

1 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MC-DPL8R-Diff]:

DirectPlay 8 Protocol: Reliable

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

8/10/2007 0.1 Major Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.3 Minor Clarified the meaning of the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 4.0 Major Updated and revised the technical content.

6/20/2008 4.1 Minor Clarified the meaning of the technical content.

7/25/2008 4.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.1.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.1.3 Editorial Changed language and formatting in the technical content.

12/5/2008 4.1.4 Editorial Editorial Update.

1/16/2009 4.1.5 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 6.1 Minor Clarified the meaning of the technical content.

7/2/2009 6.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 6.1.2 Editorial Changed language and formatting in the technical content.

9/25/2009 6.2 Minor Clarified the meaning of the technical content.

11/6/2009 6.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 6.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 7.0 Major Updated and revised the technical content.

3/12/2010 7.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 8.0 Major Updated and revised the technical content.

6/4/2010 9.0 Major Updated and revised the technical content.

7/16/2010 10.0 Major Updated and revised the technical content.

8/27/2010 10.1 Minor Clarified the meaning of the technical content.

10/8/2010 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

1/7/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 10.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 10.2 Minor Clarified the meaning of the technical content.

9/23/2011 10.2 None
No changes to the meaning, language, or formatting of the

technical content.

12/16/2011 11.0 Major Updated and revised the technical content.

3/30/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 9
1.8 Vendor-Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11
2.2 Message Syntax ... 11

2.2.1 Command Frames (CFRAMEs) .. 11
2.2.1.1 CONNECT ... 11
2.2.1.2 CONNECTED ... 12
2.2.1.3 CONNECTED_SIGNED .. 14
2.2.1.4 HARD_DISCONNECT .. 16
2.2.1.5 SACK ... 17

2.2.2 Data Frames (DFRAMEs) .. 19
2.2.3 Coalesced Payloads ... 21

3 Protocol Details ... 24
3.1 Common Details .. 24

3.1.1 Abstract Data Model .. 24
3.1.2 Timers .. 25

3.1.2.1 Connect Retry Timer ... 25
3.1.2.2 Delayed Acknowledgment Timer ... 25
3.1.2.3 Delayed Send Mask Timer .. 25
3.1.2.4 Hard Disconnect Timer .. 26
3.1.2.5 Retry Timer .. 26
3.1.2.6 KeepAlive Timer .. 26

3.1.3 Initialization ... 26
3.1.4 Higher-Layer Triggered Events ... 26

3.1.4.1 Listening .. 26
3.1.4.2 Connecting ... 26
3.1.4.3 Disconnecting Gracefully .. 26
3.1.4.4 Sending Application Data ... 27
3.1.4.5 Hard Disconnects .. 28

3.1.5 Processing Events and Sequencing Rules ... 29
3.1.5.1 CFRAMEs ... 29

3.1.5.1.1 CONNECT ... 29
3.1.5.1.2 CONNECTED ... 29
3.1.5.1.3 CONNECTED_SIGNED .. 30
3.1.5.1.4 HARD_DISCONNECT .. 31
3.1.5.1.5 SACK ... 31

3.1.5.2 DFRAMEs ... 31
3.1.5.2.1 Send Sequence ID (bSeq) Validation and Processing 32
3.1.5.2.2 Acknowledged Sequence ID (bNRcv) Processing 32
3.1.5.2.3 SACK Mask Processing ... 32
3.1.5.2.4 Send Mask Processing .. 33
3.1.5.2.5 Coalesced Payload Processing ... 33

5 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.2.6 Large (Multipacket) Payload Processing .. 33
3.1.5.2.7 Signature Processing ... 34

3.1.6 Timer Events .. 35
3.1.6.1 Connect Retry Timer ... 35
3.1.6.2 Delayed Acknowledgment Timer ... 35
3.1.6.3 Delayed Send Mask Timer .. 35
3.1.6.4 Hard Disconnect Timer .. 35
3.1.6.5 Retry Timer .. 35
3.1.6.6 KeepAlive Timer .. 36

3.1.7 Other Local Events .. 36

4 Protocol Examples ... 37
4.1 Sample Connection Sequence .. 37
4.2 Sample Upper-Layer Data Transmission and Acknowledgment 38

5 Security ... 39
5.1 Security Considerations for Implementers ... 39
5.2 Index of Security Parameters .. 39

6 Appendix A: Product Behavior ... 40

7 Change Tracking .. 41

8 Index ... 42

6 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This specification pertains to the DirectPlay 8 Protocol and describes functionality related to the
reliable delivery of DirectPlay 8 messages. The protocol is intended for use in multiplayer game
communication where it provides for the delivery of mixed messages, both reliable and unreliable,
over existing datagram protocols such as the User Datagram Protocol (UDP).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,

SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

acknowledgment (ACK): A signal passed between communicating processes or computers to

signify successful receipt of a transmission as part of a communications protocol.

coalesced payload: A special form of payload that consists of multiple traditional payloads
combined into a single packet.

command frame (CFRAME): A special DirectPlay 8 control frame that does not carry application

payload data. For more information, see the DirectPlay 8 Protocol: Reliable Specification ([MC-
DPL8R] section 2.2.1). See Also, data frame.

data frame (DFRAME): A DirectPlay 8 frame that exists in the standard connection sequence
space and typically carries application payload data. The total size of the DFRAME header and
payload should be less than the Maximum Transmission Unit (MTU) of the underlying protocols
and network. For more information, see the DirectPlay 8 Protocol: Reliable Specification ([MC-
DPL8R] section 2.2.2). See Also, command frame.

DirectX: Microsoft DirectX is a collection of application programming interfaces for handling tasks

related to multimedia, especially game programming and video, on Microsoft platforms.

DirectX runtime: A set of libraries created for the family of Windows operating systems that
provide interfaces to ease the development of video games.

game: An application that uses a DirectPlay protocol to communicate between computers.

game session: The metadata associated with the collection of computers participating in a single

instance of a computer game.

Internet Protocol security (IPsec): A framework of open standards for ensuring private, secure
communications over Internet Protocol (IP) networks through the use of cryptographic security
services. IPsec supports network-level peer authentication, data origin authentication, data
integrity, data confidentiality (encryption), and replay protection. The Microsoft implementation
of IPsec is based on standards developed by the Internet Engineering Task Force (IETF) IPsec
working group.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

local area network (LAN): A group of computers and other devices dispersed over a relatively
limited area and connected by a communications link that enables any device to interact with
any other device on the network.

maximum transmission unit (MTU): The size, in bytes, of the largest packet that a given layer
of a communications protocol can pass onward.

7 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

next receive: The next 8-bit packet sequence ID expected to be received, indicating
acknowledgment of all packets up to this ID. This is typically represented as a field named

bNRcv in packet structures. See Also, next send.

next send: The next 8-bit packet sequence ID that will be sent. This is represented as bNSeq in

the selective acknowledgment packet structure, which does not have a sequence ID of its
own. DirectPlay 8 protocol implementations also keep an internal counter so that IDs can be
assigned in order. See Also, next receive.

partner: A computer connected to a local computer through either inbound or outbound
connections.

payload: The data that is transported to and from the application that is using either the
DirectPlay 4 protocol or DirectPlay 8 protocol.

peer-to-peer: A server-less networking technology that allows several participating network
devices to share resources and communicate directly with each other.

player: A person who is playing a computer game. There maycan be multiple players on a

computer participating in any given game session. See also name table.

round-trip time (RTT): The time that it takes a packet to be sent to a remote partner and for
that partner's acknowledgment to arrive at the original sender. This is a measurement of latency

between partners.

selective acknowledgment (SACK): A cumulative mechanism that indicates successful receipt of
packets beyond the next receive indicator. Next receive reports all packets prior to when its
sequence ID has been received, but subsequent packets may have arrivedcan arrive out of
order or with gaps in the sequence. SACK masks enable the receiver to acknowledge these
packets so that they do not have to be retried, in addition to the packets that were truly lost.
See also acknowledgment (ACK), next receive, and next send.

send mask: A bitmask mechanism that indicatesindicating that previously sent packets maymight
have been dropped, were not marked as reliable, and will never be retried.

sequence ID: A monotonically increasing 8-bit identifier for packets. This is typically represented
as a field named bSeq in packet structures.

tick count: In DirectPlay, the count from when the system was booted, in milliseconds.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

8 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[FIPS180] FIPS PUBS, "Secure Hash Standard", FIPS PUB 180-1, April 1995,
http://niatec.info/GetFile.aspx?pid=63

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MC-DPL8CS] Microsoft Corporation, "DirectPlay 8 Protocol: Core and Service Providers".

[MC-DPLHP] Microsoft Corporation, "DirectPlay 8 Protocol: Host and Port Enumeration".

[RFC2581] Allman, M., Paxson, V., and Stevens, W., "TCP Congestion Control", RFC 2581, April 1999,
http://www.ietf.org/rfc/rfc2581.txt

[RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980,

http://www.ietf.org/rfc/rfc768.txt

[RFC793] Postel, J., Ed., "Transmission Control Protocol: DARPA Internet Program Protocol
Specification", RFC 793, September 1981, http://www.rfc-editor.org/rfc/rfc793.txt

1.3 Overview

The DirectPlay 8 Protocol is designed to perform low latency, multiplayer game communication
between two partners. Its messages are nominally transported over the User Datagram Protocol

(UDP) [RFC768] by using application-specific port numbers. They are processed by receivers that are
also prepared to handle DirectPlay 8 Protocol: Host and Port Enumeration Protocol messages and are
distinguished from such messages by their first UDP payload byte, which is nonzero.

The DirectPlay 8 Protocol assigns a sequence number to each packet that it sends, and the sequence
numbers received are acknowledged by the receiver. A sliding window is used to determine how many
packets maycan be outstanding at a time, while waiting for acknowledgments (ACKs).

An ACK can be conveyed through two methods. One way is to bundle it within back traffic from the
receiver. If no back traffic is flowing, a selective acknowledgment (SACK) command frame
(CFRAME) packet without upper-layer payloads can be sent. If the original sender specifies the

PACKET_COMMAND_POLL (acknowledge now) flag in the packet header, the receiver must
immediately acknowledgeacknowledges the packet when it arrives, which usually means that a SACK
packet is required. Whether using a data frame (DFRAME) or a SACK packet, the headers indicate
the sequence number of the next packet that is expected to be received, which acknowledges that all
packets with sequence numbers less than the specified number have been received correctly.

Implementations maymight also include SACK masks in order to acknowledge that subsequent
packets beyond the specified ID were received out of order.

The DirectPlay 8 Protocol uses combinations of two sets of characteristics for each payload that it
sends: reliable/unreliable and sequential/nonsequential. Reliable packets are those that the upper
layer deems important to retry if they are lost on the network. Packets that are not marked as reliable
are for ephemeral messages that are not critical to operation and do not need to be retried—perhaps
because they will be superseded by subsequent messages. Sequential packets are those that must
beare delivered in order to the upper layer and mustthat wait until any gaps in the sequence due to

9 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

packet loss are resolved; however, nonsequential packets maymight be delivered to the upper layer as
soon as they arrive.

A packet is deemed lost if an ACK is not received within a specified time-out—typically derived from
the current round-trip time (RTT), or if the receiver explicitly indicates that it encountered a gap in

the sequence where the packet would have been using a SACK mask. When the loss is recognized, the
implementation either resends the original packet with the same sequence number that was
previously assigned if it had been marked as reliable; or the implementation updates future packets to
include a send mask that indicates that the data is never resent if the dropped packet is not marked
as reliable.

The protocol also supports multiple payloads of mixed reliability and sequencing coalesced within a
single message to reduce packet overhead. The packet takes on the most restrictive properties of the

payload that it contains (reliable and/or sequential), although individual payloads retain their unique
properties. Only the reliable subpayloads in a coalesced payload packet are retried.

The protocol uses a KeepAlive mechanism to make sure the network connection is still functional
when no other packets are arriving to indicate that. A KeepAlive timer is started by both participants

when the connection is established, and restarted whenever a valid packet is received. If it expires,
then a KeepAlive message is sent. A KeepAlive message is a reliable packet that does not contain an

application payload. It relies on the normal reliable packet retry mechanism to detect that the other
side is no longer available.

1.4 Relationship to Other Protocols

The DirectPlay 8 Protocol requires UDP or a similar datagram-oriented, connectionless protocol. The

DirectPlay 8 Protocol is always implemented together with the DirectPlay 8 Host and Port Enumeration
Protocol [MC-DPLHP] and the DirectPlay 8 Core and Service Providers Protocol [MC-DPL8CS]. The
DirectPlay 8 Protocol is required for use by the DirectPlay 8 Core and Service Providers Protocol.

Note All DirectPlay 8 Protocol messages are constructed so that at least one bit in the first byte is
set. When a message is received and the lead byte is nonzero, the DirectPlay 8 Host and Port
Enumeration Protocol passes the entire message through to the DirectPlay 8 Protocol.

1.5 Prerequisites/Preconditions

To establish a DirectPlay 8 Protocol connection, the consuming application on one computer system
has to be listening for a new incoming connection or connections; that is, to be functioning as a server
in traditional networking parlance. The application on another computer system has to discover this

server via external means, such as through a game server list or a local area network (LAN)
broadcast discovery that uses the DirectPlay 8 Host and Port Enumeration Protocol.

1.6 Applicability Statement

The DirectPlay 8 Protocol is intended for use in multiplayer game communication where mixed

reliable/unreliable, bidirectional, peer-to-peer traffic is desired. This protocol is not recommended for
file transfer, or for applications with robust security needs that cannot ensure security at other layers
such as IPsec. It is also not intended as a generic replacement for the Transmission Control

Protocol (TCP) [RFC793].

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

 Supported Transports: This protocol should beis implemented on top of UDP but maycan be
implemented on top of any connectionless, datagram-oriented protocol, as discussed in section
2.1.

10 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Protocol Versions: The DirectPlay 8 Protocol has the following version levels for features:

 Any version level between 0x00010000 and 0x00010004 implements the base features.

 A version level of 0x00010005 implements the base features and adds support for
coalescence.

 A version level of 0x00010006 implements the base features, supports coalescence, and adds
support for signing.

The version level value is specified in the dwCurrentProtocolVersion field of the CONNECT,
CONNECTED, or CONNECTED_SIGNED message. These features are defined in section 2.2.

 Security and Authentication Methods: The DirectPlay 8 Protocol does not natively provide robust
authentication or encryption. It provides optional signing mechanisms that can be used to mitigate
denial-of-service attacks, as discussed in sections 3.1.4.4 and 3.1.5.2.7.

 Capability Negotiation: This protocol detects some features by inspecting the
dwCurrentProtocolVersion field in the CONNECT, CONNECTED, or CONNECTED_SIGNED

messages, as described later in this section.

The fast, or full, signing packet authentication mechanisms are used to mitigate denial-of-service
attacks. Both partners have to implement support for signing when sending messages and require the
same support by received messages; otherwise, neither partner can make use of the signing

functionality. For example, if a CONNECT packet with a version level of less than 0x00010006 (the
version level that indicates support for signing) is received but the listener is using a signing mode,
the receiver has to ignore the packet. Similarly, if the connector receives a CONNECTED packet
instead of a CONNECTED_SIGNED packet but the connector is expecting to use signing mode, the
connector has to ignore the response.

In order to use the coalescence mechanism to combine multiple, small messages into a single packet,
the sender has to confirm whether the receiver will recognize the packet format. The receiver signals

support for coalescence by specifying a version level value of 0x00010005 or higher in the
dwCurrentProtocolVersion field of the CONNECT, CONNECTED, or CONNECTED_SIGNED message.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

11 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

DirectPlay 8 Protocol messages are nominally transported over UDP by using application-specific port
numbers. They are also processed by receivers that are prepared to handle DirectPlay 8 Protocol: Host
and Port Enumeration Protocol messages and are distinguished from such enumeration messages by
their first UDP payload byte, which is nonzero.

The DirectPlay 8 Protocol does not require usage of UDP. It MAY be implemented on any
connectionless, datagram-oriented protocol. It is not required, and it is not even recommended, that

the underlying transport provider natively provide reliable messaging.

The DirectPlay 8 Protocol does not negotiate transport providers. If the transport provider to be used
is ambiguous, the implementation MUST provide its own mechanism for distinguishing among

providers. The DirectPlay 8 Protocol assumes that all remote partners are using the same or binary-
compatible transport providers.

2.2 Message Syntax

2.2.1 Command Frames (CFRAMEs)

Command frames (CFRAMEs) are special control frames that do not carry application payload data.

They are identified by not having the PACKET_COMMAND_DATA flag (0x01) set in their
bCommand fields.

2.2.1.1 CONNECT

The CONNECT packet is used to request a connection. If accepted, the response is a

CONNECTED (section 2.2.1.2) packet or a CONNECTED_SIGNED (section 2.2.1.3) packet, depending
on whether packet signing is enabled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bExtOpCode bMsgID bRspId

dwCurrentProtocolVersion

dwSessID

tTimestamp

bCommand (1 byte): A command-code bitmask that contains values that are combined by using the
bitwise OR operation from the following table. The PACKET_COMMAND_CFRAME flag MUST be
set, and the PACKET_COMMAND_POLL flag SHOULD be set. All other bits MUST be set to zero,

and the packet MUST be ignored if they are not.

Value Meaning

0x80 PACKET_COMMAND_CFRAME (command frame (CFRAME))

12 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x08 PACKET_COMMAND_POLL (acknowledge immediately)

bExtOpCode (1 byte): Extended operation code. It MUST be set to the following value:

Value Meaning

0x01 FRAME_EXOPCODE_CONNECT

bMsgID (1 byte): A message identifier used to correlate responses. The initial value SHOULD be set
to zero and SHOULD be incremented each time the connect packet is retried. The recipient MUST
echo the value in bRspId when responding.

bRspId (1 byte): Not used in connect packets. This MUST be set to zero when sent and ignored on

receipt.

dwCurrentProtocolVersion (4 bytes): The version number of the sender's DirectPlay 8 Protocol, in
little-endian byte order, where the upper 16 bits are considered a major version number and the
lower 16 bits are considered a minor version number. The major version number MUST be set to
0x0001; otherwise, the packet MUST be ignored. The minor version number SHOULD<1> be set
to 0x0006 to indicate support for all features, including coalescence and signing.

The recipient SHOULD be prepared to support older message formats used by earlier minor

versions but MUST ignore this packet if it does not. To ensure security, the packet MUST be
ignored if the recipient is using signing but the minor version number is less than 0x0006.

The recipient SHOULD be prepared to receive minor version numbers higher than what it
implements and supplies in its own CONNECTED or CONNECTED_SIGNED message, but both sides
MUST only use message formats compatible with the lower of their two version numbers.

Value Meaning

0x00010000 —
0x00010004

Any protocol version number between 1.0 and 1.4 implements the base features.

0x00010005 Protocol version number 1.5 implements the base features, and adds support for
coalescence.

0x00010006 Protocol version number 1.6 implements the base features, supports coalescence,
and adds support for signing.

dwSessID (4 bytes): The session identifier used to correlate responses. The value is dependent
upon the implementation and SHOULD be a random, nonpredictable number. This MUST NOT be
set to zero unless dwCurrentProtocolVersion indicates a minor version less than 0x0005. This
MUST remain the same value when retrying the CONNECT packet. The recipient MUST echo the

value in dwSessID when responding.

tTimestamp (4 bytes): The requestor's computer system tick count, in millisecond units and

specified in little-endian byte order.

2.2.1.2 CONNECTED

The CONNECTED packet is used to accept a connection request or complete a connection handshake
when signing is not enabled.

13 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bExtOpCode bMsgID bRspId

dwCurrentProtocolVersion

dwSessID

tTimestamp

bCommand (1 byte): A command-code bitmask that contains values that are combined by using the
bitwise OR operation from the following table. The PACKET_COMMAND_CFRAME flag MUST be
set. The PACKET_COMMAND_POLL flag MUST be set by a listener accepting a connection

request and MUST NOT be set by a connector completing the connection handshake. All other bits
MUST be set to zero and the packet MUST be ignored if they are not.

Value Meaning

0x80 PACKET_COMMAND_CFRAME (command frame (CFRAME))

0x08 PACKET_COMMAND_POLL (acknowledge immediately)

bExtOpCode (1 byte): An extended operation code. It MUST be set to the following value:

Value Meaning

0x02 FRAME_EXOPCODE_CONNECTED

bMsgID (1 byte): A message identifier. The initial value SHOULD be set to zero and SHOULD be
incremented if the packet is retried.

bRspId (1 byte): A response identifier. This value MUST be set to the value of the bMsgID field in

the CONNECT or CONNECTED message to which this is a response.

dwCurrentProtocolVersion (4 bytes): The version number of the sender's DirectPlay 8 Protocol, in
little-endian byte order, where the upper 16 bits are considered a major version number and the
lower 16 bits are considered a minor version number. The major version number MUST be set to
0x0001; otherwise, the packet MUST be ignored. The minor version number SHOULD<2> be set
to 0x0006 to indicate support for all features, including coalescence and signing.

The recipient SHOULD be prepared to support older message formats used by earlier minor
versions, but MUST ignore this packet if it does not. To ensure security, the packet MUST be
ignored if the recipient is using signing but the minor version number is less than 0x0006.

The recipient SHOULD be prepared to receive minor version numbers higher than what it
implements and supplies in its own CONNECTED or CONNECTED_SIGNED message, but both sides

MUST only use message formats compatible with the lower of their two version numbers.

Value Meaning

0x00010000 —
0x00010004

Any protocol version number between 1.0 and 1.4 implements the base features.

0x00010005 Protocol version number 1.5 implements the base features and adds support for
coalescence.

14 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00010006 Protocol version number 1.6 implements the base features, supports coalescence,
and adds support for signing.

dwSessID (4 bytes): The session identifier. This value MUST be set to the value of dwSessID
specified in the CONNECT or CONNECTED message to which this is a response.

tTimestamp (4 bytes): The sender's computer system tick count, in millisecond units, specified in
little-endian byte order.

2.2.1.3 CONNECTED_SIGNED

The CONNECTED_SIGNED packet is used to accept a connection request or complete a connection
handshake when signing is enabled.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bExtOpCode bMsgID bRspId

dwCurrentProtocolVersion

dwSessID

tTimestamp

ullConnectSig

...

ullSenderSecret

...

ullReceiverSecret

...

dwSigningOpts

dwEchoTimestamp

bCommand (1 byte): The command-code bitmask that contains values that are combined by using

the bitwise OR operation from the following table. The PACKET_COMMAND_CFRAME flag MUST
be set. The PACKET_COMMAND_POLL flag MUST be set by a listener accepting a connection
request and MUST NOT be set by a connector completing the connection handshake. All other bits
MUST be set to zero and the packet MUST be ignored if they are not.

Value Meaning

0x80 PACKET_COMMAND_CFRAME (command frame (CFRAME))

15 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x08 PACKET_COMMAND_POLL (acknowledge immediately)

bExtOpCode (1 byte): An extended operation code. It MUST be set to the following value:

Value Meaning

0x03 FRAME_EXOPCODE_CONNECTED_SIGNED

bMsgID (1 byte): The message identifier. The initial value SHOULD be set to zero and SHOULD be
incremented by connectors if the packet is retried. Listeners SHOULD choose to avoid keeping any
state by using the ullConnectSig cookie and MAY always set this to 0.

bRspId (1 byte): The response identifier. This value MUST be set to the value of bMsgID field in the

CONNECT or CONNECTED_SIGNED message to which this is a response.

dwCurrentProtocolVersion (4 bytes): The version number of the sender's DirectPlay 8 Protocol, in
little-endian byte order, where the upper 16 bits are considered a major version number and the
lower 16 bits are considered a minor version number. The major version number MUST be set to
0x0001; otherwise, the packet MUST be ignored. The minor version number SHOULD<3> be set
to 0x0006 to indicate support for all features, including coalescence and signing, and MUST be set
to 0x0005 or higher.

The recipient SHOULD be prepared to support older message formats used by earlier minor
versions but MUST ignore this packet if it does not. To ensure security, the packet MUST be
ignored if the recipient is using signing but the minor version number is less than 0x0006.

The recipient SHOULD be prepared to receive minor version numbers higher than what it
implements and supplies in its own CONNECTED or CONNECTED_SIGNED message, but both sides
MUST only use message formats compatible with the lower of their two version numbers.

Value Meaning

0x00010000 —
0x00010004

Any protocol version number between 1.0 and 1.4 implements the base features.

0x00010005 Protocol version number 1.5 implements the base features, and adds support for
coalescence.

0x00010006 Protocol version number 1.6 implements the base features, supports coalescence,
and adds support for signing.

dwSessID (4 bytes): The session identifier. This value MUST be set to the value of dwSessID, as
specified in the CONNECT or CONNECTED_SIGNED message to which this is a response.

tTimestamp (4 bytes): The sender's computer system tick count, in millisecond units, specified in

little-endian byte order.

ullConnectSig (8 bytes): The listener cookie used to validate the connect handshake without
keeping state. Connectors MUST echo the value specified in the CONNECTED_SIGNED message to
which this is a response. Listeners MAY specify any value and SHOULD generate one that can be
used to verify that the connector saw the listener's CONNECTED_SIGNED message. For more
information, see section 3.1.5.1.3.

ullSenderSecret (8 bytes): The initial value for generating signatures on packets sent by the

connector to the listener, in little-endian byte order. This MUST be set to zero when sent by the
listener and MUST be nonzero when sent by the connector. Connectors SHOULD generate a
cryptographically-secure random number.

16 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ullReceiverSecret (8 bytes): The initial value for generating signatures on packets sent by the
listener to the connector, in little-endian byte order. This MUST be set to zero when sent by the

listener and MUST be nonzero when sent by the connector. Connectors SHOULD generate a
cryptographically-secure random number.

dwSigningOpts (4 bytes): Option flag values, in little-endian byte order. One or the other described
flag MUST be set but not both. All other bits SHOULD be set to zero when sent and MUST be
ignored on receipt.

Value Meaning

0x00000001 PACKET_SIGNING_FAST (use signing cookie only)

0x00000002 PACKET_SIGNING_FULL (sign a digest of packet contents)

dwEchoTimestamp (4 bytes): If this message is a response to a CONNECT message, the value of
this field MUST be set to zero. Otherwise, if this message is a response to another

CONNECTED_SIGNED message, then dwEchoTimestamp MUST be set to the value of the

tTimestamp field in the CONNECTED_SIGNED message that was received.

2.2.1.4 HARD_DISCONNECT

The HARD_DISCONNECT packet is used to quickly disconnect or acknowledge quick disconnection

without waiting for remaining packets to be delivered.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bExtOpCode bMsgID bRspId

dwCurrentProtocolVersion

dwSessID

tTimestamp

ullSignature (optional)

...

bCommand (1 byte): The command-code bitmask that contains values that are combined by using
the bitwise OR operation from the following table. The PACKET_COMMAND_CFRAME flag MUST
be set. The PACKET_COMMAND_POLL flag SHOULD NOT be set. All other bits MUST be set to
zero and the packet MUST be ignored if they are not.

Value Meaning

0x80 PACKET_COMMAND_CFRAME (command frame (CFRAME))

0x08 PACKET_COMMAND_POLL (acknowledge immediately)

bExtOpCode (1 byte): An extended operation code. It MUST be set to the following value:

17 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x04 FRAME_EXOPCODE_HARD_DISCONNECT

bMsgID (1 byte): The message identifier. The value SHOULD be the next incremented value after
the bMsgID value used when sending the previous CFRAME message of any type other than
SACK, but the actual value used by a sender MUST be ignored on receipt.

bRspId (1 byte): The response identifier. This value SHOULD be set to zero, unless the connection is
using PACKET_SIGNING_FULL; in which case, it MUST be set to the sequence ID of the next

data frame (DFRAME) that would have been sent had HARD_DISCONNECT not occurred.

dwCurrentProtocolVersion (4 bytes): The version number, in little-endian byte order, of the
requestor's DirectPlay 8 Protocol. The value SHOULD match the value previously sent in a
CONNECT, CONNECTED, or CONNECTED_SIGNED packet, and MUST be ignored on receipt.

dwSessID (4 bytes): The session identifier. This value MUST be set to the same dwSessID value
that is specified in the CONNECT message originally associated with the connection.

tTimestamp (4 bytes): The sender's computer system tick count, in millisecond units, specified in
little-endian byte order.

ullSignature (8 bytes): If the connection was established using signing, this MUST be the signature
of the packet using the agreed-upon signing algorithm. The packet sequence ID to be used in the
calculation is the value in bRspId. This field MUST NOT be present if signing is not enabled for the
connection.

2.2.1.5 SACK

The SACK packet is used to selectively acknowledge outstanding packets. Packet acknowledgment
(ACK) is typically bundled in all user data packets using the bSeq and bNRec fields found in the data
frame (DFRAME) header. However, the SACK packet is used when a dedicated ACK is requested (that
is, when the PACKET_COMMAND_POLL bit in the bCommand header field is set) or when no user

data remains for further bundled ACKs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bExtOpCode bFlags bRetry

bNSeq bNRcv wPadding

tTimestamp

dwSACKMask1 (optional)

dwSACKMask2 (optional)

dwSendMask1 (optional)

dwSendMask2 (optional)

ullSignature (optional)

...

18 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

bCommand (1 byte): The command-code bitmask that contains bitwise OR values from the following
table. The PACKET_COMMAND_CFRAME flag MUST be set. The PACKET_COMMAND_POLL

flag SHOULD NOT be set and SHOULD be ignored on receipt. All other bits MUST be set to zero
and the packet MUST be ignored if they are not.

Value Meaning

0x80 PACKET_COMMAND_CFRAME (command frame (CFRAME))

0x08 PACKET_COMMAND_POLL (acknowledge immediately)

bExtOpCode (1 byte): An extended operation code. It MUST be set to the following value:

Value Meaning

0x06 FRAME_EXOPCODE_SACK

bFlags (1 byte): A status flag or flags. The value can be one or more of the following values. All

other bits MUST be set to zero. The SACK_FLAGS_RESPONSE flag SHOULD be set and bRetry
SHOULD be filled in properly.

Value Meaning

0x01 SACK_FLAGS_RESPONSE (bRetry field is valid).

0x02 SACK_FLAGS_SACK_MASK1 (low 32 bits of the SACK mask are present in dwSACKMask1).

0x04 SACK_FLAGS_SACK_MASK2 (high 32 bits of the SACK mask are present in dwSACKMask2).

0x08 SACK_FLAGS_SEND_MASK1 (low 32 bits of the send mask are present in dwSendMask1).

0x10 SACK_FLAGS_SEND_MASK2 (high 32 bits of the send mask are present in dwSendMask2).

bRetry (1 byte): Indicates whether the last received packet was a retry. This value MUST be ignored

if SACK_FLAGS_RESPONSE is not set. The value SHOULD be set to zero if the last received
DFRAME for the connection was not marked as a retry; otherwise, the value SHOULD be nonzero.
Recipients MUST NOT require that any particular bit or bits be set in the nonzero case—only that
at least one bit is set.

bNSeq (1 byte): This field represents the sequence number of the next DFRAME to send. SACK
packets do not have sequence numbers of their own.

bNRcv (1 byte): The expected sequence number of the next packet received. If the
SACK_FLAGS_SACK_MASK1 or SACK_FLAGS_SACK_MASK2 flag is set, the bNRcv field is
supplemented with the corresponding additional dwSACKMask1 or dwSACKMask2 bitmask field
that selectively acknowledges frames with sequence numbers higher than bNRcv.

wPadding (2 bytes): This SHOULD be set to zero when sent and MUST be ignored on receipt.

tTimestamp (4 bytes): The sender's computer system tick count, in millisecond units, specified in

little-endian byte order.

dwSACKMask1 (4 bytes): The optional low 32 bits of the SACK mask, in little-endian byte order.
The existence of this field in the packet is dependent upon the bFlags field having
SACK_FLAGS_SACK_MASK1 set.

dwSACKMask2 (4 bytes): The optional high 32 bits of the SACK mask, in little-endian byte order.
The existence of this field in the packet is dependent upon the bFlags field having
SACK_FLAGS_SACK_MASK2 set.

19 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwSendMask1 (4 bytes): The optional low 32 bits of the send mask, in little-endian byte order. The
existence of this field in the packet is dependent upon the bFlags field having

SACK_FLAGS_SEND_MASK1 set.

dwSendMask2 (4 bytes): The optional high 32 bits of the send mask, in little-endian byte order.

The existence of this field in the packet is dependent upon the bFlags field having
SACK_FLAGS_SEND_MASK2 set.

ullSignature (8 bytes): If the connection was established using signing, this MUST be the signature
of the packet using the agreed-upon signing algorithm. The packet sequence ID to be used in the
calculation is the value in bNSeq. This field MUST NOT be present if signing is not enabled for the
connection.

2.2.2 Data Frames (DFRAMEs)

Data frames exist in the standard connection sequence space and typically carry application payload
data. They all are identified by having the PACKET_COMMAND_DATA flag (0x01) set in their
bCommand field. The total size of the data frame (DFRAME) header and the application payload data

SHOULD be less than the maximum transmission unit (MTU) of the underlying protocols and
network. If larger messages are to be transmitted, the implementation MUST break the application
payload data into multiple DFRAME packets, send the portions sequentially, and set the
PACKET_COMMAND_NEW_MSG flag on the first DFRAME and the PACKET_COMMAND_END_MSG
flag on the final DFRAME. Otherwise, the single DFRAME MUST have both the
PACKET_COMMAND_NEW_MSG and PACKET_COMMAND_END_MSG flags. Application payload
data that is split into multiple DFRAMEs MUST NOT be coalesced with other payloads.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCommand bControl bSeq bNRcv

dwSACKMask1 (optional)

dwSACKMask2 (optional)

dwSendMask1 (optional)

dwSendMask2 (optional)

ullSignature (optional)

...

dwSessID (optional)

payload (variable)

...

bCommand (1 byte): Command field. The PACKET_COMMAND_DATA flag MUST be set. If the
packet is a KeepAlive, the PACKET_COMMAND_RELIABLE,
PACKET_COMMAND_SEQUENTIAL, and PACKET_COMMAND_END_MSG flags MUST be set. If
the packet contains coalesced payloads, the PACKET_COMMAND_NEW_MSG and
PACKET_COMMAND_END_MSG flags MUST be set. All other flags are optional.

20 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x01 PACKET_COMMAND_DATA (frame contains user data).

0x02 PACKET_COMMAND_RELIABLE (frame is delivered reliably).

0x04 PACKET_COMMAND_SEQUENTIAL (frame is indicated sequentially).

0x08 PACKET_COMMAND_POLL (partner acknowledges immediately).

0x10 PACKET_COMMAND_NEW_MSG (DFRAME is first in message).

0x20 PACKET_COMMAND_END_MSG (DFRAME is last in message).

0x40 PACKET_COMMAND_USER_1 (first consumer-controlled flag).

0x80 PACKET_COMMAND_USER_2 (second consumer-controlled flag).

bControl (1 byte): Control field. The following flags can be specified.

Value Meaning

0x01 PACKET_CONTROL_RETRY (indicates whether the frame is a retry for this sequence number).

0x02 PACKET_CONTROL_KEEPALIVE_OR_CORRELATE (protocol version levels of 0x00010005 and
higher indicate that the frame is a keep-alive frame; version levels of less than 0x00010005

indicate a request for a dedicated acknowledgment (ACK) from the receiver).

0x04 PACKET_CONTROL_COALESCE (protocol version levels of 0x00010005 and higher indicate that
the packet contains multiple payloads as described in section 2.2.3).

0x08 PACKET_CONTROL_END_STREAM (last packet in the stream; indicates disconnect).

0x10 PACKET_CONTROL_SACK1 (low 32 bits of the SACK mask are present).

0x20 PACKET_CONTROL_SACK2 (high 32 bits of the SACK mask are present).

0x40 PACKET_CONTROL_SEND1 (low 32 bits of the cancel-send mask are present).

0x80 PACKET_CONTROL_SEND2 (high 32 bits of the cancel-send mask are present).

bSeq (1 byte): The sequence number of the packet.

bNRcv (1 byte): The expected sequence number of the next packet received.

dwSACKMask1 (4 bytes): Optional low 32 bits of the SACK mask, in little-endian byte order. The
existence of this field in the packet is dependent upon the bControl field having

PACKET_CONTROL_SACK1 set.

dwSACKMask2 (4 bytes): Optional high 32 bits of the SACK mask, in little-endian byte order. The
existence of this field in the packet is dependent upon the bControl field having
PACKET_CONTROL_SACK2 set.

dwSendMask1 (4 bytes): Optional low 32 bits of the send mask, in little-endian byte order. The
existence of this field in the packet is dependent upon the bControl field having
PACKET_CONTROL_SEND1 set.

dwSendMask2 (4 bytes): Optional high 32 bits of the send mask, in little-endian byte order. The
existence of this field in the packet is dependent upon the bControl field having
PACKET_CONTROL_SEND2 set.

21 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ullSignature (8 bytes): If the connection was established by using signing, this MUST be the
signature of the packet using the agreed-upon signing algorithm. The packet sequence ID to be

used in the calculation is the value in bSeq. This field MUST NOT be present if signing is not
enabled for the connection.

dwSessID (4 bytes): The session identifier. When the packet is marked as
PACKET_CONTROL_KEEPALIVE_OR_CORRELATE on connections reported as version
0x00010005 or higher, the dwSessID identifier MUST be set to the same dwSessID value
specified in the CONNECT message originally associated with the connection, and there MUST NOT
be any application payload data for the packet. Otherwise, dwSessID MUST NOT be present.

payload (variable): Application payload data. The size of the payload field is the total UDP payload
size minus the amount of data consumed by DFRAME headers up to this point. If the

PACKET_CONTROL_COALESCE flag is set, the application payload data is not a single message
or portion of a message; it is instead organized according to the coalesced payload format, as
specified in section 2.2.3.

2.2.3 Coalesced Payloads

Coalesced payloads are a special form of payload within standard data frames (DFRAME). When the
PACKET_CONTROL_COALESCE flag is set on the outer DFRAME header bControl field, the payload
is interpreted by using this format. Frames with coalesced payloads MUST have the
PACKET_COMMAND_NEW_MSG and PACKET_COMMAND_END_MSG flags set on the outer
DFRAME header bCommand field.

Between 1 and 32 2-byte headers are placed at the beginning of the buffer. The buffer MUST NOT

contain more than 32 coalesce headers. If there is an odd number of coalesce headers, two extra
bytes of zero padding MUST be added at the end to align the subsequent data on a 32-bit boundary.
The last nonpadded coalesce header MUST have the PACKET_COMMAND_END_COALESCE flag set
in its bCommand field.

Following the headers are 1 to 32 payloads, where the sizes of each are indicated in the corresponding
headers that were added in the same order. If the payload size is not a multiple of 32 bits and it is not

the last payload in the message, 1 to 3 bytes of zero padding MUST be added to align the beginning of
the next payload on a 32-bit boundary. The sizes indicated in the coalesce headers MUST NOT include
any padding so as to preserve the message size as originally sent. The receiver MUST infer alignment
padding when processing the payloads and SHOULD indicate the messages to the consumer using the
unpadded size.

The total size of the DFRAME with coalesced payloads SHOULD NOT be larger than the maximum
transmission unit (MTU) of the underlying protocol and network. Each individual payload MUST NOT be

larger than what is fit in the coalesced DFRAME.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bSize bCommand bSize 2 (optional) bCommand 2 (optional)

...

bSize n-1 (optional) bCommand n-1 (optional) bSize n (optional) bCommand n (optional)

payload (variable)

...

22 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

payload 2 (variable)

...

payload n-1 (variable)

...

payload n (variable)

...

bSize (1 byte): The least significant 8 bits of the size of the coalesced payload. The value is
combined with the optional PACKET_COMMAND_COALESCE_BIG_1,
PACKET_COMMAND_COALESCE_BIG_2, and PACKET_COMMAND_COALESCE_BIG_3 flags

to determine the actual size of the payload as an 11-bit value. The payload is constructed as
follows:

 A left-bitwise-shift operation by 5 bits is performed on the contents of the bCommand field
masked by the flags. This forms the 3 most significant bits in the actual payload.

 A bitwise OR operation with the value of bSize forms the lower 8 bits in the actual payload.

The actual size of the payload MUST NOT be larger than what can fit in a standard DFRAME,

including any size already used to store previous coalesce headers and payloads.

bCommand (1 byte): Command field for the coalesced message containing zero or more flags from
the following table.

Value Meaning

0x01 PACKET_COMMAND_END_COALESCE (this is the final coalesced payload in the frame).

0x02 PACKET_COMMAND_RELIABLE (payload is delivered reliably).

0x04 PACKET_COMMAND_SEQUENTIAL (payload is indicated sequentially).

0x08 PACKET_COMMAND_COALESCE_BIG_1 (bit 9 of the coalesced payload size).

0x10 PACKET_COMMAND_COALESCE_BIG_2 (bit 10 of the coalesced payload size).

0x20 PACKET_COMMAND_COALESCE_BIG_3 (bit 11 of the coalesced payload size, the most significant
bit).

0x40 PACKET_COMMAND_USER_1 (first consumer-controlled flag).

0x80 PACKET_COMMAND_USER_2 (second consumer-controlled flag).

bSize 2 (1 byte): See bSize earlier in this topic.

bCommand 2 (5 bytes): See bCommand earlier in this topic.

bSize n (1 byte): See bSize earlier in this topic.

bCommand n (1 byte): See bCommand earlier in this topic.

payload (variable): Consumer payload data.

23 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

payload 2 (variable): See payload earlier in this topic.

payload n (variable): See payload earlier in this topic.

24 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Common Details

Although there are no traditional client or server roles after a connection is established, a computing

system MUST initially determine whether to establish an outbound connection or listen for an inbound
one. After both sides have received a CONNECTED message from the other, they can mark the
connection as established. The following diagram shows the states for a computing system performing
the DirectPlay 8 Protocol unsigned connect sequence.

Figure 1: DirectPlay8 Reliable Protocol system states

When connected, the protocol behaves identically for both the connecting and listening computing
systems.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

25 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

adhere to this model as long as their external behavior is consistent with that described in this
specification.

dwSessID: The game session ID used to establish the connection. This value is referenced in
HARD_DISCONNECT command frames (CFRAME) and KeepAlive data frames (DFRAME).

Local Secrets: The 64-bit current local secret and previous local secret values for use when sending
over fast and full-signed connections.

Local Secret Modifier: The 64-bit current local secret modifier value for use when sending for full-
signed connections. This is derived from the most recently sent reliable message with the lowest
sequence ID.

Next Receive: The next 8-bit packet sequence ID expected to be received, indicating
acknowledgment (ACK) of all packets up to this ID.

Next Send: The next 8-bit packet sequence ID that will be sent.

Remote Secrets: The 64-bit current remote secret and previous remote secret values for use when

receiving over fast and full-signed connections.

Remote Secret Modifier: The 64-bit current remote secret modifier value for use when receiving for
full-signed connections. This is derived from the most recently received reliable message with the
lowest sequence ID.

Retry Counter: A per-packet counter of how many times the individual CONNECT, CONNECTED, or
reliable DFRAME has been retried.

RTT: A recent sample or running average of the round-trip time (RTT) for the connection. This is used
to schedule retries.

Send Mask: A sliding window bitmask that indicates whether DFRAMEs that are not marked as
reliable will not be retried. The window base reference is the current next send and work
backward for up to 64 bits (messages).

3.1.2 Timers

3.1.2.1 Connect Retry Timer

The Connect Retry Timer is used to retry CONNECT and CONNECTED messages if no response is
received. Implementations can retry as many times as needed and at any frequency. Recommended
values are for the first retry to be 200 milliseconds, which doubles for every subsequent retry and
caps at 5 seconds and 14 retries.

3.1.2.2 Delayed Acknowledgment Timer

The Delayed Acknowledgment Timer that is used to reduce the frequency of dedicated
acknowledgments (ACKs) so that they can be piggybacked onto return traffic or multiple receives, can
be covered by a single reply. The recommended value is 100 milliseconds for normal ACKs and

20 milliseconds when acknowledging out-of-order or duplicate packets. However, it can be any value

that maximizes ACK coalescence opportunity without introducing an undesirable latency under the
particular application circumstances.

3.1.2.3 Delayed Send Mask Timer

The Delayed Send Mask Timer is used to reduce the frequency of dedicated packets that contain a
send mask so that the mask can be piggybacked onto additional traffic. The recommended value is

26 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

40 milliseconds; however, it can be any value that maximizes a send mask coalescence opportunity
under the particular application circumstances.

3.1.2.4 Hard Disconnect Timer

The Hard Disconnect Timer is used to space multiple hard disconnect packets over time in order to
increase the likelihood that one or more arrive. The recommended value is one-half of the current
round-trip time (RTT), with a minimum value of 10 milliseconds. The maximum interval SHOULD be
capped at 500 milliseconds but MAY be any value that is appropriate for particular application

requirements or network circumstances.

3.1.2.5 Retry Timer

The Retry Timer is used to track when a message is considered to have been dropped and either
needs to be retried or causes a send mask to be sent. The recommended values are for the first retry

to be 2.5 round-trip time (RTT) plus the delayed acknowledgment (ACK) time-out (nominally
100 milliseconds). It is also recommended that there be linear backoff for the second and third retries,

exponential backoff for the fourth through the eighth retries, and an overall cap at 5 seconds and
10 retries.

3.1.2.6 KeepAlive Timer

The KeepAlive Timer is used to send a minimal reliable packet to keep the connection alive when no
traffic has been received. The recommended value is 25 seconds of inactivity. There is a four second
granularity on the timer.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

3.1.4.1 Listening

Higher layers that accept new connections SHOULD place the DirectPlay 8 Protocol in listening mode.
The protocol SHOULD begin treating CONNECT messages from previously unknown sources as

attempts to establish a connection and SHOULD respond with CONNECTED or CONNECTED_SIGNED
messages, as specified in section 3.1.5.1.1.

3.1.4.2 Connecting

To establish a new connection, higher layers SHOULD cause the DirectPlay 8 Protocol to send a

CONNECT message to the specified destination. The connect timer SHOULD also be scheduled to
trigger the resending of a CONNECT message if no response is received.

3.1.4.3 Disconnecting Gracefully

Higher layers that will no longer communicate over an established connection SHOULD cause the

DirectPlay 8 Protocol to send a reliable DFRAME message that has the
PACKET_CONTROL_END_STREAM flag set. To avoid data loss for the upper layer, this message
SHOULD NOT be sent until all messages that were previously queued by the higher layer have been
sent. This PACKET_CONTROL_END_STREAM message SHOULD be a separate packet that contains
no payload; however, it can be the final queued data packet.

27 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the connection was established with signing, the DFRAME MUST be signed appropriately, as
described in section 3.1.4.4.

Implementations MUST NOT send any additional DFRAMEs after sending a packet that has the
PACKET_CONTROL_END_STREAM flag set to other than retries. It MUST be prepared to continue

receiving and acknowledging packets until the remote partner sends its own
PACKET_CONTROL_END_STREAM packet.

Upon receipt of a packet with the PACKET_CONTROL_END_STREAM flag set, implementations
SHOULD begin the process of disconnecting gracefully, including sending a final DFRAME with the
PACKET_CONTROL_END_STREAM flag set, if this has not already been sent by the local system.
Receivers MUST NOT expect additional DFRAMEs with sequence IDs beyond the one on the
PACKET_CONTROL_END_STREAM packet, and SHOULD ignore all packets that have such sequence

numbers.

When the DFRAME that contains a sender's PACKET_CONTROL_END_STREAM indicator has been
acknowledged, and the remote partner's own PACKET_CONTROL_END_STREAM has been received
and the acknowledgment (ACK) sent, the connection SHOULD be considered terminated.

Higher layers can also perform a hard disconnect, as described in section 3.1.4.5.

3.1.4.4 Sending Application Data

Higher layers pass messages to the DirectPlay 8 Protocol for transmission over an established
connection. The protocol SHOULD send the packets by using the requested reliable/unreliable
behavior.

The higher layer MAY request that the PACKET_COMMAND_USER_1 flag, the

PACKET_COMMAND_USER_2 flag, both flags, or neither flag be set in the bCommand field. On
reception, the DirectPlay 8 Protocol implementation MUST pass the presence or absence of these bits
unchanged to the upper layer and MUST NOT interpret their meaning.

If the message is smaller than the supported maximum transmission unit (MTU) size, the packet
MUST have the PACKET_COMMAND_NEW_MSG and PACKET_COMMAND_END_MSG flags set in

the bCommand field. In this case, the payload is eligible for coalescence with other payloads if the

receiver's version number and the payload sizes allow.

If the message is larger than the supported MTU size, the protocol SHOULD split the message into
multiple packets. The implementation SHOULD fill each packet to the maximum size allowed with any
remainder in the final packet; however, it MAY divide the payload portions in any manner, such as
equal portions in all packets.

The packets MUST be transmitted in order. The first packet in the series MUST have the
PACKET_COMMAND_NEW_MSG flag set, and the last packet MUST have the

PACKET_COMMAND_END_MSG flag set in the bCommand field. Subsequent messages MUST NOT
be transmitted until the last packet of the large message is sent. This is because the receiver
reconstructs messages according to the order of the sequence IDs of their constituent packets. If two
messages were interleaved, the receiver would be unable to detect the end of one message from the
start of the next.

If the connection was established with fast signing, the DFRAME MUST contain a ullSignature field
that is set to the 64-bit local secret that is associated with the local sender; that is, the same value as

the CONNECTED_SIGNED frame's ullSenderSecret field if the local computer system performed an
outbound connection, or the same value as the CONNECTED_SIGNED frame's ullReceiverSecret
field if the local computer system received an inbound connection.

If the connection was established by using full signing, the DFRAME MUST contain a ullSignature field
that is set to the first 64 bits of the SHA-1 signature digest, as specified in [FIPS180]. The digest
MUST be calculated, in sequence, from the following data:

28 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. The entire packet to be sent, extending from the beginning of the DFRAME header and concluding
with the final byte of the final mask, payload, or coalesced payload, as appropriate, except with

the DFRAME ullSignature bytes set to 0.

2. The 64-bit current or previous local secret, in little-endian byte order. The local secret to use when

validating MUST be selected according to the following logic:

1. If the packet is not a retry, use the current local secret.

2. For retried packets, if the next new sequence ID that will be sent is less than 64 and the
packet being retried has a sequence ID that is greater than or equal to 192, use the previous
local secret.

3. For all other retried packets, use the current local secret.

For full-signed connections, local secrets are also modified once for each time that the 8-bit sequence

space wraps, in order to avoid signing all data with the same value. The modification is performed by
using a modifier value that is derived from the lowest sequenced reliable payload, that is sent with a
sequence ID of less than 192, and that is not a KeepAlive.

If the lowest sequenced packet that uses the PACKET_COMMAND_RELIABLE flag contains
coalesced payloads, the first subpayload that is marked PACKET_COMMAND_RELIABLE is used to
generate the modifier. If no non-KeepAlive reliable payload is sent with a sequence ID between 0

and 191 inclusive, the previous local secret modifier value is reused.

The local secret modifier value is initialized to the secret associated with the sender when the
connection was established; that is, it begins with the same value as the CONNECTED_SIGNED
frame's ullSenderSecret field if the local computer system performed an outbound connection, and it
begins with the same value as the CONNECTED_SIGNED frame's ullReceiverSecret field if the local
computer system received an inbound connection.

After sending the packet with sequence ID 255 on a full-signed connection, the sender MUST advance

the secret by making the current local secret become the previous local secret and by setting the new
current local secret to the first 64 bits of a SHA-1 digest (as specified in [FIPS180]) of the following

data, in sequence:

1. The previous 64-bit local secret, in little-endian byte order.

2. The 64-bit local secret modifier value, in little-endian byte order.

DirectPlay 8 Protocol implementations MUST NOT allow more than 64 packets on the network
simultaneously. Additional packets SHOULD be queued on the sender until an acknowledgment (ACK)

for a previously sent packet is received.

Implementations SHOULD also implement TCP-friendly congestion control mechanisms [RFC2581],
such as initially allowing only two packets on the network and gradually increasing the window by one
as ACKs arrive without packet loss.

3.1.4.5 Hard Disconnects

Higher layers that require to terminate the connection as quickly as possible do not initiate the
graceful disconnect that is specified in section 3.1.4.3. Instead, the implementation cancels all
previously queued messages and terminates any packets that are still waiting for acknowledgments
(ACKs). It MUST then send one or more HARD_DISCONNECT messages that are separated by brief
intervals in order to make a best-effort attempt at informing the remote partner of this abrupt

termination. It is recommended that three HARD_DISCONNECT messages be sent by using the hard
disconnect timer to schedule the subsequent attempts, as specified in section 3.1.2.4.

If the connection was established with signing, the HARD_DISCONNECT (CFRAME) MUST be signed
appropriately by using the mechanism that is specified in section 3.1.4.4.

29 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Implementations MUST NOT send any additional data after initiating a hard disconnect. They MAY
continue receiving packets until the remote partner acknowledges the termination request by sending

its own hard disconnect packets.

When a HARD_DISCONNECT packet is received from the remote partner or the maximum number of

local HARD_DISCONNECT packets have been sent and the final time-out has elapsed, the
implementation SHOULD consider the connection terminated. See sections 3.1.5.1.4 and 3.1.6.4.

3.1.5 Processing Events and Sequencing Rules

When a packet arrives, the recipient SHOULD first check whether it is large enough to be a minimal
data frame (DFRAME) (4 bytes) and whether the first byte has the low bit
(PACKET_COMMAND_DATA) set. If so, it MUST process the message as a DFRAME (section 3.1.5.2)
data frame. Otherwise, if the data is at least 12 bytes and the first byte is either 0x80 or 0x88
(PACKET_COMMAND_CFRAME or PACKET_COMMAND_CFRAME | PACKET_COMMAND_POLL),
it MUST process the message as a CFRAME (section 3.1.5.1) command frame. Otherwise, the message
is not a valid DirectPlay 8 Protocol message and MUST be ignored or passed to other protocols.

3.1.5.1 CFRAMEs

Command frames (CFRAMEs) are handled according to the type of command; that is, the second byte
of the packet listed as bExtOpcode MUST be a known value. If it is not one of the known values in
this section, the packet MUST be discarded.

3.1.5.1.1 CONNECT

If the bExtOpcode field indicates FRAME_EXOPCODE_CONNECT (0x01), the source address (for
example, IPv4 address and port type when running on UDP) for the message SHOULD be checked. If
the address corresponds to one with an existing fully established connection, it SHOULD be ignored. If
the address is for a previously received inbound connection that has not completed the handshake
process and if the dwSessID field matches the previously received CONNECT, another CONNECTED

message SHOULD immediately be sent; otherwise, the packet SHOULD be ignored. If the address is

for a previously established outbound connection that has not completed the handshake process, the
packet SHOULD be ignored.

If the source address does not correspond to any existing connection, it is treated as a new connection
attempt. If the recipient is not allowing connections, the packet MUST be ignored. Otherwise, it MUST
check the dwCurrentProtocolVersion field for compatibility and reject incompatible version

numbers, as indicated in section 2.2.1.1. If the recipient will require fast or full signing on the
connection, it MUST also validate that dwSessID is not 0.

If the recipient is not enforcing signing, it SHOULD allocate resources for the new connection and send
a CONNECTED response. This includes setting the connect retry timer to continue retrying the
CONNECTED reply until either a valid CONNECTED response arrives from the connector, or the
maximum number of retries elapses and the connection is terminated.

If the recipient is enforcing signing, it SHOULD NOT allocate resources but instead, send a

CONNECTED_SIGNED response that uses a cookie value in its ullConnectSig field that can be used to

subsequently verify that the connector saw the CONNECTED_SIGNED reply. This is described in more
detail in section 3.1.5.1.3.

3.1.5.1.2 CONNECTED

If the bExtOpcode field indicates FRAME_EXOPCODE_CONNECTED (0x02), the source address (for
example, IPv4 address and port type when running on UDP) for the message SHOULD be checked. If

the address does not correspond to one with an existing partially or fully established connection, it
SHOULD be ignored.

30 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the source address matches that of a previously initiated outbound connection that has not
completed the handshake process, the dwSessID field MUST match that of the previously sent

CONNECT packet, and the PACKET_COMMAND_POLL flag MUST be set in the bCommand field
before the packet can be accepted. If the connector is enforcing signing, this unsigned response

SHOULD be ignored. Otherwise, the connection is considered to be established and a CONNECTED
response sent to confirm this connection.

If the source address matches that of a previously initiated inbound connection that has not completed
the handshake process, the dwSessID field MUST match that of the previously received CONNECT,
and the PACKET_COMMAND_POLL flag MUST NOT be set in the bCommand field before the packet
can be accepted. If the connector is enforcing signing, this unsigned response SHOULD be ignored.
Otherwise, the connection SHOULD be considered established.

If the source address matches that of an established connection, the dwSessID field MUST match the
one used to establish the connection, and the PACKET_COMMAND_POLL flag MUST be set. If so,
this connector's previous CONNECTED response was apparently lost and the connector SHOULD send
a duplicate CONNECTED packet. Otherwise, the packet SHOULD be ignored.

3.1.5.1.3 CONNECTED_SIGNED

If the bExtOpcode field indicates FRAME_EXOPCODE_CONNECTED_SIGNED (0x03), the source
address (for example, IPv4 address and port type when running on UDP) for the message is checked.

If the source address matches that of a previously initiated outbound connection that has not
completed the handshake process, the dwSessID field MUST match that of the previously sent
CONNECT packet, and the PACKET_COMMAND_POLL flag MUST be set in the bCommand field
before the packet can be accepted. The dwSigningOpts field MUST have either the
PACKET_SIGNING_FAST or the PACKET_SIGNING_FULL flag set, but not both, and the one set

MUST exactly match the connector's desired signing mode. If the connector did not intend to use
signing, this signed response SHOULD be ignored. Otherwise, the connection SHOULD be considered
established, random sender and receiver signing secrets SHOULD be generated, and a
CONNECTED_SIGNED response SHOULD be sent to confirm this connection. This
CONNECTED_SIGNED response MUST NOT set the PACKET_COMMAND_POLL flag. A reliable

KeepAlive DFRAME MUST also then be scheduled to ensure that the remote side that did not allocate
resources yet is prompted to complete the connection establishment if the CONNECTED_SIGNED

response is dropped.

If the source address matches that of a previously initiated inbound connection that has not completed
the handshake process, the dwSessID field MUST match that of the previously received CONNECT
packet, and the PACKET_COMMAND_POLL flag MUST NOT be set in the bCommand field before
the packet can be accepted. If the connector is not using signing, this confirmation SHOULD be
ignored. Lastly, the ullConnectSig cookie signature field SHOULD be validated to ensure that the

sender saw the previous CONNECTED_SIGNED packet. If the signature is not valid, the packet MUST
be ignored. Otherwise, the connection SHOULD be allocated and considered established, and the
sender and receiver secrets provided SHOULD be saved. A reliable KeepAlive DFRAME SHOULD also
be scheduled to immediately update round-trip time (RTT) measurements.

If the source address matches that of a previously established connection and the dwSessID field
does not match the one that is used to establish the connection, or the PACKET_COMMAND_POLL

flag is not set or the client is not intending to use signing, this packet MUST be ignored. Otherwise, a

duplicate CONNECTED_SIGNED confirmation SHOULD be sent.

If the source address does not match any existing connection, the packet SHOULD be ignored. Note
that if the implementation does not allocate resources when receiving the first CONNECT packet, the
CONNECTED_SIGNED packets intended for previously initiated inbound connections that have not
completed the handshake process would thus not match any existing connection. The ullConnectSig
cookie field is used to determine whether this is the case, and if the cookie and thus the source
address is validated, it SHOULD be handled as previously described.

31 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This specification does not prescribe any particular method for generating or validating ullConnectSig
cookies. If the implementation is set to use this field, it SHOULD incorporate the sender's source

address (for example, the IP address and port for a UDP transport provider), the dwSessID value,
and a time-dependent secret that only the listener knows and that uses a cryptographically secure

algorithm that makes it difficult to guess.

3.1.5.1.4 HARD_DISCONNECT

If the bExtOpcode field indicates FRAME_EXOPCODE_HARD_DISCONNECT (0x04), the source
address (for example, the IPv4 address and port type when running on UDP) for the message SHOULD
be checked. If the address does not correspond to one with a fully established connection, it SHOULD
be ignored. If the connection used signing, the signature MUST be valid or else the packet MUST be

ignored. If a HARD_DISCONNECT message has already been received for the connection, additional
actions SHOULD NOT be taken.

If the local node initiated the hard disconnect sequence, the received HARD_DISCONNECT is treated
as an acknowledgment (ACK) of the previously sent HARD_DISCONNECT. The hard disconnect timer
SHOULD be canceled, and connection termination SHOULD be considered complete.

Otherwise, the local node is receiving a new request to hard-terminate the connection and SHOULD

abort all outstanding sends and then immediately send three HARD_DISCONNECT ACK packets. The
connection is then considered to be terminated.

3.1.5.1.5 SACK

If the bExtOpcode field indicates FRAME_EXOPCODE_SACK (0x06), the source address (for
example, IPv4 address and port type when running on UDP) for the message SHOULD be checked. If
the address does not correspond to one with a fully established connection, it MUST be ignored. If the

connection used signing, the signature MUST be valid; otherwise, the packet MUST be ignored. The
bNSeq, bNRcv, optional selective acknowledgment (SACK), and optional send mask fields are then
processed by using the standard rules in sections 3.1.5.2.1 through 3.1.5.2.4.

A successfully validated SACK packet SHOULD count as a valid receive and thus restart the KeepAlive

timer.

3.1.5.2 DFRAMEs

Data frames (DFRAME) are checked to see if they were sent from an address (for example, IPv4
address and port tuple when running on UDP) to which there is an established connection. If the
address is unknown, the packet MUST be discarded.

If the connection enabled signing, and the DFRAME is not properly signed, it MUST be discarded.

If the remote computer system reported a version 0x00010005 or higher and the
PACKET_CONTROL_KEEPALIVE_OR_CORRELATE bit was set in bControl, the packet is a
KeepAlive and MUST contain the 32-bit session identifier as a payload. This identifier value MUST
match the dwSessID value used to establish the connection, and receivers MUST ignore the packet if
it does not match. The PACKET_CONTROL_COALESCE flag MUST NOT be set in bControl on
KeepAlives. This payload MUST NOT be indicated to the upper layer as data.

All DFRAMEs, KeepAlive or otherwise, MUST have their bNRcv, bSeq, optional selective

acknowledgment (SACK) mask, and optional send mask fields processed as described in sections
3.1.5.2.1 through 3.1.5.2.4. After the sequencing information is validated, and processing indicates
that the data is either in sequence or was not marked as PACKET_COMMAND_SEQUENTIAL in
bCommand, the implementation SHOULD report the data payload or coalesced data payloads, if any,
to its consumer. The exception is version 0x00010005 and higher KeepAlives, which SHOULD be
treated as if they have a 0-byte payload as previously noted.

32 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

All successfully validated DFRAME packets SHOULD count as a valid receive and thus restart the
KeepAlive Timer (section 3.1.2.6).

If the DFRAME has the PACKET_CONTROL_END_STREAM flag set, implementations SHOULD begin
the process of disconnecting gracefully as described in section 3.1.4.3.

3.1.5.2.1 Send Sequence ID (bSeq) Validation and Processing

The maximum number of unacknowledged, outstanding packets that an implementation can have at a
single time is 64, and therefore, the bSeq field MUST either be the next sequence ID that is expected
by the receiver, or a later ID that is less than or equal to the expected ID plus 63. If the sequence ID
is outside this range, a selective acknowledgment (SACK) packet SHOULD be sent that indicates the
current expected state. If the PACKET_COMMAND_POLL flag is set in bCommand, this packet

SHOULD be sent immediately. Otherwise, the dedicated acknowledgment (ACK) timer SHOULD be set
by using the short time-out (nominally 20 milliseconds), and the SACK packet SHOULD be sent at that
time. The payload of the received packet MUST then be ignored.

After all other validation is performed and the packet has not been ignored, this bSeq value MUST

become the new expected sequence ID. If the logic in the previous paragraph is used, receiving a
retried packet that has the same bSeq value is treated as a duplicate.

Sequence IDs start at 0 for every connection. Therefore, each partner's next send value from which
bSeq is generated MUST start at 0 for every connection.

If the sequence ID is the next expected, the receiver SHOULD process the payload and advance the
expected sequence ID. If the sequence ID is out of order, but still within 63 packets, the receiver
SHOULD queue the payload until it receives either:

 A delayed or retried transmission of the missing packet or packets, and can now process the
sequence in order.

 A subsequent packet with a send mask indicating that the missing packet or packets did not use
PACKET_COMMAND_RELIABLE and will never be retried. Therefore, the receiver should
advanceadvances its sequence as if it had already received and processed the packets.

If an implementation has out-of-order packets beyond the current expected sequence ID queued, it
SHOULD indicate this to the sender using appropriate SACK masks on any outgoing SACK–based
messages. This feedback enables the sender to avoid retrying packets that have already been
successfully received.

3.1.5.2.2 Acknowledged Sequence ID (bNRcv) Processing

The bNRcv field acknowledges reception of previously sent frames that are less than the specified ID.
All data frame (DFRAME) packets that had been sent with bSeq values less than bNRcv, accounting
for 8-bit counter wrapping, no longer need to be remembered, and their retry timers SHOULD be
canceled.

Sequence IDs start at 0 for every connection. Therefore, each partner's next receive value from
which bNRcv is generated MUST start at 0 for every connection.

3.1.5.2.3 SACK Mask Processing

When one or both of the optional selective acknowledgment (SACK) mask 32-bit fields is present and
one or more bits are set, the sender is indicating that it received out-of-order, a packet or packets
with sequence IDs higher than bNRcv, presumably due to packet loss. The two 32-bit little-endian

fields MUST be considered as one 64-bit field, where dwSACKMask1 is the low 32 bits and
dwSACKMask2 is the high 32 bits. If one or the other field is not present, its contents MUST be
considered as all 0.

33 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The receiver of a SACK mask loops through each bit of the combined 64-bit value, from the least
significant to most significant. Each bit corresponds to a sequence ID after bNRcv, and if that bit is

set, it indicates that the corresponding packet was received out of order. Implementations SHOULD
avoid retrying those packets in the future.

Implementations SHOULD also shorten the retry timer for the first frame of the window to
10 milliseconds in order to speed recovery from the packet loss indicated by a SACK mask.

3.1.5.2.4 Send Mask Processing

When one or both of the optional send mask 32-bit fields is present, and one or more bits are set, the
sender is indicating that it sent a packet or packets that were not marked as reliable and for which it
did not yet receive acknowledgments (ACK). The two 32-bit little-endian fields MUST be considered as

one 64-bit field, where dwSendMask1 is the low 32 bits and dwSendMask2 is the high 32 bits. If
one or the other field is not present, its contents MUST be considered as all 0.

The receiver of a send mask loops through each bit of the combined 64-bit value, from the least
significant to most significant. Each bit corresponds to a sequence ID prior to bSeq, and if that bit is

set, it indicates that the corresponding packet has not been reliably sent and will not be retried. If the
recipient of the send mask has not received the packet and has not already processed a send mask

that identifies the sequence ID, it SHOULD consider the packet as dropped and release its placeholder
in the sequence. For the purposes of sending acknowledgments and delivering sequential messages in
order, these drops should beare treated the same as if the packet actually had arrived; the Next
Receive value MUST be advanced, and if the packet with the next sequence ID was previously
received, but had been queued due to the gap in the sequence, its contents SHOULD now be reported
to the upper layer.

3.1.5.2.5 Coalesced Payload Processing

When a data frame (DFRAME) arrives with the PACKET_CONTROL_COALESCE flag set in bControl,
the data payload is made of one or more coalesced payloads instead of a single payload. These
subpayloads begin with an array of 16-bit headers described in section 2.2.3, followed by an optional
16 bits of padding to ensure 32-bit alignment. Following this array are each of the actual payloads, all

with 32-bit alignment padding except for the final payload. The recipient MUST ensure that the
number of subpayloads indicated in the array is valid and does not report sizes larger than that of the

remainder of the packet. It SHOULD then report each individual payload to the upper layer as if it had
arrived in its own packet. These MUST be reported in the same order in which they were placed in the
packet to preserve sequencing.

3.1.5.2.6 Large (Multipacket) Payload Processing

When a data frame (DFRAME) arrives with the PACKET_COMMAND_NEW_MSG flag set but not the
PACKET_COMMAND_END_MSG flag set in bCommand, the complete data payload spans more

than one packet. The PACKET_CONTROL_COALESCE flag MUST NOT also be set. The receiver
SHOULD save the received payload without indicating it to the upper layer and prepare to collect
future packets.

Future DFRAME that arrive without the PACKET_COMMAND_END_MSG flag MUST NOT also have
PACKET_CONTROL_COALESCE enabled. Their payloads SHOULD be added to the buffer or list.

When the next DFRAME in sequence that contains the PACKET_COMMAND_END_MSG flag arrives

without any gaps in the sequence space, the implementation SHOULD indicate the payloads to the
upper layer as a contiguous buffer in the same order in which they arrived.

If a DFRAME arrives in sequence after one that has the PACKET_COMMAND_END_MSG flag set but
it does not have the PACKET_COMMAND_NEW_MSG set, the receiver SHOULD behave as if the
PACKET_COMMAND_NEW_MSG flag were set but MAY terminate the connection. Similarly, if a
DFRAME arrives in sequence with the PACKET_COMMAND_NEW_MSG flag set but the previous one

34 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

did not have the PACKET_COMMAND_END_MSG flag set, the receiver SHOULD behave as if the
previous packet had the PACKET_COMMAND_END_MSG flag set but MAY terminate the connection.

An implementation SHOULD provide an upper limit for the number of packets that can be used to send
a large message, or the number of bytes that such a message can contain. If it receives the specified

number of packets or bytes without any missing sequence numbers and it still has not encountered a
PACKET_COMMAND_END_MSG flag, it SHOULD terminate the connection. The values for such
limits SHOULD be appropriate for, and specific to, the application's intended resource consumption
and sending patterns; no particular value is recommended in this specification.

3.1.5.2.7 Signature Processing

All frames that are associated with a signed connection MUST have an ullSignature field present, and

it MUST be validated. The method of validation depends on the signing mode that was agreed upon
when the connection was established.

For fast-signed connections, the 64-bit signature MUST match exactly the secret that was associated
with the remote partner when the connection was set up; otherwise, the packet MUST be discarded.

For full-signed connections, the 64-bit signature MUST match exactly the first 64 bits of the expected
SHA-1 signature digest or else the packet MUST be discarded. The digest MUST be calculated from the

following data, in sequence:

1. The entire received packet, extending from the beginning of the command frame (CFRAME) or
data frame (DFRAME) header and concluding with the final byte of the final mask, payload, or
coalesced payload, as appropriate, except with the CFRAME or DFRAME ullSignature bytes set to
0.

2. The 64-bit current or previous remote secret, in little-endian byte order. The remote secret to use
when validating MUST be selected according to the following logic:

1. If the next expected receive sequence ID is greater than or equal to 192, use the previous
remote secret.

2. If the next expected receive sequence ID is less than 64 and the received bSeq value is
greater than or equal to 192, use the previous remote secret.

3. Otherwise, use the current remote secret.

For full-signed connections, remote secrets are also modified once each time the 8-bit sequence space
wraps to avoid signing all data with the same value. The modification is performed using a modifier

value derived from the lowest sequenced reliable payload received with a sequence ID of less than
192 that is not a KeepAlive. If the lowest sequenced packet using the
PACKET_COMMAND_RELIABLE flag contains coalesced payload, the first subpayload that is marked
PACKET_COMMAND_RELIABLE is used to generate the modifier. If no non-KeepAlive reliable
payload is received with a sequence ID between 0 and 191 inclusive, the previous remote secret
modifier value is reused. The remote secret modifier value is initialized to the secret associated with

the sender when the connection was established; that is, it begins with the same value as the
CONNECTED_SIGNED frame's ullSenderSecret field if the local computer system received an
inbound connection, and it begins with the same value as the CONNECTED_SIGNED frame's

ullReceiverSecret field if the local computer system performed an outbound connection.

Upon receiving the packet with sequence ID 192 on a full-signed connection, and there are no missing
sequence IDs, the receiver MUST advance the secret by making the current remote secret become the
previous remote secret, and then setting the new current remote secret to the first 64 bits of a SHA-1

digest of the following data, in sequence:

1. The previous 64-bit remote secret, in little-endian byte order.

2. The 64-bit remote secret modifier value, in little-endian byte order.

35 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.6 Timer Events

3.1.6.1 Connect Retry Timer

When the Connect Retry Timer expires, a new CONNECT message SHOULD be sent if it is an outbound
connection that has not yet received a response from the listener; otherwise, for all other cases where
the Connect Retry Timer is active a new CONNECTED message SHOULD be sent. The Connect Retry
Timer SHOULD then be rescheduled for the next period. It is recommended that the retry period starts
at 200 milliseconds and doubles every time, with a maximum of 5 seconds and 14 retries.

If the maximum number of retries has already been attempted when the timer expires, the connection
attempt MUST be considered as failed. If the connection was initiated from an inbound CONNECT
packet arriving on a listening computing system, the listener MAY choose to go back to listening if it
did not allow additional connection attempts while the failed attempt was in progress.

3.1.6.2 Delayed Acknowledgment Timer

When the delayed acknowledgment (ACK) timer expires without having been canceled, the computer
system SHOULD send a dedicated selective acknowledgment (SACK) message that contains the
current connection state information. Any active delayed send mask timer SHOULD then be canceled.

3.1.6.3 Delayed Send Mask Timer

When the delayed send mask timer expires without having been canceled, the computer system
SHOULD send a dedicated selective acknowledgment (SACK) message that contains the current
connection state information. Any active delayed acknowledgment (ACK) timer SHOULD then be
canceled.

3.1.6.4 Hard Disconnect Timer

When the Hard Disconnect Timer expires without having been canceled, the computer system SHOULD

send another HARD_DISCONNECT packet. If the maximum number of resends has already occurred,
the connection SHOULD be considered terminated. Otherwise, the hard disconnect timer SHOULD be

rescheduled.

3.1.6.5 Retry Timer

When the Retry Timer elapses without having been canceled and the associated packet was reliable,
the data frame (DFRAME) SHOULD be resent and the retry timer SHOULD then be scheduled for the

next period. It is recommended that the retry period start at 2.5 times round-trip time (RTT) plus the
delayed acknowledgment (ACK) time-out (nominally 100 milliseconds), and that there be linear
backoff for the second and third retries, exponential backoff for the fourth through eighth retries, and
an overall cap at 5 seconds and 10 retries.

If the maximum number of retries has already been attempted when the timer expires, the connection
MUST be considered as lost. All other in-progress sends MUST be discarded, and the upper layer

SHOULD be informed of the disconnection.

When the retry timer elapses without having been canceled and the associated packet was not marked
as reliable, the packet's sequence ID SHOULD be remembered as requiring a send mask, and a
delayed send mask timer SHOULD be scheduled to transmit this information.

For reliable packets that contained coalesced reliable and unreliable subpayloads, only the reliable
subpayloads SHOULD be retried. All subpayloads that are not marked as reliable MUST be removed
from the packet.

36 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Retried packets MUST always contain the latest DFRAME header information, except that bSeq MUST
be the sequence ID originally assigned to the packet, and if the send mask is present, it MUST be

relative to that bSeq value.

For connections that enabled full signing, retried packets MUST always be properly re-signed

whenever any header information is updated, the packet is not marked as reliable, or coalesced
subpayloads are removed.

3.1.6.6 KeepAlive Timer

When the KeepAlive timer expires without having been canceled, the computing system SHOULD
send a KeepAlive message. A KeepAlive message is a reliable data frame (DFRAME) with no
application payload. If both partners indicated a dwCurrentProtocolVersion value of 0x00010005 or
higher, the DFRAME MUST have the PACKET_CONTROL_KEEPALIVE_OR_CORRELATE flag set and
it MUST have the 32-bit dwSessID field present and set to the connection's game session ID.
Otherwise, there MUST NOT be any payload.

After the reliable KeepAlive message begins transmitting, it MUST behave like all other reliable

DFRAMEs with respect to time-outs and maximum retries. The implementation SHOULD reschedule
the KeepAlive timer to expire again after another period of inactivity.

3.1.7 Other Local Events

None.

37 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Sample Connection Sequence

The following five frames show an example of the multiple-step connection sequence and subsequent

KeepAlive messages used when "Connector" initiates a connection to "Listener". The bytes are
assumed to be a UDP payload (UDP and other headers not shown here).

1. Connector to Listener

Command Frame (CFRAME) - CONNECT, acknowledgment (ACK) now, message ID 0x00, response ID
0x00, version 0x00010006, game session ID 0x79C9AEC6, timestamp 0x2367369D

 88 01 00 00 06 00 01 00 C6 AE C9 79 9D 36 67 23 y.6g#

2. Listener to Connector

CFRAME - CONNECTED, ACK now, message ID 0x00, response ID 0x00, version 0x00010006, game
session ID 0x79C9AEC6, timestamp 0x0004DFE1

 88 02 00 00 06 00 01 00 C6 AE C9 79 E1 DF 04 00 y....

3. Connector to Listener

CFRAME - CONNECTED, message ID 0x01, response ID 0x00, version 0x00010006, game session ID
0x79C9AEC6, timestamp 0x2367369D

 80 02 01 00 06 00 01 00 C6 AE C9 79 9D 36 67 23 y.6g#

4. Connector to Listener

Data Frame (DFRAME), marked as reliable, sequential, complete message, not a retry, not coalesced,
not final packet, no selective acknowledgment (SACK) or send masks, sequence ID 0, Next Receive 0,
ACK now, KeepAlive for game session ID 0x79C9AEC6

 3F 02 00 00 C6 AE C9 79 ?......y

5. Listener to Connector

DFRAME, marked as reliable, sequential, complete message, not a retry, not coalesced, not final
packet, no SACK or send masks, sequence ID 0, Next Receive 0, ACK now, KeepAlive for game

session ID 0x79C9AEC6

 3F 02 00 00 C6 AE C9 79 ?......y

38 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.2 Sample Upper-Layer Data Transmission and Acknowledgment

The following two frames show an example of an upper layer sending a payload from "Partner A" to
"Partner B" and receiving an acknowledgment (ACK) in the reverse direction. The bytes are assumed

to be a UDP payload (UDP and other headers not shown here).

1. Partner A to Partner B

Data Frame (DFRAME), not marked as reliable, sequential, ACK now, complete message, not a retry,
not coalesced, not final packet, no selective acknowledgment (SACK) or send masks, sequence ID 5,
Next Receive 3, 5 byte payload "ABCDE"

 3D 00 05 03 01 41 42 43 44 45 =....ABCDE

2. Partner B to Partner A

Command Frame (CFRAME) - SACK, Next Send 3, Next Receive 5, not a retry, no SACK or send

masks, timestamp 0x00115D07

 80 06 01 00 03 06 00 00 07 5D 11 00 ]..

39 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

The DirectPlay 8 Protocol optionally uses the SHA-1 hashing algorithm (as specified in [FIPS180]),

which has been shown to have weaknesses. However, the protocol is not intended for use in
applications that demand robust security without Internet Protocol security (IPsec) or other lower-
level security mechanisms already in place.

5.2 Index of Security Parameters

 Security parameter Section

SHA-1 digest 3.1.4.4 and 3.1.5.2.7

40 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.2.1.1: Windows Server 2003 and Windows XP, without the DirectX 9 or later runtime
installed, report versions less than 0x00010005, and do not support signing or coalescence.

<2> Section 2.2.1.2: Windows Server 2003 and Windows XP, without the DirectX 9 or later runtime

installed, report versions less than 0x00010005, and do not support signing or coalescence.

<3> Section 2.2.1.3: Windows Server 2003 and Windows XP, without the DirectX 9 or later runtime
installed, report versions less than 0x00010005, and do not support signing or coalescence.

41 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

42 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model 24
Acknowledged sequence ID processing 32
Applicability 9

C

Capability negotiation 9
Change tracking 41
Client - overview 24
Coalesced payload processing 33
Coalesced payloads 21
Coalesced Payloads message 21
Coalesced_Payloads packet 21
Command frames (CFRAMEs) - overview (section 2.2.1 11, section 3.1.5.1 29)
Command Frames (CFRAMEs) message 11
CONNECT packet (section 2.2.1.1 11, section 3.1.5.1.1 29)

Connect Retry Timer (section 3.1.2.1 25, section 3.1.6.1 35)
CONNECTED packet (section 2.2.1.2 12, section 3.1.5.1.2 29)
CONNECTED_SIGNED packet (section 2.2.1.3 14, section 3.1.5.1.3 30)
Connecting and listening computing systems - overview 24
Connection sequence - example 37

D

Data frames (DFRAMEs)
 acknowledged sequence ID processing 32
 coalesced payload processing 33
 large (multipacket) payload processing 33
 overview (section 2.2.2 19, section 3.1.5.2 31)
 selective acknowledgment (SACK) mask processing 32
 send mask processing 33
 send sequence ID validation and processing 32
 signature processing 34
Data Frames (DFRAMEs) message 19
Data model - abstract 24
Delayed Acknowledgment Timer (section 3.1.2.2 25, section 3.1.6.2 35)
Delayed Send Mask Timer (section 3.1.2.3 25, section 3.1.6.3 35)
DFRAME packet 19

E

Examples
 sample connection sequence 37
 sample upper-layer data transmission and acknowledgment 38

F

Fields - vendor-extensible 10

G

Glossary 6

H

Hard Disconnect Timer (section 3.1.2.4 26, section 3.1.6.4 35)
HARD_DISCONNECT packet (section 2.2.1.4 16, section 3.1.5.1.4 31)
Higher-layer triggered events
 disconnecting gracefully 26
 establishing connection 26

43 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 hard disconnects 28
 listening 26
 sending application data 27

I

Implementer - security considerations 39
Index of security parameters 39
Informative references 8
Initialization 26
Introduction 6

K

KeepAlive Timer (section 3.1.2.6 26, section 3.1.6.6 36)

L

Large (multipacket) payload processing 33
Listening and connecting computing systems - overview 24
Local events 36

M

Message processing
 command frames 29
 data frames 31
 overview 29
Messages
 Coalesced Payloads 21
 Command Frames (CFRAMEs) 11
 Data Frames (DFRAMEs) 19
 syntax 11
 transport 11
Multipacket payload processing 33

N

Normative references 8

O

Overview (synopsis) 8

P

Parameters - security index 39
Preconditions 9
Prerequisites 9
Product behavior 40

R

References 7
 informative 8
 normative 8
Relationship to other protocols 9
Retry Timer (section 3.1.2.5 26, section 3.1.6.5 35)

S

SACK packet (section 2.2.1.5 17, section 3.1.5.1.5 31)
Security
 implementer considerations 39

44 / 44

[MC-DPL8R-Diff] - v20160714
DirectPlay 8 Protocol: Reliable
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 parameter index 39
Selective acknowledgment (SACK) mask processing 32
Send mask processing 33
Send sequence ID validation and processing 32
Sequencing rules
 command frames 29
 data frames 31
 overview 29
Server - overview 24
Signature processing 34
Standards assignments 10
Syntax 11

T

Timer events
 Connect Retry Timer 35

 Delayed Acknowledgment Timer 35
 Delayed Send Mask Timer 35
 Hard Disconnect Timer 35
 KeepAlive Timer 36
 Retry Timer 35
Timers
 Connect Retry 25
 Delayed Acknowledgment 25
 Delayed Send Mask 25
 Hard Disconnect 26
 KeepAlive 26
 Retry 26
Tracking changes 41
Transport 11
Triggered events - higher-layer
 disconnecting gracefully 26
 establishing connection 26
 hard disconnects 28
 listening 26
 sending application data 27

U

Upper-layer data transmission and acknowledgment - example 38

V

Vendor-extensible fields 10
Versioning 9

