
1 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MC-DPL4R]:

DirectPlay 4 Protocol: Reliable

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

8/10/2007 0.1 Major Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.2.1 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0 Major Updated and revised the technical content.

1/25/2008 2.0 Major Updated and revised the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 3.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 3.1.2 Editorial Changed language and formatting in the technical content.

10/24/2008 3.2 Minor Clarified the meaning of the technical content.

12/5/2008 3.2.1 Editorial Editorial Update.

1/16/2009 3.2.2 Editorial Changed language and formatting in the technical content.

2/27/2009 4.0 Major Updated and revised the technical content.

4/10/2009 4.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 4.1 Minor Clarified the meaning of the technical content.

7/2/2009 4.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 4.1.2 Editorial Changed language and formatting in the technical content.

9/25/2009 4.2 Minor Clarified the meaning of the technical content.

11/6/2009 4.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 4.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 5.0 Major Updated and revised the technical content.

3/12/2010 5.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 5.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 6.0 Major Updated and revised the technical content.

7/16/2010 7.0 Major Updated and revised the technical content.

8/27/2010 7.1 Minor Clarified the meaning of the technical content.

10/8/2010 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

1/7/2011 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 7.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 7.2 Minor Clarified the meaning of the technical content.

9/23/2011 7.2 None
No changes to the meaning, language, or formatting of the

technical content.

12/16/2011 8.0 Major Updated and revised the technical content.

3/30/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 9.0 Major Updated and revised the technical content.

11/14/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 10.0 Major Significantly changed the technical content.

10/16/2015 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 6
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 7
1.5 Prerequisites/Preconditions ... 7
1.6 Applicability Statement ... 8
1.7 Versioning and Capability Negotiation ... 8
1.8 Vendor-Extensible Fields ... 8
1.9 Standards Assignments ... 8

2 Messages ... 9
2.1 Transport .. 9
2.2 Message Syntax ... 9

2.2.1 Frame Format, Player Indexes Header ... 9
2.2.2 Frame Format, Data Frame .. 10
2.2.3 Frame Format, NACK Frame ... 12
2.2.4 Frame Format, ACK Frame ... 13

3 Protocol Details ... 15
3.1 Common Details .. 15

3.1.1 Abstract Data Model .. 15
3.1.2 Timers .. 15
3.1.3 Initialization ... 16
3.1.4 Higher-Layer Triggered Events ... 16
3.1.5 Processing Events and Sequencing Rules ... 16

3.1.5.1 Player Indexes Header Processing ... 16
3.1.5.2 Data Frame Processing .. 16
3.1.5.3 ACK and NACK Processing .. 17
3.1.5.4 Bytes Received Processing ... 17

3.1.6 Timer Events .. 17
3.1.7 Other Local Events .. 17

4 Protocol Examples ... 18
4.1 One-Way Traffic Between Node A and Node B .. 18

4.1.1 Message 1 ... 18
4.1.2 Message 2 ... 18
4.1.3 Message 3 ... 18
4.1.4 Message 4 ... 19

5 Security ... 20
5.1 Security Considerations for Implementers ... 20
5.2 Index of Security Parameters .. 20

6 Appendix A: Product Behavior ... 21

7 Change Tracking .. 23

8 Index ... 24

5 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

This specification pertains to the DirectPlay 4 Protocol and describes functionality related to the
reliable delivery of DirectPlay 4 messages. The DirectPlay 4 Protocol guarantees message delivery and
provides throttling for applications that use DirectPlay 4.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

acknowledgment (ACK): A signal passed between communicating processes or computers to

signify successful receipt of a transmission as part of a communications protocol.

DirectPlay: A network communication library included with the Microsoft DirectX application

programming interfaces. DirectPlay is a high-level software interface between applications and
communication services that makes it easy to connect games over the Internet, a modem link,
or a network.

DirectPlay 4: A programming library that implements the IDirectPlay4 programming interface.
DirectPlay 4 provides peer-to-peer session-layer services to applications, including session

lifetime management, data management, and media abstraction. DirectPlay 4 first shipped
with the DirectX 6 multimedia toolkit. Later versions continued to ship up to, and including,
DirectX 9. DirectPlay 4 was subsequently deprecated. The DirectPlay 4 DLL continues to ship
in current versions of Windows operating systems, but the development library is no longer
shipping in Microsoft development tools and software development kits (SDKs).

DirectX runtime: A set of libraries created for the family of Windows operating systems that
provide interfaces to ease the development of video games.

DirectX Software Development Kit (DirectX SDK): A set of libraries, called the DirectX

runtime, and supporting infrastructure for building applications for those libraries.

game: An application that uses a DirectPlay protocol to communicate between computers.

game session: The metadata associated with the collection of computers participating in a single
instance of a computer game.

host: In DirectPlay, the computer responsible for responding to DirectPlay game session

enumeration requests and maintaining the master copy of all the player and group lists for the
game. One computer is designated as the host of the DirectPlay game session. All other
participants in the DirectPlay game session are called peers. However, in peer-to-peer mode
the name table entry representing the host of the session is also marked as a peer.

Internetwork Packet Exchange (IPX): A protocol (see [IPX]) maintained by Novell's NetWare
product that provides connectionless datagram delivery of messages. IPX is based on Xerox
Corporation's Internetwork Packet protocol, XNS.

maximum transmission unit (MTU): The size, in bytes, of the largest packet that a given layer
of a communications protocol can pass onward.

payload: The data that is transported to and from the application that is using either the
DirectPlay 4 protocol or DirectPlay 8 protocol.

peer: In DirectPlay, a player within a DirectPlay game session that has an established connection
with every other peer in the game session, and which is not performing game session
management duties. The participant that is managing the game session is called the host.

https://go.microsoft.com/fwlink/?LinkId=89914

6 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

peer-to-peer: A server-less networking technology that allows several participating network
devices to share resources and communicate directly with each other.

player: A person who is playing a computer game. There can be multiple players on a computer
participating in any given game session. See also name table.

player ID: A 32-bit integer that uniquely represents a player.

round-trip: A process that imports data and then exports that data without data loss.

sequence ID: A monotonically increasing 8-bit identifier for packets. This is typically represented
as a field named bSeq in packet structures.

serial link (or serial transport): Running the DXDiag application over a null modem cable
connecting two computers. See also modem link.

service provider: A module that abstracts details of underlying transports for generic DirectPlay

message transmission. Each DirectPlay message is transmitted by a DirectPlay service
provider. The service providers that shipped with DirectPlay 4 are modem, serial, IPX, and

TCP/IP.

session layer: The fifth layer in the Open Systems Interconnect (OSI) architectural model as
defined by the International Organization for Standardization (ISO). The session layer is used
for establishing a communication session, implementing security, and performing authentication.

The session layer responds to service requests from the presentation layer and issues service
requests to the transport layer.

throttling: The reduction in the rate of sending data when a network link saturation condition is
detected.

tick count: In DirectPlay, the count from when the system was booted, in milliseconds.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient

routing through the Internet.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

user message: A message that is sent between instances of an application using the DirectPlay
network library as a transport.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

https://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com

7 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MC-DPL4CS] Microsoft Corporation, "DirectPlay 4 Protocol: Core and Service Providers".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[USPATENT6438603 B1] Ogus, A.W., "Methods and Protocol for Simultaneous Tuning of Reliable and
Non-Reliable Channels of a Single Network Communication Link", 2002 Ogus,
http://patft.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f
=G&l=50&s1=6438603.PN.&OS=PN/6438603&RS=PN/6438603

1.2.2 Informative References

None.

1.3 Overview

This specification describes the reliable transport mechanism that can be used with the DirectPlay 4
Protocol. This mechanism provides for reliable delivery of messages, message throttling , and for
applications written for the IDirectPlay4 interface. Early implementations of DirectPlay 4 did not
provide reliable delivery and throttling. As a result, in some scenarios, no reliable delivery services
were available. The reliable transport mechanism combines the reliable and unreliable delivery of
messages into a single channel of data. This facilitates a single set of flow control logic that provides

both reliable and unreliable data delivery services, as specified in [USPATENT6438603 B1].

The reliable transport mechanism used by the DirectPlay 4 Protocol is an envelope that encapsulates
all messages sent between connected peers when active. That is, the mechanism becomes active
when the normal DirectPlay 4 connection process has completed. All messages sent to the host during
the connection process do not use the reliable transport mechanism.

The application determines whether the reliable transport mechanism is activated. Use of reliable

transport is exclusive of the use of some of the normally available security functionality in DirectPlay
4. However, when reliable transport is activated, user-level security is not available.

1.4 Relationship to Other Protocols

The DirectPlay 4 Protocol is an envelope that wraps both operating system messages and user

messages. This protocol is media-independent because it resides in the session layer of the protocol
stack. DirectPlay typically can be run using service providers for TCP/IP, Internetwork Package
Exchange (IPX), modem, and serial links. From the perspective of service providers, this is an
application-layer protocol. From the perspective of applications, the DirectPlay 4 Protocol is a session-
layer protocol.

The DirectPlay 4 Protocol is transmitted via the TCP and User Datagram Protocol (UDP) protocols,
as specified in the DirectPlay 4 Protocol: Core and Service Providers Specification [MC-DPL4CS]. At the

discretion of the game, all of the messages listed in [MC-DPL4CS] can be transmitted via the

DirectPlay 4 Protocol, as described in this specification [MC-DPL4R].

1.5 Prerequisites/Preconditions

The DirectPlay 4 Protocol requires the DirectX 6 Runtime.<1>

%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=95481
https://go.microsoft.com/fwlink/?LinkId=95481
https://go.microsoft.com/fwlink/?LinkId=95481
https://go.microsoft.com/fwlink/?LinkId=95481
%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68

8 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.6 Applicability Statement

The DirectPlay 4 Protocol is activated only at the request of an application that is written for the
IDirectPlay4 interface and written with the DirectX 6 Software Development Kit or a later version

of the DirectX Software Development Kit (DirectX SDK). All of the functionality present in the
DirectPlay 4 Protocol has been superseded by the DirectPlay 8 Protocol and, as such, the DirectPlay
4 Protocol is only to be used when the game has a requirement to interoperate with other DirectPlay 4
games.

1.7 Versioning and Capability Negotiation

There is only one version of the DirectPlay 4 Protocol. It is activated at the request of the application.
It is assumed that the application has taken measures to ensure that the appropriate version of the
DirectX Runtime has been installed on all peers involved in a DirectPlay game session.

If the versions of DirectPlay on all computing systems do not support the DirectPlay 4 Protocol, and
the application has requested that the DirectPlay 4 Protocol be used, the connection process between

peers fails gracefully. That is, a node with a version of the DirectX Runtime earlier than version 5 that

is attempting to join a DirectPlay game session that has the DirectPlay 4 Protocol activated will be
rejected during its join attempt.

For version negotiation between versions of DirectPlay, see [MC-DPL4CS].

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.

%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68

9 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

In the DirectPlay 4 Protocol, the terms "frame" and "packet" are used interchangeably. Frames and
packets refer to a single payload that is passed to a lower-layer transport, which is typically
constrained by the maximum transmission unit (MTU) size of the network. Messages are higher-
layer payloads that might be fragmented. Messages that do not fit in a single frame can span multiple
frames.

The DirectPlay 4 Protocol supports three types of frames: Data, acknowledgment (ACK), and
NACK.<2> The frame type is determined by the settings for the ACK (ACKNOWLEDGE) and EXT
(EXTENSION) bits of the flags field, and the nNACK bits of the extended flags field in the packet.

Frame type ACK bit EXT bit nNACK bits

Data Frame (section 2.2.2) Not Set Not Set Not present

ACK Frame (section 2.2.4) Set Not Set Not present

NACK Frame (section 2.2.3) Set Set Non-zero

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 Transport

Messages are transported over DirectPlay service providers. They can use UDP, IPX, serial, and

modem, or a third-party service provider.

2.2 Message Syntax

2.2.1 Frame Format, Player Indexes Header

All DirectPlay 4 Protocol frames begin with source and destination player indexes. A player index
value is the raw index assigned to the player as specified in [MC-DPL4CS] section 3.2.5.4. The index
value is the same as the player ID except that the index does not have the XOR mask applied to
achieve uniqueness, as defined in [MC-DPL4CS] section 3.2.5.4.

Each player index is encoded in a sequence that is one to three bytes in length. The sequence is based
on how many bytes it takes to represent the unsigned 0-0xFFFF ID index value by using 7-bit chunks,
ordered from least to most significant. The most significant bit in each byte indicates whether another
byte follows in the sequence. Depending on the index value, the bytes are populated by using the
following formatting rules:

 If the index value is less than 128 (seven bits), the player index is encoded by using a single byte
and the most significant bit is not set. For larger values, the least significant seven bits are stored

in the first byte and the high bit is set to indicate that another byte follows in the sequence.

 If the index value is less than 16,384, the second byte contains the most significant seven bits and

the high bit is not set.

 If the index value is greater than 16,384, the second byte contains the next most significant seven
bits and the high bit is set to indicate that another byte follows in the sequence.

 When the third byte is present, it contains the most significant bits of the player index, but only
the lowest two bits are set. The high bit MUST NOT be set to indicate additional bytes in the

sequence, and the decoded index value MUST NOT be larger than 0xFFFF.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68

10 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For example, a player index value of 0x01 is encoded by using a single byte (0x01), and a player
index value of 0xFFFE is encoded by using three bytes (0xFE, 0xFF, 0x03).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

IdFrom (variable) IdTo (variable)

...

IdFrom (variable): The player index of the source encoded by using one to three bytes according to

the formatting rules described in this section.

IdTo (variable): The player index of the destination encoded by using one to three bytes according
to the formatting rules described in this section.

2.2.2 Frame Format, Data Frame

Data frames are messages that deliver user-specified data. The Data frames format specifies message
boundaries and sequencing. Each message is identified by a messageid and each part of the message
is identified by a sequence number. Each unique instance of a piece of a message is uniquely identified
by a serial number. Message serial numbers help statistics-gathering mechanisms to differentiate
between original instances of a message fragment and their retries.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags messageid sequence serial

extended flags (optional) NACK MASK (variable)

...

Data (variable)

...

flags (1 byte): A bitmask that contains values from the following table that are combined using the
bitwise OR operation.

Note For a description of how these flags determine the frame type, see section 2.

Value Meaning

0x80 (EXT or EXTENSION) Indicates that the extended flags field is present.

0x40 (BIG) Indicates that big frame formatted is used. This value MUST be 0 because the big frame format
was never implemented.

0x20 (CMD or COMMAND) Indicates that this is a Data Frame. This bit MUST be set for Data Frames. If the
EXT bit is also set, the packet MUST be ignored.

0x10 (STA or START) Indicates the start of a message that can span multiple protocol frames.

0x08 (EOM or END OF MESSAGE) Indicates the end of a message that can span multiple protocol frames.

11 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value Meaning

0x04 (SAK or SEND ACKNOWLEDGE) Specifies a request for immediate acknowledgment (ACK) after
this frame is received.

0x02 (ACK or ACKNOWLEDGE) Acknowledges receipt of some frames or the nonreceipt of frames if the
extended flags are present. This bit MUST NOT be set for Data Frame messages.

0x01 (RLY or RELIABLE, ~UNRELIABLE) Indicates the message is reliable if set and unreliable if not set.

messageid (1 byte): A sequentially assigned value, starting at 1. The first message sent MUST be
messageid 1. The second message sent is messageid 2, and so on. There MUST NOT be more
than 24 outstanding messageid(s) on any link.

sequence (1 byte): The sequence number uniquely identifies the packet. It specifies the sequence
space in which ACKs and NACKs are made.

serial (1 byte): For messages that do not span multiple packets and that set both the STA and EOM

flags, the value of the serial field is the count of times this packet has been sent. If the value of
serial is 0, this is the first instance of the packet. If the value of serial is 1, this is the first retry of
this packet. For messages that span multiple packets, the value of serial begins at 0 for the first
instance of the first packet in the message and is incremented for each additional packet in the
message, as well as any retries of any of those packets.

extended flags (1 byte): This field is optional. It is present if the EXT bit is set in the flags
field.<3>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

COMMAND
nNAC

K
0

COMMAND (5 bits): MUST be 0.

nNACK (2 bits): The size, in bytes, of the NACK MASK.

Value Meaning

0x00 There is no NACK MASK present.

0x01 There is 1 byte of NACK MASK present.

0x02 There are 2 bytes of NACK MASK present.

0x03 There are 3 bytes of NACK MASK present.

0 (1 bit): MUST be 0.

NACK MASK (variable): A NACK MASK is sent in any message header when packets expected to be

in the message stream are not received. The mask of bits specifies which packets have not been

received by the receiver.

Creation of the mask is based on the sequence number in the NACK packet, which identifies the
first packet that was not received. The bits in the NACK MASK bitmask specify which other
packets relative to that sequence number have also not been received. For example, if the
sequence number is 7 and the NACK MASK is 0x03, then packets with sequence numbers 7, 8,
and 9 have not been received at the receiving end of the link.

12 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The size of the NACK MASK is specified in the nNACK bits of the extended flags field, if that
field is present. When nNACK is greater than 0, there is a NACK MASK. When the extended

flags field is not present, there is no NACK MASK field.

The NACK MASK field is optional.<4>

Data (variable): The higher-layer data payload. The length of this field MUST be inferred from the
remaining size of the packet reported by the lower-level transport. The size is the total number of
bytes in the packet minus the 4–8 bytes of previous Data frame fields.

2.2.3 Frame Format, NACK Frame

NACK, or Negative Acknowledge, frames specify which data frames were expected but were not
received by the receiving end of the link. Messages that are not sent reliably MUST NOT generate a
NACK.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags extended flags (optional) messageid sequence

bytes received

local tick count

NACK MASK (variable)

...

flags (1 byte): A bitmask that contains values from the following table that are combined using the
bitwise OR operation.

Note For a description of how these flags determine the frame type, see section 2.

Value Meaning

0x80 (EXT or EXTENSION) Indicates that the extended flags field is present.

0x40 (BIG) Indicates that big frame format is used. This value MUST be 0 because the big frame
format was never implemented.

0x20 (CMD or COMMAND) Indicates that this is a Data Frame. This bit MUST be set for Data
Frames. If the EXT bit is also set, the packet MUST be ignored.

0x10 (STA or START) Indicates the start of a message that can span multiple protocol frames.

0x08 (EOM or END OF MESSAGE) Indicates the end of a message that can span multiple protocol
frames.

0x04 (SAK or SEND ACKNOWLEDGE) Specifies a request for immediate acknowledgment after
this frame is received.

0x02 (ACK or ACKNOWLEDGE) Acknowledges receipt of some frames; might specify the
nonreceipt of frames if the extended flags are present.

0x01 (RLY or RELIABLE, ~UNRELIABLE) Indicates that the message is reliable if set and unreliable
if not set.

13 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

extended flags (1 byte): This field is optional. It is present if the EXT bit is set in the flags
field.<5>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

COMMAND nNAC
K

0

COMMAND (5 bits): MUST be 0x00.

nNACK (2 bits): The size, in bytes, of the NACK MASK.

Value Meaning

0x00 There is no NACK MASK present.

0x01 There is 1 byte of NACK MASK present.

0x02 There are 2 bytes of NACK MASK present.

0x03 There are 3 bytes of NACK MASK present.

0 (1 bit): MUST be 0.

messageid (1 byte): The messageid from the sent data frame.

sequence (1 byte): The sequence ID from the sent data frame. The sequence uniquely identifies
which is the first nonreceived frame.

bytes received (4 bytes): Specifies the total number of bytes received on the link at the time that
this NACK frame was sent.

local tick count (4 bytes): Specifies the tick count on the local tick clock when the NACK frame
was sent.

NACK MASK (variable): A NACK MASK is sent in any message header when packets expected to be
in the message stream are not received. The mask of bits specifies which packets have not been
received by the receiver.

Creation of the mask is based on the sequence number in the NACK packet, which identifies the

first packet that was not received. The bits in the NACK MASK bitmask specify which other
packets relative to that sequence number have also not been received. For example, if the
sequence number is 7 and the NACK MASK is 0x03, then packets with sequence numbers 7, 8,
and 9 have not been received at the receiving end of the link.

The size of the NACK MASK is specified in the nNACK bits of the extended flags field, if that
field is present. When nNACK is greater than 0, there is a NACK MASK. When the extended
flags field is not present, there is no NACK MASK field.

The NACK MASK field is optional.<6>

2.2.4 Frame Format, ACK Frame

Acknowledgment (ACK) frames specify which data frames have successfully arrived at the receiving
end of the link.

14 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags messageid sequence serial

bytes received

local tick count

flags (1 byte): A bitmask that contains values from the following table that are combined using the
bitwise OR operation.

Note For a description of how these flags determine the frame type, see section 2.

Value Meaning

0x80 (EXT or EXTENSION) This value MUST be set to 0.

0x40 (BIG) Indicates that big frame format is used. This value MUST be 0 because the big frame
format was never implemented.

0x20 (CMD or COMMAND) Indicates that this is a Data Frame. This bit MUST be set for Data
Frames. If the EXT bit is also set, the packet MUST be ignored.

0x10 (STA or START) Indicates the start of a message that can span multiple protocol frames.

0x08 (EOM or END OF MESSAGE) Indicates the end of a message that can span multiple protocol
frames.

0x04 (SAK or SEND ACKNOWLEDGE) Specifies a request for immediate acknowledgment after
this frame is received.

0x02 (ACK or ACKNOWLEDGE) Acknowledges receipt of some frames; might specify the
nonreceipt of frames if the extended flags are present.

0x01 (RLY or RELIABLE, ~UNRELIABLE) Indicates that the message is reliable if set and
unreliable if not set.

messageid (1 byte): The messageid from the sent data frame.

sequence (1 byte): The sequence ID from the sent data frame. The sequence uniquely identifies
which is the last successfully received frame. Acknowledgment of a particular sequence also

acknowledges receipt of all prior unacknowledged sequence numbers.

serial (1 byte): The number of times this packet has been sent. If the serial number is 0, this is the
first instance of the packet. If the serial number is 1, this is the first retry of this packet.

bytes received (4 bytes): Specifies the total number of bytes received on the link at the time this
ACK frame was sent.

local tick count (4 bytes): Specifies the tick count on the local tick clock when the ACK frame was
sent.

15 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The DirectPlay 4 Protocol is inherently peer-to-peer. It was also designed to ride on top of existing
connection and game session logic of the existing DirectPlay 4 implementation. Therefore, it needs
no explicit connection logic or game session management logic because that is handled by the
DirectPlay 4 core, as specified in [MC-DPL4CS].

3.1 Common Details

3.1.1 Abstract Data Model

First Message: The messageid of the first reliable outstanding message on the outbound link. A
message is outstanding if it has been transmitted but not acknowledged.

Last Message: The messageid of the last reliable outstanding message on the outbound link.

Outstanding Message Mask: A mask of bits that specifies those messages between First Message
and Last Message that have not been acknowledged.

First Unreliable Message: The messageid of the first outstanding message on the outbound link

that is not marked as reliable.

Last Unreliable Message: The messageid of the last outstanding message on the outbound link
that is not marked as reliable.

Unreliable Outstanding Message Mask: A mask of bits that specifies those messages between First
Unreliable Message and Last Unreliable Message that have not been acknowledged.

Unreliable Receive Queue: A queue for assembling parts of unreliable messages before they are
finally assembled and indicated.

Reliable Receive Queue: A queue for assembling reliable messages and maintaining their order for
indication.

First Reliable Receive: The first messageid in the reliable receive queue.

Last Reliable Receive: The last messageid in the reliable receive queue.

Reliable Receive Mask: A mask of bits that indicates which messageids relative to First Reliable
Receive are reliable.

Bytes Received: Count of bytes received on this link.

Average Latency: Average latency of messages sent on this link.

3.1.2 Timers

The DirectPlay 4 Protocol utilizes the computing system specified in [USPATENT6438603 B1] for

estimating available bandwidth and tuning the link appropriately. However, using the scheme
described in the patent is not required to achieve interoperability.

Timers for retries can be set according to the expected delivery time and acknowledge time, plus
some amount of extra time to allow for inconsistencies in link operation.

The current implementation sets the retry time-out to the average round-trip plus three standard
deviations in the average round-trip. A simpler method can also be used, such as the average round-
trip plus an extra percentage, such as 20%. When no messages have previously been sent, the initial

starting value can be set to 1 second.

%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68
https://go.microsoft.com/fwlink/?LinkId=95481

16 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.3 Initialization

All sequence numbers MUST start at 1. All serial numbers MUST start at 0.

The count of bytes received SHOULD correspond as closely as possible to the total bytes received from

the sender on the receiver's link, and SHOULD include the duplicate (retransmitted) packets.

The tick count is a 32-bit value counting 1/1000ths of a second of elapsed time. It can start at any
value but MUST increase at the specified rate.

NACKs are not triggered, but only occur when missing frames are detected.

Note However, an implementation can attempt to trigger NACKs using a timer-based algorithm
approach.

ACKs are triggered by either the SAK bit in the message header or by the end of the message.

ACKs MAY wait for a timer before sending, unless the SAK bit has been specified by the sender.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

3.1.5.1 Player Indexes Header Processing

When any frame arrives, the player indexes header specified in section 2.2.1 MUST be evaluated to
ensure that the source and destination player indexes represent valid players participating in the
game session, as specified in [MC-DPL4CS]. When delivering data frame payloads to the higher
layer, these indexes SHOULD be provided.

3.1.5.2 Data Frame Processing

When a Data frame (section 2.2.2) arrives, the value of its messageid field MUST be compared to the
list of receiving messages using 8-bit unsigned integer math, and according to the following rules:

Note When processing Data frames, the receiver MUST keep track of the last messageid that was
received reliably.

 If there are no ongoing receives or completed receives, then this messageid MUST become the
first ongoing receive.

 If the value of the messageid field is outside the range of the messageid of the earliest ongoing
or completed receive (and that messageid+23), the Data frame MUST be ignored.

 If no message with the messageid value is currently being received, the messageid of this
message MUST be added to the list of receiving messages.

The only exception to this rule is when a reliable Data frame is received and the value of its

messageid is the same as the last reliable message received. In this case, an acknowledgment
(ACK) message MUST be sent back to the sender. This exception handles the situation where an ACK
that was sent for a previously received message was lost. Because a message that was previously
received is now being received again, it is possible that the ACK that was previously sent was lost and
needs to be retransmitted.

When the messageid of a message is initially added to the list of receiving messages, a new message

buffer MAY be allocated for the message. This buffer is used for assembling the message according to

%5bMC-DPL4CS%5d.pdf#Section_10eeb2a2da0e4ce298dcba1a87092a68

17 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

the sequence numbers associated with the messageid as necessary. When all of the following Data
frames have been received, the Data (variable) areas of those messages are concatenated in

sequence order to make up the receive data for that message:

 A Data frame with a particular messageid, a starting sequence, and a STA bit set.

 A Data frame with the same messageid, an ending sequence, and an EOM set.

 All Data frames with the same messageid in the contiguous intervening sequence space.

Note Using 8-bit unsigned integer math, if a message is not received reliably and not all parts of the
message have been received, and the currently receiving messageid is equal to the messageid+24
of this unreliable message, then the unreliable message SHOULD be discarded.

During assembly of the receive data, a NACK or ACK MUST be sent in the following circumstances:

 If the sequence number is not the current expected sequence number, a NACK packet MUST be

sent back to the sender. It is at the discretion of the implementation to send the NACK
immediately or to wait for more time or more receive data before sending the NACK.<7> Delaying

the NACK might result in efficiency gains.

 If the Data frame has its SAK bit set, an ACK or NACK MUST be sent back to the sender without
waiting for more time to elapse or more data to be received.<8>

 When the final part in a multipart message is received, an ACK MUST be sent back to the sender

without waiting for more time to elapse or more data to be received.

After the receive data is fully assembled, the data is indicated to the higher layers, and the
messageid of the message MUST be removed from the list of receiving messages.

3.1.5.3 ACK and NACK Processing

When an ACK frame (section 2.2.4) arrives, the data associated with the messageid in the
acknowledgment (ACK) message and any earlier messageids MAY be discarded.

When a NACK frame (section 2.2.3) arrives, the data associated with the messageid-1 in the NACK
frame (section 2.2.3) MAY be discarded. Any other data is indicated as received, but the presence of a
0 bit in the NACK mask can also be discarded. Any other data MUST be retransmitted.

3.1.5.4 Bytes Received Processing

Any time that data arrives from a remote sender, the size of the entire Data Frame (section 2.2.2),
not including the player indexes header (section 2.2.1), is accumulated in a per-link value called bytes
received. This value is included in any acknowledgment (ACK) or NACK message on that link.

3.1.6 Timer Events

Timers are recommended as specified in [USPATENT6438603 B1]. However, this scheme is not
required to achieve interoperability.

3.1.7 Other Local Events

None.

https://go.microsoft.com/fwlink/?LinkId=95481

18 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

4.1 One-Way Traffic Between Node A and Node B

In the following examples, one-way traffic between Node A and Node B is covered. Node A sends four

messages to Node B:

 Message 1: Three Data frames (section 2.2.2) in length, marked as reliable.

 Message 2: One Data frame in length, not marked as reliable.

 Message 3: One Data frame in length, marked as reliable, will drop in first transmission.

 Message 4: Two Data frames in length, not marked as reliable.

4.1.1 Message 1

Node A sends Message 1 to the receiver, Node B. This message is three Data frames (section 2.2.2) in
length and is marked as reliable.

 Message 1: DATA FRAME: 1
 Flags: STA, RLY messageid: 0, sequence: 0, serial: 0
 Message 1: DATA FRAME: 2
 Flags: RLY messageid: 0, sequence: 1, serial: 1
 Message 1: DATA FRAME: 3
 Flags: EOM, RLY messageid: 0, sequence: 2, serial: 2

All three Data frames arrive on the receiver, Node B, and the receiver indicates this to the higher

layers.

The receiver sends back an ACK frame to the sender, Node A.

 Flags: ACK messageid: 0, sequence: 2, bytes received: 4500

4.1.2 Message 2

Node A sends Message 2 to the receiver, Node B. This message is one Data frame (section 2.2.2) in
length and is not marked as reliable.

 Message 2: DATA FRAME
 Flags: STA, EOM messageid: 1, sequence: 3, serial: 0

It is possible that there can be an ACK by the receiver for a frame that is not marked as reliable; this
is at the discretion of the implementation. However, sending an ACK allows the sender, Node A, to

manage resources more efficiently.

4.1.3 Message 3

Node A sends Message 3 to the receiver, Node B. This message is one Data frame (section 2.2.2) in

length, is marked as reliable, and will drop the first transmission.

 Message 3: DATA FRAME
 Flags: STA, EOM, RLY messageid: 2, sequence: 4, serial:0

19 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If Message 3 is dropped, but the sender, Node A, still sends Message 4 (section 4.1.4) to the receiver,
Node B, this would result in the following.

 Message 4: DATA FRAME: 1
 Flags: STA messageid: 3, sequence: 5, serial: 0
 Message 4: DATA FRAME: 2
 Flags: EOM messageid: 3, sequence: 6, serial: 1

This can trigger a NACK on the receiver, Node B.

The receiver, Node B, sends back a NACK to the sender, Node A.

 Flags: NACK messageid: 2, sequence: 4,
 nNACK: 0, no NACK mask present, bytes received 8954

In response to the NACK, the sender, Node A, attempts a retransmission of Message 3 to Node B.

 Message 3: DATA FRAME (retry)
 Flags: STA, EOM, RLY messageid: 2, sequence: 4, serial: 1

4.1.4 Message 4

The sender, Node A, sends Message 4 to the receiver, Node B. This message is two Data
frames (section 2.2.2) in length and is not marked as reliable.

 Message 4: DATA FRAME: 1
 Flags: STA messageid: 3, sequence: 5, serial: 0
 Message 4: DATA FRAME: 2
 Flags: EOM messageid: 3, sequence: 6, serial: 0

This can trigger a NACK on the receiver. For more information, see section 4.1.3.

20 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

21 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.5: The DirectPlay 4 Protocol is available only in Windows operating systems that have

the DirectX 6 runtime (from the DirectX 6 Software Development Kit (DirectX SDK)) or a later
version of the runtime installed. All Microsoft products listed above meet this requirement.

<2> Section 2: NACK frames are not implemented in Windows DirectPlay 4 implementation.

<3> Section 2.2.2: The Windows DirectPlay 4 implementation does not support extended flags and
therefore does not set or expect to receive messages with the EXT bit set.

<4> Section 2.2.2: Because the extended flags field is not supported by Windows implementations,

the NACK MASK field is also not supported

<5> Section 2.2.3: The Windows DirectPlay 4 implementation does not support extended flags and
therefore does not set or expect to receive messages with the EXT bit set.

<6> Section 2.2.3: Because the extended flags field is not supported by Windows implementations,
the NACK MASK field is also not supported.

22 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<7> Section 3.1.5.2: The Windows DirectPlay 4 implementation sends NACKs without waiting for
more time to elapse or more data to be received.

<8> Section 3.1.5.2: The Windows DirectPlay 4 implementation sets the SAK bit when any one of the
following applies:

 The EOM bit is not set or the higher layer requested the message to be sent using reliable
delivery, and the time since the last SAK request is greater than 50 milliseconds and greater than
one quarter of the estimated round-trip latency of the connection.

 The packet is being retransmitted.

 There have been 24 packets since the last packet was sent with the SAK bit set.

23 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

24 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Index

A

Abstract data model 15
ACK processing 17
ACK_Frame packet 13
Applicability 8

B

Bytes received processing 17

C

Capability negotiation 8
Change tracking 23

D

Data frame processing 16
Data model - abstract 15
Data_Frame packet 10

E

Examples - one-way traffic between Node A and

Node B 18

F

Fields - vendor-extensible 8
Frame Format - ACK Frame message 13
Frame Format - Data Frame message 10
Frame Format - NACK Frame message 12
Frame Format - Player Indexes Header message 9

G

Glossary 5

H

Higher-layer triggered events 16

I

Implementer - security considerations 20
Index of security parameters 20
Informative references 7
Initialization 16
Introduction 5

L

Local events 17

M

Message processing
 ACK and NACK processing 17
 bytes received processing 17
 Data frame processing 16

Messages
 Frame Format - ACK Frame 13
 Frame Format - Data Frame 10
 Frame Format - NACK Frame 12
 Frame Format - Player Indexes Header 9
 overview 9
 syntax 9
 transport 9

N

NACK processing 17
NACK_Frame packet 12
Normative references 6

O

One-way traffic examples 18

Overview (synopsis) 7

P

Parameters - security index 20
Player_Indexes_Header packet 9
Preconditions 7
Prerequisites 7
Processing
 ACK and NACK 17
 bytes received 17
 Data frame 16
Product behavior 21
Protocol Details
 overview 15

R

References 6
 informative 7
 normative 6
Relationship to other protocols 7

S

Security
 implementer considerations 20

 parameter index 20
Sequencing rules
 ACK and NACK processing 17
 bytes received processing 17
 data frame processing 16
Standards assignments 8
Syntax 9

T

Timer events 17
Timers 15
Tracking changes 23
Transport 9
Triggered events - higher-layer 16

V

25 / 25

[MC-DPL4R] - v20170601
DirectPlay 4 Protocol: Reliable
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Vendor-extensible fields 8
Versioning 8

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Frame Format, Player Indexes Header
	2.2.2 Frame Format, Data Frame
	2.2.3 Frame Format, NACK Frame
	2.2.4 Frame Format, ACK Frame

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Player Indexes Header Processing
	3.1.5.2 Data Frame Processing
	3.1.5.3 ACK and NACK Processing
	3.1.5.4 Bytes Received Processing

	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	4.1 One-Way Traffic Between Node A and Node B
	4.1.1 Message 1
	4.1.2 Message 2
	4.1.3 Message 3
	4.1.4 Message 4

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

