULL.

No NC replica of the NC "is present" on s.

A writable replica of the NC "should be present" on the local DC, but a partial replica "is present"

on s.

If the KCC did not remove t from n!repsFrom, it updates t if necessary to satisfy the following
requirements. Such updates are typically required when the IDL_DRSGetNCChanges server has
moved from one site to another—for example, to enable compression when the server is moved

from the client's site to another site.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

583 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

t.schedule = cn!schedule

Bit DRS_PER_SYNC is set in t.replicaFlags if and only if cn!schedule has a value v that specifies

scheduled replication is to be performed at least once per week.

Bit DRS_INIT_SYNC is set in t.replicaFlags if and only if s and the local DC's nTDSDSA object are

in the same site or s is the FSMO role owner of one or more FSMO roles in the NC replica.

If bit NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT is set in cn!options, bit

DRS_NEVER_NOTIFY is set in t.replicaFlags if and only if bit NTDSCONN_OPT_USE_NOTIFY is
clear in cn!options. Otherwise, bit DRS_NEVER_NOTIFY is set in t.replicaFlags if and only if s and
the local DC's nTDSDSA object are in different sites.

Bit DRS_USE_COMPRESSION is set in t.replicaFlags if and only if s and the local DC's nTDSDSA

object are not in the same site and the NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION
bit is clear in cn!options.

Bit DRS_TWOWAY_SYNC is set in t.replicaFlags if and only if bit

NTDSCONN_OPT_TWOWAY_SYNC is set in cn!options.

Bits DRS_DISABLE_AUTO_SYNC and DRS_DISABLE_PERIODIC_SYNC are set in t.replicaFlags if

and only if cn!enabledConnection = false.

If s and the local DC's nTDSDSA object are in the same site, cn!transportType has no value, or

the RDN of cn!transportType is CN=IP:

Bit DRS_MAIL_REP in t.replicaFlags is clear.

t.uuidTransport = NULL GUID.

t.uuidDsa = The GUID-based DNS name of s.

Otherwise:

Bit DRS_MAIL_REP in t.replicaFlags is set.

If x is the object with dsname cn!transportType, t.uuidTransport = x!objectGUID.

Let a be the attribute identified by x!transportAddressAttribute. If a is the dNSHostName

attribute, t.uuidDsa = the GUID-based DNS name of s. Otherwise, t.uuidDsa = (s!parent)!a.

Finally, the KCC calls IDL_DRSReplicaAdd to add a tuple u to n!repsFrom for each
IDL_DRSGetNCChanges server "implied" by the nTDSConnection object children of the local DC's
nTDSDSA object if such a u does not already exist. For each such nTDSConnection cn, a tuple u is
implied if all of the following are true:

cn!enabledConnection = true.

cn!options does not contain NTDSCONN_OPT_RODC_TOPOLOGY.

cn!fromServer references an nTDSDSA object.

An NC replica of the NC "is present" on the DC to which the nTDSDSA object referenced by

cn!fromServer corresponds.

An NC replica of the NC "should be present" on the local DC.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf

584 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The NC replica on the DC referenced by cn!fromServer is a writable replica or the NC replica that

"should be present" on the local DC is a partial replica.

The NC is not a domain NC, the NC replica that "should be present" on the local DC is a partial

replica, cn!transportType has no value, or cn!transportType has an RDN of CN=IP.

If tuple u is implied, its fields satisfy each of the criteria defined above for tuple t when t is updated
using IDL_DRSReplicaModify, plus the following additional criteria:

u.uuidDsa = the objectGUID of the nTDSDSA object referenced by cn!fromServer.

u.uuidInvocId, u.usnVec, u.consecutiveFailure, u.timeLastSuccess, u.timeLastAttempt, and

u.resultLastAttempt are 0.

If an attempt to contact another DC is made and it fails, the KCC adds a tuple for that DC to the
local DC's kCCFailedConnections variable.

6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples

This task removes tuples from kCCFailedLinks and kCCFailedConnections that are not as inputs to
future runs.

For each tuple f in kCCFailedLinks, if f.FailureCount = 0 the KCC removes f.

For each tuple k in kCCFailedConnections, if no attempt was made in this run to contact the
corresponding DC (the DC with nTDSDSA object o such that o!objectGUID = k.UUIDDsa) or an
attempt was made and it was successful, the KCC removes k.

6.2.2.7 Updating the RODC NTFRS Connection Object

This task runs only when the local DC is an RODC. It updates the RODC NTFRS connection object.

Given an nTDSConnection object cn1, such that cn1!options contains
NTDSCONN_OPT_RODC_TOPOLOGY, and another nTDSConnection object cn2, such that cn2!options

does not contain NTDSCONN_OPT_RODC_TOPOLOGY, modify cn1 to ensure that the following is
true:

cn1!fromServer = cn2!fromServer

cn1!schedule = cn2!schedule

If no such cn2 can be found, cn1 is not modified. If no such cn1 can be found, nothing is modified
by this task.

6.3 Publishing and Locating a Domain Controller

Active Directory is a distributed service, which means that when a client needs Active Directory
services, it may be able to receive those services from any of a number of equivalent DCs. Clients
cannot be expected to know in advance the names of all possible suitable DCs. This implies a need

for a protocol by which clients can dynamically discover which DCs are configured, operational, and

reachable such that they could supply the needed services, and to choose among those DCs.

Locating a DC works differently for AD DS than for AD LDS.

AD DS

%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

585 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The process of locating AD DS DCs is performed in two separate ways, one based on NetBIOS
and mailslots, the other based on DNS and LDAP. While the network representations of the two

ways are radically different, they are functionally very similar. It is worthwhile to explain the
conceptual similarities and motivations before starting a detailed discussion of the differing

implementation details.

The NetBIOS version is required for compatibility with older clients (such as Windows NT 4.0
operating system) that are not aware of Active Directory. Being based on NetBIOS, however, it is
dependent either on network broadcasts or on the deployment of a NetBIOS Name Service
(NBNS) infrastructure; broadcasts cannot be used in a wide area network where they are
typically blocked. The DNS-based version makes no use of broadcasts and includes extra support
for determining network locality.

Both versions of the protocol work in two phases. In the first phase, DCs publish data about
themselves (in DNS, or in NBNS, or by local configuration of the responder to NetBIOS
broadcasts, depending on which version of publication is being used). In the second phase,
clients look up this static data to determine a set of possible DCs and then send small messages
to some or all of the set, examining the responses in order to determine liveness, reachability,

and suitability. Given their conceptual similarity to an Internet Control Message Protocol (ICMP)

ping message, these small messages are referred to as "LDAP ping" and "mailslot ping".

Sections 6.3.1 through 6.3.7 specify the precise details about the data that servers publish about
themselves. These sections also specify the precise details about the two "ping" protocols.

AD LDS

An AD LDS DC does not publish data about itself in name services as in the case of an AD DS DC.
An AD LDS DC that is joined to an AD DS domain SHOULD publish itself by creating an object in

AD DS; a client MAY then query AD DS and select an AD LDS DC based on the query results. The
information that an AD LDS DC publishes about itself is described in section 6.3.8. An AD LDS DC
that is not joined to an AD DS domain does not publish itself at all; a client must possess an AD
LDS server's IP address or host name and port number. This protocol does not provide a means
for a client to obtain this information.

6.3.1 Structures and Constants

6.3.1.1 NETLOGON_NT_VERSION Options Bits

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

V

G

C

V

L

V

I

P

V

P

D

C

X X X V

N

T

4

X X X X X X X X X X X X X X X X X X X V

C

S

V

5

E

P

V

5

E

X

V

5

V

1

Note The bits are presented in big-endian byte order.

V1 (NETLOGON_NT_VERSION_1, 0x00000001): Unless overridden by V5, V5EX, or V5EP,

this bit instructs the server to respond to LDAP ping (section 6.3.3) and mailslot ping (section
6.3.5) using either the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure or the
NETLOGON_PRIMARY_RESPONSE structure for the PDC.

%5bMS-GLOS%5d.pdf

586 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

V5 (NETLOGON_NT_VERSION_5, 0x00000002): Unless overridden by V5EX or V5EP, this
bit instructs the server to respond to LDAP ping and mailslot ping using the

NETLOGON_SAM_LOGON_RESPONSE structure.

V5EX (NETLOGON_NT_VERSION_5EX, 0x00000004): Unless overridden by V5EP, this bit

instructs the server to respond to LDAP ping and mailslot ping using the
NETLOGON_SAM_LOGON_RESPONSE_EX structure.

V5EP (NETLOGON_NT_VERSION_5EX_WITH_IP, 0x00000008): Instructs the server to
respond to mailslot ping using the NETLOGON_SAM_LOGON_RESPONSE_EX structure and also
to return the IP address of the server in the response.

VCS (NETLOGON_NT_VERSION_WITH_CLOSEST_SITE, 0x00000010): Indicates that the
client is querying for the closest site information. This flag is interpreted by DCs with DC

functional level greater than or equal to DS_BEHAVIOR_WIN2008.

VNT4 (NETLOGON_NT_VERSION_AVOID_NT4EMUL, 0x01000000): Forces the server to
respond to an LDAP ping and to honor all the NetLOGON_NT_VERSION options that the client

specifies in the LDAP ping or mailslot ping. The client specifies
NETLOGON_NT_VERSION_AVOID_NT4EMUL to force the server to respond to an LDAP ping
even if the server is configured to ignore LDAP ping requests, and to honor all the

NETLOGON_NT_VERSION options specified by the client in a mailslot ping, even if the server
is configured to assume NETLOGON_NT_VERSION_1 in mailslot ping requests.

VPDC (NETLOGON_NT_VERSION_PDC, 0x10000000): Indicates that the client is querying
for a PDC.

VIP (NETLOGON_NT_VERSION_IP, 0x20000000): Obsolete, ignored.

VL (NETLOGON_NT_VERSION_LOCAL, 0x40000000): Indicates that the client is the local
machine.

VGC (NETLOGON_NT_VERSION_GC, 0x80000000): Indicates that the client is querying for a
GC.

X: Reserved for future expansion. The client MUST set it to 0, and the server MUST ignore it.

6.3.1.2 DS_FLAG Options Bits

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

F

F

F

D

M

F

D

N

S

X X X X X X X X X X X X X F

W

9

F

W

8

F

W

S

F

F

S

F

S

S

F

N

F

G

T

F

W

F

C

F

T

F

K

F

D

F

L

F

G

X F

P

Note The bits are presented in big-endian byte order.

FP (DS_PDC_FLAG, 0x00000001): The server holds the PDC FSMO role
(PdcEmulationMasterRole). FSMO roles are defined in section 3.1.1.1.11. Certain updates can

587 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

be performed only on the holder of the PDC FSMO role (see Updates Performed Only on
FSMOs (section 3.1.1.5.1.8)).

FG (DS_GC_FLAG, 0x00000004): The server is a GC server and will accept and process
messages directed to it on the global catalog ports (see section 3.1.1.3.1.10).

FL (DS_LDAP_FLAG, 0x00000008): The server is an LDAP server.

FD (DS_DS_FLAG, 0x00000010): The server is a DC.

FK (DS_KDC_FLAG, 0x00000020): The server is running the Kerberos Key Distribution Center
service.

FT (DS_TIMESERV_FLAG, 0x00000040): The Win32 Time Service, as specified in [MS-W32T],
is present on the server.

FC (DS_CLOSEST_FLAG, 0x00000080): The server is in the same site as the client. This is a

hint to the client that it is well-connected to the server in terms of speed.

FW (DS_WRITABLE_FLAG, 0x00000100): Indicates that the server is not an RODC. As
described in section 3.1.1.1.9, all NC replicas hosted on an RODC do not accept originating
updates.

FGT (DS_GOOD_TIMESERV_FLAG, 0x00000200): The server is a reliable time server.

FN (DS_NDNC_FLAG, 0x00000400): The NC is an application NC.

FSS (DS_SELECT_SECRET_DOMAIN_6_FLAG, 0x00000800): The server is an RODC.

FFS (DS_FULL_SECRET_DOMAIN_6_FLAG, 0x00001000): The server is a writable DC, not
running Windows 2000 Server operating system or Windows Server 2003 operating system.

FWS (DS_WS_FLAG, 0x00002000): The Active Directory Web Service, as specified in [MS-
ADDM], is present on the server.

FW8 (DS_DS_8_FLAG, 0x00004000): The server is not running Windows 2000 operating
system, Windows Server 2003, Windows Server 2008 operating system, or Windows

Server 2008 R2 operating system.

FW9 (DS_DS_9_FLAG, 0x00008000): The server is not running Windows 2000, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows Server 2012
operating system.

FDNS (DS_DNS_CONTROLLER_FLAG, 0x20000000): The server has a DNS name.

FDM (DS_DNS_DOMAIN_FLAG, 0x40000000): The NC is a default NC.

FF (DS_DNS_FOREST_FLAG, 0x80000000): The NC is the forest root.

X: Reserved for future expansion. The server MUST return zero, and the client MUST ignore.

6.3.1.3 Operation Code

Operation code set in the request and response of an LDAP ping (section 6.3.3) or a mailslot ping
(section 6.3.5).

%5bMS-W32T%5d.pdf
%5bMS-ADDM%5d.pdf
%5bMS-ADDM%5d.pdf

588 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Symbolic name Value (Associated packet format)

LOGON_PRIMARY_QUERY 7 (section 6.3.1.4)

LOGON_PRIMARY_RESPONSE 12 (section 6.3.1.5)

LOGON_SAM_LOGON_REQUEST 18 (section 6.3.1.6)

LOGON_SAM_LOGON_RESPONSE 19 (section 6.3.1.8)

LOGON_SAM_PAUSE_RESPONSE 20 (section 6.3.1.8)

LOGON_SAM_USER_UNKNOWN 21 (section 6.3.1.8)

LOGON_SAM_LOGON_RESPONSE_EX 23 (section 6.3.1.9)

LOGON_SAM_PAUSE_RESPONSE_EX 24 (section 6.3.1.8)

LOGON_SAM_USER_UNKNOWN_EX 25 (section 6.3.1.8)

6.3.1.4 NETLOGON_LOGON_QUERY

The format of a mailslot ping as documented in section 6.3.5. This can be used if a PDC is required.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode ComputerName (variable)

...

MailslotName (variable)

...

UnicodeComputerName (variable)

...

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to LOGON_PRIMARY_QUERY.

ComputerName (variable): Null-terminated ASCII value of the NETBIOS name of the client.

This field SHOULD contain at least one character: the null terminator.

MailslotName (variable): Null-terminated ASCII value of the name of the mailslot on which
the client listens. This field is always aligned to an even byte boundary, with padding (bytes of
value 0) to the next even byte boundary as necessary.

589 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UnicodeComputerName (variable): Null-terminated Unicode value of the NETBIOS name of
the client. This field SHOULD contain at least one character: the null terminator. Each Unicode

value is encoded as 2 bytes.

NtVersion (4 bytes): NETLOGON_NT_VERSION options (see 6.3.1.1).

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note All multibyte quantities are represented in little-endian byte order.

6.3.1.5 NETLOGON_PRIMARY_RESPONSE

The NETLOGON_PRIMARY_RESPONSE structure is the PDC server's response to a mailslot ping
(section 6.3.5).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode PrimaryDCName (variable)

...

UnicodePrimaryDCName (variable)

...

UnicodeDomainName (variable)

...

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to LOGON_PRIMARY_RESPONSE.

PrimaryDCName (variable): Null-terminated ASCII value of the NetBIOS name of the server.
This field SHOULD contain at least one character: the null terminator.

UnicodePrimaryDCName (variable): Null-terminated Unicode value of the NetBIOS name of
the server. This field SHOULD contain at least one character: the null terminator. Each
Unicode value is encoded as 2 bytes. This field is always aligned to an even byte boundary,

with padding (bytes of value 0) to the next even byte boundary as necessary.

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the
NC. This field MUST contain at least one character: the null terminator. Each Unicode value is
encoded as 2 bytes.

NtVersion (4 bytes): NETLOGON_NT_VERSION Options (see section 6.3.1.1).

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

590 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note All multibyte quantities are represented in little-endian byte order.

6.3.1.6 NETLOGON_SAM_LOGON_REQUEST

The format of a mailslot ping as documented in section 6.3.5.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode RequestCount

UnicodeComputerName (variable)

...

UnicodeUserName (variable)

...

MailslotName (variable)

...

AllowableAccountControlBits

DomainSidSize

DomainSid (variable)

...

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3). Set to
LOGON_SAM_LOGON_REQUEST.

RequestCount (2 bytes): A USHORT that contains the number of times the user has repeated
this request.

UnicodeComputerName (variable): Null-terminated Unicode value of the NETBIOS name of
the client. This field MUST contain at least one character: the null terminator. Each Unicode
value is encoded as 2 bytes.

UnicodeUserName (variable): Null-terminated Unicode value of the account name of the user
being queried. This field MUST contain at least one character: the null terminator. Each

Unicode value is encoded as 2 bytes.

%5bMS-DTYP%5d.pdf

591 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MailslotName (variable): Null-terminated ASCII value of the name of the mailslot the client
listens on.

AllowableAccountControlBits (4 bytes): Represents the userAccountControl attribute of an
account.

DomainSidSize (4 bytes): A DWORD that contains the size of the DomainSid field.

DomainSid (variable): The SID of the domain, specified as a SID structure, which is defined in
[MS-DTYP] section 2.4.2. Its length is defined in the DomainSidSize field. This field is
padded as necessary so that it is aligned on a DWORD boundary.

NtVersion (4 bytes): NETLOGON_NT_VERSION Options (see 6.3.1.1).

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note Except as noted earlier in this section, there is no padding for alignment. Therefore, except as
otherwise specified, all fields after MailslotName can occur on odd byte boundaries.

All multibyte quantities are represented in little-endian byte order.

6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40

The NETLOGON_SAM_LOGON_RESPONSE_NT40 structure is the server's response to an LDAP ping

(section 6.3.3) or a mailslot ping (section 6.3.5).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode UnicodeLogonServer (variable)

...

UnicodeUserName (variable)

...

UnicodeDomainName (variable)

...

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3).

UnicodeLogonServer (variable): Null-terminated Unicode value of the NetBIOS name of the
server. This field MUST contain at least one character: the null terminator. Each Unicode value
is encoded as 2 bytes.

%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

592 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UnicodeUserName (variable): Null-terminated Unicode value of the name of the user copied
directly from the client's request. This field MUST contain at least one character: the null

terminator. Each Unicode value is encoded as 2 bytes.

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the

NC. This field MUST contain at least one character: the null terminator. Each Unicode value is
encoded as 2 bytes.

NtVersion (4 bytes): Set to NETLOGON_NT_VERSION_1.

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note All multibyte quantities are represented in little-endian byte order.

6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE

The NETLOGON_SAM_LOGON_RESPONSE structure is the first extended version of the server's
response to an LDAP ping (section 6.3.3) or a mailslot ping (section 6.3.5).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode UnicodeLogonServer (variable)

...

UnicodeUserName (variable)

...

UnicodeDomainName (variable)

...

DomainGuid

...

...

...

NullGuid

...

...

593 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

DnsForestName (variable)

...

DnsDomainName (variable)

...

DnsHostName (variable)

...

DcIpAddress

Flags

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3).

UnicodeLogonServer (variable): Null-terminated Unicode value of the NetBIOS name of the
server. This field always contains at least one character: the null terminator. Each Unicode
value is encoded as 2 bytes.

UnicodeUserName (variable): Null-terminated Unicode value of the name of the user copied
directly from the client's request. This field always contains at least one character: the null

terminator. Each Unicode value is encoded as 2 bytes.

UnicodeDomainName (variable): Null-terminated Unicode value of the NetBIOS name of the
NC. This field always contains at least one character: the null terminator. Each Unicode value
is encoded as 2 bytes.

DomainGuid (16 bytes): The value of the NC's GUID attribute specified as a GUID structure,
which is defined in [MS-DTYP] section 2.3.4.

NullGuid (16 bytes): A NULL GUID. The GUID structure is defined in [MS-DTYP] section 2.3.4.

Always set zero values for all fields in the GUID structure.

DnsForestName (variable): UTF-8 encoded value of the DNS forest name, compressed as
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DnsDomainName (variable): UTF-8 encoded value of the DNS NC name, compressed as
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DnsHostName (variable): UTF-8 encoded value of the DNS server name, compressed as

specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DcIpAddress (4 bytes): The domain controller IP address, as specified in [RFC791].

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90491

594 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Flags (4 bytes): DS_FLAG Options (see section 6.3.1.2).

NtVersion (4 bytes): Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5.

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note All multibyte quantities are represented in little-endian byte order.

6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX

The NETLOGON_SAM_LOGON_RESPONSE_EX structure is the second extended version of the
server's response to an LDAP ping (section 6.3.3) or a mailslot ping (section 6.3.5).

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Opcode Sbz

Flags

DomainGuid

...

...

...

DnsForestName (variable)

...

DnsDomainName (variable)

...

DnsHostName (variable)

...

NetbiosDomainName (variable)

...

NetbiosComputerName (variable)

...

595 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UserName (variable)

...

DcSiteName (variable)

...

ClientSiteName (variable)

...

DcSockAddrSize DcSockAddr

...

...

...

... NextClosestSiteName (variable)

...

NtVersion

LmNtToken Lm20Token

Opcode (2 bytes): Operation code (see section 6.3.1.3).

Sbz (2 bytes): This MUST be set to 0.

Flags (4 bytes): DS_FLAG Options (see section 6.3.1.2).

DomainGuid (16 bytes): The value of the NC's GUID attribute specified as a GUID structure,
which is defined in [MS-DTYP] section 2.3.4.

DnsForestName (variable): UTF-8 encoded value of the DNS name of the forest, compressed
as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DnsDomainName (variable): UTF-8 encoded value of the DNS name of the NC, compressed
as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DnsHostName (variable): UTF-8 encoded value of the DNS name of the server, compressed
as specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

NetbiosDomainName (variable): UTF-8 encoded value of the NetBIOS name of the NC,
compressed as specified in [RFC1035] section 4.1.4. To get the decompressed string, see
section 6.3.7.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264

596 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NetbiosComputerName (variable): UTF-8 encoded value of the NetBIOS name of the server,
compressed as specified in [RFC1035] section 4.1.4. To get the decompressed string, see

section 6.3.7.

UserName (variable): UTF-8 encoded value of the user specified in the client's request,

compressed as specified in [RFC1035] section 4.1.4. To get the decompressed string, see
section 6.3.7.

DcSiteName (variable): UTF-8 encoded value of the site name of the server, compressed as
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

ClientSiteName (variable): UTF-8 encoded value of the site name of the client, compressed as
specified in [RFC1035] section 4.1.4. To get the decompressed string, see section 6.3.7.

DcSockAddrSize (1 byte): A CHAR that contains the size of the server's IP address. This field

is included only if the client specifies NETLOGON_NT_VERSION_5EX_WITH_IP in the request.

DcSockAddr (16 bytes): The domain controller IPv4 address, structured as shown in the

following diagram. This field is included only if the client specifies
NETLOGON_NT_VERSION_5EX_WITH_IP in the request.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

sin_family sin_port

sin_addr

sin_zero

...

sin_family (2 bytes): The socket family, represented in little-endian byte order. The
value SHOULD always be AF_INET (that is, 2).

sin_port (2 bytes): The socket port, represented in little-endian byte order. The value
SHOULD always be zero.

sin_addr (4 bytes): The socket address, represented in big-endian byte order. The value
is an IPv4 address. If the domain controller does not have an IPv4 address, this value
SHOULD be 127.0.0.1.

sin_zero (8 bytes): Reserved. MUST be set to zero when sending and ignored on receipt.

NextClosestSiteName (variable): This field is included only if the client specifies

NETLOGON_NT_VERSION_WITH_CLOSEST_SITE in the request, and if the responding DC has
DC functional level DS_BEHAVIOR_WIN2008 or greater. When included, NextClosestSiteName

contains the name of the site that is closest by cost to ClientSiteName without being equal to
it. The site name is UTF-8 encoded, compressed as specified in [RFC1035] section 4.1.4. To
get the decompressed string, see section 6.3.7.

NtVersion (4 bytes): NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5EX.

LmNtToken (2 bytes): This MUST be set to 0xFFFF.

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90264
%5bMS-DTYP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90264

597 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Lm20Token (2 bytes): This MUST be set to 0xFFFF.

Note All multibyte quantities are represented in little-endian byte order.

6.3.1.10 DNSRegistrationSettings

DNSRegistrationSettings is an abstract type containing the following fields.

PerformDynamicRegistration: A Boolean that indicates whether the DC registers DNS records
on a periodic basis, as specified by [RFC2136]. Default value of this flag is true. If set to false,
the DC does not itself register any DNS records.

AvoidDNSRecordsList: This is a list of zero or more of the following mnemonics. Presence of a
specific mnemonic on the list is an instruction to the DC to skip the registration of the
associated DNS record as part of dynamic DNS registration. By default this list is empty.

Mnemonic

DNS

Record

Type Associated DNS Record

LdapIpAddress A <DnsDomainName>

Ldap SRV _ldap._tcp.<DnsDomainName>

LdapAtSite SRV _ldap._tcp.<SiteName>._sites.<DnsDomainName>

Pdc SRV _ldap._tcp.pdc._msdcs.<DnsDomainName>

Gc SRV _ldap._tcp.gc._msdcs.<DnsForestName>

GcAtSite SRV _ldap._tcp.<SiteName>._sites.gc._msdcs.<DnsForestName>

DcByGuid SRV _ldap._tcp.<DomainGuid>.domains._msdcs.<DnsForestName>

GcIpAddress A _gc._msdcs.<DnsForestName>

DsaCname CNAME <DsaGuid>._msdcs.<DnsForestName>

Kdc SRV _kerberos._tcp.dc._msdcs.<DnsDomainName>

KdcAtSite SRV _kerberos._tcp.dc._msdcs.<SiteName>._sites.<DnsDomainName>

Dc SRV _ldap._tcp.dc._msdcs.<DnsDomainName>

DcAtSite SRV _ldap._tcp.<SiteName>._sites.dc._msdcs.<DnsDomainName>

Rfc1510Kdc SRV _kerberos._tcp.<DnsDomainName>

Rfc1510KdcAtSite SRV _kerberos._tcp.<SiteName>._sites.<DnsDomainName>

GenericGc SRV _gc._tcp.<DnsForestName>

GenericGcAtSite SRV _gc._tcp.<SiteName>._sites.<DnsForestName>

Rfc1510UdpKdc SRV _kerberos._udp.<DnsDomainName>

Rfc1510Kpwd SRV _kpasswd._tcp.<DnsDomainName>

Rfc1510UdpKpwd SRV _kpasswd._udp.<DnsDomainName>

http://go.microsoft.com/fwlink/?LinkId=107017

598 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

where

<DnsDomainName> = FQDN of the default NC of the DC

<DnsForestName> = FQDN of the forest root domain NC

<SiteName> = Site for which the record is being registered

<DsaGuid> = DSA GUID

<DomainGuid> = objectGuid of the root object of the default NC

DynamicRegistrationRefreshInterval: The time interval in minutes after which the DC re-
registers DNS records if dc.dnsRegistrationSettings.PerformDynamicRegistration is true. The
default value is 60.

SRVRecordWeight: Specifies the value of the Weight field for all DNS SRV records

([RFC2782]) that are registered by the DC. The default value is 100.

SRVRecordPriority: Specifies the value of the Priority field for all DNS SRV records
([RFC2782]) that are registered by the DC. The default value is 0.

DNSRecordTTL: Specifies the value of the TTL field for all DNS records ([RFC2782]) that are
registered by the DC. The default value is 600 seconds.

PerformAutoSiteCoverage: A Boolean that indicates whether the DC registers records for any

additional sites that do not have any DCs in them. Implementations can choose any algorithm
to determine which DCs cover the sites that don't already have coverage. The choice of
algorithm does not affect client interoperability.The default value of this flag is true.

SitesForDCRecordsList: A list of site names. This list instructs the DC to register the DNS
records that are registered for the default NC (see section 6.3.2.3) for all the listed sites. By
default this list is empty.

SitesForGCRecordsList: A list of site names. This list instructs the DC to register the DNS

records that are registered for the GC server (see section 6.3.2.3) for all the listed sites. By
default this list is empty.

SitesForNDNCRecordsList: A list of site names. This list instructs the DC to register the DNS
records that are registered for an application NC (see section 6.3.2.3) for all the listed sites.
By default this list is empty.

Each of the above fields can be configured by an implementation-dependent mechanism. On
Windows Server operating system, these can also be configured at the following registry key path:

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Netlogon\Parameters

If a value is present under this key, it takes precedence over any value set by an implementation-

dependent configuration mechanism. The following table describes the name of the registry key
value for each field, the registry type and the range for each setting:

http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=90381

599 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Field Registry Value Name RegistryType

Range/Acceptable

Values

PerformDynamicRegistration UseDynamicDns REG_DWORD Enabled = 1,

Disabled = 0

AvoidDNSRecordsList DnsAvoidRegisterRecords REG_SZ List of space

delimited mnemonics

mentioned in the

table of mnemonics

above.

DynamicRegistrationRefreshInterval DnsRefreshInterval REG_DWORD MinValue = 0,

MaxValue =

4294967200

SRVRecordWeight LdapSrvWeight REG_DWORD MinValue = 0,

MaxValue = 65535

SRVRecordPriority LdapSrvPriority REG_DWORD MinValue = 0,

MaxValue = 65535

DNSRecordTTL DnsTtl REG_DWORD MinValue = 0,

MaxValue =

2147483647

PerformAutoSiteCoverage AutoSiteCoverage REG_DWORD Enabled = 1,

Disabled = 0

SitesForDCRecordsList SiteCoverage REG_SZ List of space

delimited site names.

SitesForGCRecordsList GcSiteCoverage REG_SZ List of space

delimited site names.

SitesForNDNCRecordsList NdncSiteCoverage REG_SZ List of space

delimited site names.

6.3.2 DNS Record Registrations

If dc.dnsRegistrationSettings.PerformDynamicRegistration is true, a DC performs dynamic
registration of DNS records (as specified by [RFC2136]) at a periodic interval (see section
6.3.2.1.1). Additionally, a DC performs the DNS record registration on demand when requested by

the Netlogon Remote Protocol as described in [MS-NRPC] section 3.5.4.9.1.

6.3.2.1 Timers

6.3.2.1.1 Register DNS Records Timer

This timer controls how often a DC registers DNS records if configured to do so on a periodic basis.

If dc.dnsRegistrationSettings.PerformDynamicRegistration is true, this timer is configured to signal

an event every dc.dnsRegistrationSettings.DynamicRegistrationRefreshInterval minutes. At each
timer event, the DC registers the DNS records described in SRV Records (section 6.3.2.3) and Non-
SRV Records (section 6.3.2.4), unless explicitly excluded via
dc.dnsRegistrationSettings.AvoidDNSRecordsList.

http://go.microsoft.com/fwlink/?LinkId=107017
%5bMS-NRPC%5d.pdf

600 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.3.2.2 Non-Timer Events

There is one non-timer event, Force Register DNS Records, in the Active Directory System (beyond
those non-timer events specified in the underlying protocol documents).

6.3.2.2.1 Force Register DNS Records Non-Timer Event

This event can be triggered by another system to cause the DC to register DNS records.

When this event occurs, the DC registers the DNS records described in SRV Records (section
6.3.2.3) and Non-SRV Records (section 6.3.2.4), unless explicitly excluded via
dc.dnsRegistrationSettings.AvoidDNSRecordsList.

6.3.2.3 SRV Records

The SRV DNS Resource Record for specifying the location of services is specified in [RFC2782]. An
SRV record maps the name of a service to the DNS name of a server that offers that service.

The creation of DNS Resource Records is specified in [RFC2136].

The name of an SRV Resource Record is in the following form:

Service.Proto.Name TTL Class SRV Priority Weight Port Target

A client queries for these records by sending a DNS SRV query [RFC2782] to a DNS server.

Non-RODC server

If the DC is a non-RODC with default NC X (and NC X's GUID is G) in forest Z, then it registers SRV
records with Service.Proto.Name equal to the following.

 _ldap._tcp.X

 _ldap._tcp.dc._msdcs.X

 _ldap._tcp.G. domains._msdcs.Z

 _kerberos._tcp.X

 _kerberos._udp.X

 _kerberos._tcp.dc._msdcs.X

 _kpasswd._tcp.X

 _kpasswd._udp.X

In addition, the DC registers site-specific records for the following sites:

The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2).

The sites listed in dc.dnsRegistrationSettings.SitesForDCRecordsList.

If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is true, the additional sites that should be

covered by this DC as determined by the implementation's chosen algorithm.

For each site Yi in the above list of sites, the DC registers SRV records with Service.Proto.Name
equal to the following.

 _ldap._tcp.Yi._sites.X

 _ldap._tcp.Yi._sites.dc._msdcs.X

http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=107017
http://go.microsoft.com/fwlink/?LinkId=90381

601 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 _kerberos._tcp.Yi._sites.X

 _kerberos._tcp.Yi._sites.dc._msdcs.X

RODC Server

If the DC is an RODC with default NC X (and NC X's GUID is G) in site Y and in forest Z, then it

registers SRV records with Service.Proto.Name equal to the following.

_ldap._tcp.Y._sites.X

_ldap._tcp.Y._sites.dc._msdcs.X

_kerberos._tcp.Y._sites.X

_kerberos._tcp.Y._sites.dc._msdcs.X

Non-RODC GC server

If the DC is also a non-RODC GC server, then it registers SRV records with Service.Proto.Name
equal to the following.

_ldap._tcp.gc._msdcs.Z

_gc._tcp.Z

In addition, the DC registers site specific records for the following sites:

The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2).

The sites listed in dc.dnsRegistrationSettings.SitesForGCRecordsList.

If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is true, the additional sites that should be
covered by this domain controller as determined by the implementation's chosen algorithm.

For each site Yi in the above list of sites, the DC registers SRV records with Service.Proto.Name
equal to the following:

_ldap._tcp.Yi._sites.gc._msdcs.Z

_gc._tcp.Yi._sites.Z

RODC GC server

If the DC is also an RODC GC server, then it registers SRV records with Service.Proto.Name equal to
the following.

_ldap._tcp.Y._sites.gc._msdcs.Z

_gc._tcp.Y._sites.Z

PDC

If the DC is also holds the PDC Emulator FSMO role for its default NC, then it registers SRV records
with Service.Proto.Name equal to the following.

602 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

_ldap._tcp.pdc._msdcs.X

Application NC host

If the DC also hosts application NCs, then for each application NC Ai, it registers SRV records with
Service.Proto.Name equal to the following.

_ldap._tcp.Ai

In addition, the DC also registers site-specific records for the following sites:

The site that the DC is in (see sections 6.1.1.2.2.1 and 6.1.1.2.2.1.2).

The sites listed in dc.dnsRegistrationSettings.SitesForNDNCRecordsList.

If dc.dnsRegistrationSettings.PerformAutoSiteCoverage is true, the additional sites that should be
covered by this domain controller as determined by the implementation's chosen algorithm.

For each application NC Ai and each site Yi in the above list of sites, the DC registers SRV records
with Service.Proto.Name equal to the following:

_ldap._tcp.Yi._sites.Ai

Example: If a DC with default NC:

X = na.fabrikam.com

is in site:

Y = site1

and forest:

Z = fabrikam.com

and NC X's GUID is:

G = 52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8

then its record of type _ldap._tcp.Y._sites.dc._msdcs.X has:

603 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Service.Proto.Name =

 _ldap._tcp.site1._sites.dc._msdcs.na.fabrikam.com

and its record of type _ldap._tcp.G.domains._msdcs.Z has:

Service.Proto.Name =

 _ldap._tcp.52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8.domains._msdcs.fabrikam.com

The following table describes the other fields of each SRV record registered by a server.

Field Value

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL.

Class Set to IN.

SRV Set to SRV.

Priority Set to dc.dnsRegistrationSettings.SRVRecordPriority.

Weight Set to dc.dnsRegistrationSettings.SRVRecordWeight.

Port Set to 389 for LDAP service. Set to 3268 for GC service. Set to 88 for Kerberos KDC service. Set

to 464 for Kerberos Password Change service.

Target Set to the fully qualified DNS name of the server.

6.3.2.4 Non-SRV Records

In addition to SRV records, a DC also registers CNAME [RFC1034] and type A [RFC1034] DNS

records.

A CNAME record acts as an alias for a DNS hostname and has the following form:

Name TTL class type RDATA

A client queries for these records by sending a DNS A, CNAME, or * query [RFC1034] to a DNS
server.

If a server is a DC in forest Z, and its DSA GUID is G, then the server registers a CNAME record
with Name field set to G._msdcs.Z. This name is called the DC's GUID-based DNS name.

Example: If a DC is in forest:

Z = fabrikam.com

and its DSA GUID is:

G = 52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90263

604 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

then it registers a CNAME record with:

Name =

 52f6c43b-99ec-4040-a2b0-e9ebf2ec02b8._msdcs.fabrikam.com

The following table describes the other fields of each CNAME record registered by a server.

Field Value

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL.

Class Set to IN.

Type Set to CNAME.

RDATA Set to the fully qualified DNS name of the server.

A type A record associates an IP address with a name and takes the form:

Name TTL class type RDATA

A client queries for these records by sending a DNS A or * query [RFC1034] to a DNS server.

If a server is a DC with default NC X in forest Z, then it publishes a type A record with Name field X.
If the DC is a GC server, it also publishes a type A record with Name field gc._msdcs.Z.

Example: If a DC has default NC:

X = na.fabrikam.com

and is in forest:

Z = fabrikam.com

then it registers a type A record with:

Name = na.fabrikam.com

If the DC is a GC server, it registers a type A record with:

Name = gc._msdcs.fabrikam.com

The following table describes the other fields of each type A record registered by a server.

Field Value

TTL Set to dc.dnsRegistrationSettings.DNSRecordTTL.

http://go.microsoft.com/fwlink/?LinkId=90263

605 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Field Value

Class Set to IN.

Type Set to A.

RDATA Set to the IP address of the server used for DC functions.

6.3.3 LDAP Ping

This topic describes the usage of LDAP to verify the aliveness of the domain controller and also
check whether the domain controller matches a specific set of requirements. This operation is
commonly referred to as LDAP ping.

An LDAP rootDSE search (section 3.1.1.3.2) that retrieves the rootDSE attribute netlogon (section
3.1.1.3.2.14) triggers the following processing on the server: Syntactic validation of the filter as
specified in section 6.3.3.1 and construction of a DC response to the search request as specified in

sections 6.3.3.2 and 6.3.3.3.

The LDAP search filter included in the SearchRequest is a one-level AND of equalityMatch tests of
the following elements:

DnsDomain: The DNS name of an NC (default NC or application NC).

Host: The NetBIOS name of the client.

DnsHostName: The fully qualified domain name (FQDN) of the client.

Note The DnsHostName element is not sent by Windows clients from Windows 2000
operating system through Windows 7 operating system and Windows Server 2008 R2
operating system.

User: The sAMAccountName of an account in the domain specified by DnsDomain, DomainSid, or

DomainGuid.

AAC: Represents the userAccountControl attribute of an account.

DomainSid: The SID of a domain.

DomainGuid: The GUID of a domain.

NtVer: NETLOGON_NT_VERSION Options (see section 6.3.1.1).

Example:

(&(DnsDomain=abcde.corp.microsoft.com)(Host=abcdefgh-dev)(User=abcdefgh-

dev$)(AAC=\80\00\00\00)(DomainGuid=\3b\b0\21\ca\d3\6d\d1\11\8a\7d\b8\df\b1\56\87\1f)(NtV
er=\06\00\00\00))

Network payload:

A0 84 00 00 00 A8 A3 84 00 00 00 25 04 09 44 ?...¨£?...%..D

6E 73 44 6F 6D 61 69 66 04 18 61 62 63 64 65 nsDomain..abcde

2E 63 6F 72 70 2E 6D 69 63 72 6F 73 6F 66 74 .corp.microsoft

2E 63 6F 6D A3 84 00 00 00 14 04 04 48 6F 73 .com£?......Hos

74 04 0C 61 62 63 64 65 66 67 68 2D 64 65 76 t..abcdefgh-dev

A3 84 00 00 00 15 04 04 55 73 65 72 04 0D 61 £?......User..a

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf

606 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

62 63 64 65 66 67 68 2D 64 65 76 24 A3 84 00 bcdefgh-dev$£?.

00 00 0B 04 03 41 41 43 04 04 80 00 00 00 A3 AAC..?...£?

84 00 00 00 1E 04 0A 44 6F 6D 61 69 6E 47 75 DomainGu

69 64 04 10 3B B0 21 CA D3 6D D1 11 8A 7D B8 id..;°!ÊÓmÑ.?}¸

DF B1 56 87 1F A3 84 00 00 00 0D 04 05 4E 74 ß±V?.£?......Nt

56 65 72 04 04 06 00 00 00 30 84 00 00 00 0A Ver......0?....

04 08 6E 65 74 6C 6F 67 6F 6E ..netlogon

6.3.3.1 Syntactic Validation of the Filter

If any of the elements is specified more than once, then the filter is invalid.

If the value of the string passed with DomainGuid has a different size than the size of GUID ([MS-
DTYP] section 2.3.4), then the filter is invalid.

If the numeric value of the string passed with AAC is longer than the largest unsigned integer that

can be represented in a DWORD or has an unsupported bit set, then the filter is invalid.

If the numeric value of the string passed with NtVer is longer than the largest unsigned integer that
can be represented in a DWORD or has an unsupported bit set, then the filter is invalid.

The response of the DC for the invalid filter case is documented in section 6.3.3.3.

The DC MUST ignore any unrecognized filter elements.

6.3.3.2 Domain Controller Response to an LDAP Ping

Let reqGuidNC be set as follows:

If the filter does not include the (DomainGuid=domainGuid) clause, reqGuidNC is set to NULL.

If the filter includes the (DomainGuid=domainGuid) clause:

If domainGuid is not a valid GUID, the response of the DC is documented in section 6.3.3.3.

If there is no NC hosted by the server whose GUID is domainGuid, the response of the DC is

documented in section 6.3.3.3.

Otherwise, reqGuidNC is set to the NC hosted by the server whose GUID is domainGuid.

Let reqDnsNC be set as follows:

If the filter does not include the (DnsDomain=dnsDomain) clause:

If reqGuidNC is NULL, reqDnsNC is set to the default NC hosted by the server.

If reqGuidNC is not NULL, reqDnsNC is set to NULL.

If the filter includes the (DnsDomain=dnsDomain) clause:

If dnsDomain is empty, the response of the DC is documented in section 6.3.3.3.

If there is no NC hosted by the server whose DNS name is dnsDomain, the response of the DC

is documented in section 6.3.3.3.

Otherwise, reqDnsNC is set to the NC hosted by the server whose DNS name is dnsDomain.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-DTYP%5d.pdf

607 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Let reqNCUsed be set as follows:

If reqGuidNC is NULL, then reqNCUsed is set to reqDnsNC.

If reqDnsNC is NULL, then reqNCUsed is set to reqGuidNC.

If neither reqGuidNC nor reqDnsNC are NULL, then reqNCUsed is set to either reqGuidNC or

reqDnsNC. The protocol does not specify which value is used, nor that a DC is consistent in which
value is used.

Let reqSidNC be set as follows:

If the filter does not include the (DomainSid=domainSid) clause, reqSidNC is set to NULL.

If the filter includes the (DomainSid=domainSid) clause:

If domainSid is not a valid sid, the response of the DC is documented in section 6.3.3.3.

If there is no NC hosted by the server whose Sid is domainSid, the response of the DC is

documented in section 6.3.3.3.

If domainSid is not equal to the SID of NC reqNCUsed, the response of the DC is documented

in section 6.3.3.3.

Otherwise, reqSidNC is set to the NC hosted by the server whose SID is domainSid.

Let u be set as follows:

If the filter does not include the (User=user) clause, then u is set to NULL.

If filter includes the (User=user) clause, then u is set to the supplied value.

Let x be as follows:

Let y be an object in NC reqNCUsed where y!sAMAccountName = u.

If there is no such object y, then x is set to NULL.

If there is an object y, x is set as:

Let aac be set as follows:

If the filter does not include the (AAC=aac) clause, then aac is set to 0.

If filter includes the (AAC = aac) clause, then aac is set to the supplied value.

Let uac be set to y!userAccountControl.

If uac has the USER_ACCOUNT_DISABLED ([MS-SAMR] section 2.2.1.12) bit set, then

let x be equal to NULL.

If (aac & uac & USER_TEMP_DUPLICATE_ACCOUNT | USER_NORMAL_ACCOUNT |

USER_INTERDOMAIN_TRUST_ACCOUNT | USER_WORKSTATION_TRUST_ACCOUNT |
USER_SERVER_TRUST_ACCOUNT [MS-SAMR] section 2.2.1.12) is zero, then let x be
equal to NULL. The effect of doing this is so that the server only checks
USER_TEMP_DUPLICATE_ACCOUNT | USER_NORMAL_ACCOUNT |
USER_INTERDOMAIN_TRUST_ACCOUNT | USER_WORKSTATION_TRUST_ACCOUNT |

USER_SERVER_TRUST_ACCOUNT bits.

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf

608 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Otherwise, set x to y.

Let s be set as follows:

If there is only one site object in the Sites Container (section 6.1.1.2.2), set s to the name of

that site.

If there are multiple site objects in the Sites Container, let sno be a subnet object in the Subnets

Container (section 6.1.1.2.2.2) where sno!name represents the range of IP addresses, which
includes the client's IP address (see section 6.1.1.2.2.2.1).

If there is no such object sno, then s is set to NULL.

If there is an object sno, s is set as follows:

If sno!siteObject has a value, let so be the site object referred to by this attribute value

(see section 6.1.1.2.2.2.1). Set s to so!name.

If sno!siteObject does not contain a value, set s to NULL.

Note In Windows, the server computes the client's IP address from the client's socket address. If
the NtVer filter element has the NETLOGON_NT_VERSION_5EX or

NETLOGON_NT_VERSION_5EX_WITH_IP bit set, and if the client's site cannot be computed from the
client's socket address, then the server computes the client's IP address by using either the FQDN of
the client, which is found in the DnsHostName filter element (if present), or the NetBIOS name of
the client, which is found in the Host filter element (section 6.3.3). The server then uses the IP
address to determine the site.

Let v be the NtVer requested by the client in the search filter.

If the server is configured to respond to ping requests in the form of a

NETLOGON_SAM_LOGON_RESPONSE_NT40 structure, and v does not have the
NETLOGON_NT_VERSION_AVOID_NT4EMUL bit set (for an informative example of how and why
this is configured in the Windows implementation, see [MSKB-298713]), the server uses the

NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to send the response.

Else, if v has the NETLOGON_NT_VERSION_5EX or NETLOGON_NT_VERSION_5EX_WITH_IP bit

set, the server uses the NETLOGON_SAM_LOGON_RESPONSE_EX structure to send the response.

Else, if v has the NETLOGON_NT_VERSION_5 bit set, the server uses the

NETLOGON_SAM_LOGON_RESPONSE structure to send the response.

For all other cases, the server uses the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to

send the response.

Let t be set as follows:

When the NetLogon service is in a paused state, if v does not have the

NETLOGON_NT_VERSION_PDC bit set or the server is not a PDC, let t be 1.

If the value of rootDSE attribute isSynchronized (see section 3.1.1.3) is false, let t be 1.

When the NetLogon RPC server is not initialized, if v does not have the

NETLOGON_NT_VERSION_LOCAL bit set, let t be 1.

If the FRS service is in a paused state, let t be 1.

Otherwise, let t be 0.

http://go.microsoft.com/fwlink/?LinkId=122947

609 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

After the preceding processing has occurred, if the server has not responded to an invalid filter (as
documented in section 6.3.3.3), the server returns an LDAP SearchResultEntry to the client with the

following form:

The ObjectName of the SearchResultEntry is NULL and the attribute list contains one attribute.

This attribute is named "Netlogon" and its value is a little-endian octet string packed in
NETLOGON_SAM_LOGON_RESPONSE_EX, NETLOGON_SAM_LOGON_RESPONSE, or
NETLOGON_SAM_LOGON_RESPONSE_NT40, depending on value v.

If the server uses NETLOGON_SAM_LOGON_RESPONSE_EX to pack the value, it does the

following:

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE_EX if t is equal to 1. Set to

LOGON_SAM_USER_UNKNOWN_EX if u is not NULL, but x is NULL. Set to
LOGON_SAM_LOGON_RESPONSE_EX in other cases.

Flags:

Bit values are taken from DS_FLAGS in section 6.3.1.2.

If the server holds the PDC FSMO role (see section 3.1.1.1.11), the DS_PDC_FLAG bit is

set.

If the server is a global catalog server, the DS_GC_FLAG bit is set. This bit is set if and only

if the isGlobalCatalogReady attribute on the rootDSE is true (see section 3.1.1.3.2.10).

If the server is a KDC, the DS_KDC_FLAG bit is set.

If the server is running the Win32 Time Service, as specified in [MS-W32T] and indicated

by bit field A in the ServiceBits flag in the NetLogon Remote Protocol ([MS-NRPC] section

3.5.1), the DS_TIMESERV_FLAG bit is set.

If the server is in the same site as the client, the DS_CLOSEST_FLAG bit is set.

If the server is not an RODC, the DS_WRITABLE_FLAG bit is set. [MS-DRSR] section 5.7,

AmIRODC, explains how to determine if a DC is an RODC.

If the server is configured to be a reliable time source (the way in which the configuration

can be done is outside the scope of the state model and is implementation-dependent) as
indicated by bit field B in the ServiceBits flag in the NetLogon Remote Protocol ([MS-NRPC]
section 3.5.1), the DS_GOOD_TIMESERV_FLAG bit is set.

If the DnsDomain value specified in the search filter is an application NC, the

DS_NDNC_FLAG bit is set.

If the server is an RODC, the DS_SELECT_SECRET_DOMAIN_6_FLAG bit is set.

If the server is a writable DC and not running Windows 2000 Server operating system or

Windows Server 2003 operating system, the DS_FULL_SECRET_DOMAIN_6_FLAG bit is set.

If the server is running the Active Directory Web Service, as specified in [MS-ADDM] and

indicated by the bit field C in the ServiceBits flag in the Netlogon Remote Protocol ([MS-
NRPC] section 3.5.1), the DS_WS_FLAG bit is set.

If the server is running Windows Server 2012 operating system or Windows Server 2012

R2 operating system, the DS_DS_8_FLAG bit is set.

If the server is running Windows Server 2012 R2, the DS_DS_9_FLAG bit is set.

%5bMS-W32T%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-ADDM%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf

610 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Always set the DS_LDAP_FLAG and DS_DS_FLAG bits.

All the other bits of DS_FLAG are set to 0.

DomainGuid: Set to the GUID of NC reqNCUsed.

DnsForestName: Set to the DNS name of the forest.

DnsDomainName: Set to the DNS name of the NC reqNCUsed.

DnsHostName: Set to the DNS name of the server.

NetbiosDomainName: Set to the NetBIOS name of the NC reqNCUsed.

NetbiosComputerName: Set to the NetBIOS name of the server.

UserName: Set to u.

DcSiteName: Set to the site name of the server.

ClientSiteName: Set to the site s.

DcSockAddrSize: Set to the size of the server's IP address.

SockAddr: Set to the IP address of the server.

NextClosestSiteName: If v has NETLOGON_NT_VERSION_WITH_CLOSEST_SITE and the DC
has DC functional level DS_BEHAVIOR_WIN2008 or greater, use IDL_DRSQuerySitesByCost
([MS-DRSR] section 4.1.16) to find the site C that is closest to ClientSiteName but not equal

to ClientSiteName, and set this field to C. Otherwise omit this field.

NtVersion: If the NextClosestSiteName field is set, set this field to
{NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE,
NETLOGON_NT_VERSION_5EX}; otherwise set this field to {NETLOGON_NT_VERSION_1,
NETLOGON_NT_VERSION_5EX}.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

If the server uses NETLOGON_SAM_LOGON_RESPONSE to pack the value, it does the

following:

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to
LOGON_SAM_USER_UNKNOWN if u is not NULL, but x is NULL. Set to
LOGON_SAM_LOGON_RESPONSE in other cases.

UnicodeLogonServer: Set to the NetBIOS name of the server.

UnicodeUserName: Set to u.

UnicodeDomainName: Set to the NetBIOS name of the domain.

DomainGuid: Set to the GUID of the domain.

SiteGuid: Always set to NULL GUID.

DnsForestName: Set to the DNS name of the forest.

%5bMS-DRSR%5d.pdf

611 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

DnsDomainName: Set to the DNS name of the domain.

DnsHostName: Set to the DNS name of the server.

DcIpAddress: Set to the IP address of the server.

Flags: If the server is a PDC, bit DS_PDC_FLAG is set; bit DS_DS_FLAG is always set; all the

other bits of DS_FLAG are set to 0.

NtVersion: Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

If the server uses NETLOGON_SAM_LOGON_RESPONSE_NT40 to pack the value, it does the

following:

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if u is not NULL, but x

is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding conditions are met,
set to LOGON_SAM_LOGON_RESPONSE.

UnicodeLogonServer: Set to the NetBIOS name of the server.

UnicodeUserName: Set to u.

UnicodeDomainName: Set to the NetBIOS name of the domain.

NtVersion: Set to NETLOGON_NT_VERSION_1.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

LdapResult of SearchResultDone entry is set to 0 (success).

6.3.3.3 Response to Invalid Filter

If the filter is not syntactically valid for any of the cases specified in the preceding sections, the
server returns an LDAP SearchResultEntry with the following form:

The ObjectName of the SearchResultEntry is NULL. Attribute of SearchResultEntry is NULL. And
LdapResult of SearchResultDone entry is set to 0 (success).

6.3.4 NetBIOS Broadcast and NBNS Background

If a server is in a domain whose NetBIOS name is d, it registers <d>[1C] records, and <d>[1B]
records if it is a PDC, to the NBNS(WINS) server. A client can retrieve those records by either

broadcasting or querying against NBNS(WINS) directly.

For more information, see [RFC1001] and [RFC1002].

6.3.5 Mailslot Ping

This section describes the usage of mailslot messages to verify the aliveness of the DC and also to
check whether that DC matches a specific set of requirements. This operation is commonly referred
to as a mailslot ping.

http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

612 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The server creates a mailslot (as specified in [MS-MAIL] section 3.2.4.1) with the name
\\mailslot\net\netlogon and listens to this mailslot [MS-MAIL] section 3.2.4.2. If the opcode of the

mailslot message (hereafter in this section referred to simply as "message") is set to
LOGON_PRIMARY_QUERY, it interprets the message as a NETLOGON_LOGON_QUERY structure;

otherwise, it interprets the message as a NETLOGON_SAM_LOGON_REQUEST.

The server then completes the following processing:

If the opcode is set to LOGON_PRIMARY_QUERY and the server is not the PDC, the DC ignores the
message without sending a response back to the client. If the opcode is set to
LOGON_SAM_LOGON_REQUEST and NtVer is not NETLOGON_NT_VERSION_5, the DC ignores the
message without sending a response back to the client. The server determines whether or not it is
the PDC by calling the IsEffectiveRoleOwner(roleObject(Default NC, PdcEmulationMasterRole))

function. If the function returns true, the server is the PDC, otherwise it is not. See section
3.1.1.5.1.8 for more information.

If DomainSidSize is not zero, it checks whether the default NC has the same SID; if it does not,
the server ignores the message without sending a response back to the client.

If UnicodeUserName is specified, it is processed in the same way as the User value in section
6.3.3.2.

Let v be the NtVer requested by the client.

If dc.nt4EmulatorEnabled is TRUE, and v does not have the

NETLOGON_NT_VERSION_AVOID_NT4EMUL bit set, the server uses the
NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to send the response.

Else, if v has the NETLOGON_NT_VERSION_5EX or NETLOGON_NT_VERSION_5EX_WITH_IP bit

set, the server uses the NETLOGON_SAM_LOGON_RESPONSE_EX structure to send the response.

Else, if v has the NETLOGON_NT_VERSION_5 bit set, the server uses the

NETLOGON_SAM_LOGON_RESPONSE structure to send the response.

Else, if v has the NETLOGON_NT_VERSION_PDC bit set, the server uses the

NETLOGON_PRIMARY_RESPONSE structure to send the response.

For all other cases, the server uses the NETLOGON_SAM_LOGON_RESPONSE_NT40 structure to

send the response.

Let t be 0.

When the NetLogon service is in a paused state, if v does not have the

NETLOGON_NT_VERSION_PDC bit set or server is not a PDC, let t be 1.

If the value of rootDSE attributes isSynchronized (see section 3.1.1.3) is false, let t be 1.

When the NetLogon RPC server is not initialized, if v does not have the

NETLOGON_NT_VERSION_LOCAL bit set, let t be 1.

If the FRS is in a paused state, let t be 1.

Then, the server sends a response back to the mailslot named in the client's request. The response
message is packed in the NETLOGON_SAM_LOGON_RESPONSE structure, the
NETLOGON_PRIMARY_RESPONSE structure, or the NETLOGON_SAM_LOGON_RESPONSE_NT40

structure, depending on the value of v.

If the server uses NETLOGON_SAM_LOGON_RESPONSE to pack the value, it does the following:

%5bMS-MAIL%5d.pdf
%5bMS-MAIL%5d.pdf

613 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to
LOGON_SAM_USER_UNKNOWN if UnicodeUserName is not NULL, but x is NULL. Set to

LOGON_SAM_LOGON_RESPONSE in other cases.

UnicodeLogonServer: Set to the NetBIOS name of the server.

UnicodeUserName: Set to UnicodeUserName filed in the request
NETLOGON_SAM_LOGON_REQUEST message.

UnicodeDomainName: Set to the NetBIOS name of the domain.

DomainGuid: Set to the GUID of the domain.

SiteGuid: Always set to NULL GUID.

DnsForestName: Set to the DNS name of the forest.

DnsDomainName: Set to the DNS name of the domain.

DnsHostName: Set to the DNS name of the server.

DcIpAddress: Set to the IP address of the server.

Flags: If the server is a PDC, bit DS_PDC_FLAG is set; bit DS_DS_FLAG is always set; all the
other bits of DS_FLAG are set to 0.

NtVersion: Set to NETLOGON_NT_VERSION_1 | NETLOGON_NT_VERSION_5.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

If the server uses NETLOGON_SAM_LOGON_RESPONSE_NT40 to pack the value, it does the

following:

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if UnicodeUserName is
not NULL, but x is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding
conditions are met, set to LOGON_SAM_LOGON_RESPONSE.

UnicodeLogonServer: Set to the NetBIOS name of the server.

UnicodeUserName: Set to UnicodeUserName filed in the request
NETLOGON_SAM_LOGON_REQUEST message.

UnicodeDomainName: Set to the NetBIOS name of the domain.

NtVersion: Set to NETLOGON_NT_VERSION_1.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

If the server uses NETLOGON_PRIMARY_RESPONSE to pack the value, it does the following:

OperationCode: If t is 1, set to LOGON_SAM_PAUSE_RESPONSE. Else, if UnicodeUserName is
not NULL, but x is NULL, set to LOGON_SAM_USER_UNKNOWN. If none of the preceding
conditions are met, set to LOGON_PRIMARY_RESPONSE.

PrimaryDCName: Set to the ASCII value of the NetBIOS name of the server.

614 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UnicodePrimaryDCName: Set to the Unicode value of the NetBIOS name of the server.

UnicodeDomainName: Set to the NetBIOS name of the domain.

NtVersion: Set to NETLOGON_NT_VERSION_1.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

If the server uses NETLOGON_SAM_LOGON_RESPONSE_EX to pack the value, it does the

following:

OperationCode: Set to LOGON_SAM_PAUSE_RESPONSE if t is equal to 1. Set to
LOGON_SAM_USER_UNKNOWN if UnicodeUserName is not NULL, but x is NULL. Set to
LOGON_SAM_LOGON_RESPONSE_EX in other cases.

Sbz: Always set to 0x0.

Flags: Set to the value produced for the Flags value in section 6.3.3.2.

DomainGuid: Set to the GUID of the domain.

DnsForestName: Set to the DNS name of the forest.

DnsDomainName: Set to the DNS name of the domain.

NetbiosDomainName: Set to the NetBIOS name of the domain.

NetbiosComputerName: Set to the NetBIOS name of the server.

UserName: Set to UnicodeUserName field in the request NETLOGON_SAM_LOGON_REQUEST
message.

DcSiteName: Set to the site name of the server.

ClientSiteName: Set to the site name of the client as produced by the algorithm in section
6.3.3.2.

DcSockAddrSize: If v has the NETLOGON_NT_VERSION_5EX_WITH_IP bit set, set to the size of

the server's IP address.

DcSockAddr: If v has the NETLOGON_NT_VERSION_5EX_WITH_IP bit set, set to the IP address
of the server.

NextClosestSiteName: If v has NETLOGON_NT_VERSION_WITH_CLOSEST_SITE and the DC
has DC functional level DS_BEHAVIOR_WIN2008 or greater, use IDL_DRSQuerySitesByCost
([MS-DRSR] section 4.1.16) to find the site C that is closest to ClientSiteName but not equal to
ClientSiteName, and set this field to C. Otherwise omit this field.

NtVersion: If the NextClosestSiteName field is set and the DcSockAddr field is not set, set

this field to {NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE,
NETLOGON_NT_VERSION_5EX}; if the NextClosestSiteName field is not set and the
DcSockAddr field is set, set this field to {NETLOGON_NT_VERSION_1,
NETLOGON_NT_VERSION_5EX, NETLOGON_NT_VERSION_5EX_WITH_IP}; if the
NextClosestSiteName field is set and the DcSockAddr field is set, set this field to
{NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_WITH_CLOSEST_SITE,

%5bMS-DRSR%5d.pdf

615 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

NETLOGON_NT_VERSION_5EX, NETLOGON_NT_VERSION_5EX_WITH_IP};otherwise set this field
to {NETLOGON_NT_VERSION_1, NETLOGON_NT_VERSION_5EX}.

LmNtToken: Always set to 0xFFFF.

Lm20Token: Always set to 0xFFFF.

6.3.6 Locating a Domain Controller

There are two ways to locate a domain controller: DNS-based discovery and NetBIOS-based
discovery.

6.3.6.1 DNS-Based Discovery

For DNS-based discovery, the client machine can issue the following DNS queries:

To locate an LDAP server hosting NC N, the client machine issues a DNS query for the SRV record

_ldap._tcp.N, constructed from the NC name (N).

To locate an LDAP server hosting NC N in site Y, the client machine issues a DNS query for the

SRV record _ldap._tcp.Y._sites.N, constructed from the NC name (N) and the site name (Y).

To locate domain controller (DC) hosting NC N, the client machine issues a DNS query for the

SRV record _ldap._tcp.dc._msdcs.N, constructed from the NC name (N).

To locate a DC hosting NC N in site Y, the client machine issues a DNS query for the SRV record

_ldap._tcp.Y._sites.dc._msdcs.N, constructed from the NC name (N) and the site name (Y).

To locate a DC hosting default NC X whose GUID is G in forest Z, the client machine issues a DNS

query for the SRV record _ldap._tcp.G.domains._msdcs.Z, constructed from the default NC's
GUID (G) and the forest name (Z).

To locate a DC that is hosting default NC X and that is also a PDC, the client machine issues a

DNS query for the SRV record _ldap._tcp.pdc._msdcs.X, constructed from the NC name (X).

To locate a DC in forest Z that is a GC server, the client machine issues a DNS query for the SRV

record _gc._tcp.Z, constructed from the forest name (Z).

To locate DC in forest Z, site Y that is a GC server, the client machine issues a DNS query for the

SRV record _gc._tcp.Y._sites.Z, constructed from the forest name (Z) and the site name (Y).

To locate a server that is running the Kerberos Key Distribution Center service over TCP for

default NC X, the client machine issues a DNS query for the SRV record _kerberos._tcp.X,
constructed from the default NC name (X).

To locate a server that is running the Kerberos Key Distribution Center service over UDP for

default NC X, the client machine issues a DNS query for the SRV record _kerberos._udp.X,

constructed from the default NC name (X).

To locate a server in site Y that is running the Kerberos Key Distribution Center service over TCP

for default NC X, the client machine issues a DNS query for the SRV record
_kerberos._tcp.Y._sites.X, constructed from the default NC name (X) and the site name (Y).

To locate a DC that is running the Kerberos Key Distribution Center service over TCP and that

also hosts default NC X, the client machine issues a DNS query for the SRV record
_kerberos.tcp.dc._msdcs.X, constructed from the default NC name (X).

616 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

To locate a DC in site Y that is running the Kerberos Key Distribution Center service over TCP and

that also hosts default NC X, the client machine issues a DNS query for the SRV record

_kerberos.tcp.Y._sites.dc._msdcs.X, constructed from the default NC name (X) and the site name

(Y).

To locate a server that is running the Kerberos Password Change service over TCP for default NC

X, the client machine issues a DNS query for the SRV record _kpasswd._tcp.X, constructed from
the default NC name (X).

To locate a server that is running the Kerberos Password Change service over UDP for default NC

X, the client machine issues a DNS query for the SRV record _kpasswd._udp.X, constructed from

the default NC name (X).

The DNS query returns a list of SRV records that match this query. The target field of the SRV
record contains the FQDN of the server.

Upon receiving the DNS query results, the client machine retrieves the IP addresses corresponding
to each server (via DNS A/AAAA queries) and sends an LDAP ping to the retrieved addresses in

weighted random order [RFC2782]. If a server has multiple IP addresses, the client pings all of them
before pinging the next server in the weighted random order. The client attempts the intended

protocol request to the first server address that responds to the ping.

6.3.6.2 NetBIOS-Based Discovery

To locate a domain controller using NetBIOS-based discovery, the client either queries a Windows
Internet Name Service (WINS) server or performs broadcasting. To find a domain controller in
domain fabrikam, the client either sends a NetBIOS name query for <fabrikam>[1C] to the WINS
server or broadcasts for <fabrikam>[1C] record. And if the client wants to find a primary domain

controller, it issues a name query for <fabrikam>[1B] to the WINS server or broadcasts for
<fabrikam>[1B] record.

Upon receiving the list of matching records from WINS or broadcasting, the client either contacts
servers (attempts the intended protocol request) or sends a mailslot ping (section 6.3.5) to servers

first, and then attempts the intended protocol request to a server that responded to the ping.

6.3.7 Name Compression and Decompression

The server can choose any compression algorithm, as long as the compressed stream can be
decompressed using the following name decompression algorithm. When the server compresses the
names for the LDAP ping response, if compression fails, the response of the server is documented in
"Response to Invalid filter" (section 6.3.3.3). When the server compresses the names for the
mailslot ping response, if compression fails, the server does not send any response back to the
client.

Name Decompression Algorithm

--

-- On Entry: InputBuffer - a buffer of compressed data, treated as

-- bytes

-- InputBufferSize - The number of bytes in the InputBuffer

-- StringCount - number of strings needed to be

-- decompressed from InputBuffer

-- Current – Index into the buffer that contains the first

-- byte of the compressed strings

--

-- On Exit: OutputBuffers - an array of decompressed strings

http://go.microsoft.com/fwlink/?LinkId=90381

617 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

-- Success - Set to TRUE if decompression succeeds, set to

-- FALSE if decompression fails.

-- Current – Index of the byte in the message succeeding the last

-- byte of the compressed string block

SET deCompressedCount = 0

SET localCurrent = 0

FOR i = 1 to StringCount

 SET dnsNameLen = 0

 SET firstLabel = 0

 allocate a buffer s[InputBufferSize]

 WHILE Current < InputBufferSize

 SET labelSize = InputBuffer[Current]

 IF labelSize == '\0' THEN

 s[dnsNameLen] = '\0'

 OutputBuffers[deCompressedCount] = s

 deCompressedCount++

 Current++

 BREAK

 ELSE IF (labelSize & 0xC0) != 0 THEN

 Current++

 localCurrent = Current + 1

 labelSize = InputBuffer[Current]

 IF labelSize > InputBufferSize THEN

 Success = FALSE

 RETURN

 END IF

 Current = labelSize

 CONTINUE

 ELSE

 IF (labelSize + Current) >= InputBufferSize THEN

 Success = FALSE

 RETURN

 END IF

 IF firstLabel == 0 THEN

 firstLabel = 1

 ELSE

 s[dnsNameLen] = '.'

 dnsNameLen++

 ENDIF

 Append

 substring InputBuffer[Current + 1, Current + labelSize]

 to s

 dnsNameLen += labelSize

 IF localCurrent != 0 THEN

 Current = localCurrent

 localCurrent = 0

 ELSE

 Current = Current + 1 + labelSize

 END IF

 END IF

 END WHILE

 If i <> deCompressedCount THEN

618 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 Success = FALSE

 RETURN

 ENDIF

END FOR

Success = TRUE

RETURN

6.3.8 AD LDS DC Publication

If an AD LDS DC is running on a computer joined to an AD DS domain, the AD LDS DC SHOULD (if
certain conditions are met, as described later in this section) create a serviceConnectionPoint object
in the AD DS forest of the domain to which it is joined. Clients MAY use this serviceConnectionPoint

object to locate this AD LDS DC.

Let O be the msDS-ServiceConnectionPointPublicationService object in the AD LDS forest whose DN
is "CN=SCP Publication Service" relative to the nTDSService object in the config NC (the DN of the
nTDSService object is "CN=Directory Service, CN=Windows NT, CN=Services" relative to the root of

the config NC).

An AD LDS DC SHOULD create (or update, if the object already exists) a serviceConnectionPoint
object unless one of the following conditions is true:

O (the msDS-ServiceConnectionPointPublicationService object defined previously) exists and

O!Enabled = false.

O exists and O!msDS-DisableForInstances contains the DN of the nTDSDSA object of the replica.

If the LDAP add or modify operation to create or update the serviceConnectionPoint object fails for
any reason, including lack of permission to create or update the serviceConnectionPoint object, the
AD LDS DC SHOULD retry periodically until the operation succeeds.

The created (or updated) serviceConnectionPoint object S satisfies the following:

If O exists and O!msDS-SCPContainer is non-null, then the DN of S is "CN={dsaGuid}" relative

to O!msDS-SCPContainer, where dsaGuid is the DC's DSA GUID. Otherwise, the DN of S is
"CN={dsaGuid}" relative to the computer object of the machine running AD LDS.

S!serviceDNSNameType = "A"

S!serviceClassName = "LDAP"

S!serviceDNSName is the DNS name of the computer on which the AD LDS DC is running.

S!serviceBindingInformation contains two values, "ldap://dnsName:ldapPort" and

"ldaps://dnsName:ldapsPort", where dnsName is the DNS name of the computer on which the
AD LDS DC is running, ldapPort is the port on which the AD LDS DC is listening for LDAP
requests, and ldapsPort is the port on which the AD LDS DC is listening for SSL/TLS-protected

LDAPS requests.

S!keywords contains the following values:

The DSA GUID.

For each value of the supportedCapabilities attribute of the rootDSE, a string containing that

value.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADLS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf

619 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The string "site:siteName" where siteName is the name of the site in which the AD LDS DC

is located.

The string "instance:instanceName" where instanceName is a name configured for this AD

LDS DC, unique among all AD LDS DCs on the machine running the DC.

If this AD LDS DC has the Schema Master FSMO role, the string "fsmo:schema".

If the AD LDS DC has the Domain Naming FSMO role, the string "fsmo:naming".

For each NC-replica on the AD LDS DC, excluding the NC-replica of the schema NC:

The string "partition:ncName" where ncName is the DN of the NC.

The NC GUID (that is, the value of the objectGUID attribute for the root of the NC).

If O exists, the values (if any) present on O!keywords. (See section 6.1.1.2.4.1.5.)

For example, suppose an AD LDS replica is running on a computer whose DNS name is "adlds-

01.fabrikam.com", has a DSA GUID of {d07c66ed-b55e-4472-b09c-1ae35980}, possesses both
FSMO roles, and has a single application NC whose name is "CN=FirstAppNC" and whose GUID is

{32079ab-9e49-4c4e-ad36-0f2b8a63f12b}. Further assume that it is listening on ports 50000 and
50001 for LDAP and LDAPS traffic, respectively, is located in a site named "Default-First-Site-
Name", has an instance name of "TestInstance", and there are no keywords on O!keywords. The
resulting serviceConnectionPoint object could be as follows (depending on the DN and GUID of the
config NC).

S!serviceDnsNameType = "A"

S!serviceClassName = "LDAP"

S!serviceDNSName = "adlds-01.fabrikam.com"

S!serviceBindingInformation = {

 "ldap://adlds-01.fabrikam.com:50000",

 "ldaps://adlds-01.fabrikam.com:50001"

 }

S!keywords = {

 "d07c66ed-b55e-4472-b09c-1ae35980",

 "1.2.840.113556.1.4.1851",

 "1.2.840.113556.1.4.1791",

 "site:Default-First-Site-Name",

 "instance:TestInstance",

 "fsmo:schema",

 "fsmo:naming",

 "partition:CN=FirstAppNC",

 "32079ab-9e49-4c4e-ad36-0f2b8a63f12b",

 "partition:CN=Configuration,CN={FD783EE9-0216-4B83-8A2A-

 60E45AECCB81}",

 "23b65d43-a701-44b9-9e04-a6555df722eb"

 }

6.4 Domain Join

A machine is said to be "joined to a domain" if certain state exists on the machine and in the domain
NC. The necessary state is specified in the remainder of this section. The state enables the machine
and the domain to mutually authenticate using various protocols (for example, [MS-NRPC]).

%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-NRPC%5d.pdf

620 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6.4.1 State of a Machine Joined to a Domain

The following variables are part of the state of any machine joined to a domain:

domain-secret: An even-numbered sequence of bytes, with no embedded zero values, containing

the secret shared between the machine and the domain. There are no minimum or maximum
length constraints imposed on domain-secret; implementations MUST NOT assume any such
limitations.

machine-account-name: The sAMAccountName of the machine's computer object within the

domain.

domain-name: A tuple containing:

netbios: The NetBIOS name of the domain

dns: The fully qualified DNS name of the domain

If the domain has a DNS name, domain-name.dns contains it. If the domain has a NetBIOS
name, domain-name.netbios contains it. The value of at least one of these variables is not NULL.

domain-locator: Implementation-specific state sufficient to locate a domain controller of the

domain. If the implementation is capable of locating a domain controller given domain-name,
then domain-locator can be NULL.

supported-encryption-types: A set of encryption algorithms that can be used by the Key

Distribution Center (KDC) to generate tickets for the machine account. This value can be NULL if
the machine supports default encryption types used by a given implementation of the KDC.

The specific choices made in implementing a machine joined to a domain (for example, for

representing these variables and for generating names) are outside the state model. For Windows,
machine-account-name equals the machine name (result of GetComputerName) with "$" appended,
and domain-locator is NULL.

6.4.2 State in an Active Directory Domain

A machine m that is a member of an Active Directory domain d has a corresponding object o in d's

domain NC. The object o is called the machine account of the joined machine m. The objectClass
attribute of o contains the class computer. In addition to objectClass, the following attributes of o
are significant to the membership of m in d:

userAccountControl

sAMAccountName

unicodePwd

dNSHostName

servicePrincipalName

msDs-supportedEncryptionTypes

The syntax and other details of these attributes are documented in [MS-ADA1], [MS-ADA2], and
[MS-ADA3].

The following predicates are satisfied by the joined machine m's state and the state of object o:

%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA3%5d.pdf

621 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

the domain d's NetBIOS name equals m.domain-name.netbios

the domain d's fully qualified DNS name equals m.domain-name.dns

o!userAccountControl & ADS_UF_WORKSTATION_TRUST_ACCOUNT ≠ 0

o!sAMAccountName equals m.machine-account-name

o!unicodePwd equals m.domain-secret

o!msDs-supportedEncryptionTypes equals m.supported-encryption-types, in the format specified

in [MS-KILE] section 2.2.6. This attribute may not be set if m.supported-encryption-types is
NULL.

Section 6.1.1.2.1.1.4 specifies the representation of a domain's NetBIOS name. A domain's fully
qualified DNS name is derived from the DN of its root object, as specified in section 3.1.1.1.5.

The specific choices made in implementing a machine joined to a domain (for example, for

maintaining these variables) are outside the state model. Windows may periodically update
m.domain-secret on the client machine and o.domain-secret in the Windows Active Directory. This
behavior is not required for a functional domain join.

6.4.3 Relationship to Protocols

A joined machine's domain-secret can be used by the Netlogon, NTLM, and Kerberos authentication
protocols as a parameter for machine authentication to the domain. A joined machine's supported-
encryption-types can be used by the Netlogon and Kerberos authentication protocol as a parameter
for machine authentication to the domain. Further Netlogon, NTLM, and Kerberos authentication
protocol documentation can be found in [MS-NRPC], [MS-NLMP], and [MS-KILE], respectively.

6.5 Unicode String Comparison

This section specifies how the Unicode sort methods specified in [MS-UCODEREF] are utilized to
perform comparisons of Unicode strings.

6.5.1 String Comparison by Using Sort Keys

To compare strings, the implementer needs to get a "sort key" for each string (see [MSASRT]). A

binary comparison of the sort keys can then be used to arrange the strings in any desired order.

This section utilizes the GetWindowsSortKey and CompareSortKeys procedures, which are specified
in [MS-UCODEREF].

The flags that need to be passed to GetWindowsSortKey depend on the comparison being
performed. This is specified in the following table.

Comparison being performed Flags (from [MS-UCODEREF])

UnicodeString Comparison Rule (section

3.1.1.2.2.4.13)

LDAP_SERVER_SORT_OID sorting (section

3.1.1.3.4.1.13), except for phonetic display name

sort

NORM_IGNORECASE | NORM_IGNOREKANATYPE |

NORM_IGNORENONSPACE | NORM_IGNOREWIDTH

Phonetic display name sort (section

3.1.1.3.4.1.13)

NORM_IGNORECASE | NORM_IGNORENONSPACE

%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-KILE%5d.pdf
%5bMS-UCODEREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=123584
%5bMS-UCODEREF%5d.pdf

622 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

In order to compare two strings, StringA and StringB, the following procedure is used. The value of
flags is as specified in the table above. The value of LCID is the locale identifier (section 2.2.1) for

the locale being used to compare the strings. To determine what value to pass for LCID, see
sections 3.1.1.2.2.4.13 and 3.1.1.3.4.1.13. Note that when performing phonetic display name sort,

LCID must be set equal to "1.2.840.113556.1.4.1538" (the Japanese sort order).

set SortKeyA to call GetWindowsSortKey(StringA, LCID, flags)

set SortKeyB to call GetWindowsSortKey(StringB, LCID, flags)

set Result to call CompareSortKeys(SortKeyA, SortKeyB)

if Result is "SortKeyA is equal to SortKeyB"

 StringA is considered equal to StringB

else if Result is "SortKeyA is less than SortKeyB"

 StringA is sorted prior to StringB

else

 assert Result must be "SortKeyA is greater than SortKeyB"

 StringA is sorted after StringB

endif

Any sorting mechanism may be used to arrange these strings by comparing their sort keys.

6.6 Claims IDL

For ease of implementation, the full IDL for the data types used for claims is provided as follows,
where "ms-dtyp.idl" is the IDL found in [MS-DTYP] Appendix A.

import "ms-dtyp.idl";

[uuid (BBA9CB76-EB0C-462C-AA1B-5D8C34415701),

 version(1.0),

 pointer_default(unique)

]

interface Claims

{

 typedef [string] wchar_t *CLAIM_ID;

 typedef [string] wchar_t **PCLAIM_ID;

 typedef enum _CLAIM_TYPE

 {

 CLAIM_TYPE_INT64 = 1,

 CLAIM_TYPE_UINT64 = 2,

 CLAIM_TYPE_STRING = 3,

 CLAIM_TYPE_BOOLEAN = 6

 } CLAIM_TYPE, *PCLAIM_TYPE;

 typedef enum _CLAIMS_SOURCE_TYPE

 {

 CLAIMS_SOURCE_TYPE_AD = 1,

 CLAIMS_SOURCE_TYPE_CERTIFICATE

 } CLAIMS_SOURCE_TYPE;

 typedef enum _CLAIMS_COMPRESSION_FORMAT

 {

 COMPRESSION_FORMAT_NONE = 0,

 COMPRESSION_FORMAT_LZNT1 = 2,

 COMPRESSION_FORMAT_XPRESS = 3,

 COMPRESSION_FORMAT_XPRESS_HUFF = 4

%5bMS-DTYP%5d.pdf

623 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 } CLAIMS_COMPRESSION_FORMAT;

 typedef struct _CLAIM_ENTRY

 {

 CLAIM_ID Id;

 CLAIM_TYPE Type;

 [switch_is(Type), switch_type(CLAIM_TYPE)]

 union

 {

 [case(CLAIM_TYPE_INT64)]

 struct

 {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] LONG64* Int64Values;

 };

 [case(CLAIM_TYPE_UINT64)]

 struct

 {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] ULONG64* Uint64Values;

 };

 [case(CLAIM_TYPE_STRING)]

 struct

 {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount), string] LPWSTR* StringValues;

 };

 [case(CLAIM_TYPE_BOOLEAN)]

 struct

 {

 [range(1, 10*1024*1024)] ULONG ValueCount;

 [size_is(ValueCount)] ULONG64* BooleanValues;

 };

 [default]

 ;

 } Values;

 } CLAIM_ENTRY,

 *PCLAIM_ENTRY;

 typedef struct _CLAIMS_ARRAY

 {

 CLAIMS_SOURCE_TYPE usClaimsSourceType;

 ULONG ulClaimsCount;

 [size_is(ulClaimsCount)] PCLAIM_ENTRY ClaimEntries;

 } CLAIMS_ARRAY, *PCLAIMS_ARRAY;

 typedef struct _CLAIMS_SET

 {

 ULONG ulClaimsArrayCount;

 [size_is(ulClaimsArrayCount)] PCLAIMS_ARRAY ClaimsArrays;

 USHORT usReservedType;

 ULONG ulReservedFieldSize;

 [size_is(ulReservedFieldSize)] BYTE *ReservedField;

 } CLAIMS_SET, *PCLAIMS_SET;

 typedef struct _CLAIMS_SET_METADATA

 {

 ULONG ulClaimsSetSize;

 [size_is(ulClaimsSetSize)] BYTE *ClaimsSet;

624 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 CLAIMS_COMPRESSION_FORMAT usCompressionFormat;

 ULONG ulUncompressedClaimsSetSize;

 USHORT usReservedType;

 ULONG ulReservedFieldSize;

 [size_is(ulReservedFieldSize)] BYTE *ReservedField;

 } CLAIMS_SET_METADATA, *PCLAIMS_SET_METADATA;

}

625 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

7 Change Tracking

This section identifies changes that were made to the [MS-ADTS] protocol document between the
November 2013 and February 2014 releases. Changes are classified as New, Major, Minor, Editorial,
or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed.
Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor
editorial and formatting changes may have been made, but the technical content of the document is

identical to the last released version.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

626 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section

Tracking number (if

applicable)

 and description

Major

change

(Y or

N)

Change

type

1.2.1

Normative References

67332

Added references for

[XMLSCHEMA1] and [XPATH].

N Content

updated.

3.1.1.3.4.1.3

LDAP_SERVER_DIRSYNC_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.5

LDAP_SERVER_EXTENDED_DN_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.6

LDAP_SERVER_GET_STATS_OID

68041

Updated processing specifics

for when the

SO_EXTENDED_FMT flag is set

and an element of the

StatsResponseValueV4

structure is the empty string.

Y Content

updated.

3.1.1.3.4.1.6

LDAP_SERVER_GET_STATS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.11

LDAP_SERVER_SD_FLAGS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.12

LDAP_SERVER_SEARCH_OPTIONS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.16

LDAP_SERVER_VERIFY_NAME_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.17

LDAP_CONTROL_VLVREQUEST and

LDAP_CONTROL_VLVRESPONSE

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

mailto:dochelp@microsoft.com

627 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Section

Tracking number (if

applicable)

 and description

Major

change

(Y or

N)

Change

type

3.1.1.3.4.1.18

LDAP_SERVER_ASQ_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.19

LDAP_SERVER_QUOTA_CONTROL_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.24

LDAP_SERVER_DN_INPUT_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.27

LDAP_SERVER_POLICY_HINTS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.30

LDAP_SERVER_UPDATE_STATS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.31

LDAP_SERVER_TREE_DELETE_EX_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.32

LDAP_SERVER_SEARCH_HINTS_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.32.1

Require Sort Index

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.32.2

Soft Size Limit

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.1.33

LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.3.4.2.5

LDAP_SERVER_BATCH_REQUEST_OID

67509

Changed the ASN.1 structure

definition to include a name.

Y Content

updated.

3.1.1.11.2.11

TransformClaimsOnTrustTraversal

67332

Clarified the reference for the

Claims Transformation

Algorithm.

N Content

updated.

3.1.1.11.2.13

GetTransformationRulesText

67332

Added XPath information and

restated processing rules in

terms of XPath queries.

Y Content

updated.

628 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

8 Index

A

Abstract data model 79
ACE ordering rules 516
Active Directory

domain join 620
schema overview 107

AD LDS
DC publication 618
special objects 340

Applicability 44
Attributes

special
msDS-AuthenticatedAtDC 526
msDS-Behavior-Version

DC functional level 521
domain NC functional level 522
forest functional level 523

ntMixedDomain 521
overview 521

trust objects
interdomain trust accounts 537
trusted domain object (TDO) 530

Authentication
fast bind - using 411
mutual 412
overview 406
principals – supported types 412
SSL/TLS - using 411
supported methods 406

Authorization
security

access
checking 433
rights 416

AD LDS security context construction 439
background 415
overview 415

B

Background tasks 328

C

Capability negotiation
generally 44
trust objects 529

Change tracking 625
CLAIM_ENTRY structure 73
CLAIM_TYPE enumeration 72
CLAIMS_ARRAY structure 75
CLAIMS_BLOB structure 76
CLAIMS_COMPRESSION_FORMAT enumeration 73
CLAIMS_SET structure 75
CLAIMS_SET_METADATA structure 75
CLAIMS_SOURCE_TYPE enumeration 73
Configuration objects 445

Connections
inter-site 555
intra-site 553
translation 582
unnecessary 581

Critical domain objects 493

D

Data model - abstract 79
DC

existence 513
Default administrators group 520
DNS

based discovery - locating domain controller 615
record registrations

non-SRV records 603
non-timer events 600
overview 599
SRV records 600

DNSRegistrationSettings 597
Domain

controller
AD LDS DC publication 618
DNS record registrations

non-SRV records 603
non-timer events 600
overview 599
SRV records 600

LDAP ping
filter

response to invalid 611
syntactic validation 606

overview 605
response 606

locating
DNS-based discovery 615
DNSRegistrationSettings 597
DS_FLAG options bits 586
NetBIOS -based discovery 616

NETLOGON_NT_VERSION options bits 585
operation code 587
overview 584

mailslot ping 611
name

compression 616
decompression 616

NBNS background 611
NetBIOS broadcast 611
publishing

DNSRegistrationSettings 597
DS_FLAG options bits 586
NETLOGON_NT_VERSION options bits 585
operation code 587
overview 584

join
Active Directory state 620
machine state 620

629 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

overview 619
relationship to protocols 621

naming master FSMO role 526
RID values 68

DS_FLAG options bits 586
DS_REPL_ATTR_META_DATA_BLOB packet 60
DS_REPL_CURSOR_BLOB packet 59
DS_REPL_KCC_DSA_FAILUREW_BLOB packet 55
DS_REPL_NEIGHBORW_BLOB packet 51
DS_REPL_OPW_BLOB packet 56
DS_REPL_QUEUE_STATISTICSW_BLOB packet 58
DS_REPL_VALUE_META_DATA_BLOB packet 62
DynamicObject requirements 549

E

Examples 405

F

Features
optional 341
values - optional 70

Fields - vendor-extensible
generally 44
trust objects 530

Filter
response to invalid 611
syntactic validation 606

Flags
group type 66
schemaFlagsEx 66
search 64
security privilege 67
system 65
userAccountControl bits 69

Forest requirements
DC existence 513
introduction 441
NC existence 513
overview 512

Format_of_referent_of_pmsgOut_dot_V1_dot_pLog
packet 339

FSMO roles
domain naming master 526
infrastructure 528
overview 526
PDC emulator 527
RID master 527
schema master 526

G

Glossary 24
Group

defaulting rules 520
type flags 66

I

Implementers - security - trust objects 549
Informative references 41

Infrastructure FSMO role 528
Inter-site connection creation 555
Intra-site connection creation 553
Introduction 22

K

kCCFailedConnections
refresh 552
remove unneeded 584

kCCFailedLinks
refresh 552
remove unneeded 584

Knowledge consistency checker
connections

translation 582
unnecessary 581

inter-site connection creation 555
intra-site connection creation 553

kCCFailedConnections
refresh 552
remove unneeded 584

kCCFailedLinks
refresh 552
remove unneeded 584

overview (section 6.2 549, section 6.2.2 550)
references 550
RODC NTFRS connection object 584

L

LCID-Locale Mapping Table 45
LDAP

overview 134
ping

domain controller response 606
filter

response to invalid 611
syntactic validation 606

overview 605
security 406

Locating domain controller
DNSRegistrationSettings 597
DS_FLAG options bits 586
NETLOGON_NT_VERSION options bits 585
operation code 587
overview 584

LSAPR_AUTH_INFORMATION packet 539

M

Mailslot ping 611
Messages

overview 45
security

SASL - using 414
SSL/TLS - using 415

syntax 45
transport 45

msDS_dash_TrustForestTrustInfo_Attribute packet
541

msDS-AuthenticatedAtDC 526

630 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

msDS-Behavior-Version
DC functional level 521
domain NC functional level 522
forest functional level 523

MSDS-MANAGEDPASSWORD_BLOB packet 76

N

Name
compression 616
decompression 616

NBNS background 611
NC existence 513
NetBIOS

based discovery - locating domain controller 616
broadcast 611

NETLOGON_LOGON_QUERY packet 588
NETLOGON_NT_VERSION options bits 585
NETLOGON_PRIMARY_RESPONSE packet 589

NETLOGON_SAM_LOGON_REQUEST packet 590
NETLOGON_SAM_LOGON_RESPONSE packet 592
NETLOGON_SAM_LOGON_RESPONSE_EX packet

594
NETLOGON_SAM_LOGON_RESPONSE_NT40 packet

591
Non-SRV records 603
Non-timer events - DNS record registrations 600
Normative references 37
NT4 replication support 333
ntMixedDomain 521

O

Objects
AD LDS special 340
configuration 445
critical domain 493
dynamicObject requirement 549
introduction 441
naming contexts 441
system 506
trust

attributes
interdomain trust accounts 537
trusted domain object (TDO) 530

capability negotiation 529
overview 528
preconditions 529
prerequisites 529
security - implementers 549
transport 530
vendor-extensible fields 530
versioning 529

well-known 495
Operation code 587
Optional

feature values 70
features 341

Overview
generally 42
knowledge consistency checker 550

trust objects 528

Owner defaulting rules 520

P

PCLAIM_ENTRY 73
PCLAIMS_ARRAY 75
PCLAIMS_BLOB 76
PCLAIMS_SET 75
PCLAIMS_SET_METADATA 75
PDC emulator FSMO role 527
Ping

LDAP 605
mailslot 611

Preconditions
generally 43
trust objects 529

Prerequisites
generally 43
trust objects 529

Processing specifics - security descriptor
requirements 517

Publishing domain controller
DNSRegistrationSettings 597
DS_FLAG options bits 586
NETLOGON_NT_VERSION options bits 585
operation code 587
overview 584

R

Reads - overview 247
Record packet 541
References

informative 41
knowledge consistency checker 550
normative 37

Relationship to other protocols 43
Replication - NT4 support 333
Revisions 343
RID master FSMO role 527
RODC NTFRS connection object - updating 584

S

SCHEDULE packet 525
SCHEDULE_HEADER packet 524
Schema

Active Directory 107
master FSMO role 526

schemaFlagsEx flags 66
SD

defaulting rules 519
flags control 517

Search flags 64
Security

authentication
fast bind - using 411

mutual 412
overview 406
principals – supported types 412
SSL/TLS - using 411
supported methods 406

631 / 631

[MS-ADTS] — v20140124
 Active Directory Technical Specification

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

authorization
access

checking 433
rights 416

AD LDS security context construction 439
background 415
overview 415

considerations 518
descriptor requirements

ACE ordering rules 516
considerations 518
default administrators group 520
group defaulting rules 520
overview 515
owner defaulting rules 520
processing specifics 517
SD

defaulting rules 519
flags control 517

implementers - trust objects 549
LDAP 406
messages

SASL - using 414

SSL/TLS - using 415
principals - domain-relative 509
privilege flags 67

Sort keys - Unicode string comparisons 621
SRV records 600
Standards assignments 44
Syntax - messages 45
System

flags 65
objects 506

T

Tasks - background 328
Tracking changes 625
Transport

generally 45
trust objects 530

trustAuthInfo_attributes packet 538

U

Unicode string comparisons
overview 621
sort keys 621

userAccountControl bits 69

V

Values
domain RID 68
optional feature 70

Vendor-extensible fields
generally 44

trust objects 530
Versioning

generally 44
trust objects 529

W

Well-known
domain-relative security principals 509
objects 495

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 LCID-Locale Mapping Table
	2.2.2 DS_REPL_NEIGHBORW_BLOB
	2.2.3 DS_REPL_KCC_DSA_FAILUREW_BLOB
	2.2.4 DS_REPL_OPW_BLOB
	2.2.5 DS_REPL_QUEUE_STATISTICSW_BLOB
	2.2.6 DS_REPL_CURSOR_BLOB
	2.2.7 DS_REPL_ATTR_META_DATA_BLOB
	2.2.8 DS_REPL_VALUE_META_DATA_BLOB
	2.2.9 Search Flags
	2.2.10 System Flags
	2.2.11 schemaFlagsEx Flags
	2.2.12 Group Type Flags
	2.2.13 Group Security Flags
	2.2.14 Security Privilege Flags
	2.2.15 Domain RID Values
	2.2.16 userAccountControl Bits
	2.2.17 Optional Feature Values
	2.2.18 Claims Wire Structures
	2.2.18.1 CLAIM_ID
	2.2.18.2 CLAIM_TYPE
	2.2.18.3 CLAIMS_SOURCE_TYPE
	2.2.18.4 CLAIMS_COMPRESSION_FORMAT
	2.2.18.5 CLAIM_ENTRY
	2.2.18.6 CLAIMS_ARRAY
	2.2.18.7 CLAIMS_SET
	2.2.18.8 CLAIMS_SET_METADATA
	2.2.18.9 CLAIMS_BLOB

	2.2.19 MSDS-MANAGEDPASSWORD_BLOB

	3 Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 State Model
	3.1.1.1.1 Scope
	3.1.1.1.2 State Modeling Primitives and Notational Conventions
	3.1.1.1.3 Basics, objectGUID, and Special Attribute Behavior
	3.1.1.1.4 objectClass, RDN, DN, Constructed Attributes, Secret Attributes
	3.1.1.1.5 NC, NC Replica
	3.1.1.1.5.1 Tombstone Lifetime and Deleted-Object Lifetime

	3.1.1.1.6 Attribute Syntaxes, Object References, Referential Integrity, and Well-Known Objects
	3.1.1.1.7 Forest, Canonical Name
	3.1.1.1.8 GC
	3.1.1.1.9 DCs, usn Counters, and the Originating Update Stamp
	3.1.1.1.10 GC Server
	3.1.1.1.11 FSMO Roles
	3.1.1.1.12 Cross-NC Object References
	3.1.1.1.13 NC Replica Graph
	3.1.1.1.14 Scheduled and Event-Driven Replication
	3.1.1.1.15 Replication Latency and Tombstone Lifetime
	3.1.1.1.16 Delayed Link Processing

	3.1.1.2 Active Directory Schema
	3.1.1.2.1 Schema NC
	3.1.1.2.2 Syntaxes
	3.1.1.2.2.1 Introduction
	3.1.1.2.2.2 LDAP Representations
	3.1.1.2.2.2.1 Object(DN-String)
	3.1.1.2.2.2.2 Object(Access-Point)
	3.1.1.2.2.2.3 Object(DN-Binary)
	3.1.1.2.2.2.4 Object(OR-Name)
	3.1.1.2.2.2.5 String(Case)
	3.1.1.2.2.2.6 String(NT-Sec-Desc)
	3.1.1.2.2.2.7 String(Sid)
	3.1.1.2.2.2.8 String(Teletex)

	3.1.1.2.2.3 Referential Integrity
	3.1.1.2.2.4 Supported Comparison Operations
	3.1.1.2.2.4.1 Bool Comparison Rule
	3.1.1.2.2.4.2 Integer Comparison Rule
	3.1.1.2.2.4.3 DN-String Comparison Rule
	3.1.1.2.2.4.4 DN-Binary Comparison Rule
	3.1.1.2.2.4.5 DN Comparison Rule
	3.1.1.2.2.4.6 PresentationAddress Comparison Rule
	3.1.1.2.2.4.7 Octet Comparison Rule
	3.1.1.2.2.4.8 CaseString Comparison Rule
	3.1.1.2.2.4.9 SecDesc Comparison Rule
	3.1.1.2.2.4.10 OID Comparison Rule
	3.1.1.2.2.4.11 Sid Comparison Rule
	3.1.1.2.2.4.12 NoCaseString Comparison Rule
	3.1.1.2.2.4.13 UnicodeString Comparison Rule
	3.1.1.2.2.4.14 Time Comparison Rule

	3.1.1.2.3 Attributes
	3.1.1.2.3.1 Auto-Generated linkID
	3.1.1.2.3.2 Auto-Generated mAPIID
	3.1.1.2.3.3 Property Set
	3.1.1.2.3.4 ldapDisplayName Generation
	3.1.1.2.3.5 Flag fRODCFilteredAttribute in Attribute searchFlags

	3.1.1.2.4 Classes
	3.1.1.2.4.1 Class Categories
	3.1.1.2.4.2 Inheritance
	3.1.1.2.4.3 objectClass
	3.1.1.2.4.4 Structure Rules
	3.1.1.2.4.5 Content Rules
	3.1.1.2.4.6 Auxiliary Class
	3.1.1.2.4.7 RDN Attribute of a Class
	3.1.1.2.4.8 Class classSchema

	3.1.1.2.5 Schema Modifications
	3.1.1.2.5.1 Consistency and Safety Checks
	3.1.1.2.5.1.1 Consistency Checks
	3.1.1.2.5.1.2 Safety Checks

	3.1.1.2.5.2 Auto-Generated Attributes
	3.1.1.2.5.3 Defunct
	3.1.1.2.5.3.1 Forest Functional Level Less Than WIN2003
	3.1.1.2.5.3.2 Forest Functional Level WIN2003 or Greater

	3.1.1.2.6 ATTRTYP

	3.1.1.3 LDAP
	3.1.1.3.1 LDAP Conformance
	3.1.1.3.1.1 Schema
	3.1.1.3.1.1.1 subSchema
	3.1.1.3.1.1.2 Syntaxes
	3.1.1.3.1.1.3 Attributes
	3.1.1.3.1.1.4 Classes
	3.1.1.3.1.1.5 Auxiliary Classes

	3.1.1.3.1.2 Object Naming
	3.1.1.3.1.2.1 Naming Attributes
	3.1.1.3.1.2.2 NC Naming
	3.1.1.3.1.2.3 Multivalued and Multiple-Attribute RDNs
	3.1.1.3.1.2.4 Alternative Forms of DNs
	3.1.1.3.1.2.5 Alternative Form of SIDs

	3.1.1.3.1.3 Search Operations
	3.1.1.3.1.3.1 Search Filters
	3.1.1.3.1.3.2 Selection Filters
	3.1.1.3.1.3.3 Range Retrieval of Attribute Values
	3.1.1.3.1.3.4 Ambiguous Name Resolution
	3.1.1.3.1.3.5 Searches Using the objectCategory Attribute
	3.1.1.3.1.3.6 Restrictions on rootDSE Searches

	3.1.1.3.1.4 Referrals in LDAPv2 and LDAPv3
	3.1.1.3.1.5 Password Modify Operations
	3.1.1.3.1.5.1 unicodePwd
	3.1.1.3.1.5.2 userPassword

	3.1.1.3.1.6 Dynamic Objects
	3.1.1.3.1.7 Modify DN Operations
	3.1.1.3.1.8 Aliases
	3.1.1.3.1.9 Error Message Strings
	3.1.1.3.1.10 Ports
	3.1.1.3.1.11 LDAP Search Over UDP
	3.1.1.3.1.12 Unbind Operation

	3.1.1.3.2 rootDSE Attributes
	3.1.1.3.2.1 configurationNamingContext
	3.1.1.3.2.2 currentTime
	3.1.1.3.2.3 defaultNamingContext
	3.1.1.3.2.4 dNSHostName
	3.1.1.3.2.5 dsSchemaAttrCount
	3.1.1.3.2.6 dsSchemaClassCount
	3.1.1.3.2.7 dsSchemaPrefixCount
	3.1.1.3.2.8 dsServiceName
	3.1.1.3.2.9 highestCommittedUSN
	3.1.1.3.2.10 isGlobalCatalogReady
	3.1.1.3.2.11 isSynchronized
	3.1.1.3.2.12 ldapServiceName
	3.1.1.3.2.13 namingContexts
	3.1.1.3.2.14 netlogon
	3.1.1.3.2.15 pendingPropagations
	3.1.1.3.2.16 rootDomainNamingContext
	3.1.1.3.2.17 schemaNamingContext
	3.1.1.3.2.18 serverName
	3.1.1.3.2.19 subschemaSubentry
	3.1.1.3.2.20 supportedCapabilities
	3.1.1.3.2.21 supportedControl
	3.1.1.3.2.22 supportedLDAPPolicies
	3.1.1.3.2.23 supportedLDAPVersion
	3.1.1.3.2.24 supportedSASLMechanisms
	3.1.1.3.2.25 domainControllerFunctionality
	3.1.1.3.2.26 domainFunctionality
	3.1.1.3.2.27 forestFunctionality
	3.1.1.3.2.28 msDS-ReplAllInboundNeighbors, msDS-ReplConnectionFailures, msDS-ReplLinkFailures, and msDS-ReplPendingOps
	3.1.1.3.2.29 msDS-ReplAllOutboundNeighbors
	3.1.1.3.2.30 msDS-ReplQueueStatistics
	3.1.1.3.2.31 msDS-TopQuotaUsage
	3.1.1.3.2.32 supportedConfigurableSettings
	3.1.1.3.2.33 supportedExtension
	3.1.1.3.2.34 validFSMOs
	3.1.1.3.2.35 dsaVersionString
	3.1.1.3.2.36 msDS-PortLDAP
	3.1.1.3.2.37 msDS-PortSSL
	3.1.1.3.2.38 msDS-PrincipalName
	3.1.1.3.2.39 serviceAccountInfo
	3.1.1.3.2.40 spnRegistrationResult
	3.1.1.3.2.41 tokenGroups
	3.1.1.3.2.42 usnAtRifm

	3.1.1.3.3 rootDSE Modify Operations
	3.1.1.3.3.1 becomeDomainMaster
	3.1.1.3.3.2 becomeInfrastructureMaster
	3.1.1.3.3.3 becomePdc
	3.1.1.3.3.4 becomePdcWithCheckPoint
	3.1.1.3.3.5 becomeRidMaster
	3.1.1.3.3.6 becomeSchemaMaster
	3.1.1.3.3.7 checkPhantoms
	3.1.1.3.3.8 doGarbageCollection
	3.1.1.3.3.9 dumpDatabase
	3.1.1.3.3.10 fixupInheritance
	3.1.1.3.3.11 invalidateRidPool
	3.1.1.3.3.12 recalcHierarchy
	3.1.1.3.3.13 schemaUpdateNow
	3.1.1.3.3.14 schemaUpgradeInProgress
	3.1.1.3.3.15 removeLingeringObject
	3.1.1.3.3.16 doLinkCleanup
	3.1.1.3.3.17 doOnlineDefrag
	3.1.1.3.3.18 replicateSingleObject
	3.1.1.3.3.19 updateCachedMemberships
	3.1.1.3.3.20 doGarbageCollectionPhantomsNow
	3.1.1.3.3.21 invalidateGCConnection
	3.1.1.3.3.22 renewServerCertificate
	3.1.1.3.3.23 rODCPurgeAccount
	3.1.1.3.3.24 runSamUpgradeTasks
	3.1.1.3.3.25 sqmRunOnce
	3.1.1.3.3.26 runProtectAdminGroupsTask
	3.1.1.3.3.27 disableOptionalFeature
	3.1.1.3.3.28 enableOptionalFeature
	3.1.1.3.3.29 dumpReferences
	3.1.1.3.3.30 dumpLinks
	3.1.1.3.3.31 schemaUpdateIndicesNow
	3.1.1.3.3.32 null

	3.1.1.3.4 LDAP Extensions
	3.1.1.3.4.1 LDAP Extended Controls
	3.1.1.3.4.1.1 LDAP_PAGED_RESULT_OID_STRING
	3.1.1.3.4.1.2 LDAP_SERVER_CROSSDOM_MOVE_TARGET_OID
	3.1.1.3.4.1.3 LDAP_SERVER_DIRSYNC_OID
	3.1.1.3.4.1.4 LDAP_SERVER_DOMAIN_SCOPE_OID
	3.1.1.3.4.1.5 LDAP_SERVER_EXTENDED_DN_OID
	3.1.1.3.4.1.6 LDAP_SERVER_GET_STATS_OID
	3.1.1.3.4.1.7 LDAP_SERVER_LAZY_COMMIT_OID
	3.1.1.3.4.1.8 LDAP_SERVER_PERMISSIVE_MODIFY_OID
	3.1.1.3.4.1.9 LDAP_SERVER_NOTIFICATION_OID
	3.1.1.3.4.1.10 LDAP_SERVER_RANGE_OPTION_OID
	3.1.1.3.4.1.11 LDAP_SERVER_SD_FLAGS_OID
	3.1.1.3.4.1.12 LDAP_SERVER_SEARCH_OPTIONS_OID
	3.1.1.3.4.1.13 LDAP_SERVER_SORT_OID and LDAP_SERVER_RESP_SORT_OID
	3.1.1.3.4.1.14 LDAP_SERVER_SHOW_DELETED_OID
	3.1.1.3.4.1.15 LDAP_SERVER_TREE_DELETE_OID
	3.1.1.3.4.1.16 LDAP_SERVER_VERIFY_NAME_OID
	3.1.1.3.4.1.17 LDAP_CONTROL_VLVREQUEST and LDAP_CONTROL_VLVRESPONSE
	3.1.1.3.4.1.18 LDAP_SERVER_ASQ_OID
	3.1.1.3.4.1.19 LDAP_SERVER_QUOTA_CONTROL_OID
	3.1.1.3.4.1.20 LDAP_SERVER_SHUTDOWN_NOTIFY_OID
	3.1.1.3.4.1.21 LDAP_SERVER_FORCE_UPDATE_OID
	3.1.1.3.4.1.22 LDAP_SERVER_RANGE_RETRIEVAL_NOERR_OID
	3.1.1.3.4.1.23 LDAP_SERVER_RODC_DCPROMO_OID
	3.1.1.3.4.1.24 LDAP_SERVER_DN_INPUT_OID
	3.1.1.3.4.1.25 LDAP_SERVER_SHOW_DEACTIVATED_LINK_OID
	3.1.1.3.4.1.26 LDAP_SERVER_SHOW_RECYCLED_OID
	3.1.1.3.4.1.27 LDAP_SERVER_POLICY_HINTS_OID
	3.1.1.3.4.1.28 LDAP_SERVER_POLICY_HINTS_DEPRECATED_OID
	3.1.1.3.4.1.29 LDAP_SERVER_DIRSYNC_EX_OID
	3.1.1.3.4.1.30 LDAP_SERVER_UPDATE_STATS_OID
	3.1.1.3.4.1.30.1 Highest USN Allocated
	3.1.1.3.4.1.30.2 Invocation ID Of Server

	3.1.1.3.4.1.31 LDAP_SERVER_TREE_DELETE_EX_OID
	3.1.1.3.4.1.32 LDAP_SERVER_SEARCH_HINTS_OID
	3.1.1.3.4.1.32.1 Require Sort Index
	3.1.1.3.4.1.32.2 Soft Size Limit

	3.1.1.3.4.1.33 LDAP_SERVER_EXPECTED_ENTRY_COUNT_OID
	3.1.1.3.4.1.34 LDAP_SERVER_SET_OWNER_OID
	3.1.1.3.4.1.35 LDAP_SERVER_BYPASS_QUOTA_OID

	3.1.1.3.4.2 LDAP Extended Operations
	3.1.1.3.4.2.1 LDAP_SERVER_FAST_BIND_OID
	3.1.1.3.4.2.2 LDAP_SERVER_START_TLS_OID
	3.1.1.3.4.2.3 LDAP_TTL_REFRESH_OID
	3.1.1.3.4.2.4 LDAP_SERVER_WHO_AM_I_OID
	3.1.1.3.4.2.5 LDAP_SERVER_BATCH_REQUEST_OID

	3.1.1.3.4.3 LDAP Capabilities
	3.1.1.3.4.3.1 LDAP_CAP_ACTIVE_DIRECTORY_OID
	3.1.1.3.4.3.2 LDAP_CAP_ACTIVE_DIRECTORY_LDAP_INTEG_OID
	3.1.1.3.4.3.3 LDAP_CAP_ACTIVE_DIRECTORY_V51_OID
	3.1.1.3.4.3.4 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_DIGEST
	3.1.1.3.4.3.5 LDAP_CAP_ACTIVE_DIRECTORY_ADAM_OID
	3.1.1.3.4.3.6 LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID
	3.1.1.3.4.3.7 LDAP_CAP_ACTIVE_DIRECTORY_V60_OID
	3.1.1.3.4.3.8 LDAP_CAP_ACTIVE_DIRECTORY_V61_R2_OID
	3.1.1.3.4.3.9 LDAP_CAP_ACTIVE_DIRECTORY_W8_OID

	3.1.1.3.4.4 LDAP Matching Rules (extensibleMatch)
	3.1.1.3.4.4.1 LDAP_MATCHING_RULE_BIT_AND
	3.1.1.3.4.4.2 LDAP_MATCHING_RULE_BIT_OR
	3.1.1.3.4.4.3 LDAP_MATCHING_RULE_TRANSITIVE_EVAL
	3.1.1.3.4.4.4 LDAP_MATCHING_RULE_DN_WITH_DATA

	3.1.1.3.4.5 LDAP SASL Mechanisms
	3.1.1.3.4.5.1 GSSAPI
	3.1.1.3.4.5.2 GSS-SPNEGO
	3.1.1.3.4.5.3 EXTERNAL
	3.1.1.3.4.5.4 DIGEST-MD5

	3.1.1.3.4.6 LDAP Policies
	3.1.1.3.4.7 LDAP Configurable Settings
	3.1.1.3.4.8 LDAP IP-Deny List

	3.1.1.4 Reads
	3.1.1.4.1 Introduction
	3.1.1.4.2 Definitions
	3.1.1.4.3 Access Checks
	3.1.1.4.4 Extended Access Checks
	3.1.1.4.5 Constructed Attributes
	3.1.1.4.5.1 subSchemaSubEntry
	3.1.1.4.5.2 canonicalName
	3.1.1.4.5.3 allowedChildClasses
	3.1.1.4.5.4 sDRightsEffective
	3.1.1.4.5.5 allowedChildClassesEffective
	3.1.1.4.5.6 allowedAttributes
	3.1.1.4.5.7 allowedAttributesEffective
	3.1.1.4.5.8 fromEntry
	3.1.1.4.5.9 createTimeStamp
	3.1.1.4.5.10 modifyTimeStamp
	3.1.1.4.5.11 primaryGroupToken
	3.1.1.4.5.12 entryTTL
	3.1.1.4.5.13 msDS-NCReplInboundNeighbors, msDS-NCReplCursors, msDS-ReplAttributeMetaData, msDS-ReplValueMetaData
	3.1.1.4.5.14 msDS-NCReplOutboundNeighbors
	3.1.1.4.5.15 msDS-Approx-Immed-Subordinates
	3.1.1.4.5.16 msDS-KeyVersionNumber
	3.1.1.4.5.17 msDS-User-Account-Control-Computed
	3.1.1.4.5.18 msDS-Auxiliary-Classes
	3.1.1.4.5.19 tokenGroups, tokenGroupsNoGCAcceptable
	3.1.1.4.5.20 tokenGroupsGlobalAndUniversal
	3.1.1.4.5.21 possibleInferiors
	3.1.1.4.5.22 msDS-QuotaEffective
	3.1.1.4.5.23 msDS-QuotaUsed
	3.1.1.4.5.24 msDS-TopQuotaUsage
	3.1.1.4.5.25 ms-DS-UserAccountAutoLocked
	3.1.1.4.5.26 msDS-UserPasswordExpired
	3.1.1.4.5.27 msDS-PrincipalName
	3.1.1.4.5.28 parentGUID
	3.1.1.4.5.29 msDS-SiteName
	3.1.1.4.5.30 msDS-isRODC
	3.1.1.4.5.31 msDS-isGC
	3.1.1.4.5.32 msDS-isUserCachableAtRodc
	3.1.1.4.5.33 msDS-UserPasswordExpiryTimeComputed
	3.1.1.4.5.34 msDS-RevealedList
	3.1.1.4.5.35 msDS-RevealedListBL
	3.1.1.4.5.36 msDS-ResultantPSO
	3.1.1.4.5.37 msDS-LocalEffectiveDeletionTime
	3.1.1.4.5.38 msDS-LocalEffectiveRecycleTime
	3.1.1.4.5.39 msDS-ManagedPassword

	3.1.1.4.6 Referrals
	3.1.1.4.7 Continuations
	3.1.1.4.8 Effects of Defunct Attributes and Classes

	3.1.1.5 Updates
	3.1.1.5.1 General
	3.1.1.5.1.1 Enforce Schema Constraints
	3.1.1.5.1.2 Naming Constraints
	3.1.1.5.1.3 Uniqueness Constraints
	3.1.1.5.1.4 Transactional Semantics
	3.1.1.5.1.5 Stamp Construction
	3.1.1.5.1.6 Replication Notification
	3.1.1.5.1.7 Urgent Replication
	3.1.1.5.1.8 Updates Performed Only on FSMOs
	3.1.1.5.1.9 Allow Updates Only When They Are Enabled
	3.1.1.5.1.10 Originating Updates Attempted on an RODC
	3.1.1.5.1.11 Constraints and Processing Specifics Defined Elsewhere

	3.1.1.5.2 Add Operation
	3.1.1.5.2.1 Security Considerations
	3.1.1.5.2.2 Constraints
	3.1.1.5.2.3 Special Classes and Attributes
	3.1.1.5.2.4 Processing Specifics
	3.1.1.5.2.5 Quota Calculation
	3.1.1.5.2.6 NC Requirements
	3.1.1.5.2.7 crossRef Requirements
	3.1.1.5.2.8 NC-Add Operation
	3.1.1.5.2.8.1 Constraints
	3.1.1.5.2.8.2 Security Considerations
	3.1.1.5.2.8.3 Processing Specifics

	3.1.1.5.3 Modify Operation
	3.1.1.5.3.1 Security Considerations
	3.1.1.5.3.1.1 Validated Writes
	3.1.1.5.3.1.1.1 Member
	3.1.1.5.3.1.1.2 dNSHostName
	3.1.1.5.3.1.1.3 msDS-AdditionalDnsHostName
	3.1.1.5.3.1.1.4 servicePrincipalName
	3.1.1.5.3.1.1.5 msDS-Behavior-Version

	3.1.1.5.3.1.2 FSMO Changes

	3.1.1.5.3.2 Constraints
	3.1.1.5.3.3 Processing Specifics
	3.1.1.5.3.4 BehaviorVersion Updates
	3.1.1.5.3.5 ObjectClass Updates
	3.1.1.5.3.6 wellKnownObjects Updates
	3.1.1.5.3.7 Undelete Operation
	3.1.1.5.3.7.1 Undelete Security Considerations
	3.1.1.5.3.7.2 Undelete Constraints
	3.1.1.5.3.7.3 Undelete Processing Specifics

	3.1.1.5.4 Modify DN
	3.1.1.5.4.1 Intra Domain Modify DN
	3.1.1.5.4.1.1 Security Considerations
	3.1.1.5.4.1.2 Constraints
	3.1.1.5.4.1.3 Processing Specifics

	3.1.1.5.4.2 Cross Domain Move
	3.1.1.5.4.2.1 Security Considerations
	3.1.1.5.4.2.2 Constraints
	3.1.1.5.4.2.3 Processing Specifics

	3.1.1.5.5 Delete Operation
	3.1.1.5.5.1 Resultant Object Requirements
	3.1.1.5.5.1.1 Tombstone Requirements
	3.1.1.5.5.1.2 Deleted-Object Requirements
	3.1.1.5.5.1.3 Recycled-Object Requirements

	3.1.1.5.5.2 dynamicObject Requirements
	3.1.1.5.5.3 Protected Objects
	3.1.1.5.5.4 Security Considerations
	3.1.1.5.5.5 Constraints
	3.1.1.5.5.6 Processing Specifics
	3.1.1.5.5.6.1 Transformation into a Tombstone
	3.1.1.5.5.6.2 Transformation into a Deleted-Object
	3.1.1.5.5.6.3 Transformation into a Recycled-Object

	3.1.1.5.5.7 Tree-delete Operation
	3.1.1.5.5.7.1 Tree-delete Security Considerations
	3.1.1.5.5.7.2 Tree-delete Constraints
	3.1.1.5.5.7.3 Tree-delete Processing Specifics

	3.1.1.6 Background Tasks
	3.1.1.6.1 AdminSDHolder
	3.1.1.6.1.1 Authoritative Security Descriptor
	3.1.1.6.1.2 Protected Objects
	3.1.1.6.1.3 Protection Operation
	3.1.1.6.1.4 Configurable State

	3.1.1.6.2 Reference Update
	3.1.1.6.3 Security Descriptor Propagator Update

	3.1.1.7 NT4 Replication Support
	3.1.1.7.1 Format of nt4ReplicationState and pdcChangeLog
	3.1.1.7.1.1 nt4ReplicationState
	3.1.1.7.1.2 pdcChangeLog

	3.1.1.7.2 State Changes
	3.1.1.7.2.1 Initialization
	3.1.1.7.2.2 Directory Updates
	3.1.1.7.2.3 Acquiring the PDC Role
	3.1.1.7.2.4 Resetting the pdcChangeLog

	3.1.1.7.3 Format of the Referent of pmsgOut.V1.pLog

	3.1.1.8 AD LDS Special Objects
	3.1.1.8.1 AD LDS Users
	3.1.1.8.2 Bind Proxies

	3.1.1.9 Optional Features
	3.1.1.9.1 Recycle Bin Optional Feature

	3.1.1.10 Revisions
	3.1.1.10.1 Forest Revision
	3.1.1.10.2 RODC Revision
	3.1.1.10.3 Domain Revision

	3.1.1.11 Claims
	3.1.1.11.1 Informative Overview
	3.1.1.11.1.1 Claim
	3.1.1.11.1.2 Claims Dictionary
	3.1.1.11.1.3 Claim Source
	3.1.1.11.1.4 Claims Issuance
	3.1.1.11.1.5 Claims Transformation Rules
	3.1.1.11.1.6 Claims Transformation

	3.1.1.11.2 Claims Procedures
	3.1.1.11.2.1 GetClaimsForPrincipal
	3.1.1.11.2.2 GetADSourcedClaims
	3.1.1.11.2.3 GetCertificateSourcedClaims
	3.1.1.11.2.4 GetConstructedClaims
	3.1.1.11.2.5 EncodeClaimsSet
	3.1.1.11.2.6 FillClaimsSetMetadata
	3.1.1.11.2.7 RunCompressionAlgorithm
	3.1.1.11.2.8 NdrEncode
	3.1.1.11.2.9 NdrDecode
	3.1.1.11.2.10 DecodeClaimsSet
	3.1.1.11.2.11 TransformClaimsOnTrustTraversal
	3.1.1.11.2.12 GetClaimsTransformationRulesXml
	3.1.1.11.2.13 GetTransformationRulesText
	3.1.1.11.2.14 GetCTAClaims
	3.1.1.11.2.15 CollapseMultiValuedClaims
	3.1.1.11.2.16 FilterAndPackOutputClaims
	3.1.1.11.2.17 ValidateClaimDefinition
	3.1.1.11.2.18 GetAuthSiloClaim

	3.1.1.12 NC Rename
	3.1.1.12.1 Abstract Data Types
	3.1.1.12.1.1 FlatName
	3.1.1.12.1.2 SPNValue
	3.1.1.12.1.3 ServerDescription
	3.1.1.12.1.4 InterdomainTrustAccountDescription
	3.1.1.12.1.5 TrustedDomainObjectDescription
	3.1.1.12.1.6 NCDescription
	3.1.1.12.1.7 DomainDescriptionElements
	3.1.1.12.1.8 DomainDescription
	3.1.1.12.1.9 NewTrustParentElements
	3.1.1.12.1.10 DomainWithNewTrustParentDescription
	3.1.1.12.1.11 NCRenameDescription

	3.1.1.12.2 Encoding/Decoding Rules
	3.1.1.12.2.1 EBNF-M
	3.1.1.12.2.1.1 Tuples as Parameters to Production Rules
	3.1.1.12.2.1.2 Parameter Fields as Terminal Values
	3.1.1.12.2.1.3 Formatting of Non-String Parameter Fields as Terminal Values
	3.1.1.12.2.1.4 Parameter Fields as Iterators
	3.1.1.12.2.1.5 Reversed Production Rules

	3.1.1.12.2.2 CodedNCRenameDescription
	3.1.1.12.2.2.1 Expression
	3.1.1.12.2.2.2 Common
	3.1.1.12.2.2.3 Tests
	3.1.1.12.2.2.3.1 TestConfigurationNC
	3.1.1.12.2.2.3.2 TestReplicationEpoch
	3.1.1.12.2.2.3.3 TestAppNCs
	3.1.1.12.2.2.3.4 TestDomains
	3.1.1.12.2.2.3.4.1 TestCrossRef
	3.1.1.12.2.2.3.4.2 TestServersInstantiated
	3.1.1.12.2.2.3.4.3 TestTrustCount
	3.1.1.12.2.2.3.4.4 TestTrustedDomainObjectDescriptions
	3.1.1.12.2.2.3.4.5 TestInterdomainTrustAccountDescriptions
	3.1.1.12.2.2.3.4.6 TestServerDescriptions

	3.1.1.12.2.2.3.5 TestPartitionCounts

	3.1.1.12.2.2.4 Flatten
	3.1.1.12.2.2.5 Rebuild
	3.1.1.12.2.2.6 Trusts
	3.1.1.12.2.2.6.1 DomainTrustSpecifications
	3.1.1.12.2.2.6.2 DomainTrustAccounts

	3.1.1.12.2.2.7 CrossRefs
	3.1.1.12.2.2.7.1 ConfigurationCrossRef
	3.1.1.12.2.2.7.2 SchemaCrossRef
	3.1.1.12.2.2.7.3 AppNCsCrossRefs
	3.1.1.12.2.2.7.4 NCRenameDescriptionRootCrossRef
	3.1.1.12.2.2.7.5 TrustTreeNonRootDomainCrossRefs
	3.1.1.12.2.2.7.6 TrustTreeRootDomainCrossRefs

	3.1.1.12.2.2.8 ReplicationEpoch

	3.1.1.12.3 Decode Operation
	3.1.1.12.4 Verify Conditions
	3.1.1.12.5 Process Changes

	4 Protocol Examples
	5 Security
	5.1 LDAP Security
	5.1.1 Authentication
	5.1.1.1 Supported Authentication Methods
	5.1.1.1.1 Simple Authentication
	5.1.1.1.2 SASL Authentication
	5.1.1.1.3 Sicily Authentication

	5.1.1.2 Using SSL/TLS
	5.1.1.3 Using Fast Bind
	5.1.1.4 Mutual Authentication
	5.1.1.5 Supported Types of Security Principals

	5.1.2 Message Security
	5.1.2.1 Using SASL
	5.1.2.2 Using SSL/TLS

	5.1.3 Authorization
	5.1.3.1 Background
	5.1.3.2 Access Rights
	5.1.3.2.1 Control Access Rights
	5.1.3.2.2 Validated Writes

	5.1.3.3 Checking Access
	5.1.3.3.1 Null vs. Empty DACLs
	5.1.3.3.2 Checking Simple Access
	5.1.3.3.3 Checking Object-Specific Access
	5.1.3.3.4 Checking Control Access Right-Based Access
	5.1.3.3.5 Checking Validated Write-Based Access
	5.1.3.3.6 Checking Object Visibility

	5.1.3.4 AD LDS Security Context Construction

	6 Additional Information
	6.1 Special Objects and Forest Requirements
	6.1.1 Special Objects
	6.1.1.1 Naming Contexts
	6.1.1.1.1 Any NC Root
	6.1.1.1.2 Config NC Root
	6.1.1.1.3 Schema NC Root
	6.1.1.1.4 Domain NC Root
	6.1.1.1.5 Application NC Root

	6.1.1.2 Configuration Objects
	6.1.1.2.1 Cross-Ref-Container Container
	6.1.1.2.1.1 Cross-Ref Objects
	6.1.1.2.1.1.1 Foreign crossRef Objects
	6.1.1.2.1.1.2 Configuration crossRef Object
	6.1.1.2.1.1.3 Schema crossRef Object
	6.1.1.2.1.1.4 Domain crossRef Object
	6.1.1.2.1.1.5 Application NC crossRef Object

	6.1.1.2.2 Sites Container
	6.1.1.2.2.1 Site Object
	6.1.1.2.2.1.1 NTDS Site Settings Object
	6.1.1.2.2.1.2 Servers Container
	6.1.1.2.2.1.2.1 Server Object
	6.1.1.2.2.1.2.1.1 nTDSDSA Object
	6.1.1.2.2.1.2.1.2 Connection Object
	6.1.1.2.2.1.2.1.3 RODC NTFRS Connection Object

	6.1.1.2.2.2 Subnets Container
	6.1.1.2.2.2.1 Subnet Object

	6.1.1.2.2.3 Inter-Site Transports Container
	6.1.1.2.2.3.1 IP Transport Container
	6.1.1.2.2.3.2 SMTP Transport Container
	6.1.1.2.2.3.3 Site Link Object
	6.1.1.2.2.3.4 Site Link Bridge Object

	6.1.1.2.3 Display Specifiers Container
	6.1.1.2.3.1 Display Specifier Object

	6.1.1.2.4 Services
	6.1.1.2.4.1 Windows NT
	6.1.1.2.4.1.1 Directory Service
	6.1.1.2.4.1.2 dSHeuristics
	6.1.1.2.4.1.3 Optional Features Container
	6.1.1.2.4.1.3.1 Recycle Bin Feature Object

	6.1.1.2.4.1.4 Query-Policies
	6.1.1.2.4.1.4.1 Default Query Policy

	6.1.1.2.4.1.5 SCP Publication Service Object

	6.1.1.2.5 Physical Locations
	6.1.1.2.6 WellKnown Security Principals
	6.1.1.2.6.1 Anonymous Logon
	6.1.1.2.6.2 Authenticated Users
	6.1.1.2.6.3 Batch
	6.1.1.2.6.4 Console Logon
	6.1.1.2.6.5 Creator Group
	6.1.1.2.6.6 Creator Owner
	6.1.1.2.6.7 Dialup
	6.1.1.2.6.8 Digest Authentication
	6.1.1.2.6.9 Enterprise Domain Controllers
	6.1.1.2.6.10 Everyone
	6.1.1.2.6.11 Interactive
	6.1.1.2.6.12 IUSR
	6.1.1.2.6.13 Local Service
	6.1.1.2.6.14 Network
	6.1.1.2.6.15 Network Service
	6.1.1.2.6.16 NTLM Authentication
	6.1.1.2.6.17 Other Organization
	6.1.1.2.6.18 Owner Rights
	6.1.1.2.6.19 Proxy
	6.1.1.2.6.20 Remote Interactive Logon
	6.1.1.2.6.21 Restricted
	6.1.1.2.6.22 SChannel Authentication
	6.1.1.2.6.23 Self
	6.1.1.2.6.24 Service
	6.1.1.2.6.25 System
	6.1.1.2.6.26 Terminal Server User
	6.1.1.2.6.27 This Organization

	6.1.1.2.7 Extended Rights
	6.1.1.2.7.1 controlAccessRight objects
	6.1.1.2.7.2 Change-Rid-Master
	6.1.1.2.7.3 Do-Garbage-Collection
	6.1.1.2.7.4 Recalculate-Hierarchy
	6.1.1.2.7.5 Allocate-Rids
	6.1.1.2.7.6 Change-PDC
	6.1.1.2.7.7 Add-GUID
	6.1.1.2.7.8 Change-Domain-Master
	6.1.1.2.7.9 Public-Information
	6.1.1.2.7.10 msmq-Receive-Dead-Letter
	6.1.1.2.7.11 msmq-Peek-Dead-Letter
	6.1.1.2.7.12 msmq-Receive-computer-Journal
	6.1.1.2.7.13 msmq-Peek-computer-Journal
	6.1.1.2.7.14 msmq-Receive
	6.1.1.2.7.15 msmq-Peek
	6.1.1.2.7.16 msmq-Send
	6.1.1.2.7.17 msmq-Receive-journal
	6.1.1.2.7.18 msmq-Open-Connector
	6.1.1.2.7.19 Apply-Group-Policy
	6.1.1.2.7.20 RAS-Information
	6.1.1.2.7.21 DS-Install-Replica
	6.1.1.2.7.22 Change-Infrastructure-Master
	6.1.1.2.7.23 Update-Schema-Cache
	6.1.1.2.7.24 Recalculate-Security-Inheritance
	6.1.1.2.7.25 DS-Check-Stale-Phantoms
	6.1.1.2.7.26 Certificate-Enrollment
	6.1.1.2.7.27 Self-Membership
	6.1.1.2.7.28 Validated-DNS-Host-Name
	6.1.1.2.7.29 Validated-SPN
	6.1.1.2.7.30 Generate-RSoP-Planning
	6.1.1.2.7.31 Refresh-Group-Cache
	6.1.1.2.7.32 Reload-SSL-Certificate
	6.1.1.2.7.33 SAM-Enumerate-Entire-Domain
	6.1.1.2.7.34 Generate-RSoP-Logging
	6.1.1.2.7.35 Domain-Other-Parameters
	6.1.1.2.7.36 DNS-Host-Name-Attributes
	6.1.1.2.7.37 Create-Inbound-Forest-Trust
	6.1.1.2.7.38 DS-Replication-Get-Changes-All
	6.1.1.2.7.39 Migrate-SID-History
	6.1.1.2.7.40 Reanimate-Tombstones
	6.1.1.2.7.41 Allowed-To-Authenticate
	6.1.1.2.7.42 DS-Execute-Intentions-Script
	6.1.1.2.7.43 DS-Replication-Monitor-Topology
	6.1.1.2.7.44 Update-Password-Not-Required-Bit
	6.1.1.2.7.45 Unexpire-Password
	6.1.1.2.7.46 Enable-Per-User-Reversibly-Encrypted-Password
	6.1.1.2.7.47 DS-Query-Self-Quota
	6.1.1.2.7.48 Private-Information
	6.1.1.2.7.49 MS-TS-GatewayAccess
	6.1.1.2.7.50 Terminal-Server-License-Server
	6.1.1.2.7.51 Domain-Administer-Server
	6.1.1.2.7.52 User-Change-Password
	6.1.1.2.7.53 User-Force-Change-Password
	6.1.1.2.7.54 Send-As
	6.1.1.2.7.55 Receive-As
	6.1.1.2.7.56 Send-To
	6.1.1.2.7.57 Domain-Password
	6.1.1.2.7.58 General-Information
	6.1.1.2.7.59 User-Account-Restrictions
	6.1.1.2.7.60 User-Logon
	6.1.1.2.7.61 Membership
	6.1.1.2.7.62 Open-Address-Book
	6.1.1.2.7.63 Personal-Information
	6.1.1.2.7.64 Email-Information
	6.1.1.2.7.65 Web-Information
	6.1.1.2.7.66 DS-Replication-Get-Changes
	6.1.1.2.7.67 DS-Replication-Synchronize
	6.1.1.2.7.68 DS-Replication-Manage-Topology
	6.1.1.2.7.69 Change-Schema-Master
	6.1.1.2.7.70 DS-Replication-Get-Changes-In-Filtered-Set
	6.1.1.2.7.71 Run-Protect-Admin-Groups-Task
	6.1.1.2.7.72 Manage-Optional-Features
	6.1.1.2.7.73 Read-Only-Replication-Secret-Synchronization
	6.1.1.2.7.74 Validated-MS-DS-Additional-DNS-Host-Name
	6.1.1.2.7.75 Validated-MS-DS-Behavior-Version
	6.1.1.2.7.76 DS-Clone-Domain-Controller
	6.1.1.2.7.77 Certificate-AutoEnrollment
	6.1.1.2.7.78 DS-Read-Partition-Secrets
	6.1.1.2.7.79 DS-Write-Partition-Secrets
	6.1.1.2.7.80 DS-Set-Owner
	6.1.1.2.7.81 DS-Bypass-Quota

	6.1.1.2.8 Forest Updates Container
	6.1.1.2.8.1 Operations Container
	6.1.1.2.8.2 Windows2003Update Container
	6.1.1.2.8.3 ActiveDirectoryUpdate Container
	6.1.1.2.8.4 ActiveDirectoryRodcUpdate Container

	6.1.1.3 Critical Domain Objects
	6.1.1.3.1 Domain Controller Object
	6.1.1.3.2 Read-Only Domain Controller Object

	6.1.1.4 Well-Known Objects
	6.1.1.4.1 Lost and Found Container
	6.1.1.4.2 Deleted Objects Container
	6.1.1.4.3 NTDS Quotas Container
	6.1.1.4.4 Infrastructure Object
	6.1.1.4.5 Domain Controllers OU
	6.1.1.4.6 Users Container
	6.1.1.4.7 Computers Container
	6.1.1.4.8 Program Data Container
	6.1.1.4.9 Managed Service Accounts Container
	6.1.1.4.10 Foreign Security Principals Container
	6.1.1.4.11 System Container
	6.1.1.4.11.1 Password Settings Container

	6.1.1.4.12 Builtin Container
	6.1.1.4.12.1 Account Operators Group Object
	6.1.1.4.12.2 Administrators Group Object
	6.1.1.4.12.3 Backup Operators Group Object
	6.1.1.4.12.4 Certificate Service DCOM Access Group Object
	6.1.1.4.12.5 Cryptographic Operators Group Object
	6.1.1.4.12.6 Distributed COM Users Group Object
	6.1.1.4.12.7 Event Log Readers Group Object
	6.1.1.4.12.8 Guests Group Object
	6.1.1.4.12.9 IIS_IUSRS Group Object
	6.1.1.4.12.10 Incoming Forest Trust Builders Group Object
	6.1.1.4.12.11 Network Configuration Operators Group Object
	6.1.1.4.12.12 Performance Log Users Group Object
	6.1.1.4.12.13 Performance Monitor Users Group Object
	6.1.1.4.12.14 Pre-Windows 2000 Compatible Access Group Object
	6.1.1.4.12.15 Print Operators Group Object
	6.1.1.4.12.16 Remote Desktop Users Group Object
	6.1.1.4.12.17 Replicator Group Object
	6.1.1.4.12.18 Server Operators Group Object
	6.1.1.4.12.19 Terminal Server License Servers Group Object
	6.1.1.4.12.20 Users Group Object
	6.1.1.4.12.21 Windows Authorization Access Group Group Object

	6.1.1.4.13 Roles Container
	6.1.1.4.13.1 Administrators Group Object
	6.1.1.4.13.2 Readers Group Object
	6.1.1.4.13.3 Users Group Object
	6.1.1.4.13.4 Instances Group Object

	6.1.1.5 Other System Objects
	6.1.1.5.1 AdminSDHolder Object
	6.1.1.5.2 Default Domain Policy Container
	6.1.1.5.3 Sam Server Object
	6.1.1.5.4 Domain Updates Container
	6.1.1.5.4.1 Operations Container
	6.1.1.5.4.2 Windows2003Update Container
	6.1.1.5.4.3 ActiveDirectoryUpdate Container

	6.1.1.6 Well-Known Domain-Relative Security Principals
	6.1.1.6.1 Administrator
	6.1.1.6.2 Guest
	6.1.1.6.3 Key Distribution Center Service Account
	6.1.1.6.4 Cert Publishers
	6.1.1.6.5 Domain Administrators
	6.1.1.6.6 Domain Computers
	6.1.1.6.7 Domain Controllers
	6.1.1.6.8 Domain Guests
	6.1.1.6.9 Domain Users
	6.1.1.6.10 Enterprise Administrators
	6.1.1.6.11 Group Policy Creator Owners
	6.1.1.6.12 RAS and IAS Servers
	6.1.1.6.13 Read-Only Domain Controllers
	6.1.1.6.14 Enterprise Read-Only Domain Controllers
	6.1.1.6.15 Schema Admins
	6.1.1.6.16 Allowed RODC Password Replication Group
	6.1.1.6.17 Denied RODC Password Replication Group

	6.1.2 Forest Requirements
	6.1.2.1 DC Existence
	6.1.2.2 NC Existence
	6.1.2.3 Hosting Requirements
	6.1.2.3.1 DC and Application NC Replica
	6.1.2.3.2 DC and Regular Domain NC Replica
	6.1.2.3.3 DC and Schema/Config NC Replicas
	6.1.2.3.4 DC and Partial Replica NCs Replicas

	6.1.3 Security Descriptor Requirements
	6.1.3.1 ACE Ordering Rules
	6.1.3.2 SD Flags Control
	6.1.3.3 Processing Specifics
	6.1.3.4 Security Considerations
	6.1.3.5 SD Defaulting Rules
	6.1.3.6 Owner and Group Defaulting Rules
	6.1.3.7 Default Administrators Group

	6.1.4 Special Attributes
	6.1.4.1 ntMixedDomain
	6.1.4.2 msDS-Behavior-Version: DC Functional Level
	6.1.4.3 msDS-Behavior-Version: Domain NC Functional Level
	6.1.4.4 msDS-Behavior-Version: Forest Functional Level
	6.1.4.5 Replication Schedule Structures
	6.1.4.5.1 SCHEDULE_HEADER Structure
	6.1.4.5.2 SCHEDULE Structure
	6.1.4.5.3 REPS_FROM
	6.1.4.5.4 REPS_TO
	6.1.4.5.5 MTX_ADDR Structure
	6.1.4.5.6 REPLTIMES Structure
	6.1.4.5.7 PAS_DATA Structure

	6.1.4.6 msDS-AuthenticatedAtDC

	6.1.5 FSMO Roles
	6.1.5.1 Schema Master FSMO Role
	6.1.5.2 Domain Naming Master FSMO Role
	6.1.5.3 RID Master FSMO Role
	6.1.5.4 PDC Emulator FSMO Role
	6.1.5.5 Infrastructure FSMO Role

	6.1.6 Trust Objects
	6.1.6.1 Overview (Synopsis)
	6.1.6.2 Relationship to Other Protocols
	6.1.6.2.1 TDO Replication over DRS
	6.1.6.2.2 TDO Roles in Authentication Protocols over Domain Boundaries
	6.1.6.2.3 TDO Roles in Authorization over Domain Boundaries

	6.1.6.3 Prerequisites/Preconditions
	6.1.6.4 Versioning and Capability Negotiation
	6.1.6.5 Vendor-Extensible Fields
	6.1.6.6 Transport
	6.1.6.7 Essential Attributes of a Trusted Domain Object
	6.1.6.7.1 flatName
	6.1.6.7.2 isCriticalSystemObject
	6.1.6.7.3 msDs-supportedEncryptionTypes
	6.1.6.7.4 msDS-TrustForestTrustInfo
	6.1.6.7.5 nTSecurityDescriptor
	6.1.6.7.6 objectCategory
	6.1.6.7.7 objectClass
	6.1.6.7.8 securityIdentifier
	6.1.6.7.9 trustAttributes
	6.1.6.7.10 trustAuthIncoming
	6.1.6.7.11 trustAuthOutgoing
	6.1.6.7.12 trustDirection
	6.1.6.7.13 trustPartner
	6.1.6.7.14 trustPosixOffset
	6.1.6.7.15 trustType

	6.1.6.8 Essential Attributes of Interdomain Trust Accounts
	6.1.6.8.1 cn (RDN)
	6.1.6.8.2 objectClass
	6.1.6.8.3 sAMAccountName
	6.1.6.8.4 sAMAccountType
	6.1.6.8.5 userAccountControl

	6.1.6.9 Details
	6.1.6.9.1 trustAuthInfo Attributes
	6.1.6.9.1.1 LSAPR_AUTH_INFORMATION
	6.1.6.9.1.2 Kerberos Usages of trustAuthInfo Attributes

	6.1.6.9.2 Netlogon Usages of Trust Objects
	6.1.6.9.3 msDS-TrustForestTrustInfo Attribute
	6.1.6.9.3.1 Record
	6.1.6.9.3.2 Building Well-Formed msDS-TrustForestTrustInfo Messages

	6.1.6.9.4 Computation of trustPosixOffset
	6.1.6.9.5 Mapping Logon SIDs to POSIX Identifiers
	6.1.6.9.6 Timers
	6.1.6.9.6.1 Trust Secret Cycling

	6.1.6.9.7 Initialization

	6.1.6.10 Security Considerations for Implementers

	6.1.7 DynamicObject Requirements

	6.2 Knowledge Consistency Checker
	6.2.1 References
	6.2.2 Overview
	6.2.2.1 Refresh kCCFailedLinks and kCCFailedConnections
	6.2.2.2 Intrasite Connection Creation
	6.2.2.3 Intersite Connection Creation
	6.2.2.3.1 ISTG Selection
	6.2.2.3.2 Merge of kCCFailedLinks and kCCFailedLinks from Bridgeheads
	6.2.2.3.3 Site Graph Concepts
	6.2.2.3.4 Connection Creation
	6.2.2.3.4.1 Types
	6.2.2.3.4.2 Main Entry Point
	6.2.2.3.4.3 Site Graph Construction
	6.2.2.3.4.4 Spanning Tree Computation
	6.2.2.3.4.5 nTDSConnection Creation

	6.2.2.4 Removing Unnecessary Connections
	6.2.2.5 Connection Translation
	6.2.2.6 Remove Unneeded kCCFailedLinks and kCCFailedConnections Tuples
	6.2.2.7 Updating the RODC NTFRS Connection Object

	6.3 Publishing and Locating a Domain Controller
	6.3.1 Structures and Constants
	6.3.1.1 NETLOGON_NT_VERSION Options Bits
	6.3.1.2 DS_FLAG Options Bits
	6.3.1.3 Operation Code
	6.3.1.4 NETLOGON_LOGON_QUERY
	6.3.1.5 NETLOGON_PRIMARY_RESPONSE
	6.3.1.6 NETLOGON_SAM_LOGON_REQUEST
	6.3.1.7 NETLOGON_SAM_LOGON_RESPONSE_NT40
	6.3.1.8 NETLOGON_SAM_LOGON_RESPONSE
	6.3.1.9 NETLOGON_SAM_LOGON_RESPONSE_EX
	6.3.1.10 DNSRegistrationSettings

	6.3.2 DNS Record Registrations
	6.3.2.1 Timers
	6.3.2.1.1 Register DNS Records Timer

	6.3.2.2 Non-Timer Events
	6.3.2.2.1 Force Register DNS Records Non-Timer Event

	6.3.2.3 SRV Records
	6.3.2.4 Non-SRV Records

	6.3.3 LDAP Ping
	6.3.3.1 Syntactic Validation of the Filter
	6.3.3.2 Domain Controller Response to an LDAP Ping
	6.3.3.3 Response to Invalid Filter

	6.3.4 NetBIOS Broadcast and NBNS Background
	6.3.5 Mailslot Ping
	6.3.6 Locating a Domain Controller
	6.3.6.1 DNS-Based Discovery
	6.3.6.2 NetBIOS-Based Discovery

	6.3.7 Name Compression and Decompression
	6.3.8 AD LDS DC Publication

	6.4 Domain Join
	6.4.1 State of a Machine Joined to a Domain
	6.4.2 State in an Active Directory Domain
	6.4.3 Relationship to Protocols

	6.5 Unicode String Comparison
	6.5.1 String Comparison by Using Sort Keys

	6.6 Claims IDL

	7 Change Tracking
	8 Index

