

1 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MC-NMF]:
.NET Message Framing Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

08/10/2007 0.1 Major Initial Availability

09/28/2007 0.2 Minor Updated the technical content.

10/23/2007 0.3 Minor Updated the technical content.

11/30/2007 0.3.1 Editorial Revised and edited the technical content.

01/25/2008 0.3.2 Editorial Revised and edited the technical content.

03/14/2008 0.3.3 Editorial Revised and edited the technical content.

05/16/2008 0.3.4 Editorial Revised and edited the technical content.

06/20/2008 0.4 Minor Updated the technical content.

07/25/2008 0.4.1 Editorial Revised and edited the technical content.

08/29/2008 0.4.2 Editorial Revised and edited the technical content.

10/24/2008 0.4.3 Editorial Revised and edited the technical content.

12/05/2008 1.0 Major Updated and revised the technical content.

01/16/2009 1.0.1 Editorial Revised and edited the technical content.

02/27/2009 1.0.2 Editorial Revised and edited the technical content.

04/10/2009 1.0.3 Editorial Revised and edited the technical content.

05/22/2009 1.1 Minor Updated the technical content.

07/02/2009 1.1.1 Editorial Revised and edited the technical content.

08/14/2009 1.1.2 Editorial Revised and edited the technical content.

09/25/2009 1.2 Minor Updated the technical content.

11/06/2009 1.2.1 Editorial Revised and edited the technical content.

12/18/2009 1.2.2 Editorial Revised and edited the technical content.

01/29/2010 1.3 Minor Updated the technical content.

03/12/2010 1.4 Minor Updated the technical content.

04/23/2010 1.5 Minor Updated the technical content.

06/04/2010 1.6 Minor Updated the technical content.

07/16/2010 2.0 Major Significantly changed the technical content.

3 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Date

Revision

History

Revision

Class Comments

08/27/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/08/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/19/2010 2.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 3.0 Major Significantly changed the technical content.

02/11/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

06/17/2011 4.0 Major Significantly changed the technical content.

09/23/2011 4.0 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 5.0 Major Significantly changed the technical content.

03/30/2012 5.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 5.0 No change No changes to the meaning, language, or formatting of

the technical content.

10/25/2012 6.0 Major Significantly changed the technical content.

01/31/2013 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

11/14/2013 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction ... 7
1.1 Glossary ... 7
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.3.1 Scenarios .. 10

1.3.1.1 Multiple Bidirectional Message Exchange Scenario ... 11
1.3.1.2 Large Message Exchange Scenario .. 11
1.3.1.3 Offline Message Exchange Scenario... 11

1.3.2 Communication Modes .. 12
1.3.2.1 Message Property Scope .. 12
1.3.2.2 Protocol Receiver Mode ... 12
1.3.2.3 Message Traffic Flow ... 12
1.3.2.4 Message Chunking .. 12

1.3.3 Protocol Upgrades .. 13
1.4 Relationship to Other Protocols .. 13
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments .. 14

2 Messages.. 15
2.1 Transport .. 15
2.2 Message Syntax .. 15

2.2.1 Record Types ... 15
2.2.2 Record Size Encoding .. 15
2.2.3 Property Records .. 16

2.2.3.1 Version Record ... 17
2.2.3.2 Mode Record .. 17
2.2.3.3 Via Record ... 18
2.2.3.4 Envelope Encoding Record ... 18

2.2.3.4.1 Known Encoding Record ... 18
2.2.3.4.2 Extensible Encoding Record .. 19

2.2.3.5 Upgrade Request Record ... 20
2.2.3.6 Upgrade Response Record ... 21
2.2.3.7 Preamble End Record .. 21
2.2.3.8 Preamble Ack Record .. 21
2.2.3.9 End Record .. 22

2.2.4 Envelope Records ... 22
2.2.4.1 Sized Envelope Record .. 22
2.2.4.2 Data Chunk.. 23
2.2.4.3 Unsized Envelope Record ... 23

2.2.5 Fault Records ... 24
2.2.6 Preamble Message .. 25

3 Protocol Details .. 26
3.1 Common Details .. 26

3.1.1 Abstract Data Model ... 26

5 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1 Initiator-Receiver Interactions .. 26
3.1.1.1.1 Singleton Unsized Mode ... 27
3.1.1.1.2 Duplex Mode .. 28
3.1.1.1.3 Simplex Mode ... 29
3.1.1.1.4 Singleton Sized Mode .. 29
3.1.1.1.5 Upgrades ... 30
3.1.1.1.6 Faults .. 31

3.1.1.2 Protocol Grammar .. 32
3.1.2 Timers .. 34
3.1.3 Initialization .. 34
3.1.4 Higher-Layer Triggered Events ... 34

3.1.4.1 Reading Variable-Sized Records .. 35
3.1.4.2 Handling Receipt of an Unexpected Record Type ... 35
3.1.4.3 Version Record ... 35
3.1.4.4 Mode Record .. 35
3.1.4.5 Via Record ... 36
3.1.4.6 Encoding Record ... 36
3.1.4.7 Upgrade Request Record ... 36
3.1.4.8 Upgrade Response Record ... 36
3.1.4.9 Preamble End Record .. 37
3.1.4.10 Preamble Ack Record ... 37
3.1.4.11 Sized Envelope Record .. 37
3.1.4.12 Unsized Envelope Record ... 37
3.1.4.13 End Record .. 37

3.1.5 Message Processing Events and Sequencing Rules .. 37
3.1.6 Timer Events ... 38
3.1.7 Other Local Events ... 38

3.1.7.1 Underlying Transport Session Is Closed ... 38
3.2 Initiator Details ... 38

3.2.1 Abstract Data Model ... 38
3.2.2 Timers .. 38
3.2.3 Initialization .. 38
3.2.4 Higher-Layer Triggered Events ... 38

3.2.4.1 Initialize Session .. 38
3.2.4.2 Send Preamble ... 38
3.2.4.3 Send Message .. 39

3.2.4.3.1 Singleton Unsized Mode ... 39
3.2.4.3.2 Duplex or Simplex Mode .. 39
3.2.4.3.3 Singleton Sized Mode .. 39

3.2.4.4 Receive Message .. 39
3.2.4.5 Send End Record .. 39
3.2.4.6 Session Close ... 39

3.2.5 Message Processing Events and Sequencing Rules .. 39
3.2.6 Timer Events ... 39
3.2.7 Other Local Events ... 39

3.3 Receiver Details ... 40
3.3.1 Abstract Data Model ... 40
3.3.2 Timers .. 40
3.3.3 Initialization .. 40
3.3.4 Higher-Layer Triggered Events ... 40

3.3.4.1 Initialize Session .. 40
3.3.4.2 Receive Preamble ... 40
3.3.4.3 Send Message .. 40

6 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.4 Receive Message .. 40
3.3.4.4.1 Singleton Unsized Mode ... 41
3.3.4.4.2 Duplex or Simplex Mode .. 41
3.3.4.4.3 Singleton Sized Mode .. 41

3.3.4.5 Send End Record .. 41
3.3.4.6 Session Close ... 41

3.3.5 Message Processing Events and Sequencing Rules .. 41
3.3.6 Timer Events ... 41
3.3.7 Other Local Events ... 41

4 Protocol Examples .. 42
4.1 Duplex Mode ... 42

4.1.1 Initiator Receiver: Preamble Message ... 42
4.1.2 Initiator Receiver: Preamble End Message ... 43
4.1.3 Receiver Initiator : Preamble Ack Message .. 43
4.1.4 Initiator Receiver: Sized Envelope Message ... 43
4.1.5 Receiver Initiator: Sized Envelope Message ... 44
4.1.6 Initiator Receiver: End Message ... 44
4.1.7 Receiver Initiator: End Message ... 44

5 Security .. 45
5.1 Security Considerations for Implementers ... 45
5.2 Index of Security Parameters .. 45

6 Appendix A: Product Behavior .. 46

7 Change Tracking... 50

8 Index ... 51

7 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

This document specifies the .NET Message Framing Protocol, which defines a mechanism for framing
messages. Although primarily used for framing SOAP messages, this protocol can also be used to
frame messages that use non-SOAP envelope formats. The .NET Message Framing Protocol can run
over any transport, including those that do not natively support message semantics, and can
provide support for sending and receiving demarcated messages.

Familiarity with SOAP and XML technologies is required for a complete understanding of this
document.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

little-endian
.NET Framework
Unicode

The following terms are specific to this document:

endpoint: A node that sends or receives a protocol stream.

Envelope Record: A record that contains data, such as a SOAP message, see [SOAP1.1] and
[SOAP1.2-1/2007].

Initiating Stream: The protocol stream that flows from the initiator.

initiator: The node that initiates the connection over which a protocol stream flows.

Property Record: A record that contains a protocol stream property.

protocol stream: A continuous stream of records flowing in one direction.

protocol stream property: A protocol stream characteristic that may be set by a property

record and applies to subsequent records flowing with the protocol stream.

receiver: The node that is the receiver of the protocol stream.

record: A sequence of octets.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
specified in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=90317

8 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation

details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[MC-NBFS] Microsoft Corporation, ".NET Binary Format: SOAP Data Structure".

[MC-NBFSE] Microsoft Corporation, ".NET Binary Format: SOAP Extension".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981,
http://www.ietf.org/rfc/rfc0793.txt

[RFC2045] Freed, N., and Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies", RFC 2045, November 1996, http://ietf.org/rfc/rfc2045.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2234] Crocker, D., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
2234, November 1997, http://www.ietf.org/rfc/rfc2234.txt

[RFC2279] Yergeau, F., "UTF-8, A Transformation Format of ISO10646", RFC 2279, January 1998,
http://www.ietf.org/rfc/rfc2279.txt

[RFC2396] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifiers (URI):

Generic Syntax", RFC 2396, August 1998, http://www.ietf.org/rfc/rfc2396.txt

[RFC2781] Hoffman, P., and Yergeau, F., "UTF-16, an encoding of ISO 10646", RFC 2781, February
2000, http://www.ietf.org/rfc/rfc2781.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178,
October 2005, http://www.ietf.org/rfc/rfc4178.txt

[RFC4346] Dierks, T., and Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.1",
RFC 4346, April 2006, http://www.ietf.org/rfc/rfc4346.txt

[SOAP1.1] Box, D., Ehnebuske, D., Kakivaya, G., et al., "Simple Object Access Protocol (SOAP)
1.1", May 2000, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP1.2-1/2007] Gudgin, M., Hadley, M., Mendelsohn, N., et al., "SOAP Version 1.2 Part 1:

Messaging Framework (Second Edition) ", W3C Recommendation 27, April 2007,
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[SOAP-MTOM] Gudgin, M., Medelsohn, N., Nottingham, M., and Ruellan, H., "SOAP Message

Transmission Optimization Mechanism", W3C Recommendation, 25 January 2005,
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/

http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
%5bMC-NBFS%5d.pdf
%5bMC-NBFSE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90323
http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90380
http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=90520
http://go.microsoft.com/fwlink/?LinkId=94664
http://go.microsoft.com/fwlink/?LinkId=95126

9 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

[MSDN-BinaryMsgEncdngBindElmnt] Microsoft Corporation, "BinaryMessageEncodingBindingElement
Class", http://msdn.microsoft.com/en-
us/library/system.servicemodel.channels.binarymessageencodingbindingelement.aspx

[MSDN-NETMsmq] Microsoft Corporation, "NetMsmqBinding Class", http://msdn.microsoft.com/en-
us/library/system.servicemodel.netmsmqbinding.aspx

[MSDN-NETMsmqBE] Microsoft Corporation, "MsmqTransportBindingElement Class",
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.msmqtransp

ortbindingelement.aspx

[MSDN-NETNamedPipe] Microsoft Corporation, "NetNamedPipeBinding Class",

http://msdn.microsoft.com/en-us/library/system.servicemodel.netnamedpipebinding.aspx

[MSDN-NETNamedPipeBE] Microsoft Corporation, "NamedPipeTransportBindingElement Class",
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.namedpipet
ransportbindingelement.aspx

[MSDN-NETTcp] Microsoft Corporation, "NetTcpBinding Class", http://msdn.microsoft.com/en-
us/library/system.servicemodel.nettcpbinding.aspx

[MSDN-NETTcpBE] Microsoft Corporation, "TcpTransportBindingElement Class",
http://msdn.microsoft.com/en-us/library/system.servicemodel.channels.tcptranspo
rtbindingelement.aspx

[MSDN-WCF] Microsoft Corporation, "Windows Communication Foundation",
http://msdn.microsoft.com/en-us/library/ms735119.aspx

[MSDN-WSCHBIND] Microsoft Corporation, "WS_CHANNEL_BINDING enumeration",
http://msdn.microsoft.com/en-us/library/dd401780(VS.85).aspx

[MSDN-WSSECBIND] Microsoft Corporation, "WS_SECURITY_BINDING structure",
http://msdn.microsoft.com/en-us/library/dd323380(VS.85).aspx

[MSDN-WSTCPSSPI] Microsoft Corporation, "WS_TCP_SSPI_TRANSPORT_SECURITY_BINDING
structure", http://msdn.microsoft.com/en-us/library/dd323466(VS.85).aspx

1.3 Overview

The .NET Message Framing Protocol defines a format for framing messages, including SOAP
messages. Consider a scenario in which two SOAP nodes are interacting and exchanging SOAP
messages. The transport used for communication may not inherently support the notion of
messages. For example, if the underlying transport is TCP, it provides a byte stream, and the
receiver needs to have additional parsing logic to be able to extract a SOAP message from this

stream.

This protocol intends to meet the following requirements:

Supports extensibility for different message-encoding formats.

Provides delimiters for a message.

%5bMS-GLOS%5d.pdf
%5bMS-MQOD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=216916
http://go.microsoft.com/fwlink/?LinkId=216916
http://go.microsoft.com/fwlink/?LinkId=100286
http://go.microsoft.com/fwlink/?LinkId=100286
http://go.microsoft.com/fwlink/?LinkId=100289
http://go.microsoft.com/fwlink/?LinkId=100289
http://go.microsoft.com/fwlink/?LinkId=100285
http://go.microsoft.com/fwlink/?LinkId=100288
http://go.microsoft.com/fwlink/?LinkId=100288
http://go.microsoft.com/fwlink/?LinkId=100283
http://go.microsoft.com/fwlink/?LinkId=100283
http://go.microsoft.com/fwlink/?LinkId=100287
http://go.microsoft.com/fwlink/?LinkId=100287
http://go.microsoft.com/fwlink/?LinkId=100290
http://go.microsoft.com/fwlink/?LinkId=182220
http://go.microsoft.com/fwlink/?LinkId=182275
http://go.microsoft.com/fwlink/?LinkId=182221

10 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Has capability to skip past a message that is not well formed. If the message frames are well

formed but the embedded content is malformed, the protocol provides a means of skipping over

all such message frames.

Supports extensible upgrades of the underlying transport stream.

The basic idea is to first notify the recipient of the message properties (metadata), including what
version of the framing protocol is being used, who the message is meant for, and what encoding
algorithm is used to encode the message content; and then to send a number of message frames
that conform to those properties. The recipient, based on the message properties, is able to extract
the messages from the transport stream and deliver them to the appropriate endpoint.

The message properties are typically controlled by the Protocol Configuration Object (PCO). The PCO

determines the following aspects of a specified instance of the protocol:

The transport to be used.

The version of the .NET Message Framing Protocol being used.

The mode of communication, which is explained in sections 1.3.2 and 2.2.3.2.

The Via, which is a Uniform Resource Identifier (URI) that identifies the endpoint for which the

messages are intended.

The encoding format being used for the messages. The different encoding schemes are covered

in section 2.2.3.4.

The chunk size. If the mode supports chunking, this determines the maximum size of a chunk.

The implementation-defined maximum supported sizes for messages and record types. <1>

1.3.1 Scenarios

This section describes scenarios that capture the various message exchange patterns between SOAP

nodes. These scenarios help to define the communication modes that are covered in the next section
and that the protocol needs to support.

The scenarios describe a sales organization that has several salespersons; some are in the head

office and some offsite. They are interacting with the customers and preparing purchase orders that
need to be sent to a central server as SOAP messages. The purchase orders can also be retrieved
from the server, again as SOAP messages. The Asynchronous Message Relay is a mechanism that is
used to queue up messages when the salesperson is offline and then relay the messages after
connectivity is established. One such mechanism is Microsoft Message Queuing, as described in [MS-
MQOD].

%5bMS-MQOD%5d.pdf
%5bMS-MQOD%5d.pdf

11 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 1: Asynchronous Message Relay

1.3.1.1 Multiple Bidirectional Message Exchange Scenario

In this scenario, two salespersons are working at the head office with several customers.
Salesperson A is responsible for collecting the customer profiles, and salesperson B is responsible for
collecting the customer requirements. The two pieces of information will need to be combined to
create a purchase order. Also, the head office has a high volume of customers; so there will be
frequent message exchanges between the two salespeople.

For this scenario, it makes sense for salesperson A to initiate a session where the message

properties are sent out. Subsequently, the messages frames are sent from salesperson A or
salesperson B, and the other salesperson can extract the message by using the message properties
for that session. At the end of the conversation, either salesperson can terminate the session.

1.3.1.2 Large Message Exchange Scenario

In this scenario, a salesperson retrieves the entire customer inventory (in the form of a message)
from the server at the start of the day.

Because this operation is typically performed only once each day, a session is not required, as was
the case in the previous scenario. Instead, the protocol should send the message properties followed
by the message frames, and the receiving end applies the properties to extract the message.

In addition, because the inventory is large, the message content may be broken up into multiple
chunks. The receiving end can then stream the content one chunk at a time and does not have to

process the entire message at one time.

1.3.1.3 Offline Message Exchange Scenario

In this scenario, salesperson C is visiting various customers and creating their purchase orders.
However, the salesperson does not have access to the server and can upload these orders to the
server only after he returns to his branch office. The order application uses some mechanism (for

12 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

example, Microsoft Message Queuing) to store these messages locally, and the mechanism then
relays the message to the server when the salesperson is again online.

This scenario differs from the scenario in section 1.3.1.2 because the receiving end of the protocol
(that is, the relay) cannot actively participate in the protocol. This is a "store and forward" scenario

in which the sending end of the protocol stores the message frame in an intermediate store, and
later, the message frame is forwarded to, or retrieved by, the receiving end, which then extracts the
message from the message frame.

Depending on the scenario characteristics, the message properties may be sent on a per-message
basis or sent once in advance of a number of messages. The latter case uses the same session
semantic as before except that the session establishment involves participation from only one end.

1.3.2 Communication Modes

Based on the preceding scenarios, the messages exchange between nodes can be classified along
the following four criteria.

1.3.2.1 Message Property Scope

Message properties can be sent on a per message basis or sent once per session, which spans

multiple messages. If many messages that have identical properties are being sent, the optimal
workflow uses the per-session scope.

1.3.2.2 Protocol Receiver Mode

The receiving end can actively participate in the protocol, or it can be a passive relay entity. If the
receiving end is active, it can negotiate certain capabilities, such as a protocol upgrade.

1.3.2.3 Message Traffic Flow

The logical flow of messages can be unidirectional, where only one end sends messages, or it can be
bidirectional, where both ends send messages. For unidirectional messages, the receiver may need

to acknowledge message receipt; however, the logical message flow is still in one direction.

1.3.2.4 Message Chunking

The entire message can be sent in one message frame, or it can be split across multiple chunks.

Chunking is extremely useful when processing large messages.

Using these criteria, four communication modes are specified for the protocol to operate in. These
modes determine the pattern of messages exchanged between the nodes, and determine when the
message properties are exchanged and how the message frames are created.

Mode name

Message property

scope

Protocol receiver

mode Traffic flow

Message

chunking

Singleton

Unsized

Single Active Unidirectional Yes

Duplex Multiple Active Bidirectional No

Simplex Multiple Passive Unidirectional No

Singleton Sized Single Passive Unidirectional No

13 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.3.3 Protocol Upgrades

The .NET Message Framing Protocol provides the capability to upgrade the underlying protocol
stream to a complementary protocol, for example, to upgrade to Secure Sockets Layer

(SSL)/Transport Layer Security (TLS). If the other end supports the complementary protocol and
goes through with the upgrade, the subsequent byte stream (messages included) use the upgraded
protocol.

The upgrade request is sent as part of message properties. Multiple upgrade negotiations can be
performed. In addition, because this is a negotiation, it requires participation from both ends, and
therefore, is available only when the communication mode is Singleton Unsized, or Duplex.

1.4 Relationship to Other Protocols

This protocol is available for use over any network transport that needs to provide message send
and receive semantics. Transports that fall in this category include TCP and named pipes.

1.5 Prerequisites/Preconditions

The protocol assumes that a transport session has been established. The management of the
transport session (that is, how and when it is established, management of idle sessions, and closure

of the transport session) is not a responsibility of the protocol. The protocol only uses the transport
session to send and receive octets.

For the Singleton Sized mode, which is described in section 1.3.2, the size of the message is not
contained as part of the message frame. The protocol assumes that the underlying transport has a
means to compute the size and relay it to the protocol.

1.6 Applicability Statement

This protocol is applicable for implementation by a transport module that wants to provide message
demarcation to higher-layer applications. Higher-layer applications can use this module to send and
receive messages.

Applicable scenarios include the following:

When the communicating nodes are connected (for example, employees in the head office) or

when they are disconnected (for example, an employee working remotely).

When the communicating nodes are exchanging large messages and message-level streaming is

required to optimize the use of resources such as memory and processing.

When the communicating nodes want to upgrade the underlying transport to a complementary

protocol and exchange messages using the complementary protocol.

When a receiving node wants to bypass embedded messages that are not well formed and

process subsequent messages that are well-formed.

The protocol is not applicable for scenarios in which applications do not need message-level access

or the native message format of the underlying transport is sufficient.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

14 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Protocol versions: This document describes version 1.0 of the .NET Message Framing Protocol.

The version information is part of the protocol exchange, as described in section 2.2.3.1.

Capability negotiation: The .NET Message Framing Protocol does not support negotiation of the

version, mode, upgrades, and message encoding. Instead, an implementation must be
configured with these, as described in section 3.1.3.

1.8 Vendor-Extensible Fields

This protocol allows extensibility for the following fields:

Extensible encoding: An implementation can opt for an extensible encoding. Vendors need to

specify the encoding as specified in [RFC2045] and covered in detail in section 2.2.3.4.2.

Upgrades: Vendors can define new protocol upgrades in addition to the ones specified in section

2.2.3.5.

Faults: An implementation can define new faults in addition to the ones specified in section

2.2.5. The fault is a URI, as defined in [RFC2396] encoding using UTF-8 encoding as specified in
[RFC2279]. Vendors define a URI namespace for their faults and that namespace is different from

the http://schemas.microsoft.com/ws/2006/05/framing/faults/ namespace used by the faults in
this protocol.

1.9 Standards Assignments

None.

http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90331

15 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

This protocol is available for use over any network transport that needs to provide message send
and receive semantics. Transports that fall in this category include TCP and named pipes.

2.2 Message Syntax

2.2.1 Record Types

This protocol involves the exchange of a number of records. Records can be categorized as either
Property Records or Envelope Records based on their contents. The Property Records contain
message properties. The Envelope Records contain the message payload.

These records and their structure are covered in detail in subsequent sections. Each record is
prefixed with a record type, which is an octet, and MUST be set to one of the following specified

values. Values of 0x0D-0xFF for this octet are reserved for future use.

Value Record type

0x00 Version Record

0x01 Mode Record

0x02 Via Record

0x03 Known Encoding Record

0x04 Extensible Encoding Record

0x05 Unsized Envelope Record

0x06 Sized Envelope Record

0x07 End Record

0x08 Fault Record

0x09 Upgrade Request Record

0x0A Upgrade Response Record

0x0B Preamble Ack Record

0x0C Preamble End Record

2.2.2 Record Size Encoding

For the variable-sized records that are used by this protocol, the record needs to contain the size, in

octets, of the content. An implementation SHOULD support record sizes as large as 0xffffffff octets
(encoded size requires five octets).<2>

%5bMS-DTYP%5d.pdf

16 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

As represented in the following figure, the encoding algorithm takes the size of the record payload
as input in little-endian format and generates a stream of octets. The octets MUST be sent in the

order in which they are generated.

Figure 2: The encoding algorithm

The following table lists the encoded sizes for the range of values of Size, which is computed as
previously explained. The network ordering of octets is top-down. For example, if the size is in the

range 0x80-0x3FFF, the network ordering of encoded size octets is (Size & 0x7F) | 0x80 followed by
Size >> 0x07.

Integer value (size) Encoding

0x00-0x7F Size

0x80-0x3FFF (Size & 0x7F)| 0x80

Size >> 0x07

0x4000-0x1FFFFF (Size & 0x7F)| 0x80

((Size >> 0x07) & 0x7F)| 0x80

Size >> 0x0E

0x200000-0x0FFFFFFF (Size & 0x7F)| 0x80

((Size >> 0x07) & 0x7F)| 0x80

((Size >> 0x0E) & 0x7F)| 0x80

Size >> 0x15

0x10000000-0x0FFFFFFFF (Size & 0x7F)| 0x80

((Size >> 0x07) & 0x7F)| 0x80

((Size >> 0x0E) & 0x7F)| 0x80

((Size >> 0x15) & 0x7F)| 0x80

Size >> 0x1C

In the preceding table, "&" refers to a bitwise "and" operation, "|" refers to a bitwise "or" operation,

and ">>" refers to a right-shift operation.

2.2.3 Property Records

The Property Records contain metadata about the protocol stream. When Property Records are
received, they set a protocol stream property and affect the interpretation of the subsequent
records within the protocol stream.

%5bMS-GLOS%5d.pdf

17 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.3.1 Version Record

The Version Record is a Property Record used to indicate which version of the .NET Message
Framing Protocol is being used. The Version Record enables later versions of this specification to

define additional record types and associated semantics.

The data portion of a Version Record is a pair of octets that indicate the major and minor version
numbers. New sets of values for existing record types (for example, additional values of the Known
Encoding Type Record) MUST be indicated by using a different minor version value. All other types
of changes MUST be indicated with a different major version value.

The major and minor values of the Version Record denote the version of the framing format, not
that of the payload envelope.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType MajorVersion MinorVersion

RecordType (1 byte): This octet MUST be set to 0x00 to indicate that this record is a Version
Record.

MajorVersion (1 byte): Specifies the major version of the .NET Message Framing Protocol. An

implementation that conforms to this specification MUST set this field to 0x01. A value of 0x00
is not valid for this octet, and values of 0x02–0xff are reserved for future use.

MinorVersion (1 byte): Specifies the minor version of the .NET Message Framing Protocol. An
implementation conforming to this specification MUST set this field to 0x00. The values 0x01 –
0xff for this octet are reserved for future use.<3>

2.2.3.2 Mode Record

The Mode Record is a Property Record that defines the communication mode for the session. The
data portion of a Mode Record is a single octet.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType Mode

RecordType (1 byte): This octet MUST be set to 0x01 to indicate that this is a Mode Record.

Mode (1 byte): The mode value MUST be set to one of the following values. A value of 0x00 is
not valid for this octet, and values of 0x05–0xff are reserved for future use.

Short Name Meaning

Singleton-

Unsized

0x01

The Initiating Stream for a single one-way message or for a pair of messages in

a request-reply manner between two nodes.

Duplex

0x02

The Initiating Stream for multiple bidirectional messages between two nodes.

18 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Short Name Meaning

Simplex

0x03

The Initiating Stream for multiple one-way messages from a single source.

Singleton-

Sized

0x04

The Initiating Stream for a single one-way message from a single source.

2.2.3.3 Via Record

The Via Record is a Property Record that defines the URI for which subsequent messages are bound.
The data portion of a Via Record is of variable length.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType ViaLength (variable)

...

Via (variable)

...

RecordType (1 byte): This octet MUST be set to 0x02 to indicate that this is a Via Record.

ViaLength (variable): The value MUST be set to the size, in octets, of the Via, and encoded
based on the scheme defined in section 2.2.2. The length MUST NOT be set to 0.

Via (variable): A URI (as defined in [RFC2396] except that the "escaped" construct is never

used). The URI MUST be encoded by using UTF-8, as specified in [RFC2279].

2.2.3.4 Envelope Encoding Record

Envelope Encoding Records are the Property Records that define the encoding format that is used to

encode the message envelope in subsequent Envelope Records. Such records come in two forms:
Known Encoding Records and Extensible Encoding Records.

In messages, this record shows as variable-sized so that it can be either of the two forms. If the
record uses Known Encoding, it is fixed-sized; otherwise, the record is variable-sized.

2.2.3.4.1 Known Encoding Record

The Known Encoding Record indicates a previously known encoding for the subsequent Envelope

Records. The data portion of this record is a single octet.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType Encoding

http://go.microsoft.com/fwlink/?LinkId=90339
http://go.microsoft.com/fwlink/?LinkId=90331

19 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

RecordType (1 byte): This octet MUST be set to 0x03 to indicate that this is a Known Encoding
Record.

Encoding (1 byte): This octet MUST be set to one of the following values. Values of 0x09–0xFF
are reserved for future use.<4>

SOAP Version 1.1 Value Meaning

0x00 UTF-8, as specified in [RFC2279].

0x01 UTF-16, as specified in [RFC2781].

0x02 Unicode little-endian.

SOAP Version 1.2 Value Meaning

0x03 UTF-8.

0x04 UTF-16.

0x05 Unicode little-endian.

0x06 MTOM, as specified in [SOAP-MTOM].

0x07 Binary, as specified in [MC-NBFS].

0x08 Binary with in-band dictionary, as specified in [MC-NBFSE].

2.2.3.4.2 Extensible Encoding Record

The Extensible Encoding Record indicates an ad hoc encoding for subsequent Envelope Records. The

record data in this case is a Multipurpose Internet Mail Extensions (MIME) content type, as specified
in [RFC2045], which is encoded by using UTF-8 encoding.<5>

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record Type Encoding Length (variable)

...

Type (variable)

...

Delimiter Subtype (variable)

...

Parameters (variable)

http://go.microsoft.com/fwlink/?LinkId=90331
http://go.microsoft.com/fwlink/?LinkId=90380
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=95126
%5bMC-NBFS%5d.pdf
%5bMC-NBFSE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90307

20 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

...

Record Type (1 byte): This octet MUST be set to 0x04 to indicate that this record is an
Extensible Encoding Record.

Encoding Length (variable): The value MUST be set to the size, in octets, of the payload, and
encoded based on the scheme that is specified in section 2.2.2. The length MUST NOT be set
to 0.

Type (variable): This MUST be set to a type that is specified in [RFC2045] section 5.1.

Delimiter (1 byte): This MUST be set to the octet 0x2F (UTF-8 encoding for "/").

Subtype (variable): This MUST be set to a subtype that is specified in [RFC2045] section 5.1.

Parameters (variable): There can be one or more parameters in which the parameter
structure is defined as follows.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Parameter Delimiter Parameter (variable)

...

Parameter Delimiter (1 byte): This MUST be set to the octet 0x3B (UTF-8 encoding for
";").

Parameter (variable): This MUST be set to a parameter as specified in [RFC2045]

section 5.1.

2.2.3.5 Upgrade Request Record

The Upgrade Request Record is a Property Record that requests a protocol upgrade.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType UpgradeProtocolLength (variable)

...

UpgradeProtocol (variable)

...

RecordType (1 byte): This octet MUST be set to 0x09 to indicate that this is an Upgrade
Request Record.

http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90307
http://go.microsoft.com/fwlink/?LinkId=90307

21 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UpgradeProtocolLength (variable): This value MUST be set to the size, in octets, of the
upgrade protocol name, encoded based on the scheme described in section 2.2.2. The length

field MUST NOT be set to 0.

UpgradeProtocol (variable): The name of the protocol to upgrade to, encoded by using UTF-

8. The following table identifies some known upgrade protocol names. An implementation
SHOULD implement these upgrades and MAY define additional upgrade protocol
definitions.<6>

Protocol Meaning

SSL/TLS

"application/ssl-tls"

As defined in [RFC4346].

Negotiate

"application/negotiate"

As defined in [RFC4178].

2.2.3.6 Upgrade Response Record

The Upgrade Response Record is a Property Record that is sent in response to an Upgrade Request
Record to indicate a willingness to upgrade the protocol stream. This record has no data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType

RecordType (1 byte): This octet MUST be set to 0x0A to indicate that this is an Upgrade
Response Record.

2.2.3.7 Preamble End Record

The Preamble End Record is a Property Record that is sent to indicate the end of message
properties. Envelope Records follow this record. This record has no data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType

RecordType (1 byte): This octet MUST be set to 0x0C to indicate that this is a Preamble End
Record.

2.2.3.8 Preamble Ack Record

The Preamble Ack Record is a Property Record that is sent to indicate receipt of a Preamble End

Record and to indicate that all message properties and stream upgrades have been successfully
applied. The receiving end is now ready to receive the Envelope Records. This record has no data.

http://go.microsoft.com/fwlink/?LinkId=90474
http://go.microsoft.com/fwlink/?LinkId=90461

22 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType

RecordType (1 byte): This octet MUST be set to 0x0B to indicate that this is a Preamble Ack
Record.

2.2.3.9 End Record

The End Record is a Property Record that indicates that communication over a connection has
ended. This record has no data.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType

RecordType (1 byte): This octet MUST be set to 0x07 to indicate that this is an End Record.

2.2.4 Envelope Records

An Envelope Record contains a message payload. There are two possible record types, depending on
the message transfer mode.

2.2.4.1 Sized Envelope Record

A Sized Envelope Record contains a message of the specified size.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Record Type Size (variable)

...

Payload (variable)

...

Record Type (1 byte): This octet MUST be set to 0x06 to indicate that this is a Sized Envelope
Record.

Size (variable): The value MUST be set to the size, in octets, of the payload and encoded

based on the scheme described in section 2.2.2. The size MUST NOT be set to 0.

Payload (variable): The content of the message encoded using the encoding indicated by an
Envelope Encoding Record.

23 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.4.2 Data Chunk

A Data Chunk packet is used to transmit a portion of a message payload.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Size (variable)

...

Payload (variable)

...

Size (variable): The value MUST be set to the size, in octets, of the encoded payload, based on

the scheme described in section 2.2.2. The size MUST NOT be set to 0.

Payload (variable): The content of the chunk.

2.2.4.3 Unsized Envelope Record

An Unsized Envelope Record contains a message that is encoded using the encoding indicated by an
Envelope Encoding Record that is broken into one or more data chunks. The end of this record is
indicated by a single 0x00 octet in place of the start of the next data chunk.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType DataChunk1 (variable)

...

DataChunk2 (variable)

...

Terminator

RecordType (1 byte): This octet MUST be set to 0x05 to indicate that this is an Unsized
Envelope Record.

DataChunk1 (variable): The first chunk of message data. This chunk MUST be present.

DataChunk2 (variable): Successive chunks of message data. Additional chunks MAY be
present if the message is split across multiple chunks.

Terminator (1 byte): This field marks the end of chunks and MUST be set to 0x00.

24 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.5 Fault Records

A Fault Record notifies the sender of an error encountered while processing a message frame.
Generation of a Fault Record is informational only.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

RecordType FaultSize (variable)

...

Fault (variable)

...

RecordType (1 byte): This octet MUST be set to 0x08 to indicate that this is a Fault record.

FaultSize (variable): The value MUST be set to the size, in octets, of the fault, and encoded
based on the scheme that is described in section 2.2.2. The size MUST NOT be set to 0.

Fault (variable): A URI (as defined by [RFC2396] except that the "escaped" construct is never
used). The URI is encoded by using UTF-8. The following table defines a collection of faults. An
implementation MAY support these fault values and MAY also define new ones.<7>

For convenience, in this description the URI is broken into a namespace and fault name. The

namespace for faults in the following table is
http://schemas.microsoft.com/ws/2006/05/framing/faults/. Any additional faults that are
defined MUST NOT use this namespace.

An example of a fault, as returned in a Fault Record, is the following:

http://schemas.microsoft.com/ws/2006/05/framing/faults/UnsupportedMode

Fault name values Meaning

"ConnectionDispatchFailed" The endpoint that is referenced by the Via Record exists;

however, the attempt to dispatch the message to the endpoint

failed.

"ContentTypeInvalid" The Envelope Encoding Record that was sent is not supported

by the endpoint.

"ContentTypeTooLong" The receiver is enforcing a maximum content-type size, and the

Envelope Encoding Record exceeded that quota.

"EndpointAccessDenied" The endpoint that is referenced by the Via Record cannot be

accessed.

"EndpointNotFound" The endpoint that is referenced by the Via Record cannot be

found.

"EndpointPaused" The endpoint that is referenced by the Via Record exists;

however, the endpoint is currently paused.

"EndpointUnavailable" The endpoint that is referenced by the Via Record exists;

http://go.microsoft.com/fwlink/?LinkId=90339

25 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Fault name values Meaning

however, the endpoint is currently unavailable.

"InvalidRecordSequence" The record sequence does not conform to the grammar that is

outlined in section 3.1.1.2.

"MaxMessageSizeExceededFault" The receiver is enforcing a maximum message size, and the

incoming message has exceeded that quota.

"ServerTooBusy" The endpoint does not have sufficient resources to process the

connection.

"ServiceActivationFailed" The endpoint is in a process that cannot be activated.

"UnsupportedMode" The Mode Record value is not supported by the destination.

"UnsupportedVersion" The Version Record value is not supported by the destination.

"UpgradeInvalid" The requested upgrade is not supported by the remote

endpoint.

"ViaTooLong" The receiver is enforcing a maximum Via size, and the Via

Record exceeded that quota.

2.2.6 Preamble Message

To aid description, a Preamble Message is defined for an initial record sequence. The Preamble
Message may apply to multiple messages, depending on the mode specified.

The VersionRecord MUST be formatted as specified in section 2.2.3.1.

The ModeRecord MUST be formatted as specified in section 2.2.3.2.

The ViaRecord MUST be formatted as specified in section 2.2.3.3.

The EnvelopeEncodingRecord MUST be formatted as specified in section 2.2.3.4.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

VersionRecord ModeRecord

... ViaRecord (variable)

...

EnvelopeEncodingRecord (variable)

...

26 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Protocol Details

A node that is a participant in this protocol can behave in one of two roles:

Initiator

Receiver

An initiator initiates the protocol by sending a preamble message to the receiver. The initiator and
receiver nodes then send and receive messages using the protocol stream that connects the two
endpoints.

3.1 Common Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the participants behave. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with what is described in this
document.

The participant maintains the following state for each session:

Protocol Configuration Object (PCO) - Determines the specific transport, protocol version, mode,

Via, and message-encoding scheme to be used for this session.

Send Allowed - A Boolean value that can be set to TRUE or FALSE to indicate whether messages

can be sent on this session.

Receive Allowed - A Boolean value that can be set to TRUE or FALSE to indicate whether

messages can be received on this session.

3.1.1.1 Initiator-Receiver Interactions

This section describes some typical interactions between an initiator and receiver.

27 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.1 Singleton Unsized Mode

Figure 3: Singleton Unsized mode

28 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.2 Duplex Mode

Figure 4: Duplex mode

In the case illustrated, the initiator sends the End Record first. The protocol allows either participant
to send the End Record first. After a participant sends the End Record, the participant MUST
continue to receive messages until the session is closed.

29 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.3 Simplex Mode

Figure 5: Simplex mode

3.1.1.1.4 Singleton Sized Mode

Figure 6: Singleton Sized mode

30 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.5 Upgrades

Figure 7: Upgrades

This figure illustrates a stream upgrade that uses the Singleton Unsized mode. The figure would look
very similar if the stream upgrade used the Duplex mode.

After the protocol upgrade, subsequent protocol exchanges occur over the upgraded transport
stream until a fault occurs or an End Record is received. Although the protocol allows for multiple

upgrades, the preceding exchange illustrates a single upgrade only.

31 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.1.1.6 Faults

Figure 8: Unsupported version

Figure 9: Upgrade invalid

32 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 10: Maximum message size exceeded

The preceding exchanges capture some of the scenarios where a Fault Record can be generated.

3.1.1.2 Protocol Grammar

This section uses the Augmented Backus-Naur Form (ABNF) notation that is specified in [RFC2234]
to define the protocol stream grammar. ProtocolStream-a represents the stream of octets flowing
from the initiator to the receiver, and ProtocolStream-b represents the stream of octets flowing from
the receiver to the initiator.

ProtocolStream-a =

 1*(SingletonUnsizedStream-a / DuplexStream-a /

 SimplexStream-a / SingletonSizedStream-a)

ProtocolStream-b =

 1*(SingletonUnsizedStream-b / DuplexStream-b)

SingletonUnsizedStream-a =

 VersionRecord ModeRecordType SingletonUnsizedMode

 ViaRecord EncodingRecord

 *UpgradeRequest PreambleEndRecord

 UnsizedEnvelopeRecord

 EndRecord

DuplexStream-a =

 VersionRecord ModeRecordType DuplexMode

 ViaRecord EncodingRecord

 *UpgradeRequest PreambleEndRecord

 *SizedEnvelopeRecord

 EndRecord

SimplexStream-a =

 VersionRecord ModeRecordType SimplexMode

 ViaRecord EncodingRecord PreambleEndRecord

 *SizedEnvelopeRecord

 EndRecord

SingletonSizedStream-a =

 VersionRecord ModeRecordType SingletonSizedMode

 ViaRecord EncodingRecord

 Octets

SingletonUnsizedStream-b =

(*UpgradeResponse FaultRecord) /

(*UpgradeResponse PreambleAckRecord *1(UnsizedEnvelopeRecord)

 (FaultRecord / EndRecord))

DuplexStream-b =

 (*UpgradeResponse FaultRecord) /

 (*UpgradeResponse PreambleAckRecord *SizedEnvelopeRecord

 (FaultRecord / EndRecord))

EncodingRecord = KnownEncodingRecord / ExtensibleEncodingRecord

UpgradeRequest = UpgradeRequestRecord Octets

UpgradeResponse = UpgradeResponseRecord Octets

VersionRecord = VersionRecordType MajorVersionNumber MinorVersionNumber

http://go.microsoft.com/fwlink/?LinkId=90323

33 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

VersionRecordType = %x00

MajorVersionNumber = %x01

MinorVersionNumber = %x00

ModeRecordType = %x01

SingletonUnsizedMode = %x01

DuplexMode = %x02

SimplexMode = %x03

SingletonSizedMode = %x04

ViaRecord = ViaRecordType EncodedSize Utf8Octets

ViaRecordType = %x02

KnownEncodingRecord = KnownEncodingRecordType KnownEncodingType

KnownEncodingType = TextEncoding / BinaryEncoding / MtomEncoding

BinaryEncoding =

 BinarySessionlessEncoding /

 BinarySessionEncoding

TextEncoding =

 Soap11TextEncoding /

 Soap12TextEncoding

Soap11TextEncoding =

 Soap11Utf8Encoding /

 Soap11Utf16Encoding /

 Soap11UnicodeFFFEEncoding

Soap12TextEncoding =

 Soap12Utf8Encoding /

 Soap12Utf16Encoding /

 Soap12UnicodeFFFEEncoding

KnownEncodingRecordType = %x03

Soap11Utf8Encoding = %x00

Soap11Utf16Encoding = %x01

Soap11UnicodeFFFEEncoding = %x02

Soap12Utf8Encoding = %x03

Soap12Utf16Encoding = %x04

Soap12UnicodeFFFEEncoding = %x05

MtomEncoding = %x06

BinarySessionlessEncoding = %x07

BinarySessionEncoding = %x08

ExtensibleEncodingRecord =

 ExtensibleEncodingRecordType EncodedSize Utf8Octets

ExtensibleEncodingRecordType = %x04

UnsizedEnvelopeRecords =

 UnsizedEnvelopeRecordType 1*(EncodedSize Octets) Terminator

UnsizedEnvelopeRecordType = %x05

Terminator = %x00

SizedEnvelopeRecord = SizedEnvelopeRecordType EncodedSize Octets

SizedEnvelopeRecordType = %x06

EndRecord = EndRecordType

EndRecordType = %x07

FaultRecord = FaultRecordType EncodedSize Utf8Octets

FaultRecordType = %x08

UpgradeRequestRecord = UpgradeRequestRecordType EncodedSize Utf8Octets

34 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UpgradeRequestRecordType = %x09

UpgradeResponseRecord = UpgradeResponseRecordType

UpgradeResponseRecordType = %x0A

PreambleAckRecord = PreambleAckRecordType

PreambleAckRecordType = %x0B

PreambleEndRecord = PreambleEndRecordType

PreambleEndRecordType = %x0C

Utf8Octets = 1*(Utf8Octet)

Utf8Octet =

 %x00-7F /

 %xC2-DF %x80-BF /

 %xE0-EF %x80-BF %x80-BF /

 %xF0-F4 %x80-BF %x80-BF %x80-BF

Octets = 1*(%x00-FF)

EncodedSize =

%x01-7F /

 %x80-FF %x01-7F /

 %x80-FF %x80-FF %x01-7F /

 %x80-FF %x80-FF %x80-FF %x01-7F /

 %x80-FF %x80-FF %x80-FF %x80-FF %x01-07

3.1.2 Timers

None.

3.1.3 Initialization

The PCO is made available to the participant as part of a higher-layer triggered event.

When the participant is initialized:

The Send Allowed field MUST be set to FALSE.

The Receive Allowed field MUST be set to FALSE.

3.1.4 Higher-Layer Triggered Events

This section covers reading record types from the underlying transport. The higher-layer triggered
events and related processing are role specific.

The following stipulations apply throughout the remaining sections.

Wherever it is mentioned that a session MUST be closed, it refers to the following actions being

taken by the participant:

Any session-related state MUST be discarded.

The participant MUST notify the higher layer of the error.

Wherever it is mentioned that a Fault Record MAY (or SHOULD) be sent, it refers to the following
action being taken by the participant:

35 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the mode is Singleton Unsized, or Duplex mode, a Fault Record MAY (or SHOULD) be sent, as

described in section 2.2.5.

3.1.4.1 Reading Variable-Sized Records

When a variable-sized record is received, the participant MUST use the following algorithm to
decode the size and read the payload. This section assumes that the record type has already been
read.

The algorithm takes as input the MaxSize, that is, the maximum supported size for this record. If
the encoded size is 0, a Fault Record MAY<8> be sent to indicate that the size is 0 and the session
MUST be closed. The decoded size is returned in little-endian format.

Figure 11: Algorithm to decode the size and read the payload

3.1.4.2 Handling Receipt of an Unexpected Record Type

If the participant receives an unexpected record type, it MUST be handled as follows:

If the record type is not Fault Record, a Fault Record MAY be sent to indicate that an unexpected

record type has been received.

The session MUST be closed.

3.1.4.3 Version Record

If the record type the participant read from the protocol stream is not Version Record, it MUST be

handled as described in section 3.1.4.2.

The participant MUST read the next two octets, which contain the major and minor versions of

the protocol being used.

If the participant does not recognize the version, a Fault Record MAY<9> be sent to indicate that

an incorrect version was specified, and the session MUST be closed.

3.1.4.4 Mode Record

If the record type the participant read from the protocol stream is not Mode Record, it MUST be

handled as described in section 3.1.4.2.

The participant MUST read the next octet, which contains the mode.

36 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the mode is incorrect for the session, a Fault Record MAY<10> be sent to indicate that an

incorrect mode has been specified, and the session MUST be closed.

3.1.4.5 Via Record

If the record type the participant read from the protocol stream is not a Via Record, it MUST be

handled as described in section 3.1.4.2.

The participant MUST obtain the Via, as detailed in section 3.1.4.1. The participant SHOULD use a

MaxViaSize.<11> If the Via is too long, a Fault Record MAY<12> be sent, and the session MUST
be closed.

If the participant cannot locate an endpoint that matches the Via, a Fault Record MAY<13> be

sent, and the session MUST be closed.

3.1.4.6 Encoding Record

If the record type the participant read from the protocol stream is not Known Encoding Record or

Extensible Encoding Record, it MUST be handled as described in section 3.1.4.2.

If the record type is Known Encoding Record, the participant MUST read the next octet, which

contains the message encoding scheme.

If the record type is Extensible Encoding Record, the participant MUST obtain the encoding

scheme, as detailed in section 3.1.4.1. The participant SHOULD use a MaxContentTypeSize.<14>
If the content type is too long, a Fault Record MAY<15> be sent, and the session MUST be
closed.

If the encoding is not supported, a Fault Record MAY<16> be sent, and the session MUST be

closed.

3.1.4.7 Upgrade Request Record

If the record type the participant read from the protocol stream is not Upgrade Request Record, it

MUST be handled as described in section 3.1.4.2.

The participant MUST read the Upgrade Protocol, as detailed in section 3.1.4.1. The participant

SHOULD use a MaxUpgradeProtocolSize.<17> If the upgrade name is too long, a Fault Record
MAY<18> be sent, and the session MUST be closed.

If the upgrade is not supported, a Fault Record MAY<19> be sent, and the session MUST be

closed.

If the upgrade is supported, the participant MUST send an Upgrade Response Record, as

described in section 2.2.3.6. The participant MUST invoke the upgrade handler identified by the
upgrade protocol name in the Upgrade Request Record.

3.1.4.8 Upgrade Response Record

If the record type the participant read from the protocol stream is not Upgrade Response Record,

it MUST be handled as described in section 3.1.4.2.

If the upgrade is supported, the participant MUST invoke the appropriate upgrade handler. How

the upgrade handler achieves the upgrade is outside the scope of this document.

37 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.9 Preamble End Record

If the record type the participant read from the protocol stream is not Preamble End Record, it

MUST be handled as described in section 3.1.4.2.

In the case of Singleton Unsized and Duplex modes, the participant MUST send a Preamble Ack

Record as described in section 2.2.3.8.

3.1.4.10 Preamble Ack Record

If the record type the participant read from the protocol stream is not Preamble Ack Record, it MUST
be handled as described in section 3.1.4.2.

3.1.4.11 Sized Envelope Record

If the record type the participant read from the protocol stream is not Sized Envelope Record, it

MUST be handled as follows:

If the record type is End Record, the participant MUST notify the higher layer of the receipt of

End Record and set Receive Allowed to FALSE.

If the record type is a Fault Record, the session MUST be closed.

Otherwise, it MUST be handled as described in section 3.1.4.2.

The participant MUST obtain the message as detailed in section 3.1.4.1. The participant SHOULD

use a MaxEnvelopeSize.<20>

If the message is too large, a Fault Record MAY<21> be sent, and the session MUST be closed.

3.1.4.12 Unsized Envelope Record

If the record type the participant read from the protocol stream is not Unsized Envelope Record,

it MUST be handled as described in section 3.1.4.2.

The participant MUST then process the first chunk and any additional chunks, as described in

section 3.1.4.1, until the Terminator marker (octet 0x00) is read. To achieve streaming, reading

chunks SHOULD be correlated with consumption of chunks by the higher layer. The participant
SHOULD use a MaxChunkSize.<22> If the chunk size is too large, a Fault Record MAY<23> be
sent, and the session MUST be closed.

3.1.4.13 End Record

If the record type the participant read from the protocol stream is not End Record, it MUST be

handled as described in section 3.1.4.2.

The participant MUST set Receive Allowed to FALSE.

3.1.5 Message Processing Events and Sequencing Rules

This document assumes that the processing of received octets is deferred until initiated by a higher-
layer triggered event or a required response in the protocol. All message processing events and

sequencing rules are explained in the context of higher-layer triggered events.

38 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.6 Timer Events

None.

3.1.7 Other Local Events

3.1.7.1 Underlying Transport Session Is Closed

If at any point, the underlying network transport session is closed, the Protocol Stream is closed.
The participant MUST discard any session-related state.

3.2 Initiator Details

3.2.1 Abstract Data Model

The details are covered in section 3.1.1.

3.2.2 Timers

None.

3.2.3 Initialization

The details are covered in section 3.1.3.

3.2.4 Higher-Layer Triggered Events

The operation of the initiator is driven by the following higher-layer triggered events.

3.2.4.1 Initialize Session

A new session state MUST be created, and session properties initialized as described in section

3.1.3.

3.2.4.2 Send Preamble

The initiator MUST send the Preamble Message as described in section 2.2.6.

In the case of Simplex mode, the initiator MUST send the Preamble End record as described in

section 2.2.3.7.

In the case of Singleton Unsized, and Duplex modes, the initiator MUST perform the following

additional steps:

If an upgrade is required, send the Upgrade Request Record as described in section 2.2.3.5.

If an upgrade is sent, read the Upgrade Response Record as described in section 3.1.4.8.

Send the Preamble End Record as described in section 2.2.3.7.

Read the Preamble Ack Record as described in section 3.1.4.10.

The initiator MUST set Send Allowed to TRUE.

If the mode is Duplex, the initiator MUST set Receive Allowed to TRUE.

39 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.4.3 Send Message

If Send Allowed is set to FALSE, an error MUST be propagated to the higher layer, and no further
processing done. Otherwise, the initiator MUST do the following based on the mode.

3.2.4.3.1 Singleton Unsized Mode

The initiator MUST send an Unsized Envelope Record containing the message as described in

section 2.2.4.3.

The initiator MUST send an End Record as described in section 2.2.3.9.

The initiator MUST set Send Allowed to FALSE.

3.2.4.3.2 Duplex or Simplex Mode

The initiator MUST send a Sized Envelope Record containing the message as described in section
2.2.4.1.

3.2.4.3.3 Singleton Sized Mode

The initiator MUST send the message and set Send Allowed to FALSE.

3.2.4.4 Receive Message

If Receive Allowed is set to FALSE, an error MUST be propagated to the higher layer and no further
processing done. Otherwise, the initiator MUST read a Sized Envelope Record as described in section
3.1.4.11, and propagate the contained message to a higher layer.

3.2.4.5 Send End Record

If mode is not Duplex or Simplex, an error MUST be propagated to the higher layer and no further
processing done. Otherwise, the initiator MUST send an End Record as described in section 2.2.3.9.

The initiator MUST set Send Allowed to FALSE.

3.2.4.6 Session Close

The initiator MUST discard any session-related state and no further processing done.

3.2.5 Message Processing Events and Sequencing Rules

The details are covered in section 3.1.5.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

The details are covered in section 3.1.7.

40 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3 Receiver Details

3.3.1 Abstract Data Model

The details are covered in section 3.1.1.

3.3.2 Timers

None.

3.3.3 Initialization

The details are covered in section 3.1.3.

3.3.4 Higher-Layer Triggered Events

The operation of the receiver is driven by the following higher-layer triggered events.

3.3.4.1 Initialize Session

A new session state MUST be created and session properties initialized as described in section 3.1.3.

3.3.4.2 Receive Preamble

The receiver MUST read the Version Record, as described in section 3.1.4.3.

The receiver MUST read the Mode Record, as described in section 3.1.4.4.

The receiver MUST read the Via Record, as described in section 3.1.4.5.

The receiver MUST read the Encoding Record, as described in section 3.1.4.6.

If the mode is Simplex, the receiver MUST read the Preamble End record as described in section

3.1.4.9.

If the mode is Singleton Unsized, or Duplex, the receiver MUST perform these additional steps:

If an upgrade is required, read the Upgrade Request Record, as described in section 3.1.4.7.

Read the Preamble End Record, as described in section 3.1.4.9.

The receiver MUST set Receive Allowed to TRUE.

If the mode is Duplex, the receiver MUST set Send Allowed to TRUE.

3.3.4.3 Send Message

If Send Allowed is set to FALSE, an error MUST be propagated to the higher layer and no further

processing done. Otherwise, the receiver MUST send a Sized Envelope Record containing the

message as described in section 2.2.4.1.

3.3.4.4 Receive Message

If Receive Allowed is set to FALSE, an error MUST be propagated to the higher layer and no further
processing done. Otherwise, the receiver MUST do the following based on the Mode.

41 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.3.4.4.1 Singleton Unsized Mode

The receiver MUST read an Unsized Envelope Record as described in section 3.1.4.12, and

propagate the contained message to a higher layer.

The receiver MUST read an End Record as described in section 3.1.4.13.

The receiver MUST set Receive Allowed to FALSE.

3.3.4.4.2 Duplex or Simplex Mode

The receiver MUST read a Sized Envelope Record as described in section 3.1.4.11, and propagate

the contained message to a higher layer.

3.3.4.4.3 Singleton Sized Mode

The receiver MUST read the message and propagate it to a higher layer. The receiver MUST set
Receive Allowed to FALSE.

3.3.4.5 Send End Record

If the mode is not Duplex, an error MUST be propagated to the higher layer and no further
processing done. Otherwise, the receiver MUST send an End Record as described in section 2.2.3.9.
The receiver MUST set Send Allowed to FALSE.

3.3.4.6 Session Close

The receiver MUST discard any session-related state and no further processing done.

3.3.5 Message Processing Events and Sequencing Rules

The details are covered in section 3.1.5.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

The details are covered in section 3.1.7.

42 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4 Protocol Examples

4.1 Duplex Mode

The protocol exchange involving a Duplex Mode session is illustrated in this section. The initiator
first establishes a session with the receiver. The initiator then sends a message, and the receiver
replies. Finally, the session is closed. The Protocol Configuration Object for this session has been
configured as follows:

Transport - The specifics of network transport are excluded from this example. The following

packet captured demonstrates only the .NET Message Framing Protocol and message payload.

Version - This exchange happened over Major Version 1 and Minor Version 0 of this protocol.

Mode - Duplex mode was used.

Via - The receiver was identified by the URI net.tcp://SampleServer/SampleApp/.

Encoding - Binary Session Encoding was used to encode the messages.

4.1.1 Initiator Receiver: Preamble Message

43 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Figure 12: Initiator Receiver: Preamble Message

4.1.2 Initiator Receiver: Preamble End Message

Figure 13: Initiator Receiver: Preamble End Message

4.1.3 Receiver Initiator : Preamble Ack Message

Figure 14: Receiver Initiator : Preamble Ack Message

4.1.4 Initiator Receiver: Sized Envelope Message

Figure 15: Initiator Receiver: Sized Envelope Message

44 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4.1.5 Receiver Initiator: Sized Envelope Message

Figure 16: Receiver Initiator: Sized Envelope

4.1.6 Initiator Receiver: End Message

Figure 17: Initiator Receiver: End Message

4.1.7 Receiver Initiator: End Message

Figure 18: Receiver Initiator: End Message

45 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5 Security

5.1 Security Considerations for Implementers

To minimize the risk of a denial-of-service (DOS) attack, it is recommended that an implementation
of this protocol limit the size of variable-length records, including Via, Extensible Encoding, Upgrade
Protocol, Sized Envelope, and Unsized Envelope Record chunks. Note that Via, Extensible Encoding,
and Upgrade Protocol records are exchanged before a stream upgrade can supply transport level
security. Therefore, particular care should be taken to bound these records to a reasonable size if

security is not available.

5.2 Index of Security Parameters

None.

46 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Appendix A: Product Behavior

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of .NET Framework are available in each released Windows product or as
supplemental software, see .NET Framework.

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Microsoft .NET Framework 3.0

Microsoft .NET Framework 3.5

Microsoft .NET Framework 4.0

Microsoft .NET Framework 4.5

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.3: The Windows implementation of this protocol is exercised through the use of the

following Windows Communication Framework bindings [MSDN-WCF].

1. NetTcpBinding [MSDN-NETTcp] - If the TransferMode property on the binding is set to Buffered,
the mode is set to Duplex. Otherwise, the mode is set to Singleton Unsized. If the
Security.Transport.ClientCredentialType property on the binding is set to Certificate, the
"SSL/TLS" upgrade protocol is used. Otherwise, if it is set to Windows, the "Negotiate" upgrade

protocol is used.

2. NetNamedPipeBinding [MSDN-NETNamedPipe] - If the TransferMode property on the binding is

set to Buffered, the mode is set to Duplex. Otherwise, the mode is set to Singleton Unsized. If
the Security.Mode property on the binding is set to Transport, the "Negotiate" upgrade protocol is
used.

3. NetMsmqBinding [MSDN-NETMsmq] - If a TransactionScope is being used, the mode is set to
Simplex. Otherwise, the mode is set to Singleton Sized. If the
Security.Transport.MsmqAuthenticationMode property on the binding is set to Certificate, the
"SSL/TLS" upgrade protocol is used. Otherwise, if it is set to WindowsDomain, the "Negotiate"

upgrade protocol is used.

The Windows implementation of this protocol is also exercised through a custom Windows
Communication Framework binding that uses the TcpTransportBindingElement [MSDN-NETTcpBE] or
the NamedPipeTransportBindingElement [MSDN-NETNamedPipeBE], or the

MsmqTransportBindingElement [MSDN-NETMsmqBE].

The Windows implementation of this protocol is also exercised through the use of the following

Windows Web Services API channel binding [MSDN-WSCHBIND]:

WS_TCP_CHANNEL_BINDING - If channel binding is set to WS_TCP_CHANNEL_BINDING, the

mode is always set to Duplex. If channel security binding [MSDN-WSSECBIND] is set to

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=100290
http://go.microsoft.com/fwlink/?LinkId=100283
http://go.microsoft.com/fwlink/?LinkId=100285
http://go.microsoft.com/fwlink/?LinkId=100286
http://go.microsoft.com/fwlink/?LinkId=100287
http://go.microsoft.com/fwlink/?LinkId=100288
http://go.microsoft.com/fwlink/?LinkId=100289
http://go.microsoft.com/fwlink/?LinkId=182220
http://go.microsoft.com/fwlink/?LinkId=182275

47 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

WS_TCP_SSPI_TRANSPORT_SECURITY_BINDING [MSDN-WSTCPSSPI], the "Negotiate" upgrade
protocol is used.

<2> Section 2.2.2: The Windows implementation of the protocol that is exercised by Windows
Communication Foundation will not allow record sizes larger than 0x7fffffff octets.

<3> Section 2.2.3.1: The Windows implementation of this protocol that is exercised by Windows
Communication Foundation does not validate the value of the minor version when the value of the
major version is 0x01.

<4> Section 2.2.3.4.1: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API supports all the known
encoding schemes.

<5> Section 2.2.3.4.2: The .NET Framework 4.5 implementations of this protocol that are exercised

by Windows Communication Foundation use the Extensible Encoding Record to indicate the MIME
content type for binary message encoding compression (see [MSDN-BinaryMsgEncdngBindElmnt]).

<6> Section 2.2.3.5: The Windows implementation of this protocol that is exercised by Windows
Communication Framework supports only the SSL/TLS and Negotiate upgrade protocols.

The Windows implementation of this protocol that is exercised by Windows Web Services API
supports only the Negotiate upgrade protocol.

<7> Section 2.2.5: The Windows implementation of this protocol that is exercised by Windows
Communication Framework supports the following set of faults: ContentTypeInvalid,
ContentTypeTooLong, ConnectionDispatchFailed, EndpointNotFound, EndpointUnavailable,
MaxMessageSizeExceededFault, ServerTooBusy, ServiceActivationFailed, UnsupportedMode,
UnsupportedVersion, UpgradeInvalid, and ViaTooLong.

The Windows implementation of this protocol that is exercised by Windows Web Services API
supports the following set of faults: ContentTypeInvalid, EndpointNotFound,

MaxMessageSizeExceededFault, UnsupportedMode, and UpgradeInvalid.

<8> Section 3.1.4.1: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API does not send a Fault Record if
the size of a variable-sized record is 0.

<9> Section 3.1.4.3: The Windows implementation of this protocol that is exercised by Windows
Communication Framework sends a Fault Record (UnsupportedVersion) if an incorrect version is
specified in the received Version Record.

The Windows implementation of this protocol that is exercised by Windows Web Services API does
not send a Fault Record if an incorrect version is specified in the received Version Record.

<10> Section 3.1.4.4: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API sends a Fault Record
(UnsupportedMode) if an incorrect mode is specified in the received Mode Record.

<11> Section 3.1.4.5: The Windows implementation of this protocol that is exercised by both

Windows Communication Framework and Windows Web Services API defines a MaxViaSize of 2,048
bytes.

<12> Section 3.1.4.5: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API does not send a Fault Record if
the size of Via in the received Via Record exceeds MaxViaSize.

http://go.microsoft.com/fwlink/?LinkId=182221
http://go.microsoft.com/fwlink/?LinkId=216916

48 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<13> Section 3.1.4.5: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API sends a Fault Record

(EndpointNotFound) if the endpoint cannot be located for the specified Via in the received Via
Record.

The Windows implementation of this protocol that is exercised by Windows Communication
Framework sends a Via with a scheme component that is equal to "net.tcp" if exercised with
NetTcpBinding (see [MSDN-NETTcp]) or TcpTransportBindingElement (see [MSDN-NETTcpBE]); and
a Via with a scheme component that is equal to "net.msmq" if exercised with NetMsmqBinding (see
[MSDN-NETMsmq]) or MsmqTransportBindingElement (see [MSDN-NETMsmqBE]).

A Via that has a scheme equal to "net.tcp" or "net.msmq" uses the following constructions: the URI
reference is absolute, the URI contains a hierarchical part, the hierarchical part contains a network

path, the authority is a server, and the server does not include user information.

The Windows implementation of this protocol that is exercised by Windows Web Services API sends
a Via with a scheme component equal to "net.tcp" if exercised with WS_TCP_CHANNEL_BINDING
[MSDN-WSCHBIND]. A Via with a scheme equal to "net.tcp" uses the following constructions: the

URI reference is absolute, the URI contains a hierarchical part, the hierarchical part contains a
network path, the authority is a server, and the server does not include user information.

The Windows implementation of this protocol that is exercised by both Windows Communication
Framework and Windows Web Services API supports attempting to locate an endpoint for a specified
Via with a scheme component that is equal to "net.tcp" when the transport session (as described in
section 1.5) that is carrying the protocol stream is a TCP connection (as defined in [RFC793]) whose
destination address is equal to the authority of the Via; however, an authority that does not
designate a port is equivalent to an authority that uses port 808.

The Windows implementation of this protocol that is exercised by Windows Communication

Framework supports attempting to locate an endpoint for a specified Via with a scheme component
equal to "net.msmq" when the initiator is Microsoft Message Queuing, as specified in [MS-MQMQ],
whose queue path name computer is equal to the authority of the Via and the remainder of whose
queue path name is equal to the absolute path of the Via, except that the first path segment in the

Via of a private queue is "private" rather than "private$".

<14> Section 3.1.4.6: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API defines a MaxContentTypeSize

of 256 bytes.

<15> Section 3.1.4.6: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API does not send a Fault Record if
the size of the extensible encoding in the received Extensible Encoding Record exceeds
MaxContentTypeSize.

<16> Section 3.1.4.6: The Windows implementation of this protocol that is exercised by both

Windows Communication Framework and Windows Web Services API sends a Fault Record
(ContentTypeInvalid) if an unsupported content type is specified in the received Encoding Record.

<17> Section 3.1.4.7: The Windows implementation of this protocol exercised by both Windows

Communication Framework and Windows Web Services API defines a MaxUpgradeProtocolSize of
256 bytes.

<18> Section 3.1.4.7: The Windows implementation of this protocol exercised by both Windows
Communication Framework and Windows Web Services API does not send a Fault Record if the size

of an upgrade protocol name in the received Upgrade Request Record exceeds
MaxUpgradeProtocolSize.

http://go.microsoft.com/fwlink/?LinkId=100283
http://go.microsoft.com/fwlink/?LinkId=100287
http://go.microsoft.com/fwlink/?LinkId=100286
http://go.microsoft.com/fwlink/?LinkId=100289
http://go.microsoft.com/fwlink/?LinkId=182220
http://go.microsoft.com/fwlink/?LinkId=90493
%5bMS-MQMQ%5d.pdf

49 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<19> Section 3.1.4.7: The Windows implementation of this protocol exercised by both Windows
Communication Framework and Windows Web Services API sends a Fault Record (UpgradeInvalid) if

an unsupported upgrade protocol name is specified in an Upgrade Request Record.

<20> Section 3.1.4.11: The Windows implementation of this protocol that is exercised by both

Windows Communication Framework and Windows Web Services uses a MaxEnvelopeSize as
configured externally.

<21> Section 3.1.4.11: The Windows implementation of this protocol that is exercised by both
Windows Communication Framework and Windows Web Services API sends a Fault Record
(MaxMessageSizeExceededFault) if the size of the received Sized Envelope Record exceeds
MaxEnvelopeSize but is not greater than 0xffffffff. No Fault Record is sent if the size of the received
Sized Envelope Record exceeds 0xffffffff.

<22> Section 3.1.4.12: The Windows implementation of this protocol that is exercised by Windows
Communication Framework defines a MaxChunkSize of 0xfffffffa.

<23> Section 3.1.4.12: The Windows implementation of this protocol that is exercised by Windows

Communication Framework does not send a Fault Record if the size of a chunk in the received
Unsized Envelope Record exceeds MaxChunkSize.

50 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

51 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

8 Index

A

Abstract data model
initiator (section 3.1.1 26, section 3.2.1 38)
receiver (section 3.1.1 26, section 3.3.1 40)

Applicability 13

C

Capability negotiation 13
Change tracking 50
Closed transport session - underlying 38
Communication modes

message chunking 12
message property scope 12
message traffic flow 12
overview 12
protocol receiver mode 12

D

Data model - abstract
initiator (section 3.1.1 26, section 3.2.1 38)
receiver (section 3.1.1 26, section 3.3.1 40)

Data_Chunk packet 23
Duplex Mode example 42

E

Encoding Record type 36
End Record type 37
End_Record packet 22
Envelope Encoding Record 18
Envelope records 22
Examples

Duplex Mode 42
Initiator Receiver

End Message 44
Preamble End Message 43
Preamble Message 42
Sized Envelope Message 43

Receiver Initiator
End Message 44
Preamble Ack Message 43
Sized Envelope Message 44

Extensible_Encoding_Record packet 19

F

Fault_Records packet 24
Fields - vendor-extensible 14

G

Glossary 7
Grammar 32

H

Handling receipt of an unexpected record type 35
Higher-layer triggered events

initiator
end record - send 39
message

receive 39
send 39

overview (section 3.1.4 34, section 3.2.4 38)
preamble - send 38
session

closed 39
initialized 38

receiver
end record - send 41
message

receive 40
send 40

overview (section 3.1.4 34, section 3.3.4 40)
preamble - receive 40
session

closed 41
initialized 40

I

Implementer - security considerations 45
Index of security parameters 45
Informative references 9
Initialization

initiator (section 3.1.3 34, section 3.2.3 38)
receiver (section 3.1.3 34, section 3.3.3 40)

Initiator
abstract data model (section 3.1.1 26, section

3.2.1 38)
higher-layer triggered events

end record - send 39
message

receive 39
send 39

overview (section 3.1.4 34, section 3.2.4 38)

preamble - send 38
session

closed 39
initialized 38

initialization (section 3.1.3 34, section 3.2.3 38)
local events (section 3.1.7 38, section 3.2.7 39)
message processing (section 3.1.5 37, section

3.2.5 39)
sequencing rules (section 3.1.5 37, section 3.2.5

39)
timer events (section 3.1.6 38, section 3.2.6 39)
timers (section 3.1.2 34, section 3.2.2 38)

Initiator Receiver
End Message example 44
Preamble End Message example 43
Preamble Message example 42
Sized Envelope Message example 43

Initiator-receiver interactions 26
Interactions - initiator-receiver 26

52 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Introduction 7

K

Known_Encoding_Record packet 18

L

Large message exchange scenario 11
Local events

initiator (section 3.1.7 38, section 3.2.7 39)
receiver (section 3.1.7 38, section 3.3.7 41)

M

Message exchange scenario
large 11
multiple bidirectional 11
offline 11

Message processing
initiator (section 3.1.5 37, section 3.2.5 39)
receiver (section 3.1.5 37, section 3.3.5 41)

Messages
chunking 12
envelope records 22
property records 16
property scope 12
record size encoding 15
record types 15
traffic flow 12
transport 15

Mode Record type 35
Mode_Record packet 17
Multiple bidirectional message exchange scenario

11

N

Normative references 8

O

Offline message exchange scenario 11
Overview (synopsis) 9

P

Parameter index - security 45
Preamble Ack Record type 37
Preamble End Record type 37
Preamble_Ack_Record packet 21
Preamble_End_Record packet 21
Preamble_Message packet 25
Preconditions 13
Prerequisites 13
Product behavior 46
Property records 16
Protocol receiver mode 12
Protocol upgrades 13

R

Reading variable-sized records 35
Receipt of an unexpected record type - handling 35
Receiver

abstract data model (section 3.1.1 26, section
3.3.1 40)

higher-layer triggered events
end record - send 41
message

receive 40
send 40

overview (section 3.1.4 34, section 3.3.4 40)
preamble - receive 40
session

closed 41
initialized 40

initialization (section 3.1.3 34, section 3.3.3 40)
local events (section 3.1.7 38, section 3.3.7 41)
message processing (section 3.1.5 37, section

3.3.5 41)
sequencing rules (section 3.1.5 37, section 3.3.5

41)
timer events (section 3.1.6 38, section 3.3.6 41)
timers (section 3.1.2 34, section 3.3.2 40)

Receiver Initiator
End Message example 44
Preamble Ack Message example 43
Sized Envelope Message example 44

Records
Encoding Record type 36
End Record type 37
envelope 22
handling receipt of an unexpected type 35
Mode Record type 35
Preamble Ack Record type 37
Preamble End Record type 37
property 16
reading variable-sized 35
size encoding 15
Sized Envelope Record type 37
types 15
Unsized Envelope Record type 37
Upgrade Request Record type 36
Upgrade Response Record type 36
Version Record type 35
Via Record type 36

References
informative 9
normative 8

Relationship to other protocols 13

S

Scenarios
large message exchange 11
message exchange

large 11
multiple bidirectional 11
offline 11

multiple bidirectional message exchange 11
offline message exchange 11
overview 10

Security

53 / 53

[MC-NMF] — v20140124
 .NET Message Framing Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

implementer considerations 45
parameter index 45

Sequencing rules
initiator (section 3.1.5 37, section 3.2.5 39)
receiver (section 3.1.5 37, section 3.3.5 41)

Sized Envelope Record type 37
Sized_Envelope_Record packet 22
Standards assignments 14

T

Timer events
initiator (section 3.1.6 38, section 3.2.6 39)
receiver (section 3.1.6 38, section 3.3.6 41)

Timers
initiator (section 3.1.2 34, section 3.2.2 38)
receiver (section 3.1.2 34, section 3.3.2 40)

Tracking changes 50
Transport 15

Transport session - underlying - closed 38
Triggered events - higher-layer

initiator
end record - send 39
message

receive 39
send 39

overview (section 3.1.4 34, section 3.2.4 38)
preamble - send 38
session

closed 39
initialized 38

receiver
end record - send 41
message

receive 40
send 40

overview (section 3.1.4 34, section 3.3.4 40)
preamble - receive 40
session

closed 41
initialized 40

U

Underlying transport session is closed 38
Unexpected record type - handling receipt 35
Unsized Envelope Record type 37
Unsized_Envelope_Record packet 23
Upgrade Request Record type 36
Upgrade Response Record type 36
Upgrade_Request_Record packet 20
Upgrade_Response_Record packet 21
Upgrades 13

V

Variable-sized records - reading 35

Vendor-extensible fields 14
Version Record type 35
Version_Record packet 17
Versioning 13
Via Record type 36

Via_Record packet 18

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Scenarios
	1.3.1.1 Multiple Bidirectional Message Exchange Scenario
	1.3.1.2 Large Message Exchange Scenario
	1.3.1.3 Offline Message Exchange Scenario

	1.3.2 Communication Modes
	1.3.2.1 Message Property Scope
	1.3.2.2 Protocol Receiver Mode
	1.3.2.3 Message Traffic Flow
	1.3.2.4 Message Chunking

	1.3.3 Protocol Upgrades

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Record Types
	2.2.2 Record Size Encoding
	2.2.3 Property Records
	2.2.3.1 Version Record
	2.2.3.2 Mode Record
	2.2.3.3 Via Record
	2.2.3.4 Envelope Encoding Record
	2.2.3.4.1 Known Encoding Record
	2.2.3.4.2 Extensible Encoding Record

	2.2.3.5 Upgrade Request Record
	2.2.3.6 Upgrade Response Record
	2.2.3.7 Preamble End Record
	2.2.3.8 Preamble Ack Record
	2.2.3.9 End Record

	2.2.4 Envelope Records
	2.2.4.1 Sized Envelope Record
	2.2.4.2 Data Chunk
	2.2.4.3 Unsized Envelope Record

	2.2.5 Fault Records
	2.2.6 Preamble Message

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Initiator-Receiver Interactions
	3.1.1.1.1 Singleton Unsized Mode
	3.1.1.1.2 Duplex Mode
	3.1.1.1.3 Simplex Mode
	3.1.1.1.4 Singleton Sized Mode
	3.1.1.1.5 Upgrades
	3.1.1.1.6 Faults

	3.1.1.2 Protocol Grammar

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Reading Variable-Sized Records
	3.1.4.2 Handling Receipt of an Unexpected Record Type
	3.1.4.3 Version Record
	3.1.4.4 Mode Record
	3.1.4.5 Via Record
	3.1.4.6 Encoding Record
	3.1.4.7 Upgrade Request Record
	3.1.4.8 Upgrade Response Record
	3.1.4.9 Preamble End Record
	3.1.4.10 Preamble Ack Record
	3.1.4.11 Sized Envelope Record
	3.1.4.12 Unsized Envelope Record
	3.1.4.13 End Record

	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 Underlying Transport Session Is Closed

	3.2 Initiator Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.4.1 Initialize Session
	3.2.4.2 Send Preamble
	3.2.4.3 Send Message
	3.2.4.3.1 Singleton Unsized Mode
	3.2.4.3.2 Duplex or Simplex Mode
	3.2.4.3.3 Singleton Sized Mode

	3.2.4.4 Receive Message
	3.2.4.5 Send End Record
	3.2.4.6 Session Close

	3.2.5 Message Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Receiver Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Initialize Session
	3.3.4.2 Receive Preamble
	3.3.4.3 Send Message
	3.3.4.4 Receive Message
	3.3.4.4.1 Singleton Unsized Mode
	3.3.4.4.2 Duplex or Simplex Mode
	3.3.4.4.3 Singleton Sized Mode

	3.3.4.5 Send End Record
	3.3.4.6 Session Close

	3.3.5 Message Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Duplex Mode
	4.1.1 Initiator Receiver: Preamble Message
	4.1.2 Initiator Receiver: Preamble End Message
	4.1.3 Receiver Initiator : Preamble Ack Message
	4.1.4 Initiator Receiver: Sized Envelope Message
	4.1.5 Receiver Initiator: Sized Envelope Message
	4.1.6 Initiator Receiver: End Message
	4.1.7 Receiver Initiator: End Message

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

